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Abstract. We present a parallel Schwarz type domain decomposition preconditioned
recycling Krylov subspace method for the numerical solution of stochastic indefinite
elliptic equations with two random coefficients. Karhunen-Loève expansions are used
to represent the stochastic variables and the stochastic Galerkin method with dou-
ble orthogonal polynomials is used to derive a sequence of uncoupled deterministic
equations. We show numerically that the Schwarz preconditioned recycling GMRES
method is an effective technique for solving the entire family of linear systems and, in
particular, the use of recycled Krylov subspaces is the key element of this successful
approach.
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1 Introduction

Tremendous progress has been made recently in developing reliable and fast algorithms
for solving partial differential equations with uncertainty in the coefficients [1, 5–7, 10,
15, 21, 22]. We study a domain decomposition preconditioned recycling Krylov subspace
technique [18] for solving some stochastic partial differential equations. In particular, we
focus on a class of indefinite elliptic equations which are more sensitive to the stochastic
perturbations. The method was introduced in [14] for solving the uncoupled systems
of equations arising from the discretization of stochastic elliptic equations with a single
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random coefficient. In this paper, we extend the approach to a class of indefinite elliptic
problems with random diffusion and reaction coefficients

{ −∇·(a(x,ω1)∇u(x,ω))−c(x,ω2)u(x,ω)= f (x) x∈D, ωi∈Ω,
u(x,ω)=0 x∈∂D, ωi∈Ω,

where
ω =(ω1,ω2), a(x,ω1)≥α>0, c(x,ω2)≥0,

D is the domain for x, and Ω is the sample space for ωi,i = 1,2. This type of Helmholtz
equations appears in many important applications such as computational acoustics and
is rather difficult to solve by iterative methods because of the existence of both positive
and negative eigenvalues and eigenvalues that are very close to zero. Slight perturba-
tion of the coefficients of the equations may move some of eigenvalues from positive to
negative or to somewhere very close to zero. Through a large number of numerical exper-
iments, we found that traditional preconditioning technique, which uses one matrix in
the sequence to precondition another matrix in the same sequence, is not very effective.
The precise reason is not clear, but it may be because the eigen bounds (for both posi-
tive and negative eigenvalues) are too different for the un-preconditioned matrix and the
preconditioning matrix. On the other hand, our numerical experiments show that the
recycling Krylov subspace method is very effective in this situation. We believe this is
due to the fact that the recycling Krylov subspace method provides a very good initial
guess for solving the next system. We mention that the idea of re-using preconditioner
and the idea of re-using the Krylov subspace are not new, but to use the combination for
solving this type of indefinite problems is new and the observation of the effectiveness of
the method has never been reported elsewhere.

There are several approaches for solving the problems, we follow [1, 10] to use the
so-called double orthogonal basis to decouple the high dimensional equation in the prob-
ability space and produce a sequence of independent systems

Aixi =bi, i=1,2,··· , (1.1)

where the matrices Ai and right-hand sides bi are somewhat related but independent
from each other. Each system in the sequence is indefinite, and is rather difficult to
solve using any iterative methods. We use the recently introduced recycling Krylov
subspace method [18], which starts the iteration from a Krylov subspace created from
a previous system. For preconditioning, we use an overlapping additive Schwarz do-
main decomposition method [20]. Our parallel implementation is based on the Portable
Extensible Toolkit for Scientific computation (PETSc) package from Argonne National
Laboratory [2].

The rest of the paper is organized as follows. In Section 2, we describe the stochastic
Galerkin method including the stochastic weak formulation, the Karhunen-Loève (KL)
expansion, the double orthogonal basis, and the discretization. Section 3 presents the
additive Schwarz preconditioned recycling Krylov subspace method. Some experimental
results are reported in Section 4.
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2 Stochastic Galerkin method

We briefly review some notations [11, 16]. Given a probability space (Ω,A,P) with sam-
ple space Ω, σ-algebra A and probability measure P , a real-valued random variable is a
function ξ(ω1): Ω→R. The probability distribution measure of ξ is defined on the Borel
sets B as µ(B)=P(∼−∞(B)). The mean, or expected value of ξ(ω1), is

〈ξ〉=
∫

Ω
ξ(ω1)dP(ω1)=

∫

R
xdµ(x)=

∫

R
xρ(x)dx,

where ρ is the probability density function of ξ. We also define the space

L2(Ω)=

{

ξ(ω1)

∣

∣

∣

∣

∫

Ω
|ξ|2dP <∞

}

.

Let D⊂R2 be the domain of x. A random field a(x,ω1): D×Ω→R is a real-valued func-
tion jointly measurable with respect to the Lebesgue measure on D and the probability
measure P on Ω. Define the space

L2(D×Ω)={u(x,ω)| 〈‖u(x,ω)‖L2(D)〉<∞}.

The stochastic Sobolev space H1
0(D×Ω) is defined analogously.

We consider a stochastic partial differential equation with stochastic diffusion and
reaction coefficients as follows:

{ −∇·(a(x,ω1)∇u(x,ω))−c(x,ω2)u(x,ω)= f (x) in D, ωi∈Ω,
u(x,ω)=0 on ∂D, ωi∈Ω,

where ω =(ω1,ω2). The weak form of this equation is to find u(x,ω)∈ H1
0(D×Ω) such

that

〈B[u,v]〉= 〈( f ,v)〉 ∀v∈H1
0(D×Ω), (2.1)

where

B[u,v]=
∫

D
a(x,ω1)∇u(x,ω)·∇v(x)dx−

∫

D
c(x,ω2)u(x,ω)v(x)dx,

( f ,v)=
∫

D
f (x)v(x)dx.

We assume that β ≥ a(x,ω1) ≥ α > 0 and c(x,ω2) ≥ 0 are in L∞(D×Ω). Note that the
condition that f is deterministic can be relaxed without introducing much difficulty.

Denoting the mean and the covariance of a(x,ω1) as a0(x)=
∫

Ω
a(x,ω1)dP(ω1) and

Cova(x,x′)=
∫

Ω
(a(x,ω1)−a0(x))(a(x′ ,ω1)−a0(x))dP(ω1)
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respectively, the KL expansion represents a(x,ω1) in the series form as

a(x,ω1)= a0(x)+
∞

∑
j=1

√

λa,j ka,j(x)ya,j(ω1), (2.2)

where λa,j and ka,j(x) are the eigenvalues and orthogonal eigenfunctions of Cova(x,x′);
i.e.,

∫

D
Cova(x,x′)ka,j(x′)d(x′)=λjka,j(x). (2.3)

This series converges in the mean-square sense. By definition, Cova(x,x′) is symmetric
and positive semidefinite, and there exists a countable sequence of eigenpairs {(λa,j,ka,j)}
satisfying

λa,1≥λa,2≥···≥λa,n ≥···→0

and the eigenfunctions {ka,j(x)} are orthogonal in L2(D). Moreover, {ya,j} is a set of un-
correlated random variables with mean value zero. If the eigenfunctions are normalized,
ya,j all have unit variance; i.e.,

〈ya,j(ω1)〉=0, 〈ya,i(ω1)ya,j(ω1)〉=δij.

For the computation, we approximate a(x,ω1) by a truncation of (2.2),

aMa(x,ω1)= a0(x)+
Ma

∑
j=1

√

λa,j ka,j(x)ya,j(ω1),

where Ma denotes the number of terms in the truncation.
In this paper, we also assume that {ya,j}Ma

j=1 are independent. The probability den-

sity function of ya,j is denoted as ρa,j, and the joint probability density function of ya =
(ya,1,··· ,ya,Ma) is ρa =ρa,1×···×ρa,Ma . Let Γa,j denote the image of ya,j and Γa =Γa,1×···×
Γa,Ma . We treat aM : D×Γa→R as

aM(x,ya)= a0(x)+
Ma

∑
j=1

√

λa,j ka,j(x)ya,j. (2.4)

Similarly, we have the truncation of the KL expansion for c(x,ω2):

cM(x,yc)= c0(x)+
Mc

∑
j=1

√

λc,j kc,j(x)yc,j, (2.5)

where yc={yc,j}Mc
j=1 are independent variables with probability density functions {ρc,j}Mc

j=1.

The image of yc is Γc =Γc,1×···×Γc,Mc. Now, we arrive at the deterministic problem,

{ −∇·(aM(x,ya)∇u(x,y))−cM(x,yc)u(x,y)= f (x),
u(x,y)=0,

(2.6)
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where x∈D, y=(ya,yc)∈Γ=Γa×Γc.
For y ∈ Γ, we use the double orthogonal polynomial function space [1, 10] to ap-

proximate L2(Γ,ρ), which decouples the equation in the y-space, yielding a sequence
of uncoupled equations. We first construct the double orthogonal basis for ya. For any
r∈N, the space of single-variable polynomials of degree at most r is denoted as Pr. For
ra =(ra

1,ra
2,··· ,ra

Ma
)∈NMa , we construct the multi-variable polynomial space

Pra := Pra
1
⊗Pra

2
⊗···⊗Pra

Ma
∈L2(Γa,ρa). (2.7)

For the space Pra
j
, j = 1,2,··· ,Ma, we use the double orthogonal functions, denoted as

{ψa
k,j(t)}ra

j

k=0, as basis instead of the simple polynomial basis {1,t,t2,··· ,tra
j }. We require

that ψa
k,j(t),k=0,··· ,ra

j satisfy two orthogonality conditions:











∫

Γa,j

ψa
p, j(t)ψa

q, j(t)ρa,j(t)dt=δp,q, p,q=0,··· ,ra
j ,

∫

Γa,j

tψa
p, j(t)ψa

q, j(t)ρa,j(t)dt=Ca
p, jδp,q, p,q=0,··· ,ra

j ,
(2.8)

where {Ca
p, j}

r j

p=0 are nonzero constants. Next we construct a basis function of Pr by select-

ing one polynomial basis function from each Pra
j
, j=1,··· ,Ma, and then multiplying these

selected Ma basis functions together. So given a ra =(ra
1,ra

2,··· ,ra
Ma

)∈NMa , there are total

Nya =∏
Ma

j=1(ra
j +1) basis functions for Pra(y1,y2,··· ,yMa).

Let ia = {ia
1,ia

2,··· ,ia
Ma

}. If 0≤ ia
j ≤ ra

j , ∀1≤ j≤ Ma, we say that ia ≤ ra. It is obvious that

there are Nya multiindex ia, which is less than or equal to ra. Each ia corresponds to one
basis function for Pra . We denote all the basis functions for Pra as the set

{

ψia
(ya)

∣

∣

∣

∣

∣

ψia
(ya)=

Ma

∏
j=1

ψa
ia
j ,j(ya,j), ia

j ∈{0,1,··· ,ra
j }

}

ia≤ra

. (2.9)

Finding {ψa
k, j(ya,j)}

ra
j

k=0 for spaces Pra
j
, j=1,··· ,Ma, results in an eigenproblem (cf. Section

8.7.2 in [12]). For the probability space of y, generally we do not need high order polyno-
mials. So the computational work for these eigen problems is negligible comparing to the
cost required to solve the coupled equations. Similarly, we construct the double orthog-
onal basis for L2(Γc,ρc). The basis functions are denoted as {ψic

(yc)}ic≤rc
. Let i =(ia,ic),

r=(ra,rc), and ρ=ρa×ρc. The double orthogonal basis for L2(Γ,ρ) is
{

ψi(y)|ψi(y)=ψia
(ya)ψic

(yc), ∀ i≤ r
}

i≤r
, (2.10)

where i≤ r is defined as ia ≤ ra and ic ≤ rc. The basis functions defined by (2.10) satisfy
the following equations:

∫

Γ
ykψi(y)ψj(y)ρ(y)dy=Cik ,kδi, j, (2.11)
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where yk is {ya,k]}Ma

k=1 or {yc,k}Mc

k=1, and Cik,k is {Ca
ia
k,k}

Ma

k=1 or {Cc
ic
k,k}

Mc

k=1 depending on the

index i and j.
To see why (2.11) holds, we start with

ψi(y)=ψia
(ya)ψic

(yc)=
Ma

∏
p=1

ψa
ia
p,p(ya,p)

Mc

∏
p=1

ψc
ic
p,p(yc,p),

ψj(y)=ψja
(ya)ψjc

(yc)=
Ma

∏
q=1

ψa
ja
q ,q(ya,q)

Mc

∏
q=1

ψc
ic
q,q(yc,q).

Without loss of generality, let us assume yk is ya,k. Then
∫

Γ
ya,kψi(y)ψj(y)ρ(y)dy

=
∫

Γa

ya,k

Ma

∏
p=1

ψa
ia
p,p(ya,p)

Ma

∏
q=1

ψa
ja
q ,q(ya,q)ρa(ya)d(ya)

×
∫

Γc

Mc

∏
p=1

ψc
ic
p,p(yc,p)

Mc

∏
q=1

ψc
jc
q ,q(yc,q)ρc(yc)d(yc).

From (2.8),

∫

Γa

ya,k

Ma

∏
p=1

ψa
ia
p,p(ya,p)

Ma

∏
q=1

ψa
ja
q ,q(ya,q)ρa(ya)d(ya)

=
Ma

∏
q=1,q 6=k

∫

Γa,q

ψa
ia
q,q(ya,q)ψa

ja
q ,q(ya,q)ρa,q(ya,q)d(ya,q)

×
∫

Γa,k

ya,kψa
ia
k,k(ya,k)ψa

ja
k ,k(ya,k)ρa,k(ya,k)d(ya,k) = Cia

k,kδia,ja
. (2.12)

Note that ia = ja if and only if ia
1 = ja

1, ia
2 = ja

2, ··· , ia
Ma

= ja
Ma

. Similarly, from the first equation
in (2.8), we have

∫

Γc

Mc

∏
p=1

ψc
ic
p,p(yc,p)

Mc

∏
q=1

ψc
jc
q,q(yc,q)ρc(yc)d(yc)=δic,jc

.

Combining with (2.12), we obtain
∫

Γ
ya,kψi(y)ψj(y)ρ(y)dy=Cia

k ,kδi,j.

With the double orthogonal basis given in (2.10), Eq. (2.6) is equivalent to Ny inde-
pendent deterministic equations in D as follows:

−∇
(

aM,i(x)∇uM,i(x)
)

−cM,i(x)uM,i(x)= fi(x) (2.13)
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with






























aM, i(x) := a0(x)+
Ma

∑
j=1

√

λa,j ka,j(x)Ca
ia
j , j,

cM, i(x) := c0(x)+
Mc

∑
j=1

√

λc,j kc,j(x)Cc
ic
j , j

,

fi(x) := f (x)·
∫

Γa

ψia
(t)ρa(t)dt

∫

Γc

ψic
(t)ρc(t)dt.

(2.14)

The statistics of the solution can be found from the approximate solutions uM,i(x).
For example, the mean of u(x,y) can be approximated by,

〈uM〉= ∑
i≤r

uM,i(x)
∫

Γ
ψi(y)ρ(y)dy,

and the second order moment of the solution can calculated by

∫

Γ

(

∑
i≤r

uM,i(x)ψi(y)
)2

ρ(y)dy= ∑
i≤r

(uM,i(x))2
∫

Γ
(ψi(y))2

ρ(y)dy= ∑
i≤r

(uM,i(x))2
.

3 Numerical method

The number of linear systems in the sequence (2.13) can be very large, and every system
is large and highly ill-conditioned. To efficiently solve the whole set of systems, one has
to be able to re-use as much computation as possible from one of the previous systems.
The most straightforward idea is to simply re-use the preconditioner computed from a
previous system. The idea is quite successful for regular elliptic problems. However, for
this type of indefinite problem under consideration in this paper, we found, somewhat
surprisingly, that re-using preconditioner is not very effective. The re-use of a Krylov
subspace turns out to be the best choice. It is not understood theoretically why this ap-
proach is so good, but intuitively it seems to suggest that the Krylov subspace from a
previous system carries some important eigen information that is needed for obtaining
the fast convergence when solving a later system in the same sequence. We next briefly
describe the recycling method and the additive Schwarz preconditioner.

There are several recycling Krylov subspace methods, see for example [4,8,9,13,17,19]
and references therein. We use the Generalized Conjugate Residual with implicit inner
Orthogonalization and Deflated Restarting (GCRO-DR) introduced in [18]. In our case
the sequence of linear systems has different matrices and different right-hand sides.

The idea of GCRO-DR is to retain a Krylov subspace for subsequent restarted GMRES
cycles, or for solving other linear systems. This approach was extended to include the
flexible version of GMRES (FGMRES) in [14]. Suppose we have solved the ith system
with FGMRES. We retain k vectors

Ỹk =[ỹ1,ỹ2,··· ,ỹk]. (3.1)
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Let Ck=Q, Uk=ỸkR−1 where Q and R are from the reduced QR decomposition of Ai+1Ỹk.
Uk, Ck∈Rn×k satisfy

Ai+1Uk =Ck, CH
k Ck = Ik. (3.2)

Let x0 and r0 be the initial guess and initial residual of Ai+1xi+1 = bi+1. We update
the solution as x= x0+UkCH

k r0, and set r= r0−CkCH
k r0. In our numerical experiment, we

find that for some systems, this updated solution x already satisfies the error tolerance
so that we do not need any more iterations after the initial step. However, if the x is still
not good enough, we continue to generate a Krylov subspace of dimension m−k+1 with
(I−CkCH

k )Ai+1, where m is the maximum number of iterations before restarting. In the
case of recycling FGMRES, it produces the Arnoldi relation

(I−CkCH
k )Ai+1Zm−k =Vm−k+1H̄m−k, (3.3)

where the columns of Zm−k are the preconditioned orthogonal vectors Vm−k.

To obtain the solution of the linear system Aixi=bi, we actually solve a preconditioned
system M−1

j Aix=M−1
j bi, where M−1

j is a one-level additive Schwarz preconditioner con-

structed using matrix Aj, [3]. To formally define M−1
j , we need to introduce a partition

of D. We first partition the domain into non-overlapping substructures Dl, l =1,··· ,N. In
order to obtain an overlapping decomposition of the domain, we extend each subregion
Dl to a larger region D′

l, i.e., Dl⊂D′
l. Only simple box decomposition is considered in this

paper – all subdomains Dl and D′
l are rectangular and made up of integral numbers of

fine mesh cells. The size of Dl is Hx×Hy and the size of D′
l is H′

x×H′
y, where the H′s are

chosen so that the overlap, ovlp, is uniform in the number of fine grid cells all around the
perimeter, i.e., ovlp = (H′

x−Hx)/2 = (H′
y−Hy)/2 for every subdomain. Homogeneous

Dirichlet boundary conditions are used on the subdomain boundary ∂D′
l . The additive

Schwarz preconditioner can be written as

M−1
i =(R1)

T(Ai)
−1
1 R1+···+(RN)T(Ai)

−1
N RN . (3.4)

Let n be the total number of mesh points and n′
l the total number of mesh points in

D′
l . Then, Rl is an n′

l×n matrix that is defined as: its element (Rl)i,j is 1 if the integer
indices 1 ≤ i ≤ n′

l and 1 ≤ j ≤ n belong to a mesh point in D′
l, or zero otherwise. The

Rl serves as a restriction matrix because its multiplication by a n×1 vector results in a
smaller n′

l×1 vector by dropping the components corresponding to mesh points outside
D′

l . Various inexact additive Schwarz preconditioners can be constructed by replacing
the matrices Al in (3.4) with convenient and inexpensive to compute matrices, such as
those obtained with incomplete and complete factorizations. In this paper we employ
the LU factorization.
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4 Numerical experiment

Consider the problem (2.6) on D =(0,1)×(0,1) with zero Dirichlet boundary conditions.
The mean and covariance functions for a(x,ω1) explicitly given as

a0(x)=5+sin(πx1) and Ca(x,x′)= e−|x−x′|2 .

The covariance function for c(x,ω2) is chosen to be the same as that of a(x,ω1) and the
mean function is c0(x) = 5. For the KL expansion of a(x,ω1) and c(x,ω2), we choose
Ma = Mc =4 truncation terms as the approximation. This implies the dimensions for the
ya-space and yc-space are 4 respectively. We also choose the highest degree of the poly-
nomials for ya,j and yc,j to be r=(3,2,2,1). This produces total 5184 systems. At the same

time, we assume that ya,j and yc,j, j=1,2,3,4 are uniformly distributed in Γa,j=[−
√

3,
√

3].

So the probability density function ρa,j =
1

2
√

3
. Note that this implies that the variance of

ya,j is unit. To make the test case highly indefinite, we multiply the reaction coefficient in
our numerical computation by 45. So the reaction coefficient in our numerical example is
actually 45c(x,ω2). We study the following four schemes

Scheme 1. No recycling of the Krylov subspace and no recycling of the precondi-
tioner

Scheme 2. Recycle the preconditioner only without recycling of the Krylov sub-
space for the entire sequence of systems

Scheme 3. Recycle the Krylov subspace and recycle the symbolic factorizations of
subdomain matrices for the entire sequence of systems

Scheme 4. Recycle the Krylov subspace and recycle the preconditioner for the en-
tire sequence of systems

We next show some numerical results obtained on an IBM BG/L using 64 processors.
The mesh size is 512×512. The solution is considered to be acceptable if

‖bi−Aixi‖≤max{10−10,10−6‖bi‖}.

The overlap of the subdomains is 8. The subdomain solver is LU factorization. FGMRES
restarts every 50 iterations including the recycling Krylov subspace. Fig. 1 is the number
of iterations for Scheme 1 and 2. It is obvious that the two schemes share similar situ-
ations in the number of iterations. Most of the systems require about 100 iterations to
converge. Some systems do not converge as they reach the maximum number of itera-
tions, which is 1000 in our numerical experiments. Scheme 2 has more divergent systems
compared with Scheme 1.

Fig. 2 shows the number of iterations for Scheme 3 and 4. For these two schemes,
we see that the number of iterations for the first system is about 60, which is shown as
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Figure 1: The number of iterations for Scheme 1 and 2.
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Figure 2: The number of iterations for Scheme 3 and 4.

a single mark in the figures. However, the number decreases to around 25 due to the
use of the recycled Krylov subspace. Since we apply the same preconditioner to all the
systems in Scheme 4, the number of iterations for Scheme 4 is a little more than Scheme 3.
However, Scheme 4 takes less computing time because of the savings from recomputing
the preconditioners as in Scheme 3. The computing time is shown in Table 1.
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Table 1: The average number of iterations and computing time for different schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Average Iterations 91.9 130.1 20.7 23.1
Computing Time(s) 33500 42000 13630 11610

Comparing the number of iterations for different schemes, we see that the additive
Schwarz preconditioned recycling Krylov subspace method is very effective in solving
indefinite problems. Table 1 contains a comparison of the average number of iterations
and the total computing time for different schemes. Scheme 3 is the best strategy in terms
of the number of iterations. The average number of iterations in Scheme 4 is a littler more
than that in Scheme 3 due to the fact that the same preconditioner is used for all systems.
However, this reduces the total computing time. Overall, Scheme 4 is the winner in terms
of the total computing time.
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