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Abstract

Computational fluid dynamics (CFD) is increasingly used to study blood flows in
patient-specific arteries for understanding certain cardiovascular diseases. The
techniques work quite well for relatively simple problems but need improve-
ments when the problems become harder when (a) the geometry becomes
complex (eg, a few branches to a full pulmonary artery), (b) the model becomes
more complex (eg, fluid-only to coupled fluid-structure interaction), (c) both
the fluid and wall models become highly nonlinear, and (d) the computer on
which we run the simulation is a supercomputer with tens of thousands of
processor cores. To push the limit of CFD in all four fronts, in this paper, we
develop and study a highly parallel algorithm for solving a monolithically cou-
pled fluid-structure system for the modeling of the interaction of the blood
flow and the arterial wall. As a case study, we consider a patient-specific, full
size pulmonary artery obtained from computed tomography (CT) images, with
an artificially added layer of wall with a fixed thickness. The fluid is modeled
with a system of incompressible Navier-Stokes equations, and the wall is mod-
eled by a geometrically nonlinear elasticity equation. As far as we know, this is
the first time the unsteady blood flow in a full pulmonary artery is simulated
without assuming a rigid wall. The proposed numerical algorithm and software
scale well beyond 10 000 processor cores on a supercomputer for solving the
fluid-structure interaction problem discretized with a stabilized finite element
method in space and an implicit scheme in time involving hundreds of millions
of unknowns.
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1 INTRODUCTION

Millions of people die every year from cardiovascular diseases, representing more than 30% of all global deaths.1 Compu-
tational fluid dynamics (CFD) is useful for understanding certain cardiovascular diseases, for example, in Kheyfets et al,2
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it was shown that the wall shear stress obtained through a steady blood flow simulation is highly correlated to the resis-
tive pulmonary arterial impedance. In most numerical simulations, the wall of the artery is assumed to be rigid, but it is
widely believed that a simulation with an elastic wall would produce more valuable results than a fluid-only simulation,3
even though, such calculations are computationally very expensive, and often take days or months of computing time
on small computers without lots of processor cores. With the recent development of supercomputers, high-resolution
fluid-structure interaction (FSI) computation becomes feasible, and there have been several successful applications in, for
example, respiratory mechanics,4 aeroelasticity,5 and hemodynamics.6-8 However, simulating the unsteady blood flow in
a deformable pulmonary artery is challenging because the coupled FSI system is highly nonlinear and the geometry of the
computational domain is complex. The nonlinearities come from the nonlinear fluid and solid equations, and also from
the dependency of the blood velocity and pressure on the domainmovement governed by a harmonic extension equation.
Moreover, the complexity of the computational domain makes the generation of a matching fluid and solid mesh rather
difficult. In this paper, we extend and investigate a monolithically coupled Newton-Krylov-Schwarz (NKS) algorithm for
the FSI simulation of the three-dimensional pulmonary vasculature on a supercomputer withmore than 10 000 processor
cores.
Generally speaking, there are two approaches for coupling a fluid problemwith a solid problem, namely, loose coupling

(partitioned) and full coupling (monolithic). In the partitioned method, a fluid problem or a solid equation is calculated
first, and then its solution is provided as the boundary condition of the other domain. The partitioned algorithm is essen-
tially aGauss-Seidel iteration, and it has been successfully applied to a few engineering areas, for example, aeroelasticity.5,9
But there are two major drawbacks in the partitioned method. First, it is not suitable for parallel computing because
the Gauss-Seidel iteration is sequential and has a low concurrency.10 Second, there is an “added-mass effect,” in other
words, significant numerical instabilities are introduced when the densities of the fluid and the solid are close to each
other.11 In this paper, a monolithic approach is employed since it does not suffer from such difficulties and often offers
a stable and scalable parallel algorithm. The monolithic approach has been used in several computational hemody-
namics applications.3,6-8 In our current work, a nonlinear elasticity equation is used to model the wall of the artery, an
incompressible Navier-Stokes system is employed to model the blood flow, and a third equation is used to describe the
moving fluid domain. All three partial differential equations are monolithically coupled together based on an arbitrary
Lagrangian-Eulerian (ALE) framework.12 To discretize the coupled FSI system, a P1 finite element is utilized for both the
solid and domain movement equations and a stabilized P1 − P1 finite element pair is employed for the incompressible
Navier-Stokes equations. The resulting semidiscretized FSI system of equations is further discretized in time using an
backward Euler scheme. After the spatial and temporal discretization, a large and highly nonlinear system of algebraic
equations is produced, and its solution requires an efficient parallel algorithm since we are aiming for a supercomputer
with a large number of processor cores, without which the calculation may take days or months of computing time. To
tackle the discretized FSI system, we develop an inexact Newton method for solving the nonlinear system, during each
Newton iteration a Krylov subspace method together with a Schwarz preconditioner is carefully chosen for the solution
of the Jacobian system.
We next briefly review some recent progresses of numerical simulation of blood flows in the pulmonary artery. For the

fluid-only calculation, in Spilker et al,13 the blood flow is described by a one-dimensional model discretized with a finite
element method, and the corresponding system of nonlinear equations is solved via a quasi-Newton method. In Tang
et al,14 a three-dimensional simulation of unsteady blood flows of a patient-specific pulmonary artery is obtained using
a stabilized finite element method for the incompressible Navier-Stokes equations, and the sequential simulation takes
a couple of days of computing time for a problem with a million elements. In Qureshi et al,15 a multiscale model of a
one-dimensional pulmonary network is presented and used to analyze the arterial and venous pressure, and the flow. For
the FSI simulation, in previous studies,16,17 the CFD-ACEmultiphysics package18 is used for a two-dimensional unsteady
blood flow simulation, where a finite volume method is used for the fluid equations and a finite element method is used
for the arterial wall. The resulting system of equations is solvedwith an algebraicmultigridmethod for the fluid equations
and a direct method for the solid equations. A three-dimensional pulmonary arterial bifurcation with simple geometry
is simulated by solving a steady state FSI problem in Yang et al,19 where an in-house FEM code is used to calculate the
nonlinear deformation of the thin-walled structure and a commercial CFD solver, ANSYS,20 is used to resolve the fluid
equations.
Most of these published works focus on either the fluid only simulation or FSI simulations with simple geometry, ie,

a small number of branches. To best of our knowledge, unsteady 3D FSI simulation with the full patient-specific pul-
monary artery is still not available in the existing literature because the required scalable parallel algorithm and software
are difficult to develop. Existing commercial software such as ANSYS20 scales only to a few hundred processor cores, and



KONG ET AL. 3 of 24

FIGURE 1 A patient-specific pulmonary artery. The red part is the blood flow domain, and the yellow is the arterial wall

that is not enough to carry out these large calculations in a reasonable amount of time. The monolithically coupled NKS
was previously applied to a FSI simulation with a small portion of a three-dimensional artery,6,7,21,22 but the approach
is not easy to be used for the full artery case since some of the algorithmic parameters are geometry-dependent and
problem-dependent; as the complexity of the geometry increases, the convergence becomes problematic. With the right
choices of parameters, including the subdomain overlap, the fill-in level of incomplete LU factorization, the reordering
schemes of the subdomain matrices, the lag of the Jacobian computation and the inexactness of the Newton iterations,
we show experimentally that the proposed version of NKS method is scalable with up to 10 240 processor cores for the
FSI simulation of a full pulmonary network. We also want to mention that NKS has also been successfully used in differ-
ent applications in our previous work: unsteady blood flow simulation,23 nonlinear elasticity equations,24 and transient
multigroup neutron diffusion equations.10

The remainder of this paper is organized as follows. In Section 2, we present the physicsmodels used in the FSI coupling
and their spatial and temporal discretization. A fully implicit, monolithically coupled parallel Newton-Krylov-Schwarz
method is described in Section 3. In Section 4, some numerical experiments and observations are presented, and we
focus mainly on the parallel performance of the proposed approach. Lastly, some concluding remarks are given in
Section 5.

2 MATHEMATICAL MODELS OF THE FLUID AND THE WALL

The pulmonary circulation carries deoxygenated blood from the right ventricle to the lungs. A patient-specific complete
pulmonary tree, shown in Figure 1, is considered in this work. In Figure 1, the red part is the blood flow domain, and the
yellow part is the arterial wall. The cut out is for the visualization, and the entire arterial wall is included in the actual
FSI simulation. In this section, we describe the models for the blood flow and the arterial wall, as well as the spatial and
temporal discretization of the equations.

2.1 Mathematical models for blood flow, arterial wall, and moving fluid domain
We begin by introducing some notations. At time t ∈ [0,T], let Ωt

𝑓
∈ R3 be the fluid domain, Ωt

s ∈ R3 the arterial wall,
Γt
𝑓,I the fluid inlet, Γ

t
𝑓,oi

, i = 1, 2, .... the fluid outlets, Γts,I the wall inlet, Γ
t
s,oi the wall outlets, Γ

t
s,n the wall outer surface, and

Γtw the wet interface between the fluid and the arterial wall. Note that t = 0 corresponds to the initial configuration. The
FSI configuration is shown in Figure 2, where an ALEmapping is defined for tracking themovement of the fluid domain:

At ∶ x𝑓 = At(X𝑓 ) ≡ X𝑓 + dm, x𝑓 ∈ Ωt
𝑓
,X𝑓 ∈ Ω0

𝑓
.
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FIGURE 2 The figure shows the arbitrary Lagrangian-Eulerian (ALE) mapping At from the initial configuration (left) to the configuration
at time t (right). In the right figure, one can also see the deformation of the arterial wall and the blood flow domain

We denote by dm ∈ R3 as the fluid domain displacement at time t, and assume it satisfies the following harmonic
extension equation: ⎧⎪⎨⎪⎩

−Δdm = 0 in Ω0
𝑓
,

dm = 0 on Γ0
𝑓
≡ Γ0

𝑓,I ∪ Γ0
𝑓,Oi

, i = 1, 2, ...
dm = ds on Γ0w.

(1)

Note that this equation does not have any particular physical meaning, and it is used to describe the motion of the fluid
domain. We denote by ds ∈ R3 as the arterial wall displacement governed by an unsteady, geometrically nonlinear
elasticity equation25 as follows:

⎧⎪⎪⎨⎪⎪⎩
𝜌s

𝜕2ds
𝜕t2

+ 𝜂s
𝜕ds
𝜕t

− ∇ · Πs = 𝜌sf s in Ω0
s ,

Πsns = gs on Γ0s,n,
ds = 0 on Γ0s,I ∪ Γ0s,Oi

, i = 1, 2, ...
𝛔sn̂s = −𝛔𝑓n𝑓 on Γtw.

(2)

In (2), 𝜌s is thewall density, fs is a volumetric force per unit ofmass, 𝜂s𝜕ds∕𝜕t is a damping termused tomimic the impact of
the surrounding tissues, 𝜂s is a damping parameter, ns and n̂s are the unit outward normal vectors (they are related by the
Nanson formula25) under the initial configuration and the deformed domain, respectively, 𝝈s is the Cauchy stress tensor
of the wall, and 𝝈f is the Cauchy stress tensor for the fluid domain to be defined shortly. Here, Πs is the nonsymmetric
first Piola-Kirchhoff stress tensor for the Saint Venant-Kirchhoff material,

llllF = (I + ∇ds),

E = 1
2
(FTF − I),

S = 𝜆strace(E)I + 2𝜇sE,

Πs = FS,

where I is a 3 × 3 identity matrix, F is the deformation gradient tensor, E is the Green-Lagrangian strain tensor, S is
the second Piola-Kirchhoff stress tensor, and 𝜇s and 𝜆s are the material Lamé constants expressed as functions of Young
modulus, Es, and Poisson ratio, 𝜈s, by

𝜇s =
Es

2 (1 + 𝜈s)
and 𝜆s =

Es𝜈s
(1 + 𝜈s) (1 − 2𝜈s)

.

The nonsymmetric first Piola-Kirchhoff stress tensor Πs and the Cauchy stress tensor 𝝈s are related by the formula:

𝛔s =
ΠsFT

det(F)
.
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Here, det(F) is the determinant of the tensor F. For the blood flows, let uf and pf denote the velocity and the pressure,
respectively, and the incompressible Navier-Stokes equations on the moving domain are presented as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌𝑓
𝜕u𝑓

𝜕t
|||X𝑓

+ 𝜌𝑓

[(
u𝑓 − 𝜕dm

𝜕t

)
· ∇

]
u𝑓 − ∇ · 𝛔𝑓 = 𝜌𝑓 f 𝑓 in Ωt

𝑓
,

∇ · u𝑓 = 0 in Ωt
𝑓
,

u𝑓 = vd
𝑓

on Γt
𝑓,I ,

𝛔𝑓n𝑓 = g𝑓 on Γt
𝑓,Oi

,

u𝑓 = 𝜕ds(A−1
t )

𝜕t
on Γtw,

(3)

where 𝜌f is the fluid density, |X𝑓
indicates that the time derivative is taken under the ALE configuration, 𝜕dm∕𝜕t is the

velocity of themeshmovement, ff is a volumetric force per unit ofmass, gf is a traction applied to the outlets, vd𝑓 is a velocity
profile prescribed at the inlet, A−1

t is a pull-back operator that maps the current coordinates to the original configuration,
nf is the unit outward normal vector for the fluid domain, and 𝝈f is the Cauchy stress tensor for the fluid defined as

𝛔𝑓 = −p𝑓 I + 2𝜈𝑓𝛜𝑓 , 𝛜𝑓 = 1
2

(
∇u𝑓 + ∇uT

𝑓

)
,

where 𝜺f is the strain rate tensor and 𝜈f is the viscosity coefficient. On the wet interface, three coupling conditions are
imposed to couple the solid and fluid equations. The first condition is the continuity of the velocity: uf = 𝜕ds∕𝜕t. The
second condition is the continuity of the displacement: dm = ds. Lastly, the traction forces from the fluid and the solid
are the same: 𝛔sn̂s = −𝛔𝑓n𝑓 . These conditions are included in (1), (2), and (3), through which the coupled FSI system is
formed.

2.2 Seamless coupling discretization
To discretize (1), (2), and (3), we consider aP1 − P1 stabilized finite element pair23,26,27 for the incompressibleNavier-Stokes
equations and a P1 finite element method for both the solid equation and the fluid domain moving equation. Interested
readers are referred to previous studies21,22 for more details.
There are two approaches to implement the continuity conditions (the velocity continuity and the displacement con-

tinuity) on the wet interface for the displacement and the velocity, that is, they can be formed either weakly or strongly.
Let uh

𝑓
,uhs ,d

h
m, and dhs be their counterparts in the finite element spaces. The constraints can be enforced weakly through

the following weak forms:

∫Γhw

(
uh
𝑓
− uhs

)
vds = 0, ∀v ∈ Vh, (4)

and

∫Γhw

(
dhm − dhs

)
vds = 0, ∀v ∈ Vh. (5)

Here, Vh is a P1 finite element function space defined on the wet interface. In the strong form of the interface condition,
the constraints are enforced at every mesh points, that is, dhm|Γhw = dhs |Γhw and uh𝑓 |Γhw = uhs |Γhw . Here, we think of uh𝑓 ,uhs ,dhm,
and dhs as nodal values of their corresponding finite element functions without introducing any confusion.More precisely,
let dhΓ,m and d

h
Γ,s be the unknowns of the fluid and solid displacements on the wet interface, respectively, and d

h
I,m and d

h
I,s

correspond to the unknowns defined in the interior of the domain. To show thematrix structure of the coupling condition
on the interface, we take dhΓw,m = dhΓw,s as an example, and the structure of the coupled FSI matrix for the meshmovement
and the solid deformation looks like

⎡⎢⎢⎢⎣
JmI,I J

m
I,Γw

0 I −I
0 B 0
0 0 JsI,Γw JsI,I

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
dhI,m
dhΓw,m
dhΓw,s
dhI,s

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
0
0
0
f s

⎤⎥⎥⎥⎦ . (6)
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Equation 6 is reduced to (7) if we replace the wall displacement unknowns dhΓw,s by the fluid displacement unknowns
dhΓw,m as follows: ⎡⎢⎢⎣

JmI,I J
m
I,Γw

0 B 0
0 JsI,Γw JsI,I

⎤⎥⎥⎦
⎡⎢⎢⎣
dhI,m
dhΓw,m
dhI,s

⎤⎥⎥⎦ =
[ 0
0
f s

]
. (7)

A similar procedure can be applied to the continuity condition on the velocity as well. This implementation of the con-
tinuity conditions makes the postprocessing more convenient because there are no duplicate unknowns on the interface
mesh. For the detailed structure of the coupled FSI system, we refer to our previous work.28
After the discretization in space, the corresponding semidiscretized system is a time-dependent nonlinear system

𝜕𝑦(t)
𝜕t

+ N(𝑦(t)) = F, (8)

where F is the right-hand side and N(·) is a nonlinear function, y(·) is the time-dependent vector of nodal values of the
fluid velocity and pressure, the solid velocity and displacement, and the displacement of the moving fluid domain. Using
an implicit first-order backward Euler scheme, (8) is further discretized in time as

Mn𝑦n + 𝛿tN(𝑦n) = 𝛿tF +Mn𝑦n−1, (9)

where 𝛿t is the time step size, yn is the approximation of y at the nth time step, andMn is the mass matrix dependent of yn
since the computational fluid domain is moving. The ALE velocity 𝜕dm∕𝜕t is approximated by the first-order backward
Euler scheme in (9) as well. For convenience, we rewrite (9) at the nth time step as a nonlinear algebraic system:

 (𝑦) = 0, (10)

where  (·) is the combination of four terms in (9), and y (we drop the subscript n here for simplicity) is the vector of nodal
values at the nth time step.
Because we want a high resolution simulation of the FSI system, (10) is usually very large and is quite difficult to solve

since all the high nonlinearities are coupled in this single system. In the next section, we discuss a highly parallel, domain
decomposition based solver for (10).

3 MONOLITHIC COUPLING PARALLEL ALGORITHM

The parallel algorithm consists of a Newton method29 for the coupled nonlinear system, a Krylov subspace method30 for
the Jocabian system and an overlapping domain decomposition preconditioner31 for the acceleration of the linear solver.
With a given initial guess, y(0), inexact Newton obtains a new approximation as follows:

𝑦(n+1) = 𝑦(n) + 𝛼(n)𝛿𝑦(n), (11)

where y(n) is the approximate solution at the nth Newton step, 𝛼(n) is a Newton step size computed using a line search
scheme such as backtracking,32 and 𝛿y(n) is the Newton direction obtained by solving the Jacobian system:

 (
𝑦(ñ)

)
𝛿𝑦(n) = − (

𝑦(n)
)
. (12)

Here,  (
𝑦(ñ)

)
is the Jacobian matrix evaluated at 𝑦(ñ), and  (𝑦(n)) is the nonlinear function residual evaluated at y(n). ñ

is smaller than or equal to n. The Jacobian matrix from a previous step is reused if ñ is strictly smaller than n.
The convergence of (11) depends critically on how the Jacobian matrix  is constructed and how the Jacobian system

(12) is solved. The construction and the solve of the Jacobian are both expensive, and therefore, carefully designed algo-
rithms are extremely important. To have good nonlinear convergence, the Jacobian matrix  is analytically derived and
hand-coded in the C++ code. It is a challenging task to form all derivatives exactly instead of using a finite difference
method, but it worth doing so because Newton equipped with an exact Jacobian often has a more robust convergence. To
save the compute time, the Jacobian from the previousNewton stepmay be reused as the evaluation of the Jacobianmatrix
is expensive. As stated earlier, the system (10) is highly nonlinear, and so the resulting Jacobian system is ill-conditioned.
To overcome this difficulty, we propose a Krylov method, GMRES30 together with a preconditioner based on an overlap-
ping domain decomposition method. The Krylov subspace method is generally understood in the existing literatures, but
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for it to work well for a specific application, a preconditioner has to be constructed carefully, especially these problem
dependent parameters need to be considered. More precisely, instead of (12), the following preconditioned linear system
is solved

B−1 𝛿𝑦 = −B−1 . (13)

For simplicity, the arguments of  (·) and  (·) are dropped here. B−1 is a parallel preconditioner to be constructed based
on an overlapping domain decompositionmethod below. Note that the same preconditioner can be applied from the right
side as well.
The basic idea of domain decomposition methods31,33 is to divide the mesh Ωh = Ωh,s ∪ Ωh,f into np submeshes

Ωh,i, i = 0, 1, 2… , and each submesh Ωh,i is assigned to a processor core and all subproblems are solved simultaneously
in parallel. For the overlapping version of domain decomposition methods, the submeshes are extended to overlap with
their neighboring submeshes by 𝛿 layers of mesh points. The overlapping submeshes are denoted asΩ𝛿

h,i. To partition the
mesh Ωh across different processor cores, we employ a hierarchical partitioning method because mesh partitioning soft-
ware such as ParMETIS/ METIS34 does not work well for the full pulmonary tree due to the complexity of geometry. The
idea of a hierarchical partition is quite simple but very effective. The meshΩh is first partitioned into np1 submeshes (np1
is the number of compute nodes), then each submesh is further partitioned into np2 smaller submeshes (np2 is the num-
ber of processor cores per compute node), and finally, we have np = np1 × np2 submeshes in total. The advantage of the
hierarchical partitioning method is to take the architecture of modern computers into consideration, and the communi-
cation among different compute nodes are minimized. More details of the hierarchical partitioning method are provided
in previous studies.6,7,24
To describe the preconditioning technique, we denote the vector and submatrix associated with submesh Ωh,i, as yh,i

and h,i, and that for the overlapping submesh as Ω𝛿

h,i, as 𝑦
𝛿

h,i and  𝛿

h,i. Let us define a restriction operator R
𝛿
i as

𝑦𝛿h,i = R𝛿
i 𝑦 = (I 0)

(
𝑦𝛿h,i 𝑦∕𝑦𝛿h,i

)T
, (14)

where I is an identity matrix whose size is the same as 𝑦𝛿h,i. The restriction operator R
𝛿
i is used to extract a subverter 𝑦

𝛿

h,i
from the global vector y by selecting the corresponding components. Using R𝛿

i , the overlapping submesh matrix  𝛿

h,i is
written as

 𝛿

h,i =
(
R𝛿
i
)T R𝛿

i . (15)

With these ingredients, a restricted Schwarz preconditioner (overlapping domain decomposition method) reads as

B−1 =
np−1∑
i=0

(
R0i

)T( 𝛿

h,i

)−1(
R𝛿
i
)T
, (16)

where R0i is a restriction operator without any overlap, and
( 𝛿

h,i

)−1
represents a subdomain solver that is an incomplete

LU factorization in this work.

FIGURE 3 Left: inflow rate for three cardiac cycles, [0, 1.8], with 0.6 s per cycle. Right: spatially averaged wall sheer stress
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4 NUMERICAL EXPERIMENTS AND OBSERVATIONS

In this section, we discuss some results obtained by applying the algorithms developed in the previous sections to the full
pulmonary artery. The geometry of the interior of the artery is obtained from the segmentation of a contrast-enhanced CT
image of a healthy 19-year-old subject, and the arterial wall is added to the resulting artery manually. The wall thickness
is assumed to be 1 mm everywhere. Note that because of the lack of imaging data for the arterial wall, the artificially
added wall may not be physiologically correct; however, the algorithmic framework introduced in this study can be easily
applied when the correct wall geometry becomes available.
Themain emphasis of the section is the parallel performance of the algorithm,which is one of the key factors for obtain-

ing high resolution simulations of patient-specific pulmonary arteries in a reasonably amount of time. For convenience,
we introduce some notations and default parameters used in the following study. “NI” is used to represent the number
of Newton iterations per time step, “LI” denotes the averaged number of GMRES(fGMRES) iterations pert Newton step,
“T” is the total compute time in second for all 10 time steps, “MEM” in megabytes (MB) is the estimated memory usage
per processor core, and “efficiency” is the parallel efficiency of the proposed algorithm. ILU(1) is adopted as the subdo-
main solver, the subdomain overlapping size is 1, and the relative tolerances for Newton and GMRES are 10−6 and 10−3,
respectively. These parameters are used through the whole performance study, unless otherwise specified. The proposed
algorithm is implemented based on PETSc.35

FIGURE 4 Streamlines of the flow field at 1.2s (top right), 1.35s (middle left), 1.5s (middle right), 1.65s (bottom left), and 1.8s (bottom
right). Top left: the entire blood flow domain; all others: zoom-in pictures for streamlines
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4.1 Simulation results and discussions
In this section, we report some simulation results obtained by applying the proposed algorithms to the pulmonary artery
shown in Figure 1. For the fluid domain, a velocity profile derived from a given inflow rate, shown in Figure 3, is applied to
the inlet, while the flows at all outlets are supposed to be traction free. For the solid domain, both the inlet and the outlets
are fixed, and the outer wall is traction free.We have not explored other possible outflow boundary conditions, such as the
resistance boundary condition or the structured tree based outflow boundary condition.2 The fluid is characterized with
viscosity 𝜇f = 0.03 g/(cm s) and density 𝜌f = 1 g/cm3. The material parameters of the arterial wall are Young modulus
Es = 4 × 106 g/(cm s2), Poisson ratio 𝜇s = 0.42, and density 𝜌s = 1.2 g/cm3. The simulation is carried out with the time
step size 𝛿t = 10−3 for three cardiac cycles, [0, 1.8] seconds, and the solution is shown in Figures 4-6, and 7. The wall
sheer stress (WSS) is an important metric, and it is calculated by the following formula

WSS = 𝛔𝑓n𝑓 − (𝛔𝑓n𝑓 · n𝑓 )n𝑓 ,

FIGURE 5 Wall shear stress at 1.2s (top left), 1.35s (top right), 1.4s (middle left), 1.5s (middle right), 1.65s (bottom left), and 1.8s (bottom
right)
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FIGURE 6 Blood flow pressure at 1.2s (top left), 1.35s (top right), 1.4s (middle left), 1.5s (middle right), 1.65s (bottom left), and 1.8s
(bottom right)

and the spatially averaged WSS (SAWSS) is obtained by integrating the WSS on the entire inner surface of the artery and
then normalized over the area, that is,

SAWSS = 1
A∫

𝜕Ω𝑓

WSSdA,

where A is the total area of the inner surface of the pulmonary artery. In Figure 3, we observe that SAWSS is highly
correlated with the input flow rate; SAWSS increases when the input flow rate increases with time, and it decreases when
the input flow rate decreases. In Figure 4, we see that the velocity is maximized at 1.35swhen the right ventricle contracts
and the inflow rate reaches the maximum, and the flow pattern becomes more complicated at the end of systole, 1.5s.
The flow is periodic in time, and it is restored to a similar pattern at 1.8s that is the start of the next cycle. Note that the
flow field in the FSI simulation is slightly different from what was obtained via the fluid-only simulation in our previous
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FIGURE 7 The displacement of the arterial wall at 1.2s (top right), 1.35s (middle left), 1.4s (middle right), 1.5s (bottom left), and 1.8s
(bottom right). For visualization, the displacement is amplified by a factor of 20. The top left picture represents the undeformed domain

work23 because of the movement of the wall. The FSI solution is probably more accurate since the artery wall in actual
patients is elastic, not rigid as assumed in Kong et al.23 However, the true error of the results can only be estimated when
clinical measurements become available. In Figure 5, at 1.35s and 1.4s, the inner artery wall has the largest wall shear
stress in magnitude, and it is correlated to the inflow pattern. In Figure 6, similarly, the pressure is also highly correlated
to the inflow rate, that is, the pressure is high at systole and low at diastole. From Figure 7, it is easily observed that the
largest displacements are at 1.35s and 1.4s, and the proximal blood vessels have larger displacements while the ones at
the distal do not deform much. In order to further understand how blood flows are different at the proximal and distal
vessels, we probe the blood velocity and the pressure at different locations, and the results are shown in Figure 8, which
shows clearly that the pressure decreases from the proximal to the distal, and it is correlated to the inflow wave. The third
cycle of pressurewave has the same pattern as the second cycle, which indicates the simulation has reached a quasi-steady
state. We also have a similar observation for the velocity, except that the velocity magnitude at L4 is larger than all other
three locations.

Remark 4.1. Connecting a specific displacement in some region of the pulmonary to some diagnostic or clinical
intervention is beyond the scope of the current work. At this stage, computational modeling of the pulmonary circu-
lation remains a powerful research tool, which is able to bridge the gap between observational imaging studies and
the biochemistry/biomechanics of disease progression. For example, large arteries maintain physiological mechani-
cal stress by hemodynamically-triggered changes in geometry, structure, and function,36 which has been extensively
documented in pediatric and adult pulmonary hypertension.37-39
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FIGURE 8 Pressure (left) and velocity (right) at different locations marked in the top picture

4.2 Linear solver impact on the outer Newton iteration
The accuracy of the linear Jacobian solver has a major impact on the convergence of the outer Newton iterations. More
Newton iterations are usually required if the Jacobian system is not solved accurate enough; on the other hand, the linear
problems should not be oversolved because beyond certain point, it does not help the nonlinear solver anymore and
simply wastes computing time. The accuracy of the linear solver is controlled using a relative tolerance, Lrel, where a
smaller value indicates a more accurate Newton direction. We next carry out a test to investigate the impact of the linear
solver. The mesh used in this test has 2 014 726 vertices and 9 464 723 elements, the problem has 12 793 688 unknowns,
and the simulation is carried out for 10 time steps. The overlapping domain decomposition method with ILU(1) as the
subdomain solver and 𝛿 = 1 is used as the preconditioner to accelerate the convergence of the Krylov subspace method
GMRES. The algorithmperformance using 128 to 1240 processor cores is summarized in Table 1. It is easily observed from
Table 1 that the number of Newton iterations is decreased quickly at the beginning and then slowly when we increase the
accuracy of the linear solver by reducing the relative tolerance. For the 128-core case, the averaged number of Newton
iterations is decreased from 6.8 to 4 when Lrel is reduced from 10−1 to 10−2, and when we continue to decrease Lrel by
another order of magnitude from 10−2 to 10−3, the number of Newton iterations is decreased by only 0.5. The number of
linear iterations per Newton using a loose tolerance is smaller than that using a tight tolerance sincemore effort is needed
for achieving a more accurate Newton direction. Sometimes, if the tolerance is too loose, the overall algorithm may not
converge at all because a minimum accuracy is required for Newton to converge. For instance, Newton does not work for
the 512-core case when the tolerance is chosen as Lrel = 10−1. We keep decreasing the tolerance from 10−3 to 10−4, and
the number of Newton iterations is first reduced by half or one iteration, and it does not change much with a decrease in
the tolerance from 10−4 to 10−5. The compute time is reduced significantly at the very beginning because the number of
Newton iterations is decreased a lot due to a tighter tolerance, and it is decreased slowly thereafter. For example, in the
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TABLE 1 Impact of different tolerances of linear solver

np Lrel NI LI T, s MEM (MB) EFF, %

128 10−1 6.8 13.2 1255.9 600.4 100
128 10−2 4 19.2 771.8 608.3 100
128 10−3 3.5 23.6 690.3 616.3 100
128 10−4 3 30.4 630.8 616.3 100
128 10−5 2.9 39 632 624.2 100
256 10−1 7.2 13.9 719.8 299.6 87
256 10−2 4.8 19.5 509.8 303.6 76
256 10−3 3.9 23.7 420.5 307.6 82
256 10−4 3.4 30.8 384.9 311.6 82
256 10−5 3 40 366.4 311.6 86
512 10−1 ∗ ∗ ∗ ∗ ∗
512 10−2 4.8 20.4 312.3 181 62
512 10−3 3.9 24.9 261.1 183 66
512 10−4 3.2 32.9 224.9 185.1 70
512 10−5 3 41.6 221.2 187.2 71
1024 10−1 7.2 15.1 244.3 82.7 64
1024 10−2 4.5 20.3 155.4 83.7 62
1024 10−3 3.9 25.3 138.6 84.7 62
1024 10−4 3 33.3 112 85.7 70
1024 10−5 2.9 42.1 113.2 86.7 70

Note. A nonlinear system of equations with 12 793 688 unknowns is solved by inexact
Newton-Krylov method together with a one-level Schwarz preconditioner. “∗” indicates no
convergence.

128-core case, the compute time is 1255.9 seconds when Lrel = 10−1, while it is reduced to 771.8 seconds by almost half
with Lrel = 10−2. The compute time does not reduce much and sometimes slightly increases when the accuracy of the
linear solver reaches a certain level. Let us look at the 128-core case again: the compute time is 630.8 with Lrel = 10−4, and
it is increased by a few seconds to 632 when we use Lrel = 10−4. A tighter linear solver helps maintain a great scalability.
The parallel efficiency is kept at about 70% when the relative tolerance is chosen as 10−4 or 10−3. In all, the difference of
compute time using the tolerance of 10−3 to 10−5 is small, and hence, an arbitrary relative tolerance ranging from 10−3 to
10−5 shouldworkwell for the problems at hand. The scalability is good for all cases as long as the tolerance is not too loose.

4.3 Subdomain solver: Incomplete LU factorization
Incomplete LU (ILU) factorization is a popular subdomain solver for overlapping domain decomposition methods. Like
all other solvers, there are a few parameters, in ILU, that affect the overall convergence of the linear solver. Among these
parameters, the most important one is the fill-in level that represents how much extra allocation is allowed to store new
values introduced by the factorization. Level 0, denoted as ILU(0), indicates that all new extra values are discarded, and
the factorized matrix has the same sparsity as the original submatrix. ILU(l) represents that l layers of extra entries are
kept. Larger l usually leads to a better and more robust converge, but meanwhile, it may slow down the entire solver
because more operations and more memory are needed. An optimal fill-in level is also problem dependent. We perform a
test for different fill-in levels, and the results are summarized in Table 2. The same configuration as in the previous test is
used. For the128-core case, when the fill-in level is increased from 0 to 1, the number of GRMES iterations is reduced to
one-third, which results in the reduction of the compute time by half. Whenwe continue increasing the fill-in level from 1
to 2, the number of GMRES iterations is decreased by only 5, and the compute time is increased due to the increased cost
of LU factorization per iteration. For all cases, the number of Newton iterations is kept close to a constant, 4, because the
relative tolerance of GRMES is fixed as 10−3 regardless of the ILU fill-in level. ILU(0) sometimes is unstable. For example,
Newton does not converge for the case of 1024 processor cores when ILU(0) is used, while it performs well using ILU(1)
and ILU(2). The memory usage is increased slightly when ILU(1) is used instead of ILU(0), while it is increased a lot with
the increase of fill-in level from 1 to 2. In the128-core case, the memory usage is increased by 70 MB when we increase
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TABLE 2 Different fill-in levels for ILU

np subsolver NI LI T MEM EFF, %

128 IsLU(0) 4.1 72.7 1015.1 552 100
128 ILU(1) 3.5 23.6 689.4 616.3 100
128 ILU(2) 3.6 17.3 797.9 800.3 100
256 ILU(0) 3.9 69.2 507.7 274.7 100
256 ILU(1) 3.9 23.7 426.6 307.6 81
256 ILU(2) 3.9 18.2 466.6 397 86
512 ILU(0) 3.9 68.9 302.3 157.9 84
512 ILU(1) 3.9 24.9 265.6 183 65
512 ILU(2) 3.9 18.5 289 242 69
1024 ILU(0) ∗ ∗ ∗ ∗ ∗
1024 ILU(1) 3.9 25.3 138 84.7 62
1024 ILU(2) 3.9 20.4 152.9 109.2 65

Note. A nonlinear system of equations with 12 793 688 unknowns is calculated by a one-level
Schwarz preconditioner with ILU(l) as the subdomain solver.

TABLE 3 Impact of Newton lags on the compute time

np lag NI LI T MEM EFF, %

128 1 3.5 23.6 689.5 616.3 100
128 2 3.9 22.6 492.5 616.3 100
128 3 4.1 21.4 485.2 616.3 100
128 4 4.1 21.1 351.1 616.3 100
256 1 3.9 23.7 427.8 307.6 81
256 2 4.3 23.3 304.2 307.6 81
256 3 4.6 22.4 284.1 307.6 85
256 4 4.8 21.6 250.3 307.6 70
512 1 3.9 24.9 261.2 183 66
512 2 4.1 24.6 169.3 183 73
512 3 4.8 23.5 171.5 183 71
512 4 4.9 22.6 160.5 183 55
1024 1 3.9 25.3 138.7 84.7 62
1024 2 4.0 25 86.5 84.7 71
1024 3 4.4 23.8 88.2 84.7 69
1024 4 4.4 23.1 70.8 84.7 62

Note. A nonlinear system of equations with 12 793 688 unknowns is solved using
inexact Newton, and each Jacobian matrix is used for lag iterations.

the fill-in level from 0 to 1, while it is increased by almost 200 MB with the increase of fill-in level from 1 to 2. ILU(1) is
the best subdomain solver in this test when we take both the compute time and the memory usage into consideration.
For all cases, the overall algorithm scales well when the number of processor cores is increased from 128 to 1024.

4.4 Jacobian reevaluation
By default, the Jacobianmatrix is updated at every Newton iteration. Since the evaluation of the Jacobianmatrix is expen-
sive, sometimes the overall efficiency of the algorithm is improved by reusing the Jacobian matrix for several Newton
iterations. In the rest of this subsection, we denote by lag as the number of times that the Jacobian matrix is reused. In
this test, we use the same configuration as before to illustrate the behavior of the algorithm when using different lags.
The results are shown in Table 3, which shows clearly that the compute time is significantly reduced when we reuse the
Jacobian matrix for two Newton steps instead of one, and then it is improved very little when we further increase lag for
all processor counts except the case when the number of cores is 128, where the compute time is reduced by 100 seconds
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when lag is increased from 3 to 4. The Jacobian lag does not affect the memory usage for all cases because a sparse matrix
is always stored regardless of its value updates. The overall algorithm behaves similarly when lag = 2, 3, and 4, while the
performance with lag = 1 is much worse. The number of Newton iterations increases when we lag the Jacobian matrix
evaluation, but the increase is not significant so that we have the benefit of Jacobian lagging. In the 1024-core case, the
compute time is decreased by 50% when we lag the Jacobian evaluation from every Newton step to every two Newton
steps. Continuing lagging thematrix evaluation does not improve the performance a lot. In all cases, the overall algorithm
equipped with the Schwarz preconditioner is able to maintain good scalability.

4.5 Submatrix ordering
The subdomain problems are in the inner most loop of the algorithm, both the convergence and the efficiency of the
overall algorithm depend on the performance of the subdomain solver. One critical issue is the ordering of the subdomain
matrix. A few reordering schemes including RCM, ND, 1WD, and QMD are considered in this test, and the results are
reported in Table 4. The number of Newton iterations stays close to a constant, 4, when different ordering schemes are
used since the same linear tolerance is used. Compared with the “natural” reordering, the number of GMRES iterations
is smaller using RCM or 1WD. All schemes improve the total compute time and the memory usage, when compared with
the “natural” ordering method. Let us look at the 128-core case, 1WD gives the best compute time of 678.9 seconds while
the “natural” ordering is the worst with compute time of 873.2 that is 20%more. Similarly, for all other processor counts,
1WD performs better than all the other schemes, and 1WD and RCM have a similar performance behavior while 1WD is
slightly better. QMD does not helpmuch in this test because it is designed for symmetric matrix while thematrix is highly
unsymmetrical in this study. It is also interesting to see that the memory usage is halved, regardless of the reordering
schemes, when we double the number of processor cores. It indicates that the preconditioner constructed based on the
overlapping domain decomposition is scalable in terms of the memory usage. Nevertheless, for all schemes, the overall
algorithm scales well in terms of the compute time up to 1024 processor cores.

TABLE 4 Impact of submatrix ordering on the algorithm performance

np Reordering NI LI T MEM EFF, %

128 RCM 3.5 23.6 697.6 616.3 100
128 Natural 3.8 28.1 873.2 699.5 100
128 ND 3.6 28 787.2 696.9 100
128 1WD 3.4 23.6 678.9 616.7 100
128 QMD 3.9 25.6 809.5 660.5 100
256 RCM 3.9 23.7 427.2 307.6 82
256 Natural 3.8 27.8 471.6 348.6 93
256 ND 3.9 26.9 465 343.4 85
256 1WD 3.9 24.2 428.2 306.7 79
256 QMD 3.9 26.7 453.8 326 89
512 RCM 3.9 24.9 261 183 67
512 Natural 3.8 28.2 282.1 210.4 77
512 ND 3.9 27.8 279.1 203 71
512 1WD 3.9 24.5 260.2 181 65
512 QMD 3.9 24.5 276 191.5 73
1024 RCM 3.9 25.3 138.8 84.7 63
1024 Natural 3.8 28.6 151.4 98.9 72
1024 ND 3.8 27.3 145.2 96.5 68
1024 1WD 3.8 25.7 134.6 84.6 63
1024 QMD 3.9 27.1 145.3 91.1 70

Note. A nonlinear system of equations with 12 793 688 unknowns is solved
Newton-Krylov-Schwarz in which the Schwarz preconditioner is realized with different
submatrix reordering schemes.
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4.6 Subdomain overlapping size
The size of subdomain overlap plays an important role in the overall algorithm performance since the overlapping size
represents how much information a subdomain receives from its neighbors. A larger overlap often improves the linear
solver convergence in terms of GMRES iterations because it has more information from its neighbors, but on the other
hand, it requires more communication time. In this set of tests, we investigate the algorithm using different overlap, and
also with different fill-in level, and we show the detailed results in Table 5. Dashed lines are used to separate the ILU(1)
and the ILU(2) results.
In the 128-core case with ILU(2), when we increase the overlap, the number of Newton iterations is gently reduced,

and the number of GMRES iterations is decreased by 10% with the increase of overlap from 0 to 1, then it does not
decrease much any more when we further increase the overlap from 1 to 2. The compute time is decreased with an
increase in the overlap for the 128-core and 256-core cases, but when we use 512 and 1024 processor cores, the com-
pute time is increased even though the number of GMRES iterations is actually reduced because more processor cores
implies more communication cost. 𝛿 = 2 is the best choice when we use 128 and 256 cores, while 𝛿 = 1 is the best
parameter for 512 and 1024 processor cores. We have a similar observation for ILU(1) as well, a larger overlap results in a
better convergence in terms of the number of GMRES iterations for all processor counts. The compute time is decreased
when we increase the overlap for small processor counts, and it becomes similar for different overlap when we increase
the number of processor cores. Sometimes, the compute time increases as we increase the overlap, for example, the
compute time with 𝛿 = 2 is higher than that of 𝛿 = 1 in the 512-core case. Generally speaking, it is a good idea to use
a large overlap when the number of processor cores is small, and a smaller overlap when the number of processor cores
is large.

TABLE 5 Different overlapping sizes

np 𝛿 subsolver NI LI T MEM EFF, %

128 0 ILU(1) 3.9 33.4 806.8 621 100
128 1 ILU(1) 3.5 23.6 691 616.3 100
128 2 ILU(1) 3.2 23.3 643.1 617.1 100
128 0 ILU(2) 3.9 27.1 902.6 804.7 100
128 1 ILU(2) 3.6 17.3 797 800.3 100
128 2 ILU(2) 3.3 16 739.7 793.5 100
256 0 ILU(1) 3.9 36.2 439.9 309.3 92
256 1 ILU(1) 3.9 23.7 426.2 307.6 81
256 2 ILU(1) 3.3 23.2 377.8 308.6 85
256 0 ILU(2) 3.9 31.3 494.7 398.4 91
256 1 ILU(2) 3.9 18.2 466.4 397 85
256 2 ILU(2) 3.5 15.7 429 394.3 86
512 0 ILU(1) 3.9 39 266.2 168.9 76
512 1 ILU(1) 3.9 24.9 260.8 183 66
512 2 ILU(1) 3.7 23.7 269.2 203.3 60
512 0 ILU(2) 3.9 33.7 297.7 218.8 76
512 1 ILU(2) 3.9 18.5 286.8 242.1 69
512 2 ILU(2) 3.7 16.4 289.5 270.1 64
1024 0 ILU(1) 3.9 40.6 138.8 76 73
1024 1 ILU(1) 3.9 25.3 138.7 84.7 63
1024 2 ILU(1) 3.4 23.8 131 99.2 61
1024 0 ILU(2) 3.9 36.3 154.2 95.7 73
1024 1 ILU(2) 3.9 20.4 154.1 109.2 65
1024 2 ILU(2) 3.7 16.8 160.7 130.5 58

Note. A nonlinear system of equations with 12 793 688 unknowns is solved a Newton-Krylov
together with the Schwarz preconditioner equipped with different overlapping sizes.
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4.7 Scalability with a large number of processor cores
In this subsection, we study the strong scalability of the overall algorithm on a supercomputer with more than 10 000
processor cores. One-level Schwarz preconditioner scales to hundreds or a few thousands processor cores, and a coarse
space needs to be included for the algorithm to be strongly scalable with more than 10 000 processor cores. In this test,
the two-level version of (16) is constructed by including a boundary preserving coarse space, where the one-level Scwharz
is used as both the fine level and the coarse level solvers. Interested readers are referred to previous studies6,7,24 for more
details. The fine mesh used for this test is larger than the ones used previously, and it has 75 717 784 mesh elements,
14 276 963 mesh vertices, and the problem has 90 551 052 unknowns. The coarse mesh has 2 014 726 nodes, 9 464 723
elements, and 12 793 688 unknowns. We summarize the results in Table 6 for the cases of 1024, 2048, 4096, 6144, 8192,
and 10 240 processor cores. Two subdomain solvers, ILU(2) and ILU(3), are used. ILU(0) and ILU(1) do not work for
these large problems. From Table 6, we see that the number of Newton iterations stays close to a small constant for all
cases except at 2048 cores with ILU(2), where the number of Newton iterations per time step is 3.6. When we increase the
number of processor cores, the number of Newton iterations does not change much indicating that the overall algorithm
is scalable in terms of the Newton iteration. The number of GMRES iterations is close to 27 for ILU(2) and 24 for ILU(3)
when the number of processor cores ranges from 1024 to 4096, and it is increased by 20% for both ILU(2) and ILU(3) when
the processor count is equal to or larger than 6144, which results in a reduction in the parallel efficiency by about 15%.
However, we still have a parallel efficiency of 67% for ILU(3) and 52% for ILU(2) even when the number of processor cores

TABLE 6 Strong scalability with up to 10 240 processor cores

np Subsolver NI LI T MEM EFF, %

1024 ILU(2) 3.1 27.1 1587.5 1366.9 100
1024 ILU(3) 3.3 26.1 2382.6 1755.4 100
2048 ILU(2) 3.1 27.7 903.4 1079.3 88
2048 ILU(3) 3.6 24.4 1341.9 1304.1 89
4096 ILU(2) 3.1 26.8 480.3 654.6 82
4096 ILU(2) 3.2 24.8 633.3 755.3 94
6144 ILU(2) 3 33 403.5 515.4 66
6144 ILU(3) 3 28.8 497.5 556 80
8192 ILU(2) 3.1 33.7 344.9 517.6 58
8192 ILU(3) 3 31.7 411.5 562.3 72
10 240 ILU(2) 3.1 35.5 306.8 451.2 52
10 240 ILU(3) 3.2 28.8 356.5 480.1 67

Note. Newton-Krylov-Schwarz is used to solve a nonlinear system of equations
with 90 551 052 unknowns.

FIGURE 9 Speedup and parallel efficiency of the overall algorithm using up to 10 240 processor cores. Right: speedup; left: parallel
efficiency
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is more than 10 000. The memory usage is decreased properly for most cases. For example, the memory usage is reduced
by 40% for both ILU(2) and ILU(3) when the number of processor cores is increased from 2048 to 4096. The speedup and
parallel efficiency of the overall algorithm are shown in Figure 9.
To further understand the algorithm performance, we summarize the compute times spent on the individual compo-

nents of the algorithm in Table 7. Different components of the algorithm have different properties so that the speedup
and parallel efficiency are different. Some components, such as the Jacobian and function evaluations, are perfectly

TABLE 7 Strong scalability of the algorithm components with up to 10 240 processor cores

np Subsolver T KSPSolve KSPSetUp PCSetUP PCApply FuncEval JacEval

– – 100% 61% 0.1% 6% 51% 5% 35%
1024 ILU(2) 1587.5 960.8 1.5 93 827.4 73.1 561.2
– – 100% 72% 0.1% 8% 62% 3% 25%
1024 ILU(3) 2382.6 1716.2 2.4 199.7 1476.8 76.6 596.5
– – 100% 64% 0.2% 12% 50% 4% 33%
2048 ILU(2) 903.4 574.6 1.5 107.6 447.3 37.5 298.3
– – 100% 72% 0.1% 9% 61% 3% 26%
2048 ILU(3) 1341.9 962.2 1.6 126.1 817 42.4 345.3
– – 100% 64% 0.2% 12% 50% 4% 32%
4096 ILU(2) 480.3 309.5 0.9 58.6 241.9 19.7 154.4
– – 100% 72% 0.1% 10% 61% 3% 25%
4096 ILU(3) 633.3 457.3 0.9 62.1 387.5 19.9 159.1
– – 100% 72% 0.2% 20% 49% 3% 26%
6144 ILU(2) 403.5 289.1 0.7 81.9 197.9 12.9 104.1
– – 100% 77% 0.1% 19% 57% 3% 21%
6144 ILU(3) 497.5 383.4 0.7 93.6 284.3 13 103.8
– – 100% 74% 0.1% 25% 47% 3% 24%
8192 ILU(2) 344.9 254.7 0.5 86.8 161.8 10 83
– – 100% 79% 0.1% 21% 47% 2% 20%
8192 ILU(2) 411.5 324 0.5 88 230.9 9.8 80.3
– – 100% 76% 0.1% 29% 46% 3% 22%
10 240 ILU(2) 306.8 233.5 0.5 87.6 140.8 8 68
– – 100% 79% 0.1% 24% 53% 2% 20%
10 240 ILU(3) 356.5 280.5 0.5 86.2 190.7 8.2 70.6

Note. Newton-Krylov-Schwarz is used to solve a nonlinear system of equations with 90 551 052 unknowns.

FIGURE 10 Speedup and parallel efficiency of the function evaluation using up to 10 240 processor cores. Right: speedup; left: parallel
efficiency



KONG ET AL. 19 of 24

scalable, and other component, for example, preconditioner setup, is difficult to scale. For convenience, let us introduce
the notations used in Table 7. “KSPSolve” is the compute time spent on the linear solver, “KSPSetUp” denotes the time
on the linear solver setup, “PCSetUp” represents the time for the preconditioner setup, “PCApply” is the time used in
the application of the preconditioner, “FuncEval” denotes the function evaluation time, and “JacEval” is the time spent
on the Jacobian evaluation. Data for ILU(2) and ILU(3) are separated by a dashed line, and the results for different pro-
cessor counts are separated by a solid line. The record consists of two rows; the second row is the actual compute time
of the individual component, and the first row is the proportion of the total compute time in percentage. The total com-
pute time, “T,” is composed of the time spent on the linear solver, the function evaluation and the Jacobian evaluation,
and the preconditioner setup and application is part of the linear solver. Theoretically, the Jacobian and function evalua-
tion should be perfectly scalable as long as the number of linear iterations and Newton iterations does not increase much
when we increase the number of processor cores. From the last and the second to the last columns of Table 7, we observe
that the compute time spent on the Jacobian evaluation and the function evaluation are almost halved when we double
the number of processor cores, which indicates that both the function evaluation and the Jacobian evaluation are ideally
scalable. This phenomenon is also observed from Figures 10 and 11. Among the algorithmic components, “KSPSolve”
takes most of the compute time, that is, it takes 61% of the total compute time with ILU(2) at 1024 cores and increases to
76% at 10 240 cores. Compared with the ILU(2) case, the proportion is a little more in the ILU(3) case, where 72% of the
total compute time is used for solving the Jacobian systemwhen the number of processor cores is 1240, and it is increased
a little to 79% for 10 240 processor cores. The speedup and parallel efficiency of the linear solver, shown in Figure 12,
is similar to that of the overall algorithm because it takes most of the total compute time. The linear solver consists of

FIGURE 11 Speedup and parallel efficiency of the overall algorithm using up to 10 240 processor cores. Right: speedup; left: parallel
efficiency

FIGURE 12 Speedup and parallel efficiency of the linear solver using up to 10 240 processor cores. Right: speedup; left: parallel efficiency
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FIGURE 13 Speedup and parallel efficiency of the preconditioner application using up to 10 240 processor cores. Right: speedup; left:
parallel efficiency

the vector orthogonalization, the preconditioner setup, and the preconditioner application, especially the preconditioner
setup and application take most of the linear solver time. Therefore, the design and development of the preconditoner is
critical to have the overall algorithm scalable. The preconditioner setup takes less than or around 10% of the total com-
pute when the number of processor cores is less than or equal to 4096 processor cores, and it takes up around 20% when
the number of processor cores is more than 4096, but the overall algorithm still has the parallel efficiencies of 52% with
ILU(2) and 67%with ILU(3) at 10 240 processor cores. The precondiitoner application take 50% of the total compute time
for all cases, and the proportion does not change with the increase of the processor count for both ILU(2) and ILU(3)
indicates that preconditioner application has almost the same speedup and parallel efficiency, shown in Figure 13, as the
overall algorithm. In all, all components except the precondiitoner setup are scalable so that the overall algorithm scales
reasonably well with up to 10 240 processor cores.

Remark 4.2. The large test shown in Tables 6 and 7 mainly serves for the scaling study. The scalability is an useful
metric for the parallel FSI algorithm since it implies that the algorithm is capable of solving the problem in a few
hours, instead of days, and this is important for parameter studies or clinic applications. The impact of mesh density
on the numerical solution is shown in Kheyfets et al2 for a steady fluid-only simulation, where a mesh with a few
millions elements is sufficient for the test problem since the solution is relatively smooth.

4.8 Mesh preparation
Ahigh-qualitymesh is very important for the accuracy of the simulation and also for the rapid convergence of the iterative
methods used in the simulation. In addition to high quality fluid and solid meshes, the quality of the interface mesh
is also important. For arteries with a small number of branches, good meshes are quite easy to generate, but when the
computational domain is complex, such as the complete pulmonary artery, the FSI mesh generation is nontrivial and
often themesh obtained from themeshing tools such as ANSYS20 does not have the required quality. This is especially the
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true for the mesh at the fluid-structure interface. More precisely speaking, the interface mesh produced by the software
sometimes contains elements that belong to the interior of the fluid or the solid domain. To overcome this difficulty, we
introduce an interface mesh reconstruction scheme that removes wrong interface elements and creates a new interface
mesh by transversing through all fluid mesh elements. The basic idea of the algorithm is that we walk through the fluid
mesh, and for each tetrahedron element, we mark one of its surface triangles as an interface element if the triangle is
shared by a solid element. Let Ωh,s = {Ks} and Ωh,f = {Kf} be the solid and fluid meshes consisting of nonoverlapping
tetrahedrons. Each fluid element is composed of four surface triangles, {Tf}. SI represents the interface mesh constructed
from the solid and fluid volume meshes. The detailed method is summarized in Algorithm 1. A sample interface mesh is

FIGURE 14 Interface meshes. Top: invalid interface containing several interior elements, bottom: the reconstructed interface mesh where
the illegal elements have been removed

FIGURE 15 A sample mesh for fluid-structure interaction simulation
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shown in Figure 14. In Figure 14, it is easy to see that there are several illegal interface elements that are floating, ie, not
attached to the interface. This is observed from the top right picture, and it is repaired using Algorithm 1, and the new
interface mesh is shown in the bottom left picture where the illegal interface elements are removed. A valid FSI mesh is
shown in Figure 15.

5 FINAL REMARKS

Numerical simulation of blood flows in a compliant pulmonary artery is challenging because of the highly nonlinear
nature of mathematical models for the fluid flow and the arterial wall, the complex configurations of the arterial
network, and also the size of the discretized problem. In this paper,we developed a highly parallel algorithm for solving the
monolithically coupled fluid-structure system on a supercomputer with more than 10 000 processors. Using this
technology, the simulation of unsteady blood flows in a full three-dimensional, patient-specific pulmonary artery can be
obtained in less than a few hours. In order to apply the techniques for clinical applications, more works are needed, such
as more realistic boundary conditions, and materials parameters.
While the current study focuses more on parallelization of the algorithm, the future work will compare computational

results with velocity encoded magnetic resonance imaging studies.40-44 Our previous studies have also shown that CFD
results in the pulmonary circulation are consistent with observational studies in pulmonary hypertension and highly
correlated with functional clinical markers of pulmonary vascular disease.2,45
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