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Abstract. Additive Schwarz preconditioned GMRES is a powerful method for solving large sparse
linear systems of equations on parallel computers. The algorithm is often implemented in the Euclidean
norm, or the discrete l2 norm, however, the optimal convergence theory is available only in the energy
norm (or the equivalent Sobolev H1 norm). Very little progress has been made in the theoretical
understanding of the l2 behavior of this very successful algorithm. To add to the difficulty in developing
a full l2 theory, in this note, we construct explicit examples and show that the optimal convergence
of additive Schwarz preconditioned GMRES in l2 can not be obtained using the existing GMRES
theory. More precisely speaking, we show that the symmetric part of the preconditioned matrix, which
plays a role in the Eisenstat-Elman-Schultz theory [11], has at least one negative eigenvalue, and we
show that the condition number of the best possible eigenmatrix that diagonalizes the preconditioned
matrix, key to the Saad-Schultz theory [18], is bounded from both above and below by constants
multiplied by h−1/2. Here h is the finite element mesh size. The results presented in this paper are
mostly negative, but we believe that the techniques used in our proofs may have wide applications
in the further development of the l2 convergence theory and in other areas of domain decomposition
methods.
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1. Introduction. Additive Schwarz (AS) preconditioned generalized minimum
residual (GMRES) method is a powerful method for solving large sparse nonsymmet-
ric linear system of equations arising from discretizations of boundary value problems
of partial differential equations, especially on parallel computers with large number of
processors. AS/GMRES has been implemented in several large software packages for
solving partial differential equations or general sparse linear systems, such as PETSc
([1]) and PSPARSLIB ([17]). The Euclidean norm (l2) has been used in all the im-
plementations as far as we know. However, the convergence theory is available only
in the energy norm (or the equivalent Sobolev H1 norm). For example, the theory for
symmetric positive definite problems can be found in [6, 7, 9, 10, 19] and for nonsym-
metric and indefinite problems in [5]. Very little progress has been made toward the
theoretical understanding of the optimal convergence of AS/GMRES in l2. As custom-
ary in the domain decomposition literature ([6, 19]), “optimal” refers to the fact that
the convergence rate is independent of the finite element mesh size and the number
of subdomains. In the past ten years, many numerical experiments have been carried
out, using AS/GMRES, for solving linear systems obtained from the discretization of
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scalar and systems of linear and nonlinear partial differential equations, see for exam-
ples [2, 3, 4, 12, 14] and all seem to indicate that the method is optimal in l2; i.e., the
convergence rate has no or very little dependence on the mesh size, however, none of
the existing AS/GMRES theory confirms this even for the one dimensional case. In
this paper, we show constructively that the l2 optimal convergence theory can not be
obtained by using any of the two existing GMRES theories.

We now briefly summerize the main findings of the paper. First, the Eisenstat-
Elman-Schultz theory ([11]) for the convergence of GMRES requires that the symmetric
part of the preconditioned system to be positive definite. Using a simple example, we
show that this condition cannot be satisfied with AS/GMRES. At least one of the
eigenvalues of the symmetric part is negative. Second, the Saad-Schultz theory ([18])
assumes that the preconditioned system is diagonalizable by a certain eigenmatrix X,
and the convergence rate is bounded by the condition number of X in l2 and the
distribution of the eigenvalues. The theory is not very useful in practice because the
estimate of the condition number of X is often too hard to obtain. Using the same
example, we are able to estimate the condition number of X and show that it has a
h−1/2 dependence on the mesh size.

In the rest of this section, we recall some of the key components of the Eisenstat-
Elman-Schultz theory and the Saad-Schultz theory. We consider a nonsingular linear
system of equations of size n × n

Au = f(1)

and let M−1 be a preconditioner for A. The solution of (1) is often obtained by solving
iteratively the preconditioned system

Tu = g,(2)

where T = M−1A and g = M−1f . For generality, we do not assume that T is symmetric
and we use GMRES ([16]) as the iterative solver. We shall use (·, ·) and ‖ · ‖2 to denote
the usual Euclidean inner product and norm in Rn, respectively. The main result of the
paper concerns the optimal l2 convergence rate of GMRES for solving (2) with additive
Schwarz as the preconditioner.

Two types of convergence theory are available for the convergence of GMRES. One
theory, due to Eisenstat, Elman and Schultz [11], is for the case when the symmetric
part of the matrix T is positive definite. More precisely, let us assume that there exist
two positive constants c0 and C0, such that

(Tx, x) ≥ c0‖x‖2
2 and ‖Tx‖2 ≤ C0‖x‖2,

for any x ∈ Rn. Then the residuals satisfy

‖rk‖2 ≤
(

1 − c2
0

C2
0

)k/2

‖r0‖2.

Unfortunately, with the additive Schwarz preconditioner, the symmetric part of T with
respect to the l2 inner product is generally not positive definite, i.e., c0 < 0. An example
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will be given later to illustrate the case. Another theory due to Saad and Schultz [18]
assumes that the matrix T is diagonalizable, i.e., there exists a matrix X such that
T = XΛX−1, where Λ = {λ1, . . . , λn} is a diagonal matrix of eigenvalues. Let Πk be
the space of polynomials of degree less than or equal to k, and

ε(k) = min
p∈Πk,p(0)=1

max
i=1,...,n

|p(λi)|.(3)

Then the residuals of GMRES satisfy

‖rk‖2 ≤ κ2(X)ε(k)‖r0‖2.(4)

Here κ2(X) = ‖X‖2‖X−1‖2 is the condition number of the eigenmatrix. Later in this
paper, we prove that the additive Schwarz preconditioned linear operator is indeed
diagonalizable, and also estimate κ2(X). The choice of X is not unique, however, we
show, using an interesting result of Demmel ([8]), that even with the best possible
eigenmatrix X, κ2(X) has a bound depending on the finite element mesh size from
both above and below regardless the size of the overlap. Therefore we cannot claim
that the method is optimal.

Other techniques have also been used to study the convergence of the preconditioned
GMRES method, such as the method based on the field-of-values analysis in [15, 20].
The rest of the paper is organized as follows. In Section 2, we review the classical
additive Schwarz method. Section 3 is devoted to the Eisenstat-Elman-Schultz theory,
and Section 4 to the Saad-Schultz theory.

2. A brief review of the additive Schwarz method. Although the method we
study is mainly for nonsymmetric linear systems, we shall focus on a simple symmetric
elliptic Dirichlet boundary value problem: Find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω),(5)

where (·, ·)L2(Ω) is the continuous L2 inner product, the bilinear form a(u, v) is defined by
a(u, v) =

∫
Ω ∇u ·∇v dΩ and f(x) ∈ L2(Ω) is given. Here Ω is an open bounded polygon

with boundary ∂Ω. We assume that the diameter of Ω is of order 1. To introduce
the finite element discretization and the finite element space Vh, we let T h = {τi} be
a standard quasi-uniform finite element triangulation of Ω with interior nodal points
denoted as W = {x1, x2, . . . , xn} and the standard basis functions as {φxi(x)}, i.e.
φxi(xj) = δij . The finite element problem reads as follows: Find u∗ ∈ Vh ⊂ H1

0 (Ω) such
that

a(u∗, v) = (f, v)L2(Ω), ∀v ∈ Vh.(6)

To discuss the overlapping additive Schwarz methods, we introduce the partition
of Ω into {Ωi}, such that no ∂Ωi cuts through any elements τi, and Ω̄ = ∪N

i=1Ω̄i. We
assume Ωi is an open domain. We extend each Ωi to a larger subdomain Ω

′
i ⊃ Ωi,

which is also assumed not to cut any fine mesh triangles. For each Ω
′
i, we define a finite

element space Vi ≡ Vh ∩ H1
0 (Ω

′
i) extended by zero outside Ω

′
i. Let ni be the dimension
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of Vi, that equals the number of interior nodes in Ω
′
i. We now define the subdomain

mapping operator Ti : Vh → Vi as

a(Tiu, v) = a(u, v), ∀u ∈ Vh and ∀v ∈ Vi(7)

and

T = T1 + · · · + TN .(8)

Since g = T u∗ can be pre-calculated without knowing u∗, we define the additive Schwarz
preconditioned GMRES as follows:

Algorithm 2.1 (AS/GMRES). Solve

T u∗ = g(9)

by GMRES with any initial guess.
The focus of this paper is to understand the L2 convergence of AS/GMRES. We

first make a simple observation about the eigenvalues and eigenvectors of the operator
T . We define WΓ as a subset of W consisting of all the mesh points on the internal
boundaries, i.e.,

WΓ ≡ {xi| ∈ W, xi ∈ (∪∂Ω
′
i) ∩ Ω}.

For each xi ∈ W \ WΓ, using the definition of Ti, we have

Tφxi(x) = σiφxi(x),(10)

where σi ≥ 1 is an integer which equals the number of subdomains that xi belongs to.
This implies that φxi(x) (xi ∈ W \WΓ) are the eigenvectors of T and the corresponding
eigenvalues are integers. Note that this is not true for the nodal points on the internal
boundaries. Much of the rest of the paper is devoted to the explicit calculation of the
eigenvalues and eigenvectors associated with the nodes on the internal boundaries. It
turns out that the convergence rate of AS/GMRES is determined almost exclusively by
the eigen pairs associated with the internal boundaries.

To simplify the notations, we shall mix up the notions of operators and matrices,
finite element functions and vectors. The mix-up is always understood in the sense of
the standard basis functions. For example in the vector sense, we have

(φi, φj) = δij .

This may not be true in the continuous inner produce (·, ·)L2(Ω).

3. Analysis using the Eisenstat-Elman-Schultz theory. In this section we
study the optimal convergence of AS/GMRES using the Eisenstat-Elman-Schultz the-
ory. In other words, we calculate the smallest eigenvalue of the symmetric part of T .
We work on a simple one dimensional problem, and show, sadly, that the smallest eigen-
value is negative. Therefore, we conclude that the Eisenstat-Elman-Schultz theory is
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l1 l20.0 1.0

x0 xm1 xm2 xn+1

Fig. 1. Ω
′
1 = (0, l2) and Ω

′
2 = (l1, 1.0).

generally not applicable for studying the L2 optimal convergence of the AS/GMRES
method.

Consider a one dimensional Poisson problem defined on the unit interval (0, 1)
divided into two overlapping subdomains. As in Fig.1, we divide the unit interval into
n + 1 subintervals with length h = 1/(n + 1) and mesh points xi = i h, i = 0, . . . , n + 1.
We define the overlapping subdomains Ω

′
1 = (0, l2) and Ω

′
2 = (l1, 1.0). n is the total

number of interior mesh points. For simplicity, we assume that

l1 = 1 − l2.(11)

Let n0
1 be the number of mesh points in (0, l1), n0

2 the number of mesh points in
(l2, 1.0), and n12 the number of mesh points in the overlapping region (l1, l2). Note that
n0

1 + n0
2 + n12 = n − 2.

Let Vh ⊂ H1
0 (0, 1) be the piecewise linear continuous finite element space and

{φxi, i = 1, . . . , n} the collection of the usual basis functions; i.e., φxi ∈ Vh, φxi(xj) = 1
if i = j and φxi(xj) = 0 if i = j. We define the subspaces Vi = Vh ∩ H1

0 (Ω
′
i) whose

dimension is ni. We denote the two special mesh points l1 and l2 as xm1 and xm2 with
m1 and m2 being two positive integers, and the corresponding basis functions as φm1

and φm2 .
To define the matrix form of Ti, we need to introduce an interpolation matrix Ii

from Vi to Vh and a restriction operator from Vh to Vi. For any vh ∈ Vi, let vi and
v be the coefficient vectors of vh in terms of the basis of Vi and Vh respectively, i.e.,
vi = (vh(xj))xj∈Ω′

i
, v = (vh(xj))xj∈Ω, then Ii is defined by Iivi = v, and Ii is a n × ni

matrix with all entries being either 0 or 1. The restriction matrix from Vh to Vi is defined
to be the transpose of Ii, i.e., I t

i . Let A and Ai be the stiffness matrices corresponding to
the discretizations of the Poisson’s problem on Ω and Ω

′
i with zero Dirichlet boundary

condition, respectively, then we have

Ti = IiA
−1
i I t

iA.(12)

Obviously, the transpose of Ti is T t
i = AIiA

−1
i I t

i . The Eisenstat-Elman-Schultz theory
depends on the smallest eigenvalue of the symmetric part of T . We consider the following
eigenvalue problem:

(T + T t)u = λu.(13)

We start the analysis with several lemmas.
Lemma 3.1.

T1φm2 = − l2 − h

l2
φ̃m2−1, and T2φm1 = −1 − l1 − h

1 − l1
φ̃m1+1,(14)
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where the piecewise linear continuous functions φ̃m2−1 and φ̃m1+1 are given below (Fig.2)

φ̃m1+1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x ≤ l1
linear x ∈ (l1, l1 + h)
1 x = l1 + h
linear x ∈ (l1 + h, 1.0)
0 x = 1.0

φ̃m2−1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x = 0.0
linear x ∈ (0, l2 − h)
1 x = l2 − h
linear x ∈ (l2 − h, l2)
0 x ≥ l2.

Proof. Using the definition of T1, we have

a(T1φm2 , v1) = a(φm2 , v1) ∀ v1 ∈ V1.(15)

We first observe that a(φm2 , v1) = 0 if v1(x) is any of the interior nodal basis functions
in (0, l2 − h). Therefore, we claim that T1φm2 is a discrete harmonic function in the
interval (0, l2 − h). This implies that T1φm2 is a linear function in this interval. Since
T1φm2 must be linear in (l2 − h, l2), we hence have T1φm2 = α φ̃m2−1 for some constant
α. And α can be calculated by taking v1 = φm2−1 in (15), i.e.,

α =
a(φm2 , φm2−1)

a(φ̃m2−1, φm2−1)
= − l2 − h

l2
.

The result for T2 can be proved similarly.
Lemma 3.2. For the adjoint operators T t

i , i = 1, 2, we have

T t
1φk = φk −

xk

l2
φm2 ∀xk ∈ (0, l2); T t

1φk = 0 ∀xk ∈ [l2, 1),

T t
2φk = φk −

1 − xk

1 − l1
φm1 ∀xk ∈ (l1, 1); T t

2φk = 0 ∀xk ∈ (0, l1].

Proof. By definition, for any nodal point xk ∈ (0, l2), we have

(T t
1φk, v) = (φk, T1v) ∀ v ∈ V.(16)

Since T1φj = φj if xj < l2 and T1φj = 0 if xj > l2, and also (φk, φj) = δkj, we have

(T t
1φk, φj) =

{
δkj xj < l2
0 xj > l2.

Hence T t
1φk must have the following expression

T t
1φk = φk + α φm2(17)

for some constant α to be determined below. To calculate α, we substitute (17) into
(16) and take v = φm2 ,

α (φm2, φm2) + (φk, φm2) = (φk, T1φm2),
6
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Fig. 2. Two special piecewise linear functions φ̃m1+1 and φ̃m2−1.
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Fig. 3. Four special piecewise linear functions and two standard basis functions at xm1 and xm2

combining with (14) we obtain α = −xk/l2. The fact that T t
1φk = 0 for xk ∈ [l2, 1)

follows immediately from (16) by taking v = φj for all xj ∈ (0, 1). The result for T t
2

can be proved in a similar way.
We next show that the operator (T + T t) has at least one negative eigenvalue. To

do so, we introduce the following four special piecewise linear continuous functions as
shown in Fig. 3.

Ψm1−1(x) =

⎧⎪⎨
⎪⎩

0 x = 0
linear x ∈ (0, l1 − h)
φm1−1 x ∈ [l1 − h, l1]

Ψm1+1(x) =

⎧⎪⎨
⎪⎩

φm1+1 x ∈ [l1, l1 + h)
linear x ∈ [l1 + h, l2 − h)
0 x = l2 − h

Ψm2−1(x) =

⎧⎪⎨
⎪⎩

0 x = l1 + h
linear x ∈ (l1 + h, l2 − h)
φm2−1 x ∈ [l2 − h, l2]

Ψm2+1(x) =

⎧⎪⎨
⎪⎩

φm2+1 x ∈ [l2, l2 + h)
linear x ∈ [l2 + h, 1)
0 x = 1.
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Let λ be the possible negative eigenvalue that we are looking for and Ψ(x) be the
corresponding eigenfunction of the following form

Ψ = α1 Ψm1−1 + α2 φm1 + α3 Ψm1+1 + α4 Ψm2−1 + α5 φm2 + α6 Ψm2+1.

Here αi (i = 1, . . . , 6) are real parameters to be determined. By the definition of Ti, we
have immediately

T1Ψ̃ = Ψ̃ for Ψ̃ = Ψm1−1, φm1 , Ψm1+1, Ψm2−1

T1Ψm2+1 = 0

T2Ψ̃ = Ψ̃ for Ψ̃ = Ψm1+1, Ψm2−1, φm2 , Ψm2+1

T2Ψm1−1 = 0.

Following Lemma 3.2, we also have that T t
1φm2 = T t

1Ψm2+1 = 0, T t
2Ψm1−1 = T t

2φm1 = 0,

T t
1Ψ̃ = Ψ̃ − 1

l2
(Ψ̃, x) φm2 for Ψ̃ = Ψm1−1, φm1 , Ψm1+1, Ψm2−1,(18)

and

T t
2Ψ̃ = Ψ̃ − 1

(1 − l1)
(Ψ̃, 1 − x) φm1 for Ψ̃ = Ψm1+1, Ψm2−1, φm2 , Ψm2+1.(19)

To simplify the notation, we denote the four coefficients (without the minus sign) of φm2

in (18) and of φm1 in (19) by µ1, µ2, µ3, µ4 and µ̃3, µ̃4, µ̃5, µ̃6, respectively. Substituting
these relations into

(T + T t)Ψ = λ Ψ,

then equating the coefficients in both sides and using the fact that

φ̃m2−1 =
l1 − h

l2 − h
Ψm1−1 +

l1
l2 − h

φm1 +
l1 + h

l2 − h
Ψm1+1 + Ψm2−1,

φ̃m1+1 = Ψm1+1 +
1 − l2 + h

1 − l1 − h
Ψm2−1 +

1 − l2
1 − l1 − h

φm2 +
1 − l2 − h

1 − l1 − h
Ψm2+1,

we obtain a reduced eigenvalue problem with six variables

λα1 = 2 α1 −
l1 − h

l2
α5,(20)

λα2 = 2 α2 −
l1
l2

α5 − µ̃3α3 − µ̃4α4 − µ̃5α5 − µ̃6α6,(21)

λα3 = 4α3 −
l1 + h

l2
α5 −

1 − l1 − h

1 − l1
α2,(22)

λα4 = 4α4 −
l2 − h

l2
α5 −

1 − l2 + h

1 − l1
α2,(23)

λα5 = 2 α5 −
1 − l2
1 − l1

α2 − µ1α1 − µ2α2 − µ3α3 − µ4α4,(24)

λα6 = 2α6 −
1 − l2 − h

1 − l1
α2.(25)
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Although there are only six variables, it seems not easy to solve it explicitly by hand.
Since l1 = 1 − l2, the subdomain partition is symmetric. We tend to believe that the
eigenfunctions are either symmetric or anti-symmetric with respect to the center point
of the domain. Let us first work on the symmetric eigenfunctions case, namely we
assume

α1 = α6, α2 = α5, α3 = α4.

It is easy to verify from (20)–(25) that λ = 2 and λ = 4. Then the following holds from
(20), (22) and (24) by using the above assumption:

(λ − 2)α1 = − l1 − h

l2
α5,(26)

(λ − 4)α3 = − l1 + h

l2
α5 −

1 − l1 − h

1 − l1
α5,(27)

(λ − 2)α5 = −1 − l2
1 − l1

α5 − µ1α1 − µ2α5 − (µ3 + µ4)α3.(28)

Multiplying (28) by (λ−2)(λ−4) and using (26) and (27) and the fact that µ2 = l1/l2,
we have

(λ − 2)(λ − 4)

(
(λ − 2) + 2

l1
l2

)
− µ1

l1 − h

l2
(λ − 4) − 1

l2
(µ3 + µ4)(λ − 2) = 0.(29)

Note that all the eigenvalues of (T + T t) must be real (since it is symmetric) and three
of them are given by the roots of (29). With three eigenvalues obtained from (29), we
can immediately get three symmetric eigenfunctions from (26)-(28).

To prove that (T +T t) has at least one negative eigenvalue is equivalent to the fact
that the constant term in (29) is positive1. Now let us calculate the constant term in
(29):

C1 = −16 + 16
l1
l2

+ 4
l1 − h

l2
µ1 +

2

l2
(µ3 + µ4).(30)

We next calculate µ1 and µ3 + µ4 explicitly. Recall that

µ1 =
1

l2
(Ψm1−1, x) =

1

l2

⎛
⎝m1−1∑

j=1

x2
j

l1 − h

⎞
⎠ =

l1(2l1 − h)

6l1h
,(31)

and

µ3 + µ4 =
1

l2
(Ψm1+1(x) + Ψm2−1(x), x).

1 Note that if we write (29) as (λ− λ1)(λ − λ2)(λ − λ3) = 0, then the constant term is −λ1λ2λ3. If
this term is positive, then there is at least one negative eigenvalue.
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Noting that Ψm1+1(x) + Ψm2−1(x) ≡ 1 for x ∈ [l1 + h, l2 − h], so

µ3 + µ4 =
1

l2

⎛
⎝ m2−1∑

j=m1+1

xj

⎞
⎠ =

l2 − l1 − 2h

2l2h
.(32)

Substituting (31) and (32) into (30) gives

C1 =
16(l1 − l2)

l2
+

2l1(l1 − h)(2l1 − h)

3l22h
+

(l2 − l1 − h)(l1 + l2)

2l22h
.

Clearly C1 is indeed always positive when h is sufficiently small. For example, let
x̄ = 1/2, m = 1/(2h) or mh = x̄. And l1 = x̄ − h, l2 = x̄ + h, then C1 > 0 for all
h ≤ 1/15. Therefore we have proved that there is at least one eigenvalue from (29) is
negative.

In order to find the three remaining eigenvalues corresponding to some anti-symmetric
eigenfunctions, we assume

α1 = −α6, α2 = −α5, α3 = −α4.

Then the following holds from (20), (22) and (24):

(λ − 2)α1 = − l1 − h

l2
α5,(33)

(λ − 4)α3 = − l1 + h

l2
α5 +

1 − l1 − h

1 − l1
α5,(34)

(λ − 2)α5 =
1 − l2
1 − l1

α5 − µ1α1 + µ2α5 + (µ4 − µ3)α3.(35)

Multiplying (35) by (λ−2)(λ−4) and using (33) and (34) and the fact that µ2 = l1/l2,
we have

(λ − 2)2(λ − 4) − 2
l1
l2

(λ − 2)(λ − 4) − µ1
l1 − h

l2
(λ − 4)

− (µ4 − µ3)
1 − 2l1 − 2h

l2
(λ − 2) = 0.

(36)

The three roots of equation (36) are the three eigenvalues of (T + T t). The three anti-
symmetric eigenfunctions can then be calculated from (33)-(35). The eigenfunctions
are of no interest to us. Of the three eigenvalues, we prove that there is at least one
which is negative. As before, we need to show that the constant term

C2 = −16

l2
+ 4

l1 − h

l2
µ1 + 2(µ4 − µ3)

1 − 2l1 − 2h

l2
(37)

of (36) is positive. Our calculation shows that

µ4 − µ3 =
1

l2 − l1 − 2h

(
(l2 − h)l2(2l2 − h)

3
− l1(l1 + h)(2l1 + h)

3
− (l2 − l1 − h)

2

)
.

10



Table 1

A list of all the negative eigenvalue(s) of the symmetric part of the additive Schwarz preconditioned
matrix. h is the mesh size.

h−1 16 32 64 128 256 512 1024

λ1 -0.1872 -0.6687 -1.3561 -2.3386 -0.4738 -1.2216 -2.2828

λ2 -3.7390 -5.7292 -8.5515

Together with µ1 given in (31), we have that

C2 = −16

l2
+

2l1(l1 − h)(2l1 − h)

3l22h
+

2(1 − 2l1 − 2h)

l2(l2 − l1 − 2h)

(
l2(l2 − h)(2l2 − h)

3
− l1(l1 + h)(2l1 + h)

3
− (l2 − l1 − h)

2

)
.

(38)

Therefore, when h is small enough, C2 is positive. We then conclude that at least one
of the three eigenvalues is negative.

We summerize the results in the following theorem
Theorem 3.3. When the mesh size h is sufficiently small, the symmetric part of

the additive Schwarz preconditioned system has at least two negative eigenvalues, one
corresponding to a symmetric eigenfunction and the other corresponding to an anti-
symmetric eigenfunction.

Remark 3.1. To make C2 positive h has to be much smaller than what is required
for making C1 positive. This implies that as the mesh gets finer, the first negative
eigenvalue shows up much earlier than the second negative eigenvalue.

Remark 3.2. The theorem requires that the mesh size is sufficiently small. This
does not mean h is smaller than any of the practically useful sizes. For example, in
the one dimensional space, a uniform mesh with 16 nodes would have one negative
eigenvalue. The second negative eigenvalue shows up when the mesh is as fine as having
256 nodes. To be more clear, we present a numerical calculation. Here the domain is
(0, 1) divided into two subdomains (0, 0.625) and (0.375, 1). The overlap is fixed at 25%
of the size of the un-extended subdomains. All the negative eigenvalue(s) are listed in
Table 1.

4. Analysis using the Saad-Schultz theory. In this section, we investigate
the convergence of AS/GMRES using the Saad-Schultz theory. We shall use the same
one dimensional example as in the previous section. We need to define two functions
ψli(x) ∈ Vh, i = 1, 2, as follows

11
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Fig. 4. The eigenfunctions corresponding to the negative eigenvalues.

ψl1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x = 0
linear x ∈ (0, l1)
1 x = l1
linear x ∈ (l1, l2)
0 x ∈ [l2, 1.0)

ψl2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x ∈ [0, l1]
linear x ∈ (l1, l2)
1 x = l2
linear x ∈ (l2, 1.0)
0 x = 1.0.

It is easy to see that the functions ψli(x) have the following properties that are
useful later,

∫ 1

0
ψ2

l1
(x)dx = l2/3,

∫ 1

0
ψ2

l2
(x)dx = (1 − l1)/3,

∫ 1

0
ψl1(x)ψl2(x)dx = (l2 − l1)/3.

We first prove the following lemma
Lemma 4.1. The operator T has four distinct eigenvalues

λ1 = 1, λ2 = 2, λ3 = 1 −
(

l1
l2

1 − l2
1 − l1

)1/2

, λ4 = 1 +

(
l1
l2

1 − l2
1 − l1

)1/2

with a total multiplicity n (n = n0
1 + n0

2 + n12 + 2) and we have

Tφxi = λ1 φxi for xi ∈ (0, l1) ∪ (l2, 1), Tψ3 = λ3 ψ3,(39)

Tφxi = λ2 φxi for xi ∈ (l1, l2), Tψ4 = λ4 ψ4(40)

where ψ3 and ψ4 are given by

ψ3(x) = α3

(√
l1(1 − l1) ψl1(x) +

√
l2(1 − l2)ψl2(x)

)
,

ψ4(x) = α4

(√
l1(1 − l1) ψl1(x) −

√
l2(1 − l2) ψl2(x)

)
.

Moreover, all the eigenfunctions listed in (39)-(40) are linearly independent and there-
fore form a complete basis of Vh. We choose the constants α3 and α4 so that ‖ψ3‖ =
‖ψ4‖ = 1.

12



Proof. The eigen-relations for λ1 and λ2 in (39) and (40) follow immediately from
the definition of Ti, and their proofs are omitted here.

We next prove the eigen-relation for λ3. The proof for λ4 is similar. To derive the
expressions of the eigenvalue and eigenfunction λ3 and ψ3, we first see that for each
eigenfunction φxi related to λ1 and λ2, there exists always a basis function φxj with
xj = l1, l2 such that

a(φxi, φxj) = 0.

Now assume that ψ3 is another eigenfunction which violates this condition, namely

a(ψ3, φxj) = 0 ∀xj = l1, l2.

This implies ψ3 is discrete harmonic in (0, l1), (l1, l2) and (l2, 1) respectively, hence it
is linear in each of these subintervals and can then be expressed as

ψ3(x) = ψ3(l1)ψl1(x) + ψ3(l2)ψl2(x).(41)

It is easy to verify that

a(T1ψl2 , ψxi) = a(ψl2 , ψxi) = 0 ∀xi ∈ (0, l1) ∪ (l1, l2),

so T1ψl2 is also discrete harmonic in (0, l1) and (l1, l2) respectively, this indicates T1ψl2 =
α ψl1 for some constant α. To obtain this α, we have by definition

a(T1ψl2 , ψl1) = a(ψl2 , ψl1),

or α a(ψl1 , ψl1) = a(ψl2 , ψl1). Then by a simple computation we derive α = −l1/l2.
Similarly we have T2ψl1 = β ψl2 for some constant β and β = −(1 − l2)/(1 − l1).

Substituting these relations along with T1ψl1 = ψl1 and T1ψl2 = ψl2 into Tψ3 = λ3ψ3

gives

(ψ3(l1) + α ψ3(l2))ψl1(x) + (β ψ3(l1) + ψ3(l2))ψl2(x) = λ3 (ψ3(l1)ψl1(x) + ψ3(l2)ψl2(x)).

This implies

(λ3 − 1)ψ3(l1) = α ψ3(l2), (λ3 − 1)ψ3(l2) = β ψ3(l1).(42)

We easily get (λ3 − 1)2 = α β, or equivalently

λ3 = 1 −
(

l1
l2

1 − l2
1 − l1

)1/2

.

Note that we take only one root here, the other is for λ4. Using (42), we have

ψ3(l1) =
α

λ3 − 1
ψ3(l2) =

(
l1
l2

1 − l2
1 − l1

)1/2

ψ3(l2).

13



The expression of ψ3 follows now from this and (41).
Remark 4.1. The lemma says that T has only 4 different eigenvalues, and accord-

ing to (3) and (4), we know immediately that there exists a polynomial of degree three
such that

ε(3) = 0.

This implies that at most three GMRES iterations are needed regardless the mesh size,
the overlapping size, the starting vector and the stopping condition. Therefore the con-
dition number of the eigenmatrix does not affect the convergence at all. However, this
type of eigen distribution rarely happen in practice, and the condition number of the
eigenmatrix does play a role. Hence, we will spend the rest of the section on estimating
κ2(X).

Remark 4.2. If the points x = l1 and x = l2 are symmetric with respect to the
center of the interval (0, 1), then the two eigenfunctions ψ3 and ψ4 are orthogonal in
(·, ·)., i.e., (ψ3, ψ4) = 0. Otherwise ψ3 and ψ4 are orthogonal only in the inner product
a(·, ·).

We next consider the conditioning of the eigenmatrix X consisting all eigenvectors.
Let ei be the ith unit column vector of length n. Let 1 < mi < n be the integer
corresponding to the node li, see Fig.1. The eigenmatrix has the form

X = [e1, . . . , u, . . . , w, . . . , en].

Here

u ≡ (u1 . . . um1 . . . um2 . . . , un)
T ≡ (ψ3(x1) . . . ψ3(xm1) . . . ψ3(xm2) . . . ψ3(xn))T

and

w ≡ (w1 . . . wm1 . . . wm2 . . . , wn)T ≡ (ψ4(x1) . . . ψ4(xm1) . . . ψ4(xm2) . . . ψ4(xn))T .

The constants α3 and α4 in the expressions of Ψ3 and Ψ4 are so chosen that

‖u‖ = 1, and ‖w‖ = 1.(43)

We shall estimate ‖X‖ and ‖X−1‖ separately. To bound ‖X‖, we note that

‖X‖ = sup
y �=0

‖Xy‖
‖y‖ .

Let y = (y1, . . . , yn)
T ∈ Rn, we have

Xy =
∑

j �=m1,m2

yj ej + ym1 u + ym2 w,

therefore

‖Xy‖2 ≤ 3

⎛
⎝‖

∑
j �=m1,m2

yj ej‖2 + y2
m1

‖u‖2 + y2
m2

‖w‖2

⎞
⎠ = 3 ‖y‖2.
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That is sup
y �=0

‖Xy‖/‖y‖ ≤
√

3. On the other hand, by taking a vector y = (y1, . . . , yn)
T ∈

Rn such that ym1 = ym2 = 0, we get

‖Xy‖2 =
∑

j �=m1,m2

y2
j =

n∑
j=1

y2
j = ‖y‖2,

which implies that sup
y �=0

‖Xy‖/‖y‖ ≥ 1. Thus we have proved that

1 ≤ ‖X‖ ≤
√

3.(44)

We next turn to ‖X−1‖. It is important to have estimates of the values um1 , um2 ,
wm1 , wm2 and the corresponding determinant

D ≡ um1wm2 − um2wm1(45)

in terms of the mesh size h.
Lemma 4.2. There exists two positive constants C0 and C1 independent of h, such

that

C0 h ≤ u2
m1

, u2
m2

, w2
m1

, w2
m2

, D ≤ C1 h.(46)

Proof. We need to make several observations below. From the expressions of ψ3

and ψ4, we know

um1 = µ0 um2 , wm1 = −µ0 wm2 ,(47)

for some positive constant µ0, independent of h. By a straightforward calculation, we
obtain

h

3
≤ ‖ψi(x)‖2

L2 ≤ h, for i = 3, 4.(48)

Using the linearity of ψ3 and ψ4 in the subintervals (0, l1), (l1, l2) and (l2, 1) and the
identity ‖ψi‖2

L2 =
∫ l1
0 ψ2

i (x) dx +
∫ l2
l1

ψ2
i (x) dx +

∫ 1
l2

ψ2
i (x) dx, for i = 3, 4, we obtain

β1 (u2
m1

+ u2
m2

) ≤ ‖ψ3‖2
L2 ≤ β2 (u2

m1
+ u2

m2
),(49)

β1 (w2
m1

+ w2
m2

) ≤ ‖ψ4‖2
L2 ≤ β2 (w2

m1
+ w2

m2
),(50)

where β1 and β2 are two positive constants given by

β1 =
1

12
min{l1 + l2, 2 − l1 − l2}, and β2 =

1

4
max{l1 + l2, 2 − l1 − l2}.

The desired proof follows immediately from (48), (47), (49), and (50).
To estimate the norm ‖X−1‖ = sup

y �=0
‖X−1y‖/‖y‖, we need to form the inverse of X

explicitly. We note that X has the form

X = I + (u − em1 w − em2)

(
et

m1

et
m2

)
≡ I + UV.
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Using an inverse formula given in [13], we have

X−1 = I − U(I + V U)−1V.

A simple calculation shows that

(I + V U)−1 =

(
um1 wm1

um2 wm2

)−1

=
1

D

(
wm2 −wm1

−um2 um1

)
.

Using this relation we get

X−1 = I − 1

D
U

(
wm2e

t
m−1 − wm1e

t
m2

−um2e
t
m1

+ um1e
t
m2

)

= I − 1

D

(
(wm2(u − em1) − um2 (w − em2))e

t
m1

+(−wm1(u − em1) + um1 (w − em2))e
t
m2

)
≡ I − 1

D
(zm1e

t
m1

+ zm2e
t
m2

).

Here the vectors zm1 and zm2 are defined in the second and third lines of the above
formula. Then for any y = (y1 . . . ym1 . . . ym2 . . . yn)

T ∈ Rn and y = 0, we have

X−1y = y − 1

D
(ym1zm−1 + ym2zm2),

which implies that

‖X−1y‖2 ≤ 3

(
‖y‖2 +

y2
m1

D2
‖zm1‖2 +

y2
m2

D2
‖zm2‖2

)
.(51)

We easily see that

‖zm1‖2 =
∑

j �=m1,m2

(wm2uj − um2 wj)
2 + (D − wm2)

2 + u2
m2

,

‖zm2‖2 =
∑

j �=m1,m2

(−wm1 uj + um1 wj)
2 + w2

m1
+ (D − um1)

2.

Using the Cauchy-Schwarz inequality, we further obtain

‖zm1‖2 ≤
∑

j �=m1,m2

(w2
m2

+ u2
m2

) (u2
j + w2

j ) + 2 (D2 + w2
m2

) + u2
m2

≤ 4 (w2
m2

+ u2
m2

) + 2 D2.

Similarly, ‖zm2‖2 ≤ 4 (u2
m1

+w2
m1

)+2 D2. According to Lemma 4.2, we know that ‖zmi‖2

is of order h, i.e.,

‖zmi‖2 ≤ Ch, for i = 1, 2.
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Substituting these bounds into (51) and using the bound for D from Lemma 4.2, yields

‖X−1y‖2 ≤ C
(
‖y‖2 +

1

D
y2

m1
+

1

D
y2

m2

)
≤ C

1

h
‖y‖2,

that is sup
y �=0

‖X−1y‖/‖y‖ ≤ C h−1/2. On the other hand, to get the lower bound, we

take a vector ỹ such that ỹi = 0 for all i = m1, then, we have X−1ỹ = ỹm1 zm1/D, and

‖X−1ỹ‖2 =
ỹ2

m1

D2
‖zm1‖2 ≥ ỹ2

m1

D2
u2

m2

≥ C̃
1

h
ỹ2

m1
= C̃

1

h
‖ỹ‖2.

Therefore sup
y �=0

‖X−1y‖ ≥ ‖X−1ỹ‖/‖ỹ‖ ≥ C h−1/2 and we have proved that

C̃ h−1/2 ≤ ‖X−1‖ ≤ C h−1/2.(52)

Before giving our main result of this section, we need the following beautiful Lemma
due to Demmel [8].

Lemma 4.3 (Demmel). Let S be a nonsingular matrix and of the form

S = [S1 S2 · · · Sb],(53)

where each Si consists of a certain number of columns of S and these columns are
orthonormal to each other. Then

κ(S) ≤
√

b κ(Soptimal),

where Soptimal stands for a matrix S̃ which is a scaled matrix of S (i.e. multiplying each
column by a real number) and has the smallest condition number among all the scaled
matrices of S.

By definition, the eigenmatrix X can be re-organized to have the form

X = [X1 u w],

where X1 consists of all the eigenvectors φxi with i = m1, m2. Clearly, this X satisfies
the condition of Lemma 4.3. Let Xoptimal be the best possible eigenmatrix associated
with the additive Schwarz preconditioned matrix T , we have, by combining (44) and
(52), the following result

Theorem 4.4.

1√
3

κ(X) ≤ κ(Xoptimal) ≤ κ(X),

and

C̃ h−1/2 ≤ κ(X) ≤ C h−1/2

for some positive constants C̃ and C independent of the mesh size h.
Remark 4.3. This theorem indicates that one of the factors in (4) that controls

the convergence of GMRES grows at a rate like h−1/2 as one refines the finite element
mesh.

17



REFERENCES

[1] S. Balay, W. Gropp, L. McInnes and B. Smith, The Portable, Extensible Toolkit for Scientific
Computing, version 2.0.13, http://www.mcs.anl.gov/petsc, code and documentation, 1996.

[2] X.-C. Cai, C. Farhat and M. Sarkis, Schwarz methods for the unsteady compressible Navier-
Stokes equations on unstructured meshes, Domain Decomposition Methods in Sciences and
Engineering, R. Glowinski, J. Periaux, Z. Shi and O. Widlund, eds., John Wiley & Sons, Ltd.,
1997.

[3] X.-C. Cai, W. Gropp, and D. Keyes, A comparison of some domain decomposition and ILU
preconditioned iterative methods for nonsymmetric elliptic problems, Numer. Lin. Alg. Applics,
1 (1994), pp. 477–504.

[4] X.-C. Cai, W. Gropp, D. Keyes, R. Melvin and D. Young, Parallel Newton-Krylov-Schwarz
algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19 (1998), pp. 246-
265.

[5] X.-C. Cai and O. Widlund, Domain decomposition algorithms for indefinite elliptic problems,
SIAM J. Sci. Stat. Comput., 13 (1992), pp. 243–258.

[6] T. Chan and T. Mathew, Domain decomposition algorithms, Acta Numerica (1994), pp. 61–143.
[7] T. Chan, B. Smith and J. Zou, Overlapping Schwarz methods on unstructured meshes using

non-matching coarse grids, Numer. Math., 73 (1996), pp. 149–167.
[8] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix

pencils, Matrix Pencils, Lecture Notes in Mathematics 973 (1983), pp. 1-15, Springer Verlag.
[9] M. Dryja and O. Widlund, Towards a unified theory of domain decomposition algorithms for

elliptic problems, in Third International Symposium on Domain Decomposition Methods for
Partial Differential Equations, held in Houston, Texas, March 20-22, 1989, T. Chan, R. Glowin-
ski, J. Périaux, and O. Widlund, eds., SIAM, Philadelphia, PA, 1990.

[10] M. Dryja and O. Widlund, Domain decomposition algorithms with small overlap, SIAM J.
Sci. Comp., 15 (1994), pp. 604–620.

[11] S. Eisenstat, H. Elman, and M. Schultz, Variational iterative methods for nonsymmetric
systems of linear equations, SIAM J. Numer. Anal. 20 (1983), pp. 345–357.

[12] W. Gropp, D. Keyes, L. McInnes and M. Tidriri, Parallel implicit PDE computations:
Algorithms and software, Proceedings of Parallel CFD’97, A. Ecer, et al., edt., Manchester,
UK, 1997.

[13] H. Henderson, and S. Searle, On deriving the inverse of a sum of matrices, SIAM Rev., 23
(1981), pp. 53–60.

[14] D. Keyes, D. Kaushik and B. Smith, Prospects for CFD on petaflops systems, CFD Review
1997, M. Hafez et al., edt., 1997.

[15] A. Klawonn, and G. Starke, Block triangular preconditioners for nonsymmetric saddle point
problems: Field-of-values analysis, Numer. Math., 1998. (to appear)

[16] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1995.
[17] Y. Saad and A. Malevsky, P-SPARSLIB: A portable library of distributed memory sparse

iterative solvers, (version 2.15, May 1997), Technical Report UMSI 95-180, Minnesota Super-
computer Institute, 1995.

[18] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), pp. 856–869.

[19] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[20] G. Starke, Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic
problems, Numer. Math., 78 (1997), pp. 103–117.

18


