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Summary

We present a parallel fully implicit algorithm for the large eddy simulation (LES)
of incompressible turbulent flows on unstructured meshes in three dimensions.
The LES governing equations are discretized by a stabilized Galerkin finite ele-
ment method in space and an implicit second-order backward differentiation
scheme in time. To efficiently solve the resulting large nonlinear systems, we
present a highly parallel Newton-Krylov-Schwarz algorithm based on domain
decomposition techniques. Analytic Jacobian is applied in order to obtain the
best achievable performance. Two benchmark problems of lid-driven cavity and
flow passing a square cylinder are employed to validate the proposed algorithm.
We then apply the algorithm to the LES of turbulent flows passing a full-size
high-speed train with realistic geometry and operating conditions. The numer-
ical results show that the algorithm is both accurate and efficient and exhibits
a good scalability and parallel efficiency with tens of millions of degrees of
freedom on a computer with up to 4096 processors. To understand the numeri-
cal behavior of the proposed fully implicit scheme, we study several important
issues, including the choices of linear solvers, the overlapping size of the sub-
domains, and, especially, the accuracy of the Jacobian matrix. The results show
that an exact Jacobian is necessary for the efficiency and the robustness of the
proposed LES solver.
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1 INTRODUCTION

We develop a highly parallel algorithm for the large eddy simulation (LES) of incompressible turbulent flows on unstruc-
tured meshes in three dimensions (3D). LES is a technique that is intermediate between the direct numerical simulation
(DNS) and the Reynolds-averaged Navier-Stokes (RANS) simulation. In LES, only the large scales of the flow field are fully
represented and resolved, and the effect of the unresolved small scales of turbulence is modeled. LES can provide reliable
solutions for complex flows at a relatively lower cost than DNS; and the turbulence models of LES are usually simpler and
require fewer adjustments than those of RANS when applied to different flows, since the small scales in the flow tend to
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be more homogeneous and isotropic. However, it is still a major challenge in applying LES to complex flow problems in
engineering applications due to the tremendous computational resources required. As the rapid advancement of super-
computers, a feasible way to solve this problem is to develop highly scalable parallel algorithms for LES. In this paper, we
introduce a fully implicit, highly parallel LES algorithm on unstructured meshes for incompressible turbulent flows and
test it for flows around a high-speed train with a realistic geometry and high Reynolds number.

There are many publications on parallel algorithms for the computational fluid dynamics (CFD). We refer in the fol-
lowing some of recent works related to LES. Gokarn et al1 presented a parallel finite difference scheme to solve the
incompressible LES equations, in which the pressure Poisson equation is solved by a biconjugate gradient method with
stabilization and least-squares preconditioning. Hsu et al2 developed a finite volume method for LES and a multilevel
Schwarz preconditioned conjugate gradient method for the pressure Poisson equation. A convection-stabilized mixed
finite element scheme was studied by Colomés and Badia,3 in which the discretization system is solved by a highly scal-
able balancing domain decomposition by constraints method. Their approach scales well with up to 8000 processors for
structured meshes. Situ et al4 showed a 3D LES implementation using a nonoverlapping truncated SPIKE algorithm and
achieved a strong-scaling parallel efficiency of 74% at 91 125 processors with respect to a baseline of 2744 processors.
Singh et al5 provided an assessment of different parallel preconditioners for numerical solution of the pressure Poisson
equation arising in LES of turbulent incompressible flows. The aforementioned methods are all based on structured grids
that are dominant in parallel LES computations; however, the demand is high for unstructured grid LES solvers in engi-
neering applications defined on irregular domains. We now briefly recall some of the recent works on unstructured grid
methods. Antepara et al6 proposed a parallel adaptive mesh refinement strategy for LESs that achieves a parallel effi-
ciency of 90% on 256 CPU-cores. Su and Yu7 studied a parallel finite volume method for the LES of turbulent flows around
the side mirror of a car. Forti and Dedè8 used a semi-implicit time discretization for the Navier-Stokes equations with a
variational multiscale-large eddy simulation (VMS-LES) model for the turbulence, in which a good scalability with up
to 4096 processors was reported. Moureau et al9 developed an incompressible finite volume solver called “Yales2” that
scales well with up to 32 768 processors. Nichols et al10 applied a CharLES finite volume method to simulate a turbulent
jet flow with hundreds of millions of grid points and with up to 163 840 processor cores. It is important to note that the
temporal discretization of most of the existing approaches are explicit or semi-implicit, and such methods do not require
a nonlinear solver at each time step but have a severe restriction on the time step size due to the Courant-Friedrichs-Lewy
(CFL) stability condition. Implicit methods are more stable and allow a much larger time step size that depends only on
the accuracy requirement. However, most research and commercial CFD software packages that use implicit schemes
are only able to scale up to a small number processors,11 which is too slow if used in the inner loop within a design
cycle.

In this work, we introduce a fully implicit finite element method for the LES of incompressible turbulent flows on 3D
unstructured meshes. We focus on the robustness and the parallel scalability, both are very important for realistic engi-
neering applications in production mode. We employ the Smagorinsky model to close the LES equations. Then, the LES
equations are discretized by a P1 − P1 stabilized finite element method in space and an implicit backward differentia-
tion formulas (BDFs) of order 2 in time. We use an NKS algorithm to solve the resulting large nonlinear algebraic system
of equations. The NKS algorithm consists of three major components: an inexact Newton method to solve the nonlin-
ear systems, a Krylov subspace-type method to solve the linear Jacobian system at each Newton step, and an overlapping
Schwarz-type preconditioner to accelerate the convergence.

NKS has been successfully applied to solve different kind of nonlinear problems, for example, PDE-constrained
optimization problems,12 fluid-structure interaction problems,13,14 non-Newtonian fluid problems,15 inverse source
problems,16 and elasticity problems,17 and has shown good parallel scalability to thousands of processors. In this work,
we extend the algorithm to solve the fully implicit 3D LES problems and to investigate the performance of NKS for an
industrial application.

Note that there are also other approaches to handle the nonlinear systems, for example, linearize the nonlinear terms
by extrapolating the solution from the previous time steps based on Newton-Gregory backward polynomials.8 These treat-
ments work well in most cases but may not be stable when the time step size is large. In NKS, a critically important step is
the calculation of the Jacobian matrix, which can be obtained analytically or approximately. Our experiments show that,
a more accurate Jacobian improves the convergence rate and the robustness of the Newton method and can also provide
a better preconditioner for the linear solver. Therefore, in our study, we compute the Jacobian matrix analytically by hand
even though it is rather a sophisticated task (especially for the convective nonlinear and the subgrid model terms). To
evaluate the effect of the accuracy of the Jacobian matrix on the performance of the NKS algorithm, we include a study
of the convergence behavior of NKS with approximately computed Jacobian.
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As test cases, we first consider the benchmark lid-driven cavity flow at Reynolds number 10 000 as well as the square
cylinder flow problem at Reynolds number 22 000. These are typical cases for internal flows and external flows, respec-
tively, and they cover the main features of turbulent flows such as flow separation, vortex shedding, and secondary flows.
We validate the proposed method against other published LES computations and experiments. We then apply the method
to simulate flows around a full-size high-speed train with eight cars. The realistic geometry of the train and the realistic
operation speed 360 km∕h are adopted in our simulation. The flow is very complex and turbulent due to the blunt-slender
body configuration and the high Reynolds number (2.14 × 107). It is a very challenging problem in CFD, and to the best
of our knowledge, it is the first trial to conduct such LES calculation for a realistic high-speed train. We use this case to
investigate the numerical behavior and the parallel performance and scalability of the proposed algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe the governing equations, the subgrid-scale
(SGS) models for LES, the finite element discretization of the flow problem, and the NKS algorithm for solving the dis-
cretized system of equations. In Section 3, we provide some numerical results and report the parallel performance of the
proposed algorithm. Some concluding remarks are given in Section 4.

2 NUMERICAL METHODS

2.1 Governing equations
We consider LES of the incompressible turbulent flows. In LES, only the large scale motions are computed directly, and
hence, a low-pass spatial filter is applied to the instantaneous flow fields (denoted by an overbar). The governing equations
of LES are the filtered incompressible Navier-Stokes equations in a bounded domain Ω ⊂ R3

⎧⎪⎨⎪⎩
𝜕ū
𝜕t

+ ū · ∇ū = −1
𝜌
∇p̄ + ∇ · (2𝜈S̄) − ∇ · 𝝉 ,

∇ · ū = 0,
(1)

where 𝜌 is the fluid density, 𝜈 is the kinematic viscosity, ū(x, t) is the filtered velocity field, p̄(x, t) is the filtered pressure
field, S̄ is the filtered strain rate tensor defined as

S̄ = 1
2
(
∇ū + (∇ū)T) , (2)

and 𝝉 denotes the SGS stress tensor given by
𝝉 = uu − ūū. (3)

The SGS stress accounts for the effects of the small unresolved scales on the dynamics of the large resolved scales and has
to be modeled in order to close the system. In the present study, both the Smagorinsky and dynamic Smagorinsky models
are incorporated into the system.

In the Smagorinsky model,18
𝝉 is modeled by introducing an eddy-viscosity concept such that

𝝉
d ≡ 𝝉 −

(1
3

tr 𝝉
)

I = −2𝜈tS̄, (4)

where 𝝉
d is the deviatoric part of the SGS stress, and 𝜈t is the turbulent eddy viscosity given by

𝜈t = (CsΔ)2|S̄|. (5)

Here, |S̄| = (2S̄ ∶ S̄)1∕2 = (2S̄i𝑗 S̄i𝑗)1∕2 is the norm of the filtered strain rate tensor, Δ is the filter width, and Cs is the
Smagorinsky constant, with values varying from 0.1 to 0.2.19

In practice, one drawback of the Smagorinsky model is that the constant Cs has to be adjusted to obtain reasonable
results. A more universal approach is using the dynamic Smagorinsky model,20,21 where the constant Cs is replaced by a
local and instantaneous coefficient Cd(x, t). By using a double filtering process, ie, the original grid filter ·̄ and a coarser
test filter ·̃, the coefficient Cd is computed dynamically as

Cd = 1
2

( L ∶ M
M ∶ M

)
= 1

2

( Li𝑗Mi𝑗

Mi𝑗Mi𝑗

)
, (6)

with
L = ũu − ũũ, (7)
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and
M = Δ

2 ̃|S|S − ̃Δ
2 ̃|S|̃S. (8)

By substituting (4) into (1), the LES governing equations can be rewritten as

⎧⎪⎨⎪⎩
𝜕ū
𝜕t

+ ū · ∇ū = −∇P̄ + ∇ · (2𝜈S̄) + ∇ · (2𝜈tS̄),

∇ · ū = 0,
(9)

where P̄ is the modified filtered pressure defined as

P̄ ≡
p̄
𝜌
+ 1

3
tr𝝉 . (10)

Dirichlet and Neumann boundary conditions for (9) are

ū = g on ΓD, (11)

𝝈 · n = h on ΓN , (12)
where ΓD and ΓN are complementary subsets of the domain boundary Γ = 𝜕Ω, functions g and h are given, n is the unit
outward normal vector of ΓN, and 𝝈 = −P̄I + 2(𝜈 + 𝜈t)S̄ is the Cauchy stress tensor.

As the initial condition, a divergence-free velocity field u0(x) is specified over the domain at t = 0

ū(x, 0) = u0(x) in Ω. (13)

2.2 Fully implicit finite element discretization
Next, we describe a stabilized finite element discretization of the weak form of the LES equations (9). First, we define the
trial function space for the velocity and the scalar function space for the pressure as

 =
{

u(x, t) |u(x, t) ∈ [H1(Ω)]3, u = g on ΓD
}
,

 =
{

p(x, t) |p(x, t) ∈ L2(Ω)
}
,

(14)

and the weighting function space for the velocity as

0 =
{

u(x, t) |u(x, t) ∈ [H1(Ω)]3, u = 𝟎 on ΓD
}
, (15)

where H1(Ω) is the usual Sobolev space. Then, the Galerkin weak form of the LES equations reads as follows: Find ū ∈ 
and P̄ ∈  such that

BG(ū, P̄;w, q) = 0 ∀(w, q) ∈ 0 ×  (16)
with

BG(ū, P̄;w, q) =
(
𝜕ū
𝜕t

, w
)
Ω
+ (ū · ∇ū, w)Ω − (P̄, ∇ · w)Ω

+ (2(𝜈 + 𝜈t)S̄, ∇w)Ω − (h · w)ΓN
+ (∇ · ū, q)Ω.

(17)

Here, ( f , g)Ω = ∫Ω f · gdΩ is the standard scalar inner product in L2(Ω).
We discretize the weak form of the LES equations (16) in space with a P1 − P1 stabilized finite element method.22,23

First, we triangulate the computational domain Ω by a conformal tetrahedral mesh h = {K} with hK the diameter of
the element K ∈ h. With this, the above-defined spaces (14) and (15) are approximated by finite-dimensional spaces
spanned by continuous piecewise linear functions as follows:

h =
{

uh |uh ∈ [C0(Ω) ∩ H1(Ω)]3,uh|K∈h ∈ P1(K)3, uh = g on ΓD
}
,

h =
{

ph |ph ∈ C0(Ω) ∩ L2(Ω), ph|K∈h ∈ P1(K)
}
,

(18)

and
h

0 =
{

uh |uh ∈ [C0(Ω) ∩ H1(Ω)]3,uh|K∈h ∈ P1(K)3, uh = 0 on ΓD
}
, (19)

where C0(Ω) is the set of all continuous functions defined on Ω, and P1(K) is the space of piecewise linear functions.
Because the P1 − P1 pair does not satisfy the Ladyzenskaja-Babuska-Brezzi inf-sup condition, additional stabilization
terms are needed in the formulation. We employ the stabilization technique introduced in the works of Franca and Frey22
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and Whiting and Jansen.23 The semi-discrete stabilized finite element formulation of (16) reads as follows: Find ūh ∈ h

and P̄h ∈ h, such that
B(ūh, P̄h;wh, qh) = 0 ∀(wh, qh) ∈ h

0 × h (20)

with
B(ūh, P̄h;wh, qh) = BG(ūh, P̄h;wh, qh) +

∑
K∈h

(∇ · ūh, 𝜏c∇ · wh)K

+
∑
∈h

(
𝜕ūh

𝜕t
+ ūh · ∇ūh + ∇P̄h − 2(𝜈 + 𝜈t)∇ · S̄, 𝜏m(ūh · ∇wh + ∇qh)

)
K
,

(21)

where the stabilization parameters 𝜏c and 𝜏m are defined as follows:

𝜏m = 1√
(2c1∕Δt)2 + (ū · G · ū) + c2(𝜈 + 𝜈t)2G ∶ G

𝜏c =
1

8𝜏mtr(G)
.

(22)

Here, Gi𝑗 =
∑3

k=1
𝜕𝜉k
𝜕xi

𝜕𝜉k
𝜕x𝑗

is the covariant metric tensor where 𝜕𝜉

𝜕x
represents the inverse Jacobian of the mapping between

the reference and the physical domain, Δt is the step size for the temporal discretization, and the coefficients c1 and c2
are set as: c1 = 1 and c2 = 36.

Integrating the spatial integrals of (20) by the Gauss quadrature, we obtain a time-dependent nonlinear system
dx
dt

= (x). (23)

Here, x is the vector of all finite element interpolation coefficients and (x) is the nonlinear function of x including all the
spatial discretization terms. (23) is further discretized fully implicitly in time with a second-order backward differentiation
formula (BDF2):

xn − 4
3

xn−1 + 1
3

xn−2 = 2Δt
3

(xn), (24)

where xn is the value of x at the nth time step, and Δt is the time step size. Only at the first time step, a first-order backward
Euler (BDF1) method is used:

xn − xn−1 = Δt(xn). (25)

For simplicity, (24) can be rewritten as a sparse, nonlinear, algebraic system

n(xn) = 0, (26)

which has to be solved at each time step to obtain the solution at the next time step. The details of the numerical method
for solving this large nonlinear system of equations will be discussed in the next section. We remark here that, there are
usually two ways to organized the solution vector, one is using the componentwise (field by field) order where the solution
vector x is defined as

x =
(

ū0, ū1, … , ūM−1, v̄0, v̄1, … , v̄M−1, w̄0, w̄1, … , w̄M−1, P̄0, P̄1, … , P̄M−1
)T
, (27)

and the other one is using the pointwise (field-coupling) order where x is defined as

x =
(

ū0, v̄0, w̄0, P̄0, ū1, v̄1, w̄1, P̄1, … , ūM−1, v̄M−1, w̄M−1, P̄M−1
)T
. (28)

Here, ū, v̄, and w̄ are x, y, and z components of the velocity ū, respectively, and M is the total number of mesh points. In our
implementation, we adopt the pointwise order instead of the componentwise order which is used by most approaches,
the aim is to avoid the large saddle point problem arising from the componentwise ordering when forming the Jacobian
system, which will significantly impact the convergence and parallel performance of the algorithm.24 Instead, the point-
wise ordering provides a natural setting for the point-block version of incomplete LU (ILU) factorization that is more
stable than the classical pointwise ILU and also improves the cache performance of the algorithm.

2.3 Newton-Krylov-Schwarz algorithm
In this work, we employ an NKS method to solve (26). The algorithm consists of three components, an inexact Newton
method together with a cubic line search technique25,26 to solve the nonlinear equation, a preconditioned Krylov subspace
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method (GMRES)27 to obtain the Newton correction, and a restricted additive Schwarz (RAS) domain decomposition
method as a preconditioner28 to accelerate the convergence of the Krylov subspace method. The algorithm goes as follows.

1. Take the solution of the previous time step as the initial guess

xn
0 = xn−1. (29)

2. For k = 0, 1, … , until the stopping condition is satisfied:

(a) Construct the complete Jacobian matrix Jn
k of n(x) at xn

k .
(b) Obtain the Newton correction sn

k by solving the following right-preconditioned Jacobian system inexactly with
GMRES:

Jn
k

(
Mn

k

)−1Mn
k sn

k = −n(xn
k

)
. (30)

(c) Find a step length 𝜆n
k using a cubic line search and update the approximation as follows:

xn
k+1 = xn

k + 𝜆ksn
k . (31)

In our implementation, the nonlinear iteration is stopped if the following condition is satisfied:‖‖‖Jn
k sn

k + n(xn
k

)‖‖‖ ≤ 𝜂k
‖‖‖n(xn

k

)‖‖‖ , (32)

where 𝜂k is the relative tolerance for the linear solver. If 𝜂k is small enough, the algorithm reduces to the exact Newton
algorithm. Here, the Jacobian matrix is computed analytically since the robustness of the Newton method is often not
guaranteed when the Jacobian is approximately computed. In each individual element, the Jacobian matrix takes the form(

K C
G Q

)
, (33)

where K and Q are for the velocity and pressure, respectively, and C and G are the coupling matrix between them. Since
there are 12 degrees of freedom (DOFs) for the velocity and 4 DOFs for the pressure in an element, the matrix orders of K,
Q, C, and G are 12 × 12, 4 × 4, 12 × 4, and 4 × 12, respectively. K, Q, C, and G can be derived by computing the first-order
Fréchet derivative of the left-hand side of (20). Let 𝜙i(i = 1, 2, 3, 4) denote the piecewise linear basis function for the
tetrahedral element, then the weighting functions for the velocity field and the pressure fields will be wi = (𝜙i, 0, 0),
w4 + i = (0, 𝜙i, 0), w8 + i = (0, 0, 𝜙i), i = 1, 2, 3, 4, and qi = 𝜙i, i = 1, 2, 3, 4, respectively. Then, the formulations of K, Q,
C, and G can be computed as follows:

Ki𝑗 = 𝛼(w𝑗 ,wi) + (ū · ∇w𝑗 + w𝑗 · ∇ū,wi) +
(
(𝜈 + 𝜈t)

(
∇w𝑗 + ∇wT

𝑗

)
,∇wi

)
+ (∇ · w𝑗 , 𝜏c∇ · wi)

+ 𝛼(w𝑗 , 𝜏mū · ∇wi) + (Δtū, 𝜏mw𝑗 · ∇wi) + (ū · ∇w𝑗 + w𝑗 · ∇ū, 𝜏mū · ∇wi)
+ (ū · ∇ū, 𝜏mw𝑗 · ∇wi) + (∇P̄, 𝜏mw𝑗 · ∇wi),

(34)

Qi𝑗 = (∇q𝑗 , 𝜏m∇qi), (35)

Ci𝑗 = − (q𝑗 ,∇ · wi) + (∇q𝑗 , 𝜏mū · ∇wi), (36)

and
Gi𝑗 = (∇ · w𝑗 , qi) + 𝛼(w𝑗 , 𝜏m∇qi) + (ū · ∇w𝑗 + w𝑗 · ∇ū, 𝜏m∇qi), (37)

where

𝛼 =
⎧⎪⎨⎪⎩

1
Δt
, for backward Euler,

3
2Δt

, for BDF2,
(38)

and

Δtū =
⎧⎪⎨⎪⎩

ūn − ūn−1

Δt
, for backward Euler,

3ūn − 4ūn−1 + ūn−2

2Δt
, for BDF2.

(39)

Here, we have assumed that the unknowns are ordered field by field for the element Jacobian matrix for sake of simplicity
in the notation. Remember that the unknowns of the global solution are organized in pointwise order, therefore, it should
be careful when assembling the global Jacobian matrix from the element Jacobian matrices.
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The preconditioner (Mn
k )

−1 is critically important, without which the GMRES usually converges slowly or does not
converge, and as a result, the outer inexact Newton may not converge well either. An overlapping RAS preconditioner28

is employed in our algorithm. The preconditioning matrix (Mn
k )

−1 is constructed as follows. First, we partition the com-
putational domain Ω into np nonoverlapping subdomains Ω𝓁 (𝓁 = 1, … ,np), where np is the same as the number of
processors. Then, each subdomain is extended to an overlapping subdomain Ω𝛿

𝓁 by including 𝛿 layers of mesh elements
from its adjacent subdomains. Here, 𝛿 is an integer indicating the level of overlap.

On each overlapping subdomain Ω𝛿
𝓁 , we define the restriction operator R𝛿

𝓁 to be the matrix that maps the global vector
of unknowns in Ω to those belonging to Ω𝛿

𝓁 , such that

x𝛿𝓁 = R𝛿
𝓁x =

(
I 0

)( x𝛿𝓁
x∖x𝛿𝓁

)
. (40)

Here, x∖x𝛿𝓁 means the unknowns outside the subdomain Ω𝛿
𝓁 . For simplicity, the subscript n is dropped here without

confusion. We then construct a subdomain Jacobian matrix by

J𝛿𝓁 = R𝛿
𝓁 Jn

k

(
R𝛿
𝓁

)T
, 𝓁 = 1, 2, … , np, (41)

which is the restriction of the global Jacobian matrix Jn
k to the subdomain Ω𝛿

𝓁 . Here, (R𝛿
𝓁)

T is the extension operator, which
is defined as the transpose of the restriction operator R𝛿

𝓁 . Using these definitions, the RAS preconditioner is defined as

(
Mn

k

)−1 =
np∑
𝓁=1

(
R0
𝓁

)T(J𝛿𝓁
)−1R𝛿

𝓁 , (42)

where R0
𝓁 is the restriction operator to the unknowns in the nonoverlapping subdomain Ω𝓁 , defined similarly as R𝛿

𝓁 , and
(J𝛿𝓁)

−1 is the inverse of the subdomain Jacobian J𝛿𝓁 . In practice, (J𝛿𝓁)
−1 is obtained by solving a subdomain linear system.

Because (J𝛿𝓁)
−1 is used as a preconditioner here, it can be solved exactly or approximately. In our application, it is solved

with a point-block incomplete LU factorization with some levels of fill-ins.29

3 NUMERICAL RESULTS AND PARALLEL PERFORMANCE

In this section, we first provide a validation of the proposed fully implicit discretization scheme using a lid-driven cavity
flow problem and a square cylinder flow problem, both have been studied by many researchers, and then, we perform
an LES of flows around a high-speed train and investigate the numerical behavior and the parallel performance of the
proposed algorithm. Our algorithm is implemented on top of the Portable Extensible Toolkit for Scientific computing
(PETSc) library.30 The unstructured tetrahedral mesh is generated by using ANSYS ICEM, and the mesh partition for
parallel computing is obtained with the software ParMETIS. All computations are carried out on TianHe-2 supercomputer
at National Supercomputer Center in Guangzhou, China. The relative stopping conditions for the nonlinear solver and
linear solver are set to be 10−6 and 10−4, respectively, for all the test cases. Note that the nonlinear equation is solved by an
inexact Newton method, where the linear solver is only used to compute the Newton correction; therefore, the stopping
condition for the linear solver can be coarser here.

3.1 Validation of the proposed numerical method
To validate the proposed fully implicit discretization and solver, we consider two simple test cases that have been
well-understood: a lid-driven cavity flow problem and a square cylinder flow problem.

First, we perform an LES for the lid-driven cavity flow. The detailed geometry of the problem is sketched in Figure 1. We
consider a fluid with constant viscosity 𝜇 and constant density 𝜌 in a square cavity with length L, depth D, and height H.
The flow is driven by the wall at y = H that moves tangentially in the x direction with a constant velocity U. The dimen-
sionless Reynolds number is defined as Re = 𝜌UL∕𝜇, based on the driven velocity, and the length of the cavity as the
characteristics of the velocity and length, respectively.

In this test, we set L = D = H = 1 and Re = 104. We run our simulation on a mesh with about 8.04 × 105 elements
(total degree of freedom DOF = 6.81 × 105) and withΔt = 0.01, and we use both the Smagorinsky model with Cs = 0.17
and the dynamic Smagorinsky model. The level of fill-ins for the linear solver is 1 and the overlapping size for the domain
decomposition is 2. The time duration for the simulation is 80, and we computed the mean velocity by time averaging
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FIGURE 1 Sketch of the geometry of the lid-driven cavity

FIGURE 2 Comparison of the mean velocity in the midplane z = 1∕2. Left: ⟨v⟩(x, 1∕2, 1∕2); right: ⟨u⟩(1∕2, y, 1∕2) [Colour figure can be
viewed at wileyonlinelibrary.com]

from t = 40 to 80. The numerical results are compared with the experimental data in the work of Prasad and Koseff31 and
the LES results in the work of Padilla et al.32 Figure 2 shows that the mean velocity profiles of all the results are nearly
the same.

Next, we simulate a flow passing a square cylinder at Re = 2.2 × 104. The computational domain is shown in Figure 3,
where D = 1 is the diameter of the square cylinder, W = 14D and H = 4D are the width and height of the domain,
respectively, Li = 5D is the distance between the cylinder and the inflow surface, and Lo = 21D is the distance between
the cylinder and the outflow surface. The Reynolds number is defined as Re = U∞D∕𝜈. We run the simulation on a
mesh with about 1.97 × 106 elements (DOF = 1.43 × 106) and with Δt = 0.01, and use both the Smagorinsky model
with Cs = 0.17 and the dynamic Smagorinsky model. The level of fill-ins and the overlapping size are also set to 1 and
2, respectively. The time duration for the simulation is 200. The flow is full developed after t = 100 (the periods of one
vortex shedding is approximately 8.0).

In Table 1, we show the computed values of the mean drag coefficient CD, the base pressure coefficient CPB, the root
mean square value of the lift coefficient CL,rms, and the Strouhal numbers St. These values were obtained by time averaging
from t= 100 to 200. In the same Table, we also present results obtained by others and by experiments. It is clear that our
results agree very well with those published results.

http://wileyonlinelibrary.com
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FIGURE 3 Dimensions of the computational domain

TABLE 1 Comparison of the mean drag coefficient CD, the base pressure
coefficient CPB, the root mean square values of the lift coefficient CL,rms, and the
Strouhal numbers St

CD CPB CL,rms St
Smagorinsky 2.24 −1.41 1.18 0.132
Dynamic 2.31 −1.52 1.27 0.133
Smagorinsky (Rodi et al33) 1.66-2.77 - 0.38-1.79 0.07-0.15
Dynamic LES (Sohankar et al34) 2.00-2.32 1.30-1.63 1.23-1.54 0.127-0.135
VMS-LES (Koobus and Farhat35) 2.10 1.52 1.08 0.136
Experimental results
Lyn et al36 2.05-2.25 - - 0.132
Bearman and Obasaju37 2.28 −1.60 1.20 0.13
Kogaki et al38 2.22 −1.64 - 0.125

Abbreviations: LES, large eddy simulation; VMS-LES, variational multiscale-large eddy
simulation.

FIGURE 4 Mesh around the head the high-speed train

3.2 LES of flows around a high-speed train
In this section, we perform an LES for flows around a high-speed train with realistic geometry. The train model is derived
from China's high-speed train CRH380B with eight cars, which is designed for passenger transportation with an opera-
tional speed of 300 km∕h and a maximum speed of 380 km∕h. The length, width, and height of the train are 182 m, 3.26 m,
and 3.39 m, respectively. The simulation is carried out with a mesh of 1.90 × 107 elements (DOF = 1.42 × 107). The
mesh size on the train is set to be 0.016, a density box with a mesh size of 0.2 is created around the train, where the width
between the train and the density box is set to be 1.0, and the mesh size on other region is set to be 1.6. Grid space on the
wall is stretched with an expansion factor of 1.3 in the normal direction. The mesh around the head of the train is illus-
trated in Figure 4. The train runs at a speed of 100 m∕s (360 km∕h) and experiences a crosswind with a speed of 17.6 m∕s
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FIGURE 5 Velocity distribution in the intermediate cross-section of the train [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Velocity distribution near the head of the train [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Velocity distribution near the tail of the train [Colour figure can be viewed at wileyonlinelibrary.com]

(the yaw angle is 10◦). The fluid material we adopt is air at 25◦C with density 𝜌 = 1.185 kg∕m3 and dynamic viscosity
𝜇 = 1.831 × 10−5 kg∕ms. The Reynolds number is Re = 2.14 × 107, which is defined as

Re = 𝜌U∞W
𝜇

,

where U∞ = 101.537 m∕s is the freestream velocity that is equal to the effective crosswind velocity, the characteristic
length is the width of the train W = 3.26 m.

The numerical simulation of flows around a high-speed train is a very challenging problem because of the very high
Reynolds number and the slender body of the train, which leads to a very complex flow field with high turbulent intensities
and large separation. In this work, we focus on the robustness and the parallel performance of the proposed solver for LES.

The contours of the wind velocity magnitude in the intermediate cross-section of the train at t = 1 second (time step
size Δt = 0.004 seconds) is shown in Figure 5, and more details of the flow field around the head and the tail of the
train can be viewed in Figure 6 and Figure 7. It can be seen that the flow separates at the windward corner of the head
first and then reattaches and stays attached on the roof and finally detaches close to the train's downwind surface and
becomes turbulent wake behind the tail of the train. Figure 8 shows the stream trace of the flow near the tail of the train,
and Figure 9 shows the wake vortex structure illustrated by the Q-criteria.

As the train experiences a crosswind, a series of inclined wake vortex shedding from the leeward side of the train can
be observed, as shown in the contour of the wind velocity magnitude at different height (Figure 10) and that in the
cross-sections at different locations (Figure 11).

http://wileyonlinelibrary.com
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FIGURE 8 The stream trace of the flow near the tail of the train [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Instantanenous vortex structure around the tail of the train illustrated by the Q-criteria, colored by the velocity magnitude
(Q = 1000) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Velocity distribution of the cross-section at the height of z = 0, z = 1 and z = 3 (from top to bottom) [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 11 Velocity distribution of the cross-section at different locations: y = 15, y = 75, and y = 180 (from left to right) [Colour figure
can be viewed at wileyonlinelibrary.com]
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TABLE 2 Performance results on using different time step sizes for the
fully implicit method. The simulation is carried out with a mesh of
1.90 × 107 elements using 512 processors. “Newton” denotes the average
Newton iterations per time step, “GMRES” denotes the average GMRES
iterations per Newton step, “Time/Step” refers to the average computing
time per time step in seconds, and “CFL” denotes the CFL number

𝚫t Newton GMRES Time/Step CFL

5.0 × 10−4 2.0 42.66 23.64 1.41
1.0 × 10−3 3.0 68.82 44.20 2.81
2.0 × 10−3 3.0 76.96 47.78 5.56
4.0 × 10−3 3.0 84.70 51.27 11.0
8.0 × 10−3 4.0 96.01 74.26 21.8
1.6 × 10−2 4.4 133.55 107.58 43.6
3.2 × 10−2 6.2 152.51 170.08 86.8

Abbreviation: CFL, Courant-Friedrichs-Lewy.

3.3 Performance of the fully implicit method
In this section, we report the numerical behavior and parallel performance of the proposed fully implicit method. We
first make a stability test of the fully implicit method in terms of the CFL numbers and then investigate several issues
including the strong scalability study, the influence of different overlaps and subdomain solvers, and the influence of the
accuracy of the Jacobian. The case of the high-speed train is used for all the following tests.

3.3.1 Stability test of the fully implicit method
The CFL stability condition is not required by the fully implicit method. Therefore, compared with explicit and
semi-implicit methods, the fully implicit method is usually more stable with a much larger time step size, which depends
only on the accuracy requirement. We show the stability of the proposed implicit scheme numerically by investigating
its performance on using different time steps. The results on the average Newton iterations per time step, the average
GMRES iterations per Newton step, the average computing time per time step, as well as the CFL numbers are shown in
Table 2. Here, the documented results are averaged values over 20 time steps after the flow fully developed, and the CFL
number is calculated via

CFL = max
{|VK|Δt

hK

}
,

where hK is the cell size and |VK| is the magnitude of the velocity through that cell.
Table 2 shows that both the number of Newton iterations and the number of GMRES iteration increase gradually as the

time step size is increased, and in result, the computing time per time step also increases. However, since the increment
rate of the computing time per time step is much slower than the time step size, we can infer that a larger time step will
save the total computing time in overall. The allowed largest time step size is Δt = 0.032, which corresponding to a CFL
number of 86.8. Therefore, we see that, by using the fully implicit method, the time step size is no longer constrained by
the CFL condition.

For the purpose of comparison, we also implemented a second-order semi-implicit BDF method introduced by Forti
and Dedè,8 where the nonlinear terms of the LES equations are linearized by extrapolating the solution from the previous
time steps based on Newton-Gregory backward polynomials. The velocity variables at the nth time step are expressed by

ūn = 2ūn−1 − ūn−2, for BDF2. (43)

With this extrapolations, the discretization system of the LES equations is linearized and we do not need to solve the
nonlinear equations. However, it should be note that we still have to solve a linear algebraic equation at each time step
due to the incompressibility constraint. We employ a GMRES method to solve this linear system, the stopping condition
is set to be 10−6, which is the same with the implicit solver. The performance result is shown in Table 3. It is observed
that this semi-implicit method is more stable than explicit schemes, since a maximum CFL number of 1.41 is obtained,
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TABLE 3 Performance results on using
different time step sizes for the semi-implicit
method. The notations are the same with Table 2

𝚫t GMRES Time/Step CFL

1.25 × 10−4 31.6 6.14 0.39
2.5 × 10−4 41.0 6.75 0.75
5.0 × 10−4 64.6 8.34 1.41

Abbreviation: CFL, Courant-Friedrichs-Lewy.

which is generally less than 1 for explicit schemes. When using the same time step size Δt = 5.0 × 10−4, the computing
time of the semi-implicit method is nearly 1/3 of that of the fully implicit method. Therefore, a fully implicit scheme
is usually more expensive than the explicit and semi-implicit methods due to the need for solving nonlinear systems at
each time step. However, since much larger time step size is allowed for the fully implicit scheme, the total computing
time for the same duration of calculation can be shorter. For example, if the accuracy is not take into account, the total
computing time of the fully implicit method is about 1/3 of that of the semi-implicit scheme, when both using the allowed
largest time step size. Overall, one of the advantages of the fully implicit approach is that it can solve exactly the nonlinear
problem without linearized approximation, and the other one is the possibility of using a large time step, which is useful
for long-time simulations when the short time scales of the flows are not important.

3.3.2 Strong scalability
Next, we study the parallel performance and scalability of the proposed algorithm. To investigate the impact of the amount
of the mesh on the parallel performance, two different meshes, one with about 9.61 × 106 elements (DOF = 7.17 × 106)
and the other with about 1.90 × 107 elements (DOF = 1.42 × 107) are employed for the test. The fine mesh is the main
mesh that we used for most of our simulations, and the coarse mesh with about half of DOFs is used for comparison in
testing the parallel scalability. A fixed time step Δt = 0.004 is applied for all the tests. We report the average computing
times and the number of nonlinear iterations per time step, as well as the average GMRES iterations per Newton step in
the tests, where the documented results are averaged values over 20 time steps.

Table 4 and Figure 12 show the parallel performance of the algorithm. As the number of processors increases, the
number of Newton iterations per time step does not change, the number of GMRES iterations increases slightly, and
the computing time decreases quickly. In Figure 12, the parallel speedup is shown to be nearly linear with up to 4096
processors. The parallel efficiency is 63% for the case of DOF = 7.17 × 106 and 71% for the case of DOF = 1.42 × 107

when the number of processors increase from 256 to 4096. Note that, when the same number of processors is used, the

TABLE 4 Parallel performance of the NKS algorithm. Here, the
overlapping size for RAS is 𝛿 = 2, and the level of ILU fill-ins is l = 1

np Newton GMRES Time Speedup Ideal Efficiency
Mesh 1: DOF = 7.17 × 106

256 3.0 73.7 45.56 1 1 100%
512 3.0 74.1 23.99 1.90 2 95%

1024 3.0 75.5 12.91 3.53 4 88%
2048 3.0 77.3 7.46 6.11 8 76%
4096 3.0 80.2 4.54 10.04 16 63%

Mesh 2: DOF = 1.42 × 107

256 3.0 83.4 98.43 1 1 100%
512 3.0 84.7 51.27 1.92 2 96%

1024 3.0 85.7 27.36 3.60 4 90%
2048 3.0 87.7 14.81 6.65 8 83%
4096 3.0 89.5 8.65 11.38 16 71%

Abbreviations: NKS, Newton-Krylov-Schwarz; RAS, restricted additive Schwarz.
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FIGURE 12 The parallel speedup and the parallel efficiency for the high-speed train simulation [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Impact of the local linear solver on the NKS algorithm. Here, the total number of unknowns
is DOF = 7.17 × 106, the time step size is Δt = 0.004, and the overlapping size for RAS is 𝛿 = 2

np Newton GMRES Time
ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2)

256 3.70 3.00 3.00 97.34 73.73 58.63 54.07 45.56 50.95
512 3.60 3.00 3.00 94.41 74.13 60.17 28.01 23.99 27.48
1024 3.50 3.00 3.00 100.3 75.45 62.15 14.77 12.91 14.81
2048 3.60 3.00 3.00 97.10 77.36 65.42 8.65 7.46 8.23

Abbreviations: NKS, Newton-Krylov-Schwarz; RAS, restricted additive Schwarz.

size of the subdomain of Mesh 2 is about twice of Mesh 1, which means that the cost of communication relative to the
computation is smaller for Mesh 2, therefore, the speedup performance of Mesh 2 is a little better.

3.3.3 Influence of subdomain solvers and different overlaps
In an overlapping Schwarz preconditioner, the choice of subdomain solver has a remarkable impact on the overall per-
formance. Table 5 shows the numerical performance with respect to different subdomain solvers that use different level
of fill-in l. It is observed that the number of Newton iterations does not change much with respect to the fill-in level, and
as expected, the number of GMRES iterations decreases dramatically as the level of fill-in increases, since a higher level
of fill-ins leads to a stronger preconditioner. However, at the same time, more computing time is spent on the ILU factor-
ization in the preconditioning stage. In this test, the ideal level of fill-in is l = 1, with which the computing time per time
step reaches the minimum.

For the additive Schwarz preconditioner, an important parameter that influences the effects of the preconditioner is
the overlapping size 𝛿. In Table 6, we show the results with different choices of 𝛿. Overall, a larger 𝛿 implies a faster con-
vergence of GMRES. However, the size of the subdomain problem also grows as 𝛿 increases, which implies that more
communication time and more computing time are spent on the preconditioning stage. Therefore, there is a trade-off
between the number of GMRES iterations and the communication and computing time. The best result is obtained
with 𝛿 = 2.

3.3.4 Influence of the accuracy of the Jacobian
In our implementation, we compute the Jacobian matrix analytically including all the terms of  defined by the left-hand
side of (20) including the terms of LES equations and the stabilization terms, and as a result, the inexact Newton converges
well with only a small number of iterations. An interesting question is that how Newton converges when the Jacobian
is not accurately computed, for example, if we do not include all the terms of  when computing the Jacobian. For this

http://wileyonlinelibrary.com
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TABLE 6 Impact of the overlapping parameter 𝛿
on the NKS algorithm. Here, the total number of
unknowns is DOF = 7.17 × 106, the time step size
is Δt = 0.004, and the subdomain solver is ILU(1).
The simulation is carried out with 1024 processors

𝜹 Newton GMRES Time

0 3.00 96.20 13.06
1 3.00 80.96 13.05
2 3.00 75.45 12.91
3 3.10 74.69 18.84
4 3.00 71.37 18.03

Abbreviation: NKS, Newton-Krylov-Schwarz.

TABLE 7 The influence of the Jacobian on the convergence of the NKS algorithm. The
analytical Jacobian means that the Jacobian is analytically computed, whereas the
approximated Jacobian means that the term of LES model is not included in the Jacobian

𝚫t = 0.004 𝚫t = 0.04
Newton GMRES Time Newton GMRES Time

Analytical Jacobian 3.0 74.13 23.99 4.7 101.0 40.78
Approximated Jacobian 4.1 67.71 29.74 21.3 77.72 176.8

Abbreviations: LES, large eddy simulation; NKS, Newton-Krylov-Schwarz.

TABLE 8 Performance of the NKS algorithm when the Jacobian matrix is
reused for several iterations. Here, the Jacobian lag denotes the number when
the Jacobian is rebuilt in the nonlinear solve. ∞ means that the Jacobian is built
only once for every time step

Jacobian Lag 𝚫t = 0.004 𝚫t = 0.04
Newton GMRES Time Newton GMRES Time

1 3.0 74.13 23.99 4.7 101.0 40.78
2 3.0 67.97 20.28 9.0 76.10 57.60
3 3.1 68.87 17.68 11.3 69.01 63.92
4 3.1 68.87 17.23 14.9 66.54 80.87
∞ 3.1 68.87 17.29 DIVERGENCE

Abbreviation: NKS, Newton-Krylov-Schwarz.

purpose, we conduct a numerical experiment on the convergence of the algorithm when the terms of subgrid model are
not included in the Jacobian. The results together with those with the analytical Jacobian are shown in Table 7.

Two cases with different time step size are tested. For the case of Δt = 0.004, the number of Newton iterations and
the total computing time both have small increase when the approximated Jacobian is adopted. However, for Δt = 0.04,
the number of Newton iterations and the total computing time both increase a lot by more than 4 times from those of
analytical Jacobian. When we continue to increase the time step size to Δt = 0.08, the Newton method fails to converge.
These results show that using an approximated Jacobian may deteriorate the overall convergence, depending on the time
step size, or in other words, the degree of the change of the solution.

In our implementation, the Jacobian matrix is recomputed for every Newton iteration and the preconditioner is recom-
puted for every Jacobian solve. Next, we investigate the performance of the algorithm when the Jacobian matrix and/or
the preconditioner are reused for several iterations. The results are shown in Tables 8 to 10.
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TABLE 9 Performance of the NKS algorithm when the preconditioner is reused for
several iterations. Here, the preconditioner lag denotes the number when the
preconditioner is rebuilt in the nonlinear solve. ∞ means that the preconditioner is
built only once for every time step

Preconditioner Lag 𝚫t = 0.004 𝚫t = 0.04
Newton GMRES Time Newton GMRES Time

1 3.0 74.13 23.99 4.7 101.0 40.78
2 3.0 74.13 23.38 4.7 124.41 41.20
3 3.0 74.17 23.17 4.7 146.49 45.23
4 3.0 74.17 23.26 4.7 167.39 48.88
∞ 3.0 74.17 23.30 4.7 175.44 50.02

Abbreviation: NKS, Newton-Krylov-Schwarz.

TABLE 10 Performance of the NKS algorithm when both the
Jacobian matrix and the preconditioner are reused for several
iterations. Here, the lag denotes the number when the Jacobian and
preconditioner are rebuilt in the nonlinear solve. ∞ means that both
the Jacobian and the preconditioner are built only once for every
time step

Lag 𝚫t = 0.004 𝚫t = 0.04
Newton GMRES Time Newton GMRES Time

1 3.0 74.13 23.99 4.7 101.0 40.78
2 3.0 67.97 19.99 9.0 76.10 57.34
3 3.1 68.87 17.77 11.3 69.01 64.64
4 3.1 68.87 17.45 14.9 67.66 79.09
∞ 3.1 68.87 17.42 DIVERGENCE

Abbreviation: NKS, Newton-Krylov-Schwarz.

Table 8 shows that, when the Jacobian is rebuilt for several Newton iterations, the number of Newton iterations does
not change much and the total computing time decreases a little for Δt = 0.004, while both of them increase dramatically
for Δt = 0.04. What is more, the algorithm fails to converge when the Jacobian is built only once for every time step,
and used for all Newton iterations within a time step. These results are in line with those when the Jacobian matrix is
approximately computed as shown in Table 7.

Table 9 shows that, when the preconditioner is rebuilt for several Newton iterations while the Jacobian is rebuilt for
every Newton iteration, the number of Newton iterations, the number of GMRES iterations, and the total computing time
are all the same for the case of Δt = 0.004. But for the case of Δt = 0.04, while the number of Newton iterations does
not change, the number of GMRES iterations and the total computing time increases notably. It implies that, when the
solution is changing rapidly, the accuracy of the preconditioner may dramatically affect the convergence rate of GMRES.

When both the Jacobian matrix and the preconditioner are reused for several iterations, the results are similar to those
when only the Jacobian matrix are reused for several iterations, as shown in Tables 8 and 10.

To further understand these results, we investigate the computing time spent on the evaluation of the function, the
evaluation of the Jacobian matrix, the construction of the preconditioner, and the linear solver, as shown in Figure 13. We
see that the computing time on the construction of the preconditioner is only a very small portion of the total computing
time, therefore, rebuilding the preconditioner for several Newton iterations does not save much time. On the other hand,
the time spent on the evaluation of the Jacobian is considerable, thus it has a great impact on the performance of the
algorithm. For the case of Δt = 0.004, rebuilding the Jacobian for every 3 Newton iterations reduces a lot of time on
the evaluation of the Jacobian, and thus reduces the total computing time as well. However, for the case of Δt = 0.04,
the time spent on the evaluation of the Jacobian increases when the Jacobian is rebuilt for every 3 Newton iterations, the
reason is that the number of Newton iterations increases a lot at the same time.
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FIGURE 13 The computing times spent on the evaluation of the function, the evaluation of the Jacobian matrix, the construction of the
preconditioner, and the linear solver. Columns 1 to 4 indicate the cases of a standard solver, Jacobian is rebuilt for every 3 iterations,
preconditioner is rebuilt for every 3 iterations, and both the Jacobian and the preconditioner are rebuilt for every 3 iterations, respectively.
Left: the case of Δt = 0.004; right: the case of Δt = 0.04 [Colour figure can be viewed at wileyonlinelibrary.com]

In summary, we remark that, in the proposed algorithm, an exact Jacobian can improve the convergence of the Newton
method and make the algorithm more robust. Although in some cases, we can reduce the overall computing time by using
an approximated Jacobian or reusing the Jacobian for several Newton iterations, but such treatments do not work and the
algorithm may fail to converge when the solution changes sharply (eg, for a large time step). Therefore, it is worthwhile to
compute the Jacobian analytically even though it is rather a sophisticated task, since it will save many Newton iterations,
and can be used to provide a better preconditioner for the Jacobian systems.

4 CONCLUSION

In this paper, we developed a fully implicit finite element method on unstructured meshes for the LES of incompressible
turbulent flows and a scalable parallel domain decomposition method for solving the large nonlinear algebraic system
of equations arising from the discretization. The Smagorinsky and dynamic Smagorinsky models are adopted for the
modeling of small eddies in turbulent flows. We validated the proposed numerical method by solving two benchmark
problems including the lid-driven cavity flow and the square cylinder flow at high Reynolds numbers, and then, we
applied the method to the LES of turbulent flows around a full-size high-speed train with realistic geometry and operating
conditions. The numerical results showed that the algorithm is both accurate and efficient and exhibits a good scalability
and parallel efficiency with up to 4096 processors. We showed numerically that, by using the fully implicit method the
time step size is no longer constrained by the CFL condition so that large time step sizes are allowed. We studied how
the algorithm is influenced by the choices of linear solvers, the overlapping size of the subdomains, and, especially, the
accuracy of the Jacobian matrix. The results show that an exact Jacobian is necessary for the efficiency and the robustness
of the proposed LES solver.
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