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Abstract
Principal component analysis (PCA) is widely used for dimensionality reduc-
tion and unsupervised learning. The reconstruction error is sometimes large
even when a large number of eigenmode is used. In this paper, we show that
this unexpected error source is the pollution effect of a summation operation
in the objective function of the PCA algorithm. The summation operator brings
together unrelated parts of the data into the same optimization and the result is
the reduction of the accuracy of the overall algorithm. We introduce a domain
decomposed PCA that improves the accuracy, and surprisingly also increases
the parallelism of the algorithm. To demonstrate the accuracy and parallel effi-
ciency of the proposed algorithm, we consider three applications including a
face recognition problem, a brain tumor detection problem using two- and
three-dimensional MRI images.
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1 INTRODUCTION

Principal component analysis (PCA) is a widely used tool for dimensionality reduction and unsupervised learning.1 Its
accuracy can be measured by the reconstruction error which is the norm of difference between the low-dimensional
approximation projected back to the original high dimensional space and the original data. When the error is large, people
often think that the dimension of approximation space is too low. In this paper, we point out that there is another cause
of error that is the cross-summation pollution inherited in the formulation of PCA itself. Such a pollution issue is also
observed in a recent paper for cancer detection using genetic data2 in which the authors found that sometimes more data
implies more error and the results calculated in a subspace using less data is actually better. The other issue with PCA
is the computational cost of the singular value calculation which is high for large dataset and difficult to parallelize on
supercomputers with a large number of processors. To deal with both issues, we propose and study a domain decomposed
version of PCA that is more accurate under certain assumptions and also highly parallel.

We briefly survey some recent development of PCA for large-scale problems for which several distributed versions
of PCA are developed in order to map the data and the computation on to distributed memory parallel computers.3-5

In Reference 6, the author introduced a process that first decomposes the problem into blocks using a priori knowl-
edge of the dataset, and then using a distributed strategy based on MapReduce to compute the principal components
for each block. Balcan et al.7 studied a distributed PCA which leads to lower communication and computational costs
for the k-means clustering and related problems. In Reference 8, a simple and effective method referred to as the
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transformation of a data matrix to a Gaussian matrix was suggested. This transformed data matrix is more suitable
for PCA and independent component analysis. Sommer9 created a data filtering method for the parallel k-NN search
based on PCA, which is highly scalability for a wide range of high-dimensional dataset on multicore platforms. In
Reference 10, the authors proposed a sparse contrastive PCA capable of handling sparse, interpretable, stable, and per-
tinent biological signal. More recently the authors11 applied successfully of PCA in a multivariate time-correlated linear
process.

PCA has also been extensively used in industry. For example, Reference 12 develops a new framework for data com-
pression in seismic sensor networks by using a distributed PCA, which compresses all seismic traces in the network at the
sensor level. Reference 13 develops a robust PCA method that can pursue and remove outliers, exactly recover a low-rank
matrix and calculate the optimal mean using a l2, 1-norm-based loss function and a Schatten p-norm regularization term.
Reference 14 introduces a reliability analysis, as well as a way to judge the quality of the results. Reference 15 reduces
the influence of grosses like variations in lighting, facial expressions, and occlusions to improve the robustness of PCA
and presents a simple but effective unsupervised preprocessing approach for two-dimensional whitening reconstruction.
Reference 9 provides a probabilistic and infinitesimal view of how the PCA procedure can be generalized to analyze the
nonlinear manifold valued data that does not resort to linearization of the data space. Reference 16 proposes a framework
for frequency-dependent PCA, which facilitates Priestley process-based simulation of multicomponent ground motions.
Reference 17 presents a wide-area monitoring method to detect and locate power system disturbances by PCA and the
k-nearest neighbor analysis. Reference 18 employs PCA to extract the turbulent part of the spectroscopic cubes for veloc-
ity gradient calculation. Reference 19 introduces a PCA-aided optimization technique to solve the multi-echelon biomass
supply chain problem with the consideration of economic, environmental, and social dimensions. Reference 20 gives an
overview of recent developments of PCA when the data is incomplete, especially, with specific missing data processes
(i.e., ignorable and nonignorable mechanisms).

The rest of the paper is organized as follows. We first discuss the summation pollution issue of the classical principle
component analysis in Section 2. Then we introduce a domain decomposed PCA that improves the accuracy, and also
increases the parallelism of the algorithm in Section 3. A simple analysis is also provided in this section. To demonstrate
the accuracy and parallel efficiency of the proposed algorithm, in Section 4, we consider some applications including a
face recognition problem, and a brain tumor detection problem using MRI images. Finally we make some concluding
remarks in Section 5.

2 SUMMATION POLLUTION OF THE CLASSICAL PCA

The goal of PCA is to find the best low rank approximation of a given matrix. Suppose we are given a dataset {xk ∈ Rm|k =
1, … ,n}, which can be assembled as a matrix

X = [x1, x2, … , xn] ∈ R
m×n. (1)

PCA computes an orthonormal matrix V ∈ Rm×d, where d is an integer much smaller than m such that
{yk = V Txk ∈ Rd, k = 1, … ,n} forms a reduced dimensional space that keeps important features of X and the variance
of the projected vectors is maximized. We define

Hm×d =
{

V ||| V ∈ R
m×d,V TV = Id×d

}
,

where Id× d is an d× d identity matrix, and

J(V) =
n∑

k=1

|||||
|||||yk −

1
n

n∑
l=1

yl

|||||
|||||
2

2

=
n∑

k=1

||||||
||||||V T

(
xk −

1
n

n∑
l=1

xl

)||||||
||||||
2

2

. (2)

PCA is to find V that solves the following optimization problem

max
V∈Hm×d

J(V). (3)
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Let the mean of the dataset be 𝜇 = 1∕n
∑n

l=1 xl ∈ Rm. We denote the “centered” data as x̂k = xk − 𝜇, and X̂ =
[x̂1, … , x̂n]. To obtain the matrix V , we first compute the singular value decomposition (SVD) of X̂ as follows:

X̂ = ÛΣ̂Ŵ T , (4)

where Û is an m×m orthogonal matrix, Σ̂ is an m×n diagonal matrix of singular values 𝜎1, … , 𝜎n arranged in a decreas-
ing order, and Ŵ is an n×n orthogonal matrix. The solution to the optimization problem (3) is V = Ûd, consisting of the
first d left singular vectors of X̂ . Let Σ̂d be the top left d× d block of Σ̂, and Ŵd the first d columns of Ŵ , we obtain the
projected matrix as

Y = ÛT
d X̂ = Σ̂dŴ T

d ∈ Rd×n, (5)

which is a low-dimensional representation of X . Each column of Y , say yk, can be used to reconstruct an approximation
corresponding xk denoted as

x̃k = Vyk.

The reconstruction error is measured by

𝜖k = ||xk − x̃k||2.
In the reminder of the paper, we refer to this version of PCA as the global PCA, denoted as GPCA. Below we take a closer
look of the objective function (2). Let

gk = V T

(
xk −

1
n

n∑
l=1

xl

)
. (6)

GPCA can be described as:1 Computes an orthogonal matrix V ∈ Rm×d such that maximizes the following objective
function J(V)

max
V

J(V) =
n∑

k=1

||||||gk
||||||22. (7)

Consider the situation when m is large, each vector xk can be partitioned into p subvectors

xk =
⎡⎢⎢⎢⎣

x1
k

⋮

xp
k

⎤⎥⎥⎥⎦ ,
where xi

k ∈ Rmi , and

p∑
i=1

mi = m.

Compatibly we partition the rows of the matrix V as

V =
⎡⎢⎢⎢⎣

V1

⋮

Vp

⎤⎥⎥⎥⎦m×d

,
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F I G U R E 1 The left figure is the original image,
the middle figure is the reconstruction from principle
component analysis (PCA) using 10 eigenmodes, and the
right figure is obtained by splitting the image into nine
subimages and then apply nine subspace PCAs with 10
eigenmodes

where Vi ∈ Rmi×d. Then, we have

||||||
||||||V T

(
xk −

1
n

n∑
l=1

xl

)||||||
||||||
2

2

=
||||||
||||||

p∑
i=1

V T
i

(
xi

k −
1
n

n∑
l=1

xi
l

)||||||
||||||
2

2

. (8)

We partition gk defined in (6) into p subvectors, then each subvector can be written as

gi
k = V T

i

(
xi

k −
1
n

n∑
l=1

xi
l

)
, i = 1, … , p,

then (8) becomes

|||||
|||||

p∑
i=1

gi
k

|||||
|||||
2

2

.

Thus, a partitioned version of GPCA takes the form:

max
V∈Rm×d

J(V) =
n∑

k=1

|||||
|||||

p∑
i=1

gi
k

|||||
|||||
2

2

. (9)

In (9), the outer summation
∑n

k=1 is easy to understand since it goes over all n sample vectors. The inner summation∑p
i=1 is not always meaningful. For example, in a face recognition problem each xk (with gk as its lower-dimensional

approximation) is a picture of a face as shown in the left figure of Figure 1. If the picture is partitioned into nine subpictures
(g1

k, ....g
9
k) as shown in the right figure of Figure 1, the inner summation simply takes the sum of these nine subpictures

that are irrelevant to each other. It might be meaningful to keep some nearby subvectors in the same summation since
they may impact certain features of the figure, but the pieces that are far away from each other should not be in the same
summation since they pollute each other and lower the overall accuracy of the algorithm.

A better approach would be: For each 1≤ i≤ p, we compute an orthogonal matrix Wi ∈ Rmi×d such that

max
Wi

J(Wi) =
n∑

k=1

||||||gi
k
||||||22, (10)

without the inner summation in (9), and then form a global orthogonal matrix by stacking and rescaling of W 1, … , W p.
The detailed definitions of gi

k and W i will be given in the next section.
In Figure 1, we show an application of the above-mentioned idea for a face recognition problem. The left figure is the

original image, the middle figure is the reconstruction from PCA using 10 eigenmodes, and the right figure is obtained
by splitting the image into nine subimages and then apply nine subspace PCAs. It is clear that the right figure is better
than the middle one. The effect is more pronounced for larger scale problems.

Borrowing a term from numerical methods for partial differential equations,21-25 we refer to method (10) as the domain
decomposed PCA (DDPCA) in the rest of the paper. The method avoids cross pollution from unrelated parts of the data
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F I G U R E 2 A partition of a 4× 4
figure into four subfigures in the matrix
form (in the top figure) and in the vector
form (bottom figure)

by removing the inner summation operator in (9). An added benefit is that these subspace optimization problems (10)
are independent of each other, and can be solved in parallel.

Depending on the formulation, PCA requires the computation of singular values (or eigenvalues) of a matrix which
is often large and dense. It is quite a challenge to parallelize the singular value solver for use on cluster of computers, or
large-scale supercomputers.26 This limits the applicability of the method to relatively small problems. This is often accept-
able for two-dimensional applications, but not for three-dimensional applications. Our proposed domain decomposed
PCA approach maps the dataset naturally to parallel machines, and we show computationally that the parallel speedup is
almost linear. More importantly, the new method is substantially more accurate than the classical PCA for the two appli-
cation problems that we have considered including a two-dimensional face recognition problem, a three-dimensional
brain tumor detection problem.

In the numerical experiments section we show that the new version is more accurate and also faster when imple-
mented on a parallel computer since the subspace computations can all be carried out independently.

3 SOME ANALYSIS OF THE DDPCA

By introducing a decomposition of the location space into subspaces, we have a decomposition of all the vectors in
the sample space. We then solve the problems defined in the subspaces separately in parallel. A global solution is
obtained by combining the subspace solutions with an appropriate ordering and scaling. In Figure 2, we show a parti-
tion of a 4× 4 image into four subfigures in the matrix form (in the top figure) and in the vector form (bottom figure)
when the pixels of the image are ordered from the top to the bottom and from the left to the right. If we consider
the original image as a vector in R16, then the subfigures are in four orthogonal subspaces of dimension 4 embedded
in R16.

Let p be the number of subspaces. There are many ways to partition the whole space into p subspaces, and the best
partition is usually application dependent. To define the general algorithm, for each 1≤ i≤ p, we define a “global to local”
mapping operator Ii

g ∶ xk → xi
k, in order to generate the subspace vectors. More precisely speaking, we define a subidentity

matrix of size mi ×m and its entries are either 0 or 1 such that

xi
k = Ii

gxk ∈ R
mi , where k = 1, … ,n and i = 1, … , p,

and Σp
i=1mi = m. In other words, the product of Ii

g with a global image returns the ith subfigure. Recall that d is the desired
dimension of the reduced space, let us define the ith subspace of orthogonal matrices
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Hmi×d =
{

Wi
||| Wi ∈ R

mi×d,W T
i Wi = Id×d

}
.

For the samples xi
1, ..., xi

n, we introduce a subspace objective function

Ji(Wi) =
n∑

k=1

||||||
||||||W T

i

(
xi

k −
1
n

n∑
l=1

xi
l

)||||||
||||||
2

2

.

Then the domain decomposed PCA reads: for each i, computes a W i that solves the following subspace optimization
problem

max
Wi∈Hmi×d

Ji(Wi). (11)

Once the subspace problems are solved, we define a global projection matrix

W =
p∑

i=1
(Ii

g)TWi,

it is easy to see that

W TW =
p∑

i=1
W T

i Ii
g(Ii

g)TWi =
p∑

i=1
W T

i Wi = pId×d,

since Ii
g(Ii

g)T = Imi×mi for i= 1 … p and Ii
g(I

j
g)T = 0mi×mi for i≠ j and i, j= 1, … p. Finally, we scale the matrix W to define

the global projection matrix

Ṽ = 1√
p

W ,

which is the solution of the global problem.
To compare with GPCA, let

g̃i
k = W T

i

(
xi

k −
1
n

n∑
l=1

xi
l

)
,

then for the ith subproblem in DDPCA, the objective function in (11) takes the form

max
n∑

k=1

||||||g̃i
k
||||||22,

which is simply the objective function (9) in GPCA without the inner summation. Below we make some remarks about
the new version of PCA.

Remark 1. DDPCA is not intended for small problems; i.e., small m. The number of subspaces p is usu-
ally much smaller than the dimension m of the sample vectors so that each subvector contains sufficient
features of interests. In our applications, we simply pick p as the number of processors of the parallel
computer.

Remark 2. For a chosen p there are many ways to partition the vector xk into x1
k, … , xp

k , and whenever pos-
sible we use the location information so that the components of each xi

k are related. This is easy to do for
images but may not be clear for other types of data for which the ordering of the components of the vector is
arbitrary.
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Remark 3. The partition is applied to each sample vector, and we do not introduce a partition among the sample vectors.
The algorithm is intended for situations where xk are long vectors, and not for dataset with a large number of short vectors.

Next we provide some analysis of the proposed DDPCA based on the decays of the singular values. The analysis is
motivated with an observation from several classes of practical problems that we have been working on.

Observation: Suppose that the global matrix has a SVD as in (4), and as discussed above we partition all the images
into p subimages, and each X̂ i ∈ Rmi×n has a SVD as following

X̂ i = UiΣi(V i)T for i = 1, … , p,

where Ui ∈ Rmi×mi ,Σi ∈ Rmi×n, and V i ∈ Rn×n. Let 𝜎i
l , l = 1, … be the singular values of Xi arranged in a decreasing order.

Then, there exists a q> 0, for l≥ q,

𝜎i
l ≤

1√
p
𝜎l for i = 1, … , p, (12)

where q is the smallest number of the eigenmodes we need to compute, 𝜎i
l is the lth largest singular value of X̂ i, and 𝜎l

is the lth largest singular value of X̂ . Equation (12) says that the singular values of the submatrices decay not only faster
than that of the global matrix, but actually faster by a factor that is strictly less than 1. q does not appear explicitly in (12)
but it is the lower bound for l. In other words, q is the smallest number of eigenmodes such that (12) holds.

We further observe that for images with distinctive features, the value of q is often small. For some of problems to
be presented in the numerical experiment section of the paper, we computed the q values. For example, for the face
recognition problem q= 3 (when p= 4). For the 2D brain tumor problem q= 14 (when p= 4). For the 3D brain tumor
problem, q= 23 (when p= 4). On the other hand, for featureless images, the value of q can be large. For example, if we
fix p= 4, when the images (1024× 1024) are generated by random numbers with a normal distribution, then q= 148, and
it becomes q= 297 when the random numbers are generated with a uniform distribution function.

Theorem. If the dimension d of the reduced space is q or larger, then the reconstruction residual of DDPCA is smaller
than the reconstruction residual of GPCA.

Proof. Let X̂ i = Ii
gX̂ , then we have

||||||X̂||||||2F =
p∑

i=1

||||||X̂ i
||||||2F .

Consider the SVD of X̂ and X̂ i, and by the Eckart–Young–Mirsky theorem,27 we have the reconstruction residual of GPCA

resid2
GPCA = ||||||X̂ − X̂d

||||||2F =
min(m,n)∑

k=d+1
𝜎2

k ,

and the reconstruction residual of DDPCA

resid2
DDPCA =

p∑
i=1

|||||
|||||X̂ i −

p∑
i=1

X̂ i
d

|||||
|||||
2

F

=
p∑

i=1

min(mi,n)∑
k=d+1

(
𝜎i

k

)2
.

Since for sufficiently large d (i.e., d≥ q),

𝜎i
k ≤

1√
p
𝜎k, k = d + 1, … ,min(mi,n),

we have

resid2
DDPCA ≤

p∑
i=1

min(m,n)∑
k=d+1

(
1√

p
𝜎k

)2

=
p∑

i=1

1
p

(min(m,n)∑
k=d+1

𝜎2
k

)
= resid2

GPCA.

▪



8 of 14 LI and CAI

4 NUMERICAL EXPERIMENTS

In this section we present some numerical experiments to show the superiority of the proposed DDPCA over the classi-
cal PCA for two classes of problems including a face recognition problem, and a brain tumor detection problem. For the
brain tumor problem we consider both two-dimensional and three-dimensional MRI images. Since the three-dimensional
images are quite large, we have implemented the algorithm in parallel and will present results obtained on a supercom-
puter with over 1000 processors. The input dataset is represented as vectors xk, k= 1, … , n, and x̃k is the corresponding
reconstructed vector. To measure the accuracy, we compute the reconstruction error 𝜖k = ||xk − x̃k||2, for k= 1, … , n.

4.1 Face recognition

This experiment is based on the “ORL Database of Faces,” which is updated by AT&T Laboratories, Cambridge UK.28

There are 40 distinct persons and each person has 10 different images. The gray scale images are of dimension 112× 92.
The total number of pixels per image is 10,304, which is the dimension of each xi.

Figure 3 shows the GPCA and DDPCA reconstruction of the images. The top 4 figures show the reconstructions from
the GPCA algorithm with 1, 10, 50, and 150 eigenmodes. It is clear that using more eigenmodes gives more accurate
results. The other three rows of Figure 3 are the reconstructions from DDPCA with 2× 2, 3× 3, and 4× 4 partitions,
respectively, , and also using 1, 10, 50, and 150 eigenmodes. Except the case when the number of eigenmode is 1, the
results from DDPCA are much better than that of GPCA corresponding to the same number of eigenmode.

To quantitatively understand the accuracy of the algorithms, in Figure 4, we plot the reconstruction errors of GPCA
and DDPCA with different partitions for one of the images in the dataset, as shown in Figure 1, using up to 200 eigen-
modes. The errors for other images in the dataset are more or less the same. As we can see, when the number of eigenmode
is fixed, the error from the GPCA algorithm is greater than that of DDPCA. For GPCA, the error stops decreasing after

F I G U R E 3 The top row shows the
reconstructions computed with global principle
component analysis (PCA) using 1, 10, 50, 150
eigenmodes; the other three rows of figures show
the reconstructions computed with domain
decomposed PCA with 2× 2, 3× 3, 4× 4
partitions using the same number of eigenmodes,
respectively
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F I G U R E 4 Reconstruction error of the face recognition problem (vertical axis) with global principle component analysis (PCA) and
domain decomposed PCA with different partitions. The horizontal axis is the number of eigenmodes

a certain number of eigenmodes; in other words, there is no convergence. On the other hand, for DDPCA, the error
decreases as we increase the number of eigenmodes. Surprisingly, when we fix the number of eigenmodes and increase the
number of subdomains, we obtain much more accurate results. Note that when running the code on a parallel machine
the total compute time per processor decreases linearly as we increase the number of subdomains. This put DDPCA in a
total advantage comparing with GPCA since it is not only more accurate, but also faster when implemented on parallel
computers.

4.2 Brain tumor detection from MRI images

This experiment is based on a brain tumor MRI database, the brain T1-weighed CE-MRI dataset, acquired by Nanfang
Hospital and Tianjing Medical University.29 In this experiment, we select 51 patients from the CE-MRI dataset and the
size of the 3D image is 512× 512× 6. We perform two experiments using the dataset; a 2D experiment based on 2D slices
of the images, and a 3D experiment based directly on the 3D images. Each 2D slice has 262,144 pixels and each 3D image
has 1,572,864 pixels. The dataset consists of three types of brain tumors: meningioma, glioma, and pituitary tumor. In
the end of the section we provide a classification of the tumors using the resulting low-dimensional data from the PCA
algorithm.

We first consider slices of images. The third dimension is not used in the sense that the connections between the slices
are ignored. The 2D detection is much cheaper than the 3D detection, and it assumes that if one slice has a tumor then
the patient has a tumor, however, sometimes if the tumor is vertically large but looks small in all the slices then the tumor
might be missed by the 2D algorithm.

In Figure 5, we show the reconstruction results obtained using GPCA and DDPCA with 2× 2, 8× 8, and 32× 32 par-
titions. The top row is from GPCA with 1, 10, 50, 150 eigenmodes, and the other three rows of figures are from DDPCA
calculations with the same number of eigenmodes. One can see clearly that GPCA requires at least 50 eigenmodes to
find the initial shape of the tumor, but DDPCA is able to find it with only one eigenmode when a 32× 32 partition
is used.

As far as we know all the existing applications of PCA for brain tumor detection are restricted to 2D slices since 3D
calculation is too expensive. The left figure of Figure 6 is the 3D image of one patient and the right figure shows a zoom-in
of the tumor. When applying DDPCA to 3D images, we do not decompose the third dimension since the number of slices
is small for this particular dataset.

Figure 7 shows the reconstruction with 45 eigenmodes. The top left figure on the first row is from GPCA. It is clear
that the result is not acceptable. The other three figures on the first row are the results of DDPCA with 4× 4× 1, 8× 8× 1,
and 16× 16× 1 decomposition, and the accuracy is quite reasonable. The second row is a zoom-in version of the figures
on the first row near the tumor, respectively.
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F I G U R E 5 The top four figures are the reconstructions from global principle component analysis (PCA) with 1, 10, 50, and 150
eigenmodes; the other three rows are from domain decomposed PCA with a 2× 2, 8× 8, 32× 32 decomposition using the same number of
eigenmodes, respectively

F I G U R E 6 Left is the original three-dimensional image; right is a zoom-in including part of the tumor
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F I G U R E 7 The left figure on the first row is the reconstruction using global principle component analysis (PCA); the other three
figures on the first row are from three-dimensional domain decomposed PCA with different decompositions 4×4, 8×8, and 16×16. The
second row is a zoom-in of the figures on the first row near the tumor, respectively

Figure 8 shows reconstruction errors for various number of eigenmodes using GPCA and DDPCA with
different domain decompositions for the patient whose image is shown in Figure 6. In this experiment,
m= 512× 512× 6= 1, 572, 864, n= 51. Since the computations are expensive, we only use d up to 50 eigenmodes. The
error of the GPCA calculation is quite large, while DDPCA with larger number of subdomains has basically converged.

In Figure 9, we show some results obtained on a parallel computer using up to 1024 processors. The figure shows the
total compute time and the reconstruction errors for GPCA and DDPCA with several different partitions. The problem
defined on each subdomain is allocated to a processor. The blue bar indicates the reconstruction error and the number
above the bar is the corresponding compute time. The horizontal axis includes the number of processors and the decom-
position used in DDPCA and GPCA corresponds to the no partition case. As shown clearly that DDPCA outperforms
GPCA, by a huge margin, in terms of both the compute time and the accuracy.

Finally, we show the classification of brain tumors. Since this is not the main focus of this paper, we only briefly
mention it as a potential application of the DDPCA algorithm. After the dimension reduction with PCA, each image xi is
represented by a lower-dimensional vector yi. We then use a linear discriminant analysis algorithm1 to classify the three
types of brain tumors. Based on 2D brain tumors detection, we use totally 51 slices (17 slices for each type of tumors)
and overall 50 patients in this experiment. In the left picture of Figure 10, we show the results obtained using GPCA
computed with 15 eigenmodes which contains some classification error between meningioma and glioma. The right
figure of Figure 10 shows the classification results of DDPCA computed with 15 eigenmodes on a 4× 4 partition and they
are quite satisfying.

F I G U R E 8 The reconstruction error using global principle component analysis (PCA) and domain decomposed PCA with 2×2, 4×4,
8×8, 16×16, 32×32 decompositions. The horizontal axis is the number of eigenmodes
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F I G U R E 9 The blue bar is the reconstruction error (vertical axis), and the number above the blue bar is the total compute time (in
seconds). The left figure is for the face recognition problem and the right figure is for the two-dimensional brain tumor problem. The
horizontal axis is the partition and the number of processors (np)

F I G U R E 10 The left figure is classification results using global principle component analysis (PCA) with 15 eigenmodes; the right
figure is the classification results using the domain decomposed PCA with a 4× 4 decomposition and 15 eigenmodes

4.2.1 Weak scalability

In this section, we test the weak scalability of DDPCA. We consider a 4× 4 decomposition of the 2D brian tumor detection
problem as an example. The matrix size is 16, 384× 51. If we use 16 processors to solve the problem, the total compute
time is 5.449 seconds. Next we only solve 4 of the subproblems, that is, the matrix size is 4096× 51 and use four processors,
the total compute time is 5.732 s. Lastly, we solve only one of the subproblems and use one processor, the total compute
time is 5.683 s. The three compute times, 5.449, 5.732, 5.683 are very close to each other, therefore we conclude that the
method is weakly scalable.

5 CONCLUSIONS

In this paper, we first discussed a mysterious property of PCA which we refer to as the summation pollution. This is a
property that people have observed in some applications but have not connected it to the basic formulation of PCA itself.
In other words, when using PCA to extract features from sample vectors that contain a large number of components
with unrelated features, the accuracy is reduced because of the interference of these components imposed by the inner
summation in the definition of the PCA algorithm. To avoid the pollution, we introduced a highly parallel, domain decom-
posed version of PCA, which is more accurate than the classical PCA in the sense that fewer eigenmodes are required to
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achieve the same level of reconstruction error. A simple analysis is provided to relate the reconstruction residuals to the
rates at which the singular values decrease in the global matrix and in the subdomain matrices. The algorithm is highly
parallel since the problems defined on the subdomains are independent of each other and can be solved in parallel. As
applications, we considered a face recognition problem, a 2D brain tumor detection problem, and a 3D brain tumor detec-
tion problem. We mention that the proposed algorithm has the potential for very large problems, and for supercomputers
with a large number of processor cores.
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