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Abstract

Computational hemodynamics is being developed as an alternative approach

for assisting clinical diagnosis and treatment planning for liver diseases. The

technology is non-invasive, but the computational time could be high when

the full geometry of the blood vessels is taken into account. Existing

approaches use either one-dimensional model of the artery or simplified three-

dimensional tubular geometry in order to reduce the computational time, but

the accuracy is sometime compromised, for example, when simulating blood

flows in arteries with plaque. In this work, we study a highly parallel method

for the transient incompressible Navier–Stokes equations for the simulation of

the blood flows in the full three-dimensional patient-specific hepatic artery,

portal vein and hepatic vein. As applications, we also simulate the flow in a

patient with hepatectomy and calculate the S (PPG). One of the advantages of

simulating blood flows in all hepatic vessels is that it provides a direct estimate

of the PPG, which is a gold standard value to assess the portal hypertension.

Moreover, the robustness and scalability of the algorithm are also investigated.

A 83% parallel efficiency is achieved for solving a problem with 7 million ele-

ments on a supercomputer with more than 1000 processor cores.
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1 | INTRODUCTION

Liver is the largest gland in the body, weighing around 1.5 kilogram in normal adults.1 It is an important as well as
structurally and functionally complex organ receiving nutrients and other molecules from the intestines before the
blood flows back to the heart via the inferior vena cava (IVC). The liver is supplied by two main blood vessels on its
right lobe: the hepatic artery and the portal vein (see Figure 1). The hepatic portal vein which carries blood from the
spleen, pancreas and intestines contributes about 75% of the blood volume to the liver. This blood is rich in nutrients
but relatively poor in oxygen. The hepatic artery, a branch of the celiac trunk from the abdominal aorta, contributes
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about 25% of blood volume to the liver. This blood is well oxygenated but relatively poor in nutrient. The hepatic arter-
ies mix as they enter and pass through the liver lobules, the classical structural unit of the liver, then percolate through
the lobules and are collected by the central vein. Central veins unite to form larger sublobular veins, which ultimately
join the hepatic veins for the blood to flow back to the heart.

Liver diseases are the major cause of illness and death worldwide,3 and they are difficult to prevent and diagnose.
One of the main difficulties is the measuring of certain hemodynamic values, such as the portal pressure gradient
(PPG, the difference in the blood pressure between the portal vein and the IVCSS4). PPG is a gold standard to assess the
portal hypertension, which is a frequent syndrome and usually caused by chronic liver diseases. Direct measurement of
the portal pressure can be performed through transhepatic or transvenous catheterization of the portal vein. This tech-
nique further requires catheterizing the IVC to determine the PPG. Because of the risk of intraperitoneal bleeding,
direct measurement of the portal pressure is rarely performed and is limited to selected cases of presinusoidal portal
hypertension. The measurement of hepatic venous pressure gradient [HVPG, the difference between the wedged
hepatic venous pressure (WHVP) and the free hepatic venous pressure (FHVP)] is a safe and reproducible technique
that is the preferred way of measuring the PPG in cirrhosis (sinusoidal portal hypertension). In short, the conventional
measuring methods are invasive and alternative non-invasive approaches are desirable.

Recently, computational fluid dynamics (CFD) is being investigated as one of the alternative approaches for clinical
diagnosis and treatment planning because it is non-invasive. With CFD, one can easily compute several desired patho-
logical values, such as pressure, velocity and wall shear stress (WSS). In the present work, the wall of the vessel is
assumed to be rigid. If the deformation of the hepatic vessel is taken into consideration, a fluid–structure interaction
(FSI) algorithm would be necessary.5 However, it is difficult to obtain the thickness and material properties of the

FIGURE 1 The structures of hepatic vessels2
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vascular wall, such as the Young's modulus and Poisson ratio. Without such information the results from the FSI com-
putation maybe worse than the fluid-only simulation. Therefore, we focus on the fluid-only simulation in this work.

To compute the hepatic blood perfusion there are two major classes of techniques, one uses a one-dimensional
(1D) model of the arterial network and the other is based on a three-dimensional (3D) model of the arterial network.
The 1D method is fast and easy to implement and is able to reproduce 3D results on a small portion of the artery.6 To
obtain more realistic results for the whole liver, 3D patient-specific arterial geometry segmented from magnetic reso-
nance imaging (MRI) or computed tomography (CT) are required. Although the computational cost is higher, the 3D
simulation is essential for capturing certain flow properties such as recirculation zones, etc. The aim of the paper is to
introduce an algorithmic framework for the simulation of blood flows in full 3D patient-specific hepatic vessels on par-
allel computers with a targeting computing time of a few hours.

There are several existing works on the numerical simulation of hepatic perfusion. For instance, Ho et al7 developed
a 3D flow model with a 1D circulation model for the hemodynamic analysis of the transjugular intrahepatic por-
tosystemic shunt (TIPS) and gave a quantitative analysis of the interplay between TIPS and the hepatic flows. The 3D
model is used only for a small portion of the artery. More recently in 2019,8 the group uses a much larger 3D model in
which all vessels are assumed to be tubes to simulate blood flows in the human hepatic artery, the portal vein, and the
hepatic vein. Using the same geometry as in Reference 8 that has a tree structure similar to the human liver, but non-
patient-specific geometry for each segment, Ma et al9 computed the blood flows in living liver donor after the left hepa-
tectomy. Although the simplified one-dimensional Navier–Stokes equation can significantly reduce the computational
time, the numerical accuracy is sometime compromised. For example, when the artery is partially blocked due to a
plaque, the flow becomes truly three-dimensional, neither the one-dimensional model nor the three-dimensional tube
model can provide the correct flow field. To gain insight on the microsphere transport in a hepatic artery system,
Basciano et al10 studied the influence of some parameters on the transport. Aramburu et al11 presented a numerical
simulation for the liver radioembolization pretreatment and also the actual treatment under different scenarios. Subse-
quently, Aramburu et al12 studied a patient-specific truncated hepatic artery to analyze the influence of a microcatheter
with an angled tip. Yin et al13 studied the morphometry and hemodynamic performance of abdominal aorta with two
major branches of the hepatic artery. Sheu et al14 utilized a coupled heat transfer and Navier–Stokes system to investi-
gate the factors that may affect the radio-frequency heating characteristics of the liver with three branches of the artery
for the hepatocellular carcinoma and metastatic liver tumors. A diffuse interface method for coupling free and porous-
medium-type flows modeled by the Navier–Stokes and Darcy equations is presented by Stoter et al15 to compute the
perfusion profile for a full-scale 3D human liver. To the best of our knowledge the present paper is the first work that
simulates the blood flow in a full-size patient-specific hepatic system with all three hepatic vessels. One of the advan-
tages of integrating the perfusion in all hepatic vessels is that it provides the PPG, which is a gold standard value to
judge the reliability of the clinically measured hepatic venous pressure gradient that is often used to substitute the por-
tal venous pressure which is difficult to measure clinically.

FIGURE 2 Illustration of the steps to extract the patient-specific hepatic artery, hepatic portal vein and hepatic vein from the CT images
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One of the challenges of the numerical simulation of patient-specific 3D hepatic blood flows is the high computa-
tional cost. Most of existing works are based on commercial software packages, such as ANSYS CFX and Fluent
(ANSYS Inc.) that are easy to use but the parallelism is often limited. For instance, ANSYS is scalable only to a few hun-
dred processor cores, which is acceptable for simulating steady-state problems and problems with a small number of
degrees of freedom. For unsteady problems with realistic geometry discretized into a system with a few million of
degree of freedoms, it often takes days of wall clock time to obtain results in a full cardiac cycle. We mention that
ANSYS uses a finite volume method to solve the governing equations, while in this paper we use a finite element
method.

A highly parallel solver is needed to simulate large 3D problems. There are several recent publications devoted to
the development of parallel algorithms for blood flow simulations. For example, Kong et al16 developed a scalable paral-
lel domain decomposition method to investigate an unsteady blood flow problem that works well on a supercomputer
with up to 10,000 processor cores. Later, Kong et al5 extended the method to solve a monolithically coupled fluid–

FIGURE 3 The left figure shows a partition of the global mesh into five non-overlapping sub-meshes. The right figure shows the

corresponding overlapping partition. Note that some sub-meshes may have pieces of the artery that are not connected (for example, the

three green pieces belong to the same sub-mesh, therefore, are mapped to the same processor)
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structure system for the modeling the interaction of blood flow and arterial wall in a patient-specific compliant pulmo-
nary artery. A multi-scale calculation of the blood flow in a network consisting of all the primary arteries in a human
body is presented by Xiao et al.17 Forti et al18 studied the scalability of a large-scale nonconforming FSI based simula-
tion of a patient-specific arterial bypass.

FIGURE 4 The pulsatile velocity profiles for one cardiac cycle
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In this work, we study an efficient and highly parallel finite element method based on domain decomposition
method for the Navier–Stokes equations.5,16,19-21 With the method, a simulation of a full 3D patient-specific hepatic
flow on a mesh with around 10 million elements can be accomplished in a few hours. Precisely speaking, the domain
decomposition algorithm partitions the hepatic vessels into a large number of sub-vessels that are mapped onto differ-
ent processor cores of the parallel computer. In the overlapping domain decomposition method,22,23 the submeshes are
extended to overlap with their neighboring submeshes. The partition is obtained via ParMETIS/METIS.24 The algo-
rithm has several algebraic components including an inexact Newton method25 that solves the system of nonlinear
equations. During each Newton iteration, the solution of the Jacobian system is obtained by using a Krylov subspace
method26 preconditioned by a scalable Schwarz preconditioner.27 The algorithms are implemented on a supercomputer
with more than 1000 processor cores and the parallel efficiency that higher than 80% for all the experiments is achieved,
which illustrates that our methods are suitable for the hepatic blood vessels. Moreover, we also simulate successfully a
flow in a patient with hepatectomy.

The layout of this paper is as follows. The mathematical model for the hepatic flow, its stabilized finite element dis-
cretization and a parallel algebraic solver are described in Section 2. In Section 3, numerical experiments for a full-size
patient-specific liver are presented. A flow in the portal vein after the left hepatectomy is computed and discussed in
detail. The PPG values at some sample pairs of points are also calculated. Finally, conclusions and discussion are drawn
in Section 4.

2 | METHODS

2.1 | Mathematical model

In this study, we consider the numerical simulation of blood flows in the liver including the hepatic artery, the hepatic
portal vein and the hepatic vein. Figure 2 depicts the main steps to obtain the geometry of the triple vessels. From the
CT images in Figure 2A, the hepatic tissue and the main hepatic vessels are segmented as plotted in Figure 2B. Then
the geometry of the hepatic artery, hepatic portal vein and hepatic vein are extracted as shown in Figure 2C. The

TABLE 1 Physiological ranges of

hepatic hemodynamics
Parameter Range Unit

Hepatic arterial pressure31 70–110 mmHg

Hepatic arterial peak-systolic
velocity32

43–67 cm/s

Hepatic arterial end-diastolic
velocity32

12–20 cm/s

Portal venous pressure33 6–10 mmHg

Portal venous peak-systolic velocity34 20–40 cm/s

Portal venous end-diastolic velocity34 ≤ 16 cm/s

Hepatic venous pressure gradient
(HVPG)35

≤ 5 mmHg

FIGURE 5 A benchmark hepatic artery re-constructed using geometric information from Reference 8 (left figure) and its finite element

mesh (right figure)
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diameter of the hepatic arterial inlet is 4.2 mm, the average diameter of the hepatic arterial outlets is 1.1 mm. The diam-
eter of the hepatic portal venous inlet is 18 mm and its average diameter of the outlets is 1.8 mm. The average diameter
of the hepatic venous inlets is 1.5 mm and the outlet size is 20 mm.

To describe the blood flow in hepatic vessels, we use the unsteady incompressible Navier–Stokes equations:

ρ
∂u x, tð Þ

∂t
+ ρ u x, tð Þ�rð Þu x, tð Þ−r�σ = f x, tð Þ, x, tð Þ∈ Ω× 0,Tð �,

r�u x, tð Þ=0, x, tð Þ∈ Ω× 0,Tð �:

8<
: ð1Þ

Here u denotes the velocity vector, ρ the blood density, f the external force vector and σ the Cauchy stress tensor
defined as:

FIGURE 7 A sample finite element mesh for the hepatic portal vein

FIGURE 6 A comparison of the computed pressure in the benchmark hepatic artery. The left figure is the result from Reference 8, and

the right figure is from the proposed method
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FIGURE 8 A comparison of the computed pressure and flow rate at three selected points with different resistances in the portal vein for

three cardiac cycles
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FIGURE 9 A comparison of the computed pressure and flow rate at three selected points with different meshes in the portal vein for a

cardiac cycle
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σ = −pI +2με uð Þ, ð2Þ

where p is the pressure, I is the identity tensor, μ is the dynamic viscosity and ε is the deformation tensor defined as
ε(u) = 1/2(ru + ruT).

The initial condition is imposed by

u x, tð Þ=u0 x, tð Þ, t=0,x ∈ Ω, ð3Þ

TABLE 2 Performance of the NKS

algorithm for different time step sizes
Δt (s) Newton GMRES Time (s) Memory (MB)

5.00 × 10−2 4.10 171.67 21.06 132.21

1.00 × 10−2 3.13 160.37 15.85 96.59

5.00 × 10−3 3.04 139.58 14.59 93.08

1.00 × 10−3 2.58 99.16 9.75 78.74

Note: The calculations are obtained using 240 processor cores on a mesh with 2.20 × 106 elements. “Time” is
the compute time for solving the problems in one time step.

FIGURE 10 The impact of mesh sizes to the computed hepatic portal venous pressure at t = 0.2 s
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where u0(x, t) is the given initial velocity function. For the hepatic artery and the portal vein there exists only one inlet
and many outlets. On the other hand, the hepatic vein has many inlets and only one outlet. Thus, two types of bound-
ary conditions are imposed. The boundary conditions for the hepatic artery and portal vein read.28

u x, tð Þ=uI x, tð Þ, x, tð Þ∈ ΓI × 0,Tð �,
u x, tð Þ= 0, x, tð Þ∈ ΓW × 0,Tð �,
pi x, tð Þ=Ri x, tð ÞQi x, tð Þ, x, tð Þ∈ ΓOi × 0,Tð �, i=1,2, � � �,m,

8><
>: ð4Þ

where m is the number of outlets, ΓI is the inlet boundary, ΓW is the wall boundary and ΓO is the outlet boundary. The
uI(x, t) is a given inflow velocity profile, Ri(x, t) and Qi(x, t) are the resistance and flow rate at the i-th outlet, where
Qi(x, t) has the form Qi x, tð Þ= ÐΓOi

u�nidΓ, where ni is the outward normal vector of the i-th outlet. In the subsequent cal-

culations, a total resistance R is chosen and each Ri is determined by Ri =R
Pm
i=1

S
3
2
i

� �
=S

3
2
i , here Si is the area of the i-th

outlet surface.29

FIGURE 11 The impact of mesh sizes to the computed hepatic portal venous velocity at t = 0.2 s
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Similarly, for the hepatic venous that has many inlets and only one outlet, the boundary condition is

ui x, tð Þ=uIi x, tð Þ, x, tð Þ∈ ΓIi × 0,Tð �, i=1,2, � � �,n,
u x, tð Þ= 0, x, tð Þ∈ ΓW × 0,Tð �,
p x, tð Þ=R x, tð ÞQ x, tð Þ, x, tð Þ∈ ΓO × 0,Tð �,

8><
>: ð5Þ

where n is the number of hepatic vein inlets, other notations are the same as for the aforementioned hepatic artery case.

2.2 | Implicit finite element discretization

We use a piecewise linear continuous finite element method to discretize Equation (1). The weak form of Equation (1)
reads: Find u ∈ V and p ∈ P such that 8v ∈ V0 and 8q ∈ P,

B u,pf g, v,qf gð Þ=0, ð6Þ

where

FIGURE 12 The impact of mesh sizes to the computed hepatic portal venous WSS at t = 0.2 s
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FIGURE 13 A comparison of the computed pressure and flow rate at three selected points with different time step sizes in the portal

vein for a cardiac cycle. The zoom-in figures are for t = 0.3 s to t = 0.7 s
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B u,pf g, v,qf gð Þ= ρ

ð
Ω

∂u
∂t

�vdΩ+ ρ

ð
Ω

u�rð Þu�vdΩ−
ð
Ω

p r�vð ÞdΩ

+2μ
ð
Ω

ε uð Þ : ε vð ÞdΩ+
ð
Ω

r�uð ÞqdΩ+
ð
ΓO

σuð Þ�vdΓ−ρ

ð
Ω

f �vdΩ:
ð7Þ

The functional spaces V, V0 and P are defined in details in Reference 16. Based on the resistance boundary condition
pi = RiQi, the stress tensor (2) and Qi x, tð Þ= Ð

ΓOi

u�nidΓ, we have.30

ð
ΓO

σnð Þ�vdΓ=
Xm
i=1

ð
ΓOi

−Ri

ð
ΓOi

u�nidΓI +2με uð Þ
 !

ni�vdΓ: ð8Þ

The computational domain Ω is covered with a fully unstructured tetrahedral mesh on which we introduce P1 − P1
finite element spaces Vh, Vh

0 and Ph as the counterparts of their infinite dimensional spaces, the semi-discretized system
of the Navier–Stokes equations with the stabilization can be described as: Find uh ∈ Vh and ph ∈ Ph such that 8vh∈ Vh

0

and 8qh ∈ Ph,

TABLE 3 The influence of the

subdomain solvers with various fill-in

levels and the overlapping sizes

Subsolver Overlap Newton GMRES Time (s) Memory (MB)

ILU(1) 0 3.70 233.84 66.67 352.10

1 3.70 180.22 59.95 372.29

2 3.80 170.42 57.75 387.96

3 3.80 167.92 59.71 394.76

4 3.80 165.11 60.91 406.10

ILU(2) 0 3.70 214.73 73.22 537.32

1 3.70 148.14 63.11 566.72

2 3.70 138.11 59.72 579.17

3 3.70 133.35 60.28 589.65

4 3.70 126.38 60.35 609.50

ILU(3) 0 3.70 248.46 97.15 768.00

1 3.70 129.59 69.02 809.24

2 3.70 122.19 67.56 828.22

3 3.70 117.95 69.57 843.41

4 3.70 108.16 72.72 874.72

ILU(4) 0 3.70 235.32 113.17 1031.56

1 3.70 130.05 90.39 1085.53

2 3.70 113.86 83.55 1111.70

3 3.70 107.70 84.12 1132.85

4 3.70 98.51 89.06 1176.64

Note: The calculations are carried out on a mesh with 6.99 × 106 elements and the time-step size
Δt = 1.00 × 10−3 s.

TABLE 4 Parallel performance

using different number of processor

cores

np Newton GMRES Time (s) Memory (MB) Speedup Efficiency

360 3.80 185.24 51.96 265.55 1 100%

720 3.70 179.32 27.84 118.76 1.86 94%

1080 3.70 185.46 20.98 111.94 2.48 83%

Note: The mesh has 6.99 × 106 elements and the time-step size Δt = 1.00 × 10−3 s.
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FIGURE 14 The illustrations of compute time versus the number of processor cores (left figure) and speedup versus the number of

processor cores (right figure) for the flow in the portal vein. The mesh has 6.99 × 106 elements and the time-step size Δt = 1.00 × 10−3 s

FIGURE 15 The pressure distribution of the computed flow in the hepatic portal vein at various times
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BS uh,ph
� �

, vh,qh
� �� �

=0, ð9Þ

with

BS uh,ph
� �

, vh,qh
� �� �

=B uh,ph
� �

, vh,qh
� �� �

+
X

K∈ Ωh

ρ
∂uh

∂t
+ ρ uh�r� �

uh +rph−f h,τm uh�r� �
vh +rqh

� �� �
K

+
X

K∈ Ωh

r�uh,τcr�vh� �
K ,

ð10Þ

where the stabilization parameters τm and τc are defined in Reference 20.
Then Equation (9) can be rewritten as a time-dependent semi-discretized nonlinear system

dX tð Þ
dt

=N Xð Þ, ð11Þ

FIGURE 16 The velocity distribution of the computed flow in the hepatic portal vein at various times
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where X tð Þ is the vector of the nodal values of the velocity u and pressure p, N �ð Þ is the nonlinear function rep-
resenting the spatial discretization of Equation (10). Equation (11) can be further discretized by the fully implicit back-
ward Euler method in time

Xn−Xn−1

Δt
=N Xnð Þ, ð12Þ

where Xn is the value of X tð Þ at the n-th time step and Δt is the time step size.
For simplicity, Equation (12) can be rearranged to the following nonlinear system

Fn Xnð Þ=0 ð13Þ

to be solved at each time step.

FIGURE 17 The WSS distribution of the computed flow in the hepatic portal vein at various times
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2.3 | Newton-Krylov-Schwarz algorithm

In this section, we briefly describe the Newton-Krylov-Schwarz algorithm30 for solving the nonlinear system (13). The
algorithm includes three components, an inexact Newton25 as the nonlinear solver, a preconditioned Krylov subspace
method (GMRES)26 as the linear solver at each Newton step, and an overlapping Schwarz method27 as the
preconditioner. The overall algorithm is summarized in Algorithm 1.

Algorithm 1. Newton-Krylov-Schwarz (NKS)

Set the relative tolerances ξ for the linear solver and η for the nonlinear solver;
for each time step n = 1, 2, � � �, do

Use the previous time step solution as the initial guess Xn
0 =Xn−1

for each Newton step k = 0, 1, 2, � � �, do

• Construct the complete Jacobian matrix Jnk and setup the restricted additive Schwarz preconditioner Mn
k

� �−1

• Compute the Newton correction step Sn
k by iteratively solving the preconditioned Jacobian system until it

satisfies jjJnk Mn
k

� �−1
Mn

kS
n
k +Fn Xn

k

� �jj≤ξjjFn Xn
k

� �jj
• Calculate the step length τnk by a cubic line search
• Update the solution with Xn

k+1 =Xn
k + τnkS

n
k until it satisfies jjFn Xn

k+1

� �jj≤ηjjFn Xn
0

� �jj
end for
Store the converged Xn

k+1 as the solution Xn

end for

Here Jnk is the Jacobian matrix rFn Xn
k

� �
which is large, sparse, and highly ill-conditioned. A strong and parallel

preconditioner Mn
k

� �−1
for the Jacobian matrix is vital because it guarantees the convergence and the robustness of

GMRES. The overlapping restricted additive Schwarz (RAS) preconditioner Mn
k

� �−1
is constructed as follows. First, we

partition the computational domain Ω into np non-overlapping subdomains Ωi (i =1, 2, � � �, np), where np equals to the
number of processor cores of the parallel machine. Then, each subdomain is extended to Ωδ

i by including δ layers of
mesh elements from its adjacent subdomains. Here, δ is an integer indicating the level of overlap.

On each overlapping subdomain Ωδ
i , we define the restriction operator Rδ

i to be the matrix that maps the global vec-
tor of unknowns in Ω to those belonging to Ωδ

i , such that

FIGURE 18 Schematic of the preoperative (left figure) and postoperative (right figure) hepatic portal vein

18 of 31 LIN ET AL.



FIGURE 19 The comparisons of the preoperative (left figures) and postoperative (right figures) hepatic portal venous pressure, velocity

and WSS distribution at t = 0.2 s
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xδi =Rδ
i x= I 0ð Þ xδi

xnxδi

 !
, ð14Þ

here xnxδi means the unknowns outside the subdomains Ωδ
i . We then construct a subdomain Jacobian matrix by

Jn,δk,i =Rδ
i J

n
k Rδ

i

� �T
, i=1,2, � � �,np, ð15Þ

which is the restriction of the global Jacobian matrix Jnk to the subdomain Ωδ
i . Here Rδ

i

� �T
is the extension operator,

which is defined as the transpose of the restriction operator Rδ
i . Using these definitions, the RAS preconditioner is

defined as:

Mn
k

� �−1
=
Xnp
i=1

R0
i

� �T
Jn,δk,i

� 	−1
Rδ
i , ð16Þ

where R0
i is the restriction operator to the unknowns in the non-overlapping subdomain Ωi, defined similarly as Rδ

i ,

and Jn,δk,i

� 	−1
is the subspace inverse of the subdomain Jacobian Jn,δk,i . In our application, the linear system

corresponding to Jn,δk,i

� 	−1
is solved with a point-block incomplete LU (ILU) factorization with some levels of fill-ins.

A sample mesh for the hepatic artery is shown in Figure 3, together with a sample partition by ParMETIS24 into five
overlapping sub-meshes highlighted by different colors. Note that we allocate each sub-mesh to a processor and roughly
the same number of elements are included in each sub-mesh to ensure load balance.

3 | NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments for blood flows in the three hepatic vessels, i.e., hepatic artery,
portal vein and hepatic vein, and also the parallel performance of the algorithm with respect to the number of processor
cores. The main quantities of interests consist of the pressure, the velocity and the wall shear stress (WSS) defined as

FIGURE 20 A finite element mesh for the hepatic artery
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WSS= σn− σn�nð Þn, ð17Þ
where n is the outward normal vector of the wall.

The flow velocities at the inlets of the hepatic artery and the portal vein and the outlet of the hepatic vein are clini-
cally measured by ultrasound8 as shown in Figure 4, and they are used as the boundary conditions. Note that significant
pulsatility of the hepatic arterial blood flow is clearly observed and the velocity curves of the portal vein and the hepatic
vein are relatively flat.

In all the numerical experiments, ρ = 1.05 g/cm3 and μ = 0.038 cm2/s8 are used to characterize the properties of the
hepatic blood. In Table 1, we summarize the physiological ranges of hepatic hemodynamics. Note that the values of the
hepatic arterial pressure and velocity are larger than the values of portal venous.

The algorithm is implemented using the Portable Extensible Toolkit for Scientific computation (PETSc) library.36

For this experiment, the relative stopping condition for Newton is 1.0 × 10−6 and the relative stopping condition for
GMRES is set to be 1.0 × 10−4. Incomplete LU (ILU) is used to solve the subdomain problems in the additive Schwarz
preconditioner. “ILU(l)” denotes ILU with l level of fill-ins, “np” denotes the number of processor cores, “Newton”
denotes the average number of Newton iterations per time step, “GMRES” denotes the average number of GMRES iter-
ations per Newton step, “Time” denotes the average wall clock time in seconds spent per time step, “Memory” stands
for the memory consumption in megabyte per processor core per time step, “Speedup” denotes the speedup ratio and
“Efficiency” means the parallel efficiency.

FIGURE 21 The pressure distribution of the computed flow in the hepatic artery at various times
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3.1 | Comparison with previously published results

To validate the proposed method, we consider an artificial case introduced in Reference 8 as a benchmark problem.
Based on the geometric information provided in Appendix A of Reference 8, the tube-shape hepatic artery is re-
constructed as shown in Figure 5, and covered by a conformal tetrahedral mesh. The total number of elements is
1.26 × 106, the largest size of the elements is 0.45 mm, the smallest is 0.09 mm and the average is 0.27 mm. The velocity
profile in Figure 4A is utilized as the inlet boundary condition. The computed pressure field at t = 0.16 s is illustrated in
Figure 6 (right figure). Comparing with the previously published result shown in Figure 6 (left figure),8 we see that they
are quite similar.

3.2 | The portal vein

In this section we discuss some numerical experiments for the simulation of the blood flow in the portal vein discretized
by a finite element mesh as shown in Figure 7. The hepatic portal vein has 1 inlet and 42 outlets. The inflow velocity
boundary condition is given in Figure 4B and the total resistance R is chosen such that the computed pressures are
within the ranges of typical values in adults.

FIGURE 22 The velocity distribution of the computed flow in the hepatic artery at various times
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The impact of resistance boundary condition. We study the influence of R to the computed pressure and flow
rate. We use a mesh with 2.20 × 106 elements and a time step size Δt = 1.0 × 10−3. In Figure 8, the computed flow rate
and pressure at three different points, located at near the inlet (P1), near an outlet to the right of the figure (P2) and in
the middle of a branch to the left of the figure (P3), are plotted to show for four different R = 200 dyn/(s � cm5),
300 dyn/(s � cm5), 400 dyn/(s � cm5) and 500 dyn/(s � cm5). From Figure 8, we see that the resistance has slight influence
to the flow rate, but significant influence to the pressure. When R equals to 300 dyn/(s � cm5), the computed flow rate
and pressure are both within the normal ranges shown in Table 1. Thus, R = 300 dyn/(s � cm5) will be used in the subse-
quent portal venous experiments. Moreover, the results for three cardiac cycles are plotted in Figure 8 to illustrate the
influence of the initial value to the computed results. From Figure 8, we see that the influence is not significant beyond
the first time step because we use a fully implicit and coupled algorithm.

For the simulation, it is important to determine the right mesh size and the right time step size so that the desired
features of the solution are captured and the overall compute time is minimized. For this purpose, we test several differ-
ent meshes and several time step sizes below.

Mesh convergence study. In Figure 9, the computed flow rate and pressure at three different points are plotted to
understand the convergent properties with respect to the four progressively refined meshes with 3.40 × 105, 6.90 × 105,
1.35 × 106 and 2.20 × 106 elements. The time step size is Δt = 1.0 × 10−3. We can observe that the gap between the red
line (2.20 × 106 elements) and the dotted blue line (1.35 × 106 elements) is quite small. This means either of the meshes
is acceptable for this problem, but the other two meshes are too coarse to produce an accurate solution. In Figures 10-12,
, we present the other computed fields including the pressure, the velocity and the wall shear stress at one particular

FIGURE 23 The WSS distribution of the computed flow in the hepatic artery at various times
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time step using these meshes. We can see that the numerical solution converges when the number of elements of the
mesh increases.

The impact of time step sizes. To understand the time accuracy and the performance of the proposed method
with respect to the time step size, we fix the mesh to be the one with 2.20 × 106 elements and consider four time step
sizes Δt = 5.00 × 10−2, 1.00 × 10−2, 5.00 × 10−3 and 1.00 × 10−3. From Table 2, we see clearly that smaller time step size
results in fewer iterations of GMRES, smaller total compute time per time step and less memory. In Figure 13, the flow
rate and pressure at three different points are plotted to show the convergence properties with different time step sizes.
The error for Δt = 5.00 × 10−2 is large but the gaps between the other three lines are quite small. This means that any
time step sizes smaller than or equal to Δt = 1.00 × 10−2 is acceptable.

The impact of overlapping sizes and subdomain solvers. The level of fill-in in the ILU factorization of the sub-
domain matrices and the overlapping size of the subdomains of the Schwarz preconditioner make significant influences
on the parallel performance of the algorithm. Table 3 shows the results of various fill-in levels and overlapping sizes.
From Table 3 we observe that the increase of overlapping size from 0 to 2 reduces the computing time and a further
increase from 2 to 4 increases the computing time. Therefore 2 is the optimal value of the overlap for this numerical
experiment. Furthermore, when we fix the overlapping size to 2, we note that the increase of the fill-in level from 1 to
4 increases the computing time. Following the observations, ILU(1) and overlapping size 2 will be used in all the subse-
quent experiments.

FIGURE 24 A comparison of computed pressure, flowrate and WSS values for three selected points in hepatic artery
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A parallel scalability study. The experiments are carried out on a supercomputer, and each compute node of the
computer has two Intel Xeon E5-2692v2 12-core 2.2GHz processors and 64GB of shared memory. Table 4 and Figure 14
present the performance of the algorithm in terms of the number of Newton iterations per time step, the number of
GMRES iterations per Newton step, the total compute time per time step, the total memory per processor core per time
step, the speedup ratio and the parallel efficiency. The calculations are done using a mesh with 6.99 × 106 elements,
where the largest size of the elements is 1.25 mm, the smallest is 0.13 mm and the average is 0.34 mm. The time step
size Δt = 1.00 × 10−3 s, the subdomain solver is ILU(1) and the overlapping size is 2. We see clearly that the linear and
nonlinear algebraic solvers are both scalable in the sense that the number of Newton iterations and GMRES iterations
change very little as the number of processor cores increase. It can be seen that when the number of processor cores
increases from 360 to 1080, the compute time reduces to 20.98 s and the parallel efficiency reduces to 83%, which is
quite good considering the fact that the geometry of the problem is rather complicated.

The numerical results at various time. The pressure, velocity and WSS distributions of the blood flow in the
hepatic portal vein at various times (t = 0.1 s, 0.2 s, 0.3 s and 0.4 s) are illustrated in Figures 15–17. We can see that the
amplitudes of the pressure, velocity and WSS change very little due to the fact that the input pulsatile velocity shown in
Figure 4B is flat.

3.3 | The portal vein after a left hepatectomy

Hepatic resection is one of the most efficient and frequently-used surgery to treat advanced liver diseases such as
hepatic tumors and intrahepatic gall stones. The preoperative and postoperative schematics of the left hepatectomy are
shown in Figure 18. The corresponding veins are used as the computational domain in the next set of numerical experi-
ments. Hepatectomy often causes several syndromes, for example, the overall resistance of the resected liver to blood
flow is greater than that of a full liver, and this may result in high blood pressure in the sinusoids, leading to damage of
the liver.37

FIGURE 25 A sample mesh for the hepatic vein
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In this experiment, we present the change of the hepatic hemodynamics after the left hepatectomy, in particular, we
compute the pressure, the velocity and the WSS of the flows before and after the left hepatectomy. From Figure 19 we
see that the values of the pressure, velocity and WSS are all within the normal ranges before the hepatectomy, when
compared with the normal values in Table 1. However, they are beyond the normal range after the hepatectomy,
suggesting certain medical intervention is necessary after the surgery.

3.4 | The hepatic artery

In this section we focus on the blood flow in the hepatic artery, which includes 1 inlet and 16 outlets. The inlet velocity
is prescribed in Figure 4A and a total resistance R = 8000 dyn/(s � cm5) is assumed for this test. We use a mesh with
4.0 × 105 elements (see Figure 20), the largest size of the elements is 0.66 mm, the smallest is 0.12 mm and the average

FIGURE 26 The pressure distribution of the computed flow in the hepatic vein at various times
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is 0.37 mm. The time step size Δt = 1.0 × 10−3, all other settings are the same as in the experiments in the previous
section.

In Figure 21, we show the pressure distribution of the hepatic artery at four selected times including early (t = 0.1 s),
mid (t = 0.2 s), late (t = 0.3 s) systole and diastole (t = 0.4 s) respectively. Additionally, the velocity and WSS distributions
at the corresponding times are also presented in Figures 22 and 23. From Figures 21–23, we observe that the values of
pressure, velocity and WSS are significantly different at the crest (t = 0.2 s) and the trough (t = 0.4 s). To better under-
stand the change of the pressure, the flow rate and WSS in time we plot the solution at three different points as marked
in Figure 24. It is clearly shown that the waveforms match the input pulsatile velocity profile in Figure 4A.

FIGURE 27 The velocity distribution of the computed flow in the hepatic vein at various times

LIN ET AL. 27 of 31



3.5 | The hepatic vein

In this section we study the hepatic vein using a mesh with 3.9 × 105 elements as shown in Figure 25. Comparing with
the hepatic artery and the hepatic portal vein that have one inlet and multi-outlets, the hepatic vein has multiple inlets
and only one outlet, whose corresponding boundary conditions are given in Equation (5). The computed pressure,
velocity and WSS distribution at various time are presented in Figures 26–28. Comparing with the hepatic vein plotted
in Figures 26–28 with the portal vein plotted in Figures 15–17 and the hepatic artery plotted in 21, 22, 23, we can see
the values of the pressure, velocity and WSS in the small vessels are larger than the values at the large vessels, this dis-
tribution is opposite with the portal vein and hepatic artery. The reason is that the hepatic vein transports blood from
the small vessels to the large vessels. Since the hepatic venous pulsatile velocity shown in Figure 4C is relative flat in a
cardiac cycle, the changes of the pressure, velocity and WSS at various time are not obvious.

FIGURE 28 The WSS distribution of the computed flow in the hepatic vein at various times
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3.6 | The portal pressure gradient

As mentioned in the introduction, PPG measures the degree of portal hypertension and is a prognostic indicator in liver
disease.38 In clinical practice, PPG is obtained by interventional radiology which is a rather complicated procedure. In
this section we provide a pilot study about obtaining a numerical approximation of PPG based on the calculations
presented in earlier sections of the paper. We pick several pairs of points (A1,B1), (A2,B2), (A3,B3) and (A4,B4) as
marked in Figure 29 to compute the difference in the pressure between the portal vein and the hepatic vein,
i.e., the PPG, for a cardiac cycle. Their time-averaged values are presented in the right figure of Figure 29. It is clear
that all four approximations are within the normal ranges as indicated in Table 1. Note that the study is to show
the capability of the proposed algorithm, and the comparison with clinical measurements is beyond the scope of the
present work.

4 | CONCLUSIONS

Blood flows in the full hepatic vessels including the hepatic artery, the hepatic portal vein and the hepatic vein are sim-
ulated in this work based on the patient-specific geometry segmented from the CT images of an adult liver. To compute
the blood flows, a scalable parallel method is used to implicitly solve the unsteady incompressible Navier–Stokes equa-
tions discretized with a stabilized finite element method on fully unstructured meshes. The parallel algebraic solver
includes an Newton method, a Krylov subspace method (GMRES) and an overlapping Schwarz preconditioner. The
pressure, velocity and WSS of the blood flows in the hepatic artery, hepatic portal vein and hepatic vein are computed,
and their values are all within the ranges of healthy patients. Such a flow analysis for a full cardiac cycle takes about
5 h of time on a parallel computer with about 1000 processor cores without counting the time spent on the image seg-
mentation and the mesh generation. Furthermore, the robustness of the algorithm with respect to the mesh sizes and
the time step sizes are investigated. Moreover, the parallel scalability is also studied with up to 1080 processor cores and
83% parallel efficiency is archived. As applications of the proposed method, we computed the blood flows in the portal
vein before and after a left hepatectomy and calculated the PPG values at some selected pairs of points. As expected
from previous clinical studies, the pressure after the surgery is much higher than the preoperative pressure. The algo-
rithm/software developed in the paper is a valuable non-invasive tool for the planning of liver surgery if more case stud-
ies confirm the results of the present work.

Although blood flows in the three-dimensional patient-specific hepatic artery, portal vein and hepatic vein are all
simulated in this work, but they are calculated separately. A full hepatic blood flow modeling including the hepatic

FIGURE 29 The left figure shows the sample pairs of points for calculating the PPG at the portal vein and the hepatic vein. The right

figure shows the computed time-averaged PPG values for these pairs of points
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artery, portal vein, hepatic vein and hepatic tissue would be more interesting. Under this circumstance, the outlets of
the hepatic artery and portal vein and the inlets of the hepatic vein are connected to the hepatic tissue by virtue of the
interface condition instead of the artificial outlet boundary conditions.
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