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Simulation of subsurface flows in porous media is difficult due to the nonlinearity of the 
operators and the high heterogeneity of material coefficients. In this paper, we present 
a scalable fully implicit solver for incompressible two-phase flows based on overlapping 
domain decomposition methods. Specifically, an inexact Newton-Krylov algorithm with 
analytic Jacobian is used to solve the nonlinear systems arising from the discontinuous 
Galerkin discretization of the governing equations on 3D unstructured grids. The linear 
Jacobian system is preconditioned by additive Schwarz algorithms, which are naturally 
suitable for parallel computing. We propose a hybrid two-level version of the additive 
Schwarz preconditioner consisting of a nested coarse space to improve the robustness and 
scalability of the classical one-level version. On the coarse level, a smaller linear system 
arising from the same discretization of the problem on a coarse grid is solved by using 
GMRES with a one-level preconditioner until a relative tolerance is reached. Numerical 
experiments are presented to demonstrate the effectiveness and efficiency of the proposed 
solver for 3D heterogeneous medium problems. We also report the parallel scalability of 
the proposed algorithms on a supercomputer with up to 8, 192 processor cores.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Simulation of flows in subsurface porous media plays an important role in the performance of petroleum reservoir and 
the assessment of groundwater contamination. The extended Darcy’s law accounting for the properties of both fluid and 
media is often used to address multi-phase flow, and the complexity of this model lies in the interaction of various modeling 
features, including gravity, capillary pressure effects, heterogeneity of the absolute permeability, and relative permeability 
functions. Extra difficulties are induced by complex geometry, faults, channels and deviated wells, etc. In general, useful 
results for a large-scale geological model with complex heterogeneity are obtained by using numerical methods on grids 
with millions or even billions of points, accurate discretization schemes, and efficient parallel solution algorithms [18].
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In this paper, we focus on the flow of two incompressible and immiscible phases as a basic model that consists of two 
coupled nonlinear partial differential equations with heterogeneous coefficients. For general reservoir models, it is important 
to design spatial discretization schemes that approximate accurately the physical quantities. Cell-centered finite difference 
schemes are popular and efficient on regular domains supported by many reservoir simulators [45]. However, their stability 
may degrade on unstructured grids that are necessary for complex geometries [20]. Other widely used discretization meth-
ods for subsurface systems include finite volume methods [28,41,46] and mixed finite element methods [11,24,60,62]. In the 
past decade, discontinuous Galerkin (DG) finite element methods have been shown to be competitive with respect to other 
standard methods for transport problems, such as single phase flows [47], miscible displacement [48] and reactive transport 
[53,54]. The advantages of these methods include high order of convergence, local mass conservation at the element level, 
and the capability to handle unstructured grids, as well as the potential to increase the ratio of floating point operations 
to memory access operations, which is important for modern computer architectures. Application of DG methods to multi-
phase flows has become attractive in recent years with work varying from different time integration schemes and different 
degrees of coupling in the nonlinear solver, which are briefly reviewed below.

One popular numerical scheme used in practice is IMPES (implicit pressure and explicit saturation) [4,12,13,33] in which 
a pressure equation is first solved and then the saturation is updated by an explicit time-stepping scheme. Since the sat-
uration often changes faster than the pressure, in general, several small saturation time steps are performed immediately 
after a pressure time step. Enhanced versions of IMPES were proposed in [1,35,36,54] to improve the accuracy and stability 
by using a semi-implicit scheme for the saturation equation or by introducing a number of iterations in a single pressure-
saturation time step. Eslinger [23] presented a decoupled method based on the local discontinuous Galerkin scheme for 
handling compressible fluids on uniform grids. In [29,30,44], decoupled solution using a mixed finite element method for 
the pressure equation and an explicit or semi-implicit DG method for the saturation equation were studied. In [36], de-
coupled DG methods with interior penalties and upwinding schemes were applied to the original formulation while the 
pressure equation is obtained by summing the discretized conservation equations of two phases. It is believed that the most 
stable scheme for subsurface multi-phase flows is the fully implicit method in which all the coupled nonlinear equations are 
solved simultaneously [16,42,56,65]. The first attempt to combine the implicit Euler method with coupled DG schemes for 
2D two-phase flows was demonstrated in [20,21]. The authors designed a non-symmetric interior penalty Galerkin (NIPG) 
method for the total fluid conservation formulation without using any upwinding or slope limiting techniques. More re-
cently, Bastian [5] presented a fully-coupled approach using the symmetric interior penalty Galerkin (SIPG) scheme for the 
spatial discretization of incompressible two-phase flows. In this work, we extend the fully implicit NIPG method introduced 
in [20] to 3D unstructured grids. A penalty parameter is used to penalize both wetting phase pressure and capillary pres-
sure but not the saturation directly, which is important when handling discontinuous saturation in a more complex porous 
media [20].

The extension of the 2D work of [20] to 3D is not straightforward because the fully implicit DG discretization of two-
phase flow leads to a large system of nonlinear equations, which requires the solution of several linear systems per time 
step, costing a considerable amount of compute time. Therefore, it is challenging and crucial to design efficient nonlinear 
and linear solvers for the resulting algebraic systems. Moreover, for large simulation in 3D, the use of supercomputers and 
scalable parallel algorithms is indispensable. Early research on the parallel implementation of DG for various applications 
can be found in [2,8,43,7]. Efforts have been made in employing Newton method and its variants to solve the two-phase 
flow problems [16,42,39,60–64]. Good candidates for solving the linear Jacobian system are preconditioned Krylov subspace 
methods [50]. When a large number of processor cores are used, a robust and scalable preconditioner is needed to keep the 
compute time at an acceptable level while maintaining the number of Krylov iterations. The constrained pressure residual 
(CPR) preconditioner is widely used in the community of reservoir simulation [15,38]. This is based on subblocks of the 
Jacobian matrix and uses an approximate pressure solve such as algebraic multigrid (AMG) [25] to constrain the residual 
of the full system, and thus is known as a physics-splitting approach. However, CPR-AMG may not work well when some 
source terms corresponding to complex physics destroy the elliptic properties exploited by AMG. In addition, the decoupling 
process tends to cause a conflict between the convergence of AMG and the convergence of the outer CPR iteration [25].

Alternatively, the class of Schwarz-type preconditioners [52,55] based on overlapping domain decomposition is consid-
ered as a physics-coupled approach, where all the variables associated with a subdomain are solved together in a coupled 
way. A one-level restricted additive Schwarz (RAS) method [10] was used in [60–63] to build the preconditioner for the 
Jacobian system arise from an active-set reduced-space version of Newton method for the two-phase flow on uniform grids. 
The RAS preconditioner is naturally suitable to parallel computing since communication occurs only between neighboring 
subdomains during the restriction process. Yang et al. [62,63] systematically studied several performance-related parameters 
in the preconditioner to achieve optimal performance for the simulation. It was reported that the number of linear itera-
tions increases when a larger number of processor cores is used, leading to the degeneration of the parallel scalability. The 
situation would become worse when a higher order DG discretization is used, since the resulting Jacobian system has more 
non-zero elements and is often more ill-conditioned.

To improve upon the one-level preconditioner when using a large number of processor cores, in this paper, we introduce 
a hybrid two-level RAS preconditioner by applying a coarse grid solve to enhance the robustness and the scalability of 
the global linear solver. The coarse grid correction not only resolves the low frequency components of the error, which 
can be represented on the coarse grid, but also provides inter-subdomain communication for the fine-level preconditioner, 
and thereby improves the overall performance of the preconditioner. As far as we know, this is the first work that uses 
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the two-level overlapping domain decomposition method for preconditioning the Jacobian systems arising from the fully 
implicit DG discretization of two-phase flow problems.

The remainder of this paper is organized as follows. In Section 2, the system of incompressible two-phase flow in 
porous media is presented and followed by a fully implicit DG finite element discretization. In Section 3, we discuss in 
detail the inexact Newton-Krylov solver with the one-level and two-level RAS preconditioners. Results for several numerical 
experiments with parallel performance data are reported in Section 4. Some concluding remarks are given in Section 5.

2. Mathematical model

2.1. Governing equations

We consider the immiscible displacement process of incompressible two-phase flows in a three-dimensional porous 
medium. Let � be a bounded domain in R3. The flow of the wetting phase (i.e., water) and non-wetting phase (i.e., oil) in 
� is described by Darcy’s law and the saturation equation for each phase. We denote by the subscript α = w and α = n the 
wetting and non-wetting phase, respectively. The Darcy velocity for each phase is determined by

uα = −λαK(∇pα − ρα g∇D), α = w,n, (1)

and the saturation equation for each phase satisfying the mass conservation is given by

φ
∂sα
∂t

+ ∇ · uα = qα, α = w,n, (2)

where uα , sα , pα , ρα , qα are, respectively, the velocity, saturation, pressure, density, and source of phase α. φ is the porosity 
of the porous media and K is the absolute permeability tensor. For heterogeneous porous media, they can be discontinuous 
in space and can vary over several orders of magnitude. g is the gravitational acceleration constant, and D is the depth at 
position (x, y, z). The mobility function λα is a ratio of the relative permeability krα(sw) and the viscosity μα ,

λα = krα(sw)

μα
, α = w,n.

The saturations of the two phases are constrained by

sw + sn = 1. (3)

The relation between the wetting and non-wetting phase pressures is described by the capillary pressure [13,29],

pc(sw) = pn − pw . (4)

The total mobility is expressed as λt = λw + λn , and we also define the total source qt = qw + qn . Then, by summing the 
saturation equations (2) for both phases and considering (1), (3) and (4), we obtain the potential equation

∇ · (−λtK∇pw − λnK∇pc + (λnρn + λwρw)Kg∇D) = qt, in �. (5)

Substituting (1) to (2), the wetting-phase saturation equation becomes

φ
∂sw

∂t
+ ∇ · (−λw K(∇pw − ρw g∇D)) = qw , in �. (6)

In this paper, we consider the total fluid conservation formulation coupling (5) and (6) for the two-phase flow problem. 
In [20], this formulation was shown to be more robust than the two-phase conservation formulation (2) with respect to 
the choice of penalty factor in our discretization scheme to be introduced later. Boundary conditions and initial condition 
are required to close the system. Let ∂� = �in ∪ �out ∪ �0, where �in denotes the inlet boundary, �out denotes the outlet 
boundary, and �in ∩ �out = ∅. �0 = ∂� \ {�in ∪ �out} is the impermeable boundary. The boundary conditions are stated as:

uw · n = f in
w , un · n = f in

n , on �in,

pw = pout
w , λnK∇pc · n = 0, on �out,

uw · n = 0, un · n = 0, on �0,

where n is the unit outward normal vector, f in
w and f in

n are given flow rates at the inlet. The initial condition is given by

sw |t=0 = s0
w , in �. (7)

The equations are coupled nonlinearly through the relative permeability and the capillary pressure that are given by 
([29,39]):
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krw(sw) = sβ
e , krn(sw) = (1 − se)

β, pc(sw) = −Bc log(se), (8)

where β , Bc are positive parameters and se is the normalized saturation defined as se = (sw − srw) / (1 − srw − srn). Here 
srw and srn are residual saturations for the wetting and non-wetting phases.

2.2. Fully implicit discontinuous Galerkin finite element discretization

In this paper, we solve the system of (5) and (6) simultaneously using a fully coupled approach. The discretization is 
based on a backward Euler scheme in time and a non-symmetric interior penalty Galerkin (NIPG) finite element method in 
space.

Let �h = {E} be a quasi-uniform grid of � consisting of NE elements. We denote by �h the set of faces in �h and by e
the face shared by two elements Ea and Eb (or e ∈ ∂�h). We associate with e a unit normal vector ne directed from Ea to 
Eb (a > b). Then, we define the jump and average of a function f on e as

[ f ] = (
f |Ea

) |e − (
f |Eb

) |e, { f } = 1

2

((
f |Ea

) |e + (
f |Eb

) |e
)
. (9)

We also denote the harmonic mean of f at e as

H( f ) = 2
(

f |Ea

) |e
(

f |Eb

) |e(
f |Ea

) |e + (
f |Eb

) |e . (10)

If e ∈ ∂�h , the above jump and averages of f on e reduce to [ f ] = { f } = H( f ) = ( f |E) |e , and the normal vector ne coincides 
with the outward normal n.

Given an integer m ≥ 0, the discontinuous finite element space is

Dm =
{
ψ ∈ L2(�); ψ |E ∈ Pm(E),∀E ∈ �h

}
,

where Pm(E) is the space of polynomials of maximum degree m. Let us denote by pn
w and sn

w the approximation of pw

and sw at the nth time step, respectively, and �t the time step size. To simplify upcoming extended derivations, we ignore 
the effect of gravity (g = 0). Denote by (·, ·)E the L2(E)-inner product and by 〈·, ·〉e the L2(e)-inner product. Then, the fully 
implicit discontinuous Galerkin finite element discretization of the coupled equations (5) and (6) is described as follows: 
given 

(
pn

w , sn
w

) ∈Dm ×Dm , find 
(

pn+1
w , sn+1

w

) ∈Dm ×Dm , such that for ∀ ψ ∈Dm ,

Fp
(

pn+1
w , sn+1

w

) = 0, (11)

Fs
(

pn+1
w , sn+1

w

) = 0, (12)

where

Fp
(

pn+1
w , sn+1

w

) = B p + F p + F̃ p + F̂ p, (13)

Fs
(

pn+1
w , sn+1

w

) = Bs + Fs + F̃ s + F̂ s. (14)

In (13)-(14), B p and Bs are bulk integrals obtained from integration by parts:

B p =
∑

E∈�h

(
λt(sn+1

w )K∇pn+1
w + λn(sn+1

w )K∇pc(sn+1
w ),∇ψ

)
E −

∑
E∈�h

(qt,ψ)E , (15)

Bs =
∑

E∈�h

(
λw(sn+1

w )K∇pn+1
w ,∇ψ

)
E +

∑
E∈�h

(
φ

�t
(sn+1

w − sn
w) − qw ,ψ

)
E
. (16)

F p and Fs are jump terms correspond to face integrals obtained by using the regularity of the exact solution and the 
boundary conditions [20]:

F p =
∑

e∈�h\(�in∪�0)

〈{−λt(sn+1
w )K∇pn+1

w · ne
}
, [ψ]〉e +

∑
e∈�in

〈
f in

w + f in
n ,ψ

〉
e

+
∑

e∈�h\(�in∪�out∪�0)

〈{−λn(sn+1
w )K∇pc(sn+1

w ) · ne
}
, [ψ]〉e , (17)

Fs =
∑

e∈�h\(�in∪�0)

〈{−λw(sn+1
w )K∇pn+1

w · ne
}
, [ψ]〉e +

∑
e∈�in

〈
f in

w ,ψ
〉
e
. (18)

F̃ p and F̃ s are additional terms for the purpose of stabilization; they vanish for the exact solution:
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F̃ p =
∑

e∈�h\(�in∪�0)

〈{
λt(sn+1

w )K∇ψ · ne
}
,
[

pn+1
w

]〉
e −

∑
e∈�out

〈
λt(sn+1

w )K∇ψ · ne, pout
w

〉
e

+
∑

e∈�h\(�in∪�out∪�0)

〈{
λn(sn+1

w )K∇ψ · ne
}
,
[

pc(sn+1
w )

]〉
e , (19)

F̃ s =
∑

e∈�h\(�in∪�0)

〈{
λw(sn+1

w )K∇ψ · ne
}
,
[

pn+1
w

]〉
e −

∑
e∈�out

〈
λw(sn+1

w )K∇ψ · ne, pout
w

〉
e . (20)

Lastly, F̂ p and F̂ s are penalty terms used to constrain the weak continuity of the pressure:

F̂ p =
∑

e∈�h\(�in∪�0)

γ H
(‖λt(sn+1

w )K‖∞
) 〈[

pn+1
w

]
, [ψ]〉e −

∑
e∈�out

γ H
(‖λt(sn+1

w )K‖∞
) 〈

pout
w ,ψ

〉
e

+
∑

e∈�h\(�in∪�out∪�0)

γ H
(‖λt(sn+1

w )K‖∞
) 〈[

pc(sn+1
w )

]
, [ψ]〉e , (21)

F̂ s =
∑

e∈�h\(�in∪�0)

γ H
(‖λw(sn+1

w )K‖∞
) 〈[

pn+1
w

]
, [ψ]〉e −

∑
e∈�out

γ H
(‖λw(sn+1

w )K‖∞
) 〈

pout
w ,ψ

〉
e . (22)

The penalty factor γ is an important parameter for the performance of the method. We consider the definition in [5] that 
accounts for the space dimension d, polynomial degree m, and element size, as follows:

γ =

⎧⎪⎪⎨
⎪⎪⎩

σ
m(m + d − 1)|e|
min(|Ea|, |Eb|) , on �h \ (�in ∪ �out ∪ �0),

σ
m(m + d − 1)|e|

|E| , on �h ∩ �out,

where σ is a user-defined parameter and some typical choices for various problems are available in [1,5,20,22]. For general 
problems with heterogeneous porous media, γ is effectively scaled by the magnitude of the permeability. In order to 
obtain the correct front propagation in the case of discontinuous initial conditions [22], we adopt H

(‖λt(sn+1
w )K‖∞

)
and 

H
(‖λw(sn+1

w )K‖∞
)

for scaling γ in (21) and (22), respectively.

Remark 2.1. The use of equal polynomial order for the approximations for the pressure and the saturation is natural and 
easy to implement [1,22]. We refer to [20] for the performance study using different polynomial orders for the two variables.

3. Inexact Newton-Krylov solver

The fully implicit temporal discretization results in a nonlinear algebraic system

F(x) = 0 (23)

to be solved at each time step, where x is the vector of unknowns. We use a 2 × 2 point-block ordering for x and F(x) in 
our implementation, in which the unknown values of pressure and saturation associated with each grid point are always 
together in the same small block. This improves the parallel efficiency in load balance as well as the cache performance [57]. 
We note that F is a highly nonlinear function, where the nonlinearities come from the relative permeability krα(sw) and the 
capillary pressure function pc(sw). Extra difficulties for solving (23) are induced by the heterogeneity of the permeability 
and the porosity.

In order to solve (23) efficiently, we consider the family of Newton-Krylov algorithms [9,27,34]. In the algorithm, an 
inexact Newton method with backtracking (INB) is employed as the outer iteration, and a preconditioned GMRES method 
is applied as the Jacobian solve. More precisely, the solution of the previous time step is taken as the initial guess x0 = xn , 
then the next approximate solution xk+1 is obtained by

xk+1 = xk + λksk, k = 0,1, . . . (24)

Here λk is the step length determined by a line search procedure [17]. The Newton correction sk is approximated by solving 
a right-preconditioned Jacobian system with a restarted GMRES [50],

Jk M−1
k (Mksk) = −F(xk). (25)

The Jacobian matrix Jk = F ′(xk) is calculated at the current approximate solution xk and Mk is the preconditioner to be 
presented later. In INB, the linear solver for (25) is stopped if

‖ Jksk +F(xk)‖ ≤ ηk‖F(xk)‖, (26)
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which means that the linear system does not need to be solved exactly. Compared to the classical exact Newton method, 
the inexact treatment of the linear system can reduce substantially the computational cost [27]. To enhance the robustness 
of INB, we pick the forcing term ηk based on norms that are by-products of the iteration, as suggested by Eisenstat and 
Walker [19]: start with any η0 ∈ [0, 1), for k = 1, 2, . . . , we choose

ηk =
∣∣‖F(xk)‖ − ‖ Jk−1sk−1 +F(xk−1)‖

∣∣
‖F(xk−1)‖ . (27)

3.1. Construction of the Jacobian

The Jacobian matrix Jk is a key component in INB. In this study, we choose to analytically calculate Jk using the 
chain rule since the exact Jacobian matrix brings added robustness. For programming in the finite element framework, 
it is understood that the global Jacobian matrix Jk is constructed by adding successively the contribution of each element 
Jacobian matrix. In order to explicitly define the element Jacobian J E , we first let 

{
ψ E

i : 1 ≤ i ≤ nψ

}
be the basis for the 

discrete space Dm , where nψ is the number of basis functions in element E . Note that the functions ψ E
i are identically zero 

outside the element E . Thus, we can write

pn+1
w |E =

nψ∑
i=1

pE
w,iψ

E
i , sn+1

w |E =
nψ∑
i=1

sE
w,iψ

E
i , ∀ E ∈ �h. (28)

By inserting (28) to (13)-(14), we obtain the element residual vector in the general form:

F E
(

P E
w , S E

w

)
=

(
F E

p
F E

s

)
, (29)

where P E
w =

(
pE

w,i

)
1≤i≤nψ

and S E
w =

(
sE

w,i

)
1≤i≤nψ

are vectors of unknowns for pn+1
w and sn+1

w on element E . We denote by 

F E
p,i (respectively F E

s,i) the row of F E
p (respectively F E

s ) corresponding to the test function ψ E
i , with 1 ≤ i ≤ nψ . Then, J E

can be written in a block form:

J E =
⎛
⎜⎝

∂F E
p,i

∂ pE
w, j

∂F E
p,i

∂sE
w, j

∂F E
s,i

∂ pE
w, j

∂F E
s,i

∂sE
w, j

⎞
⎟⎠ , 1 ≤ i, j ≤ nψ . (30)

When using the discontinuous Galerkin finite element discretization in space, the internal face integral in the element 
residual F E is obtained from two neighboring elements. Therefore, the partial derivative of F E

p,i (respectively F E
s,i ) with 

respect to unknowns from the neighboring element should be taken into account. Assume that the internal face e is shared 

by two elements Ea and Eb . We take the term 
∂F E

p,i

∂sE
w, j

as an example and show briefly how to calculate the internal face 

integrals for the Jacobian entries that are contributed from Ea and Eb , respectively. To simplify the notations, we define 
ψ l

i = ψ
El
i , pl

w = pk
w |El , sl

w = sk
w |El , and Kl = K|El , for l = a, b. The scaling factor for the penalty terms is approximated 

by H
(‖λt(sk

w |E)K|E‖∞
)
. The analytical formulations for the corresponding derivatives are derived using the chain rule, as 

follows:

1. Internal face integral for the derivative of F Ea
p,i with respect to unknowns of the saturation on the current element Ea:

∂F Ea
p,i

∂sEa
w, j

= ∂ F Ea
p,i

∂sEa
w, j

+ ∂ F̃ Ea
p,i

∂sEa
w, j

+ ∂ F̂ Ea
p,i

∂sEa
w, j

, (31)

where

∂ F Ea
p,i

∂sEa
w, j

= −1

2

〈
λ′

t(sa
w)ψa

j Ka∇pa
w · ne,ψ

a
i

〉
e
− 1

2

〈
λ′

n(sa
w)ψa

j Ka p′
c(sa

w)∇sa
w · ne,ψ

a
i

〉
e

− 1

2

〈
λn(sa

w)Ka p′′
c (sa

w)ψa
j ∇sa

w · ne,ψ
a
i

〉
e
− 1

2

〈
λn(sa

w)Ka p′
c(sa

w)∇ψa
j · ne,ψ

a
i

〉
e
, (32)

∂ F̃ Ea
p,i

∂sEa
w, j

= 1

2

〈
λ′

n(sa
w)ψa

j Ka∇ψa
i · ne, pc(sa

w) − pc(sb
w)

〉
e

+ 1 〈
λn(sa

w)Ka∇ψa
i · ne, p′

c(sa
w)ψa

j

〉
+ 1 〈

λ′
t(sa

w)ψa
j Ka∇ψa

i · ne, pa
w − pb

w

〉
, (33)
2 e 2 e
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∂ F̂ Ea
p,i

∂sEa
w, j

= γ H
(
‖λt(sk

w |E)K|E‖∞
) 〈

p′
c(sa

w)ψa
j ,ψ

a
i

〉
e
. (34)

2. Internal face integral for the derivative of F Ea
p,i with respect to unknowns of the saturation on the neighboring element 

Eb:

∂F Ea
p,i

∂sEb
w, j

= ∂ F Ea
p,i

∂sEb
w, j

+ ∂ F̃ Ea
p,i

∂sEb
w, j

+ ∂ F̂ Ea
p,i

∂sEb
w, j

, (35)

where

∂ F Ea
p,i

∂sEb
w, j

= −1

2

〈
λ′

t(sb
w)ψb

j Kb∇pb
w · ne,ψ

a
i

〉
e
− 1

2

〈
λ′

n(sb
w)ψb

j Kb p′
c(sb

w)∇sb
w · ne,ψ

a
i

〉
e

− 1

2

〈
λn(sb

w)Kb p′′
c (sb

w)ψb
j ∇sb

w · ne,ψ
a
i

〉
e
− 1

2

〈
λn(sb

w)Kb p′
c(sb

w)∇ψb
j · ne,ψ

a
i

〉
e
, (36)

∂ F̃ Ea
p,i

∂sEb
w, j

= −1

2

〈
λn(sa

w)Ka∇ψa
i · ne, p′

c(sb
w)ψb

j

〉
e
, (37)

∂ F̂ Ea
p,i

∂sEb
w, j

= −γ H
(
‖λt(sk

w |E)K|E‖∞
) 〈

p′
c(sb

w)ψb
j ,ψ

a
i

〉
e
. (38)

The internal face integrals for the derivative of F Eb
p,i with respect to unknowns of saturation on Ea and Eb can be derived in 

a similar way. Note that the element Jacobian J E and the associated neighboring contribution of face integral are assembled 
into the global Jacobian matrix Jk using the point-block ordering in line with F(xk). We refer to [20] for more details for 
the construction of the global Jacobian matrix.

Remark 3.1. There are several techniques available to approximate the Jacobian with less programming effort, such as the 
multi-colored finite-difference (MCFD) method [14], the automatic differentiation (AD) method [26], and the Jacobian-free 
Newton Krylov (JFNK) method [34]. However, both MCFD and AD are in fact computationally more time-consuming and less 
accurate compared to the explicit hand-coded method [57]. On the other hand, we do not consider the JFNK method since 
the explicit form of the Jacobian is required to construct the preconditioner. Later in the paper, we present a performance 
comparison of the analytic method and the methods using an approximate Jacobian.

3.2. Additive Schwarz preconditioners

The global Jacobian constructed above is a large and sparse matrix that stems from the discretization of elliptic-
hyperbolic PDEs with varying coefficients. Therefore, robust and efficient preconditioners are required to solve the linear 
Jacobian system (25). In this study, we employ the class of overlapping domain decomposition methods to build a precon-
ditioner that is naturally suitable for large scale parallel processing.

We first rewrite (25) in the following general form

AM−1 y = b, with x = M−1 y, (39)

where A is the Jacobian matrix, M is the preconditioner, x is the solution, and b is the right-hand side. Let np be the number 
of processor cores of the parallel computer. We first partition the grid into np subdomains using a graph-based partitioning 
approach (MeTis [31]), i.e., �h = �1 ∪ · · · ∪ �np , where �i ∩ � j = ∅, ∀ i �= j. The subvector associated with �l is denoted as 
yl . We then extend �l to overlap with its neighbors by δ layers of elements and denote the overlapping subdomain as �δ

l . 
On each overlapping subdomain, we define the corresponding subvector yδ

l and the restriction operator Rδ
l that returns the 

vector of unknowns on �δ
l , i.e.,

yδ
l = Rδ

l y = (I 0)

(
yδ

l

y\yδ
l

)
.

Fig. 1 shows a sample partition of a grid into 8 subdomains (left) and an example of an overlapping subdomain (right). 
We denote R0

l as the restriction operator that returns yl defined on the nonoverlapping subdomain. Then, the one-level 
restricted additive Schwarz (RAS) preconditioner [10] is defined as
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Fig. 1. (left) A sample partition of a uniform grid into 8 subdomains. (right) A non-overlapping subdomain colored in blue and one layer of overlap colored 
in yellow. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

M−1
one =

np∑
l=1

(
R0

l

)T
(Al)

−1 Rδ
l , (40)

Al = Rδ
l A

(
Rδ

l

)T
. (41)

A larger overlap usually improves the numerical efficiency of the preconditioner in terms of the number of iterations, but 
also increases the communication time. A suitable size of overlap needs to be determined in order to achieve optimal perfor-
mance in terms of the total compute time. The subdomain boundary condition is homogeneous Dirichlet for each variable. 
In (40), (Al)

−1 is understood as the subdomain inverse, and its product with a vector is computed by solving a subdomain 
linear system inexactly. The choice of subdomain solver is important for the overall performance of the preconditioner on a 
specific computer with given amount of memory and cache. In our work, this is done by using a point-block incomplete LU 
factorization of Al with fill-in level k (ILU(k)) based on the reverse Cuthill-McKee ordering. Using a larger fill-in level helps 
reduce the number of iterations, but this leads to an expensive solver in terms of the compute time and the memory usage. 
The impact of these factors will be discussed in the numerical tests.

Remark 3.2. In overlapping domain decomposition methods, some overlap is used for each subdomain, thus the boundary 
condition for the overlapping subdomain can be approximately chosen as the homogeneous Dirichlet boundary condition. 
This treatment is easy to implement, and has been adopted in many other non-elliptic multi-component equations such as 
the incompressible Navier-Stokes equations [40], the shallow water equations [57], and the compressible Euler equations
[58].

To improve the scalability of the one-level RAS preconditioner (40) when using a large number of processor cores, we 
employ a hybrid preconditioner [52,57] by composing the one-level preconditioner B f = M−1

one with a coarse-level precon-
ditioner Bc in a multiplicative manner

M−1
two = Hybrid(Bc, B f ) = Bc + B f − B f ABc, (42)

where Bc = I f
c A−1

c Ic
f , Ic

f and I f
c are restriction and prolongation operators mapping between vectors defined on the fine 

level and the coarse level. Specifically, we first apply a coarse grid preconditioning

w =
(
I f

c A−1
c Ic

f

)
y, (43)

and then correct the coarse solution by adding (without overlap) the fine level solution from each overlapping subdomain

x = w +
( np∑

l=1

(
R0

l

)T
(Al)

−1 Rδ
l

)
(y − Aw). (44)

A schematic illustration of the hybrid two-level preconditioner is shown in Fig. 2.
The advantages of the two-level (or multi-level) preconditioner over the one-level preconditioner have been shown 

in other applications, such as thermal convection [51], fluid-structure interaction [6], flow control [59], and atmospheric 
dynamics [57]. On the coarse level, a smaller linear system associated with the Jacobian matrix Ac is solved by using GMRES 
with a one-level RAS preconditioner until a relative tolerance ηc is reached. Here Ac is obtained from the discretization of 
the equations on a coarse grid into which the fine grid can be nested. In such a case, the interpolation operators can be 
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Fig. 2. A schematic illustration of the hybrid two-level Schwarz preconditioner. r and v are temporary vectors defined on the coarse level.

derived immediately and the routine to construct the Jacobian matrix can be reused. We use a flexible version of GMRES 
(FGMRES, see [49]) for solving the global Jacobian system since it is more suitable when the coarse problem is solved 
iteratively.

4. Numerical experiments

The algorithms are implemented using libMesh [32] for the finite element assembly, and PETSc [3] for the inexact 
Newton-Krylov solver. In our tests, the absolute permeability tensor is defined as K = kI, where I is the identity matrix and 
k is a positive real number. Without loss of generality, the residual saturations in (8) are chosen to be zero, i.e. se = sw , 
and β is fixed to 2. The wetting and non-wetting phases of the fluid are characterized with density ρw = 1014 kg/m3 and 
ρn = 859 kg/m3, respectively. The user-defined penalty parameter in the NIPG method is given as σ = 10 for all the tests. 
The relative tolerance for the nonlinear solver is set to be 10−6. The relative tolerance for the linear solver is determined by 
ηk in (27). The choice of relative tolerance for the coarse linear solve ηc will be discussed in the test problems. The restart 
number of GMRES (or FGMRES) is 100. In the rest of this paper, ‘NI’ denotes the averaged number of nonlinear iterations 
per time step, ‘LI’ denotes the averaged number of linear iterations per nonlinear step, and ‘Time’ is the total compute time 
in second per time step, including the evaluation of Jacobian and residual.

For large-scale simulation on supercomputers with a large number of processor cores, the scalabilities of the algorithm 
with respect to the number of processor cores are of critical importance. In this paper, we focus on two scalability issues: 
(1) the strong scalability in terms of the total compute time when the size of the overall grid is fixed; and (2) the weak 
scalability in terms of the total compute time when the size of the grid per processor core is fixed.

4.1. Quarter five-spot problem

In this subsection, we validate the discretization scheme and the fully implicit solver using the classical quarter five-spot 
test case which consists of a symmetric flow pattern driven by two vertical wells on the diagonal of the domain [37]. The 
dimension of the domain is [0, 250] m × [0, 250] m × [−20, 0] m and the media is initially filled by the non-wetting 
fluid. All boundaries are impermeable (�0). Piecewise linear polynomials (m = 1) are used for the DG discretization on a 
uniform grid with 50 × 50 × 4 cells in the respective directions. Each cell has 16 degrees of freedom (dofs) with respect to 
two variables (pressure and saturation) approximated by the linear combination of values on 8 nodes of the cell, leading 
to 160, 000 dofs in the global system. We set the viscosity to 1 cp for both fluid phases, giving a unit mobility ratio. 
A Peaceman well model [13] is used for the producer with radius 0.1 m and the bottom hole pressure is 10 bar. The 
parameter of capillary pressure is Bc = 10 and the gravity is ignored in this case. The time step size is �t = 0.2 day. The 
one-level RAS method with the size of overlap δ = 1 and the subdomain solver ILU(1) is used for preconditioning the linear 
Jacobian solver.

We first consider a homogeneous media with porosity φ = 0.2 and permeability k = 100 mD. The wetting-phase fluid is 
injected with a flow rate 2.5 × 10−2 m3/s at the injector. Fig. 3 shows the wetting-phase saturation at t = 30 days. Results 
are compared with those obtained from the Matlab Reservoir Simulation Toolbox (MRST [37]) using an IMPES method based 
on the cell center two-point flux-approximation (TPFA) scheme. Fig. 4 shows the comparison of the wetting-phase saturation 
profile along the diagonal at different times. Overall, a good agreement is observed for the results from the two different 
approaches.

We next consider a heterogeneous media with a Gaussian field of porosity and a lognormal distribution of permeability 
generated by MRST. The ranges of porosity and permeability are [0.11, 0.4] and [16.8, 281.6] mD respectively, as shown in 
Fig. 5(a)-(b). The wetting-phase fluid is injected with a flow rate 5 × 10−2 m3/s at the injector. Other parameters are given 
the same as in the homogeneous case. Fig. 5(c)-(d) show the wetting-phase saturation at t = 10 days. It is seen that the 
proposed implicit DG method successfully resolves the non-uniform evolution of the saturation, and the result is consistent 
with that obtained using MRST.

4.2. Displacement problem in a regular domain

When a displacement front propagates through a porous medium, the combination of viscosity differences and perme-
ability heterogeneity may introduce viscous fingering effects [37]. In this subsection, we consider the displacement of a 
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Fig. 3. Wetting-phase saturation at 30 days for the quarter five-spot problem with homogeneous media. (left) Result obtained using the presented implicit 
DG method, (right) result obtained using MRST.

Fig. 4. Comparison of the diagonal profile of wetting-phase saturation at different times for the quarter five-spot problem with homogeneous media.

viscous fluid by injecting a less viscous fluid in a heterogeneous media, and study the impact of some parameters on the 
performance of our solver. The dimension of the domain is [0, 80] m×[0, 400] m×[−160, 0] m divided into 10 × 50 × 20
cells. The plane y = 0 m is treated as the inlet boundary (�in), while the plane y = 400 m is treated as the outlet boundary 
(�out ). The other boundaries are impermeable (�0). The permeability field is generated by MRST with a lognormal distri-
bution in the range of [7.0, 453.3] mD and the porosity has a Gaussian distribution with the range of [0.05, 0.5], as shown 
in Fig. 6(a)-(b). The media is initially filled by the non-wetting phase with viscosity 3 cp at y > 20 m and the wetting 
phase with viscosity 1 cp at y ≤ 20 m. The injected rate of wetting phase at the inlet is 

∫
�in

f in
w ds = 2000 m3/day. The 

pressure value at the outlet is pout
w = 5 bar. The parameter of capillary pressure is Bc = 10 and the gravitational acceleration 

constant is g = 9.81 m/s2. The time step size is �t = 0.1 day. Piecewise quadratic polynomials (m = 2) are used for the DG 
discretization, leading to 27 dofs for each variable in each cell. The global system has totally 540, 000 dofs. The one-level 
RAS method with the size of overlap δ = 1 and the subdomain solver ILU(1) is used for preconditioning the linear Jacobian 
solver. The simulations are carried out using 256 processor cores. The wetting-phase saturation at 80 days and 240 days are 
shown in Fig. 6(c)-(d). It is observed that the displacing phase forms a weak shock front that ‘fingers’ rapidly through the 
path of highest permeability.

It is well known that the capillary pressure parameter Bc has a great impact on the flow behavior in porous media. 
In Table 1, we show the performance of the proposed solver using different values of Bc . From the table we see that, if 
the time step size �t is small, the nonlinear solver is robust with respect to the change of Bc . On the other hand, when 
a larger �t is used, the number of nonlinear iterations increases as Bc increases, and the solver consumes more compute 
time during each time step, due to the stronger nonlinearity induced by the capillary pressure.

We next investigate the impact of two important factors on the parallel performance of the one-level RAS preconditioner: 
the fill-in level k of the ILU subsolve and the size of overlap δ. We fix the grid size to 10 × 50 × 20 and vary the number 
of processor cores np from 32 to 256. The time step size is �t = 0.1 day. Results are summarized in Table 2. The numbers 
reported in the table are obtained by taking average for 10 time steps. The table clearly indicates that the number of 
nonlinear iterations is almost independent of np , k, and δ, while the number of linear iterations increases as np increases. 
In general, increasing the fill-in level or the size of overlap results in a stronger linear preconditioner, thus the number of 
linear iterations decreases. However, this may not result in a better performance in terms of the total compute time, since 
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Fig. 5. Quarter five-spot problem with heterogeneous media. (c) Result obtained using the presented implicity DG method, (d) result obtained using MRST.

the cost per iteration for communication and computation increases. It is found that the choice of δ = 1 and ILU(1) leads to 
the smallest amount of total compute time and the best parallel efficiency among the tested cases.

Due to the complicated operations involved in the DG discretization, the calculation of the Jacobian is expensive. The sit-
uation becomes worse when higher order polynomials are used since the resulting Jacobian is much denser. To demonstrate 
the benefits using the analytic Jacobian, we compare the performance with the MCFD method and the JFNK method offered 
by PETSc [3]. In JFNK, the analytically calculated matrix is used for preconditioning the Jacobian system to guarantee the 
convergence of the linear solver. The results are shown in Table 3, where the grid size is 5 × 25 × 10 and the time step size 
is �t = 6.25 × 10−3 day. It is clear that the analytic method keeps the number of nonlinear iterations stable for the test 
cases with order m = 1 and m = 2, and its performance is far better than the methods using an approximate Jacobian in 
terms of the total compute time.

4.3. Displacement problem in a complex domain

In this subsection, the tested media has a complex geometry with topological change on the top surface. For compari-
son, we use the same boundary conditions and the same heterogeneous fields of porosity and permeability for the porous 
medium as in the regular domain case, see Fig. 7(a)-(b). The simulation of two-phase flow in this complicated media re-
quires a fine enough unstructured grid to resolve the dynamic process of the saturation, which causes complication in the 
numerical modeling. The one-level preconditioner is not completely satisfactory in this case, therefore, we employ the two-
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Fig. 6. Displacement of a viscous fluid by injecting a less viscous fluid in a regular domain with heterogeneous media.

Table 1
Performance of the proposed solver with respect to different values of Bc . The grid 
size is 10 ×50 ×20. The one-level RAS preconditioner is used with the size of overlap 
δ = 1 and the subdomain solver is ILU(1). The simulations are carried out using 256 
processor cores. The mark ‘–’ indicates that the case fails to converge.

Bc �t = 0.05 day �t = 0.1 day �t = 0.2 day

NI LI Time NI LI Time NI LI Time

0 4 46.2 8.15 3.9 51.0 8.18 4 56.8 8.62
20 4 48.5 8.24 4.1 45.1 8.30 6.8 34.7 14.23
60 4 47.1 8.16 5.5 45.6 12.66 – – –

level preconditioner to improve the convergence and scalability of the overall solver. Piecewise quadratic polynomials are 
used for the DG discretization on an unstructured grid with 72, 000 elements and 602, 905 nodes, resulting in 3, 888, 000
dofs. The coarse grid has 9, 000 elements and 78, 813 nodes, resulting in 486, 000 dofs. The fine and coarse grids with a 
sample partition into 16 subdomains are shown in Fig. 8. In the two-level RAS preconditioner, the size of overlap on the 
fine level δ f and that on the coarse level δc are both set to 1. We use ILU(3) as the subdomain solver for both levels. The 
GMRES iteration on the coarse level is stopped upon reaching the relative tolerance ηc = 0.1 or a maximum iteration count 
of 100. The time step size is �t = 0.05 day. The simulation is carried out using 1,024 processor cores. Other parameters of 
the problem are the same as in the regular domain case. Results are plotted in 7(c)-(d). The overall displacement process is 
similar to the regular domain case. One distinct feature is that, when the displacement front passes through the top layer, a 
portion of the resident fluid is trapped in the corners and bumps near the top surface. This indicates that the flow behavior 
is influenced by the topological variation of the domain.
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Table 2
Performance of the proposed solver with respect to different fill-in levels of the ILU 
subsolve and different sizes of overlap in the one-level RAS preconditioner. The grid 
size is 10 × 50 × 20. The time step size is �t = 0.1 day.

The size of overlap δ = 1

np ILU(1) ILU(2) ILU(3)

NI LI Time NI LI Time NI LI Time

32 3.9 29.6 42.62 3.7 15.1 48.32 3.6 12.2 64.24
64 3.9 37.6 22.65 3.9 21.0 28.70 3.9 19.8 36.54
128 3.9 38.3 14.26 3.9 30.2 17.21 3.9 29.2 22.31
256 3.9 46.9 8.00 3.9 33.5 8.97 3.9 38.2 11.24

The size of overlap δ = 2

np ILU(1) ILU(2) ILU(3)

NI LI Time NI LI Time NI LI Time

32 3.9 25.6 47.74 3.6 11.6 56.15 3.7 9.7 87.36
64 3.8 30.9 36.05 3.6 15.7 42.13 3.9 11.9 64.45
128 3.8 29.3 17.22 3.8 18.1 22.99 3.9 13.9 36.05
256 3.9 29.5 10.11 3.7 18.0 12.67 3.9 16.9 20.18

Table 3
Comparison of performance using MCFD, JFNK∗ , and analytic methods for the construction of 
the Jacobian. The grid size is 5 × 25 × 10 and the time step size is �t = 6.25 × 10−3 day. The 
size of overlap in RAS is δ = 1 and the subdomain solver is ILU(1). JFNK∗ means using the 
Jacobian-free method for matrix-vector multiplication, while using the analytically calculated 
matrix for preconditioning the Jacobian system.

Order np MCFD JFNK∗ Analytic

NI LI Time NI LI Time NI LI Time

m = 1 64 4.7 13.5 9.17 3.8 13.5 0.74 3 15.2 0.138
128 4.7 16.7 6.33 3.9 16.8 0.57 3 21.4 0.095
256 4.7 19.4 3.80 5.9 17.5 0.58 3 32.9 0.077

m = 2 64 7.9 10.1 657.77 4.2 14.3 12.59 3 18.4 2.43
128 8.1 10.8 436.96 4 18.1 9.15 3 21.0 1.53
256 8.1 14.8 218.39 5.2 21.3 7.41 3 32.2 0.85

It is worthy to discuss how the coarse solution affects the performance of the two-level preconditioner. In practice, 
a better coarse solution would help reduce the total number of iterations, but the overall compute time may increase. 
We are interested in two factors that determine the accuracy of the coarse solution: the size of the coarse grid and the 
stopping condition for the coarse solve ηc . Table 4 shows the performance using the one-level preconditioner and the 
two-level preconditioner with different coarse grids and different ηc . The numbers reported in the table are obtained by 
taking average for 5 time steps. The two coarse grids are obtained by coarsening the fine grid uniformly by one or two 
ratios of 2. The time step size is �t = 0.05 day. In the table, ‘dofc ’ denotes the degrees of freedom on the coarse level; 
‘LIc ’ denotes the average number of linear iterations for the coarse solve per global linear step; ‘Timec ’ denotes the time 
spent on the coarse solve; ‘TimeIc

f
’ denotes the time spent on the restriction operator Ic

f , and ‘TimeI f
c

’ denotes the time 

spent on the prolongation operator I f
c . Fig. 9 shows the total compute time for the tested cases. From the table and the 

figure, the following observations can be made: (1) When a small number of processor cores is used, i.e. np = 128, the 
one-level preconditioner requires less compute time than the two-level preconditioner. However, as np increases, it takes 
more linear iterations to converge and the number of nonlinear iterations grows, leading to a poor scalability. (2) The 
two-level preconditioner greatly reduces the numbers of linear iterations while keeping the numbers of nonlinear iterations 
stable, yielding a good numerical convergence. (3) On the coarse level, using a relatively fine grid leads to more compute 
time on the coarse solve. Alternatively, more time is spent on the fine level and the prolongation if a coarser grid is used. For 
a clearer comparison, the times spent on different levels are provided in Fig. 10. (4) When a smaller ηc is used, the coarse 
solve requires more iterations and more compute time to meet the stopping condition, but the reduction of the number of 
global linear iterations is limited. (5) To make the two-level preconditioner scalable, the compute times for the coarse solve, 
the restriction, and the prolongation should also be scalable. Overall, among the tested cases, the two-level preconditioner 
with a relatively fine grid and ηc = 0.1 for the coarse level proves to be the best choice in terms of total compute time and 
parallel scalability. Shadid et al. [51] reached a similar conclusion for a 3D thermal convection simulation. They compared 
three domain-decomposition preconditioners: one-level, two-level with an exact coarse grid solve, and two-level with an 
iterative approximate coarse grid solve. While the two-level exact coarse grid solve has the best scaling of iterations per 
Newton step, the two-level approximate coarse grid solve is the best in execution time.
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Fig. 7. Displacement of a viscous fluid by injecting a less viscous fluid in a complex domain with heterogeneous media.

Fig. 8. The fine and coarse grids with a sample partition into 16 subdomains for the complex domain case. The fine grid has 72, 000 elements and 602, 905
nodes, resulting in 3, 888, 000 dofs. The coarse grid has 9, 000 elements and 78, 813 nodes, resulting in 486, 000 dofs.
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Table 4
Performance of the proposed solver using the two different preconditioners. The fine grid has 72, 000 elements and 
602, 905 nodes, resulting in 3, 888, 000 dofs. The size of overlap is 1 and the subdomain solver is ILU(3) for both pre-
conditioners. The time step size is �t = 0.05 day.

Level np dofc ηc NI LI LIc Timec TimeIc
f

TimeI f
c

Time

One 128 6.4 23.6 312.90
One 256 6.4 26.8 177.06
One 512 6.6 36.6 102.07
One 1,024 7.8 74.4 86.46

Two 128 6.075 × 104 0.1 6.2 12.5 17.4 6.91 1.97 47.37 353.84
Two 256 6.075 × 104 0.1 6.0 10.8 23.3 4.09 0.98 22.12 186.16
Two 512 6.075 × 104 0.1 6.6 10.1 26.1 1.92 0.69 13.91 109.53
Two 1,024 6.075 × 104 0.1 6.6 12.5 42.5 2.37 0.67 11.46 73.78

Two 128 4.86 × 105 0.1 5.6 12.9 18.6 58.67 1.94 30.44 355.68
Two 256 4.86 × 105 0.1 5.6 13.0 25.0 32.73 1.15 17.73 174.79
Two 512 4.86 × 105 0.1 5.6 13.8 31.1 19.13 0.80 11.41 99.81
Two 1,024 4.86 × 105 0.1 5.0 12.8 38.3 12.48 0.53 6.34 59.57

Two 128 4.86 × 105 0.01 7.0 10.3 36.4 181.38 3.41 53.09 459.20
Two 256 4.86 × 105 0.01 5.6 11.0 49.3 118.97 1.85 27.27 226.18
Two 512 4.86 × 105 0.01 5.0 10.8 62.3 60.20 0.94 13.13 111.97
Two 1,024 4.86 × 105 0.01 5.6 11.4 60.8 46.33 0.94 10.70 81.20

Fig. 9. Total compute times of the proposed solver using the one-level preconditioner and the two-level preconditioner with different coarse grids and 
different relative tolerance for the coarse solve. The figure is drawn on a log-log scale.

Fig. 10. Compute times on different levels of the proposed solver using the two-level preconditioner with different coarse grids. The relative tolerance for 
the coarse solve is ηc = 0.1 for both cases.
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Table 5
Strong scalability test for the proposed solver using the one-level and two-level preconditioners. The fine grid has 
168, 584 elements and 1, 396, 073 nodes, resulting in 9, 103, 536 dofs. The coarse grid has 21, 073 elements and 
180, 549 nodes, resulting in 1, 137, 942 dofs. The relative tolerance for the coarse solve is ηc = 0.1. ILU(3) is used 
as the subdomain solver for both preconditioners.

Level �t (day) Overlap np NI LI Time Speedup

One 6.25 × 10−3 δ = 2 256 3.4 13.8 218.09 1
One 6.25 × 10−3 δ = 2 512 3.6 18.2 149.99 1.45
One 6.25 × 10−3 δ = 2 1,024 3.4 17.5 79.42 2.75
One 6.25 × 10−3 δ = 2 2,048 3.6 23.9 61.03 3.57
One 6.25 × 10−3 δ = 2 4,096 3.6 25.9 28.21 7.73
One 6.25 × 10−3 δ = 2 8,192 3.6 37.9 16.94 12.87

Two 6.25 × 10−3 δ f = δc = 1 256 3 9.7 237.29 1
Two 6.25 × 10−3 δ f = δc = 1 512 3 9.9 118.16 2.01
Two 6.25 × 10−3 δ f = δc = 1 1,024 3 9.8 59.91 3.96
Two 6.25 × 10−3 δ f = δc = 1 2,048 3 13.3 39.02 6.08
Two 6.25 × 10−3 δ f = δc = 1 4,096 3 12.2 20.67 11.48
Two 6.25 × 10−3 δ f = δc = 1 8,192 3 9.2 8.69 27.31

Two 2.5 × 10−2 δ f = 1, δc = 2 256 3.2 10.1 279.96 1
Two 2.5 × 10−2 δ f = 1, δc = 2 512 3.2 9.4 133.73 2.09
Two 2.5 × 10−2 δ f = 1, δc = 2 1,024 3.2 8.5 68.96 4.06
Two 2.5 × 10−2 δ f = 1, δc = 2 2,048 3.2 13.5 49.75 5.63
Two 2.5 × 10−2 δ f = 1, δc = 2 4,096 3.2 10.0 27.68 10.11
Two 2.5 × 10−2 δ f = 1, δc = 2 8,192 3.2 9.1 15.11 18.53

We next examine the strong scalability of the proposed solver on a large number of processor cores, and analyze the 
robustness of the one-level and two-level preconditioners using different time step sizes. In the tests, the fine grid has 
168, 584 elements and 1, 396, 073 nodes, resulting in 9, 103, 536 dofs. The coarse grid has 21, 073 elements and 180, 549
nodes, resulting in 1, 137, 942 dofs. In the two-level RAS preconditioner, the relative tolerance for the coarse solve is ηc =
0.1. ILU(3) is used as the subdomain solver for both preconditioners. Results of the strong scalability test on different 
numbers of processor cores are reported in Table 5. We remark that firstly, the one-level preconditioner fails to converge 
when using δ = 1, while the two-level preconditioner is less sensitive to the overlapping size. Secondly, when we increase 
the time step size from 6.25 × 10−3 day to 2.5 × 10−2 day, the one-level preconditioner fails even with a larger size of 
overlap together with the exact LU factorization as the subdomain solver. On the other hand, the two-level preconditioner 
performs well with this time step size on a large number of processor cores. Fig. 11 (top) shows the total compute times of 
the proposed solver using the one-level and two-level preconditioners with �t = 6.25 × 10−3 day, where ‘spa’ denotes the 
speedup of the algorithm using the two-level preconditioner over the one-level preconditioner. We can see from the figure 
that the two-level preconditioner is faster than the one-level preconditioner when np is greater than 256, and the speedup 
reaches 1.95 when np is up to 8,192. Fig. 11 (bottom) shows the speedup of the proposed solver with respect to the number 
of processor cores. As np increases from 256 to 8, 192, the two-level preconditioner results in a better performance than 
the one-level preconditioner for both time step sizes.

We further test our algorithm in terms of weak scalability in which we refine the grid as np increases so that almost the 
same number of unknowns per processor core is maintained. The time step size is fixed at �t = 6.25 × 10−3 day. The other 
parameters are the same with the strong scalability test. Table 6 shows the weak scaling results of the proposed solver. As 
shown in the table, increasing the grid size barely affects the number of nonlinear iterations for both preconditioners, while 
the number of linear iterations for the one-level method increases rapidly. Adding the coarse level does reduce the number 
of linear iterations and the total compute time. Fig. 12 shows the performance of the proposed solver using the one-level 
and two-level preconditioners. It is seen that the two-level method results in a flatter curve than the one-level method, and 
the compute time increases only by 53% as np increases from 256 to 8,192 (32 times larger).

5. Concluding remarks

We developed a scalable fully implicit solver for incompressible two-phase flows in porous media based on the frame-
work of overlapping domain decomposition methods on 3D unstructured grids. The governing equations are discretized by 
a backward Euler scheme in time and a discontinuous Garlerkin finite element method in space. The resulting nonlinear 
system is solved by the class of parallel Newton-Krylov-Schwarz algorithms with analytic Jacobian. We tested the algorithm 
using several 3D heterogeneous medias on unstructured grids, and compared the performance between the one-level and 
two-level additive Schwarz preconditioners in terms of the number of iterations and the total compute time. Results of 
numerical experiments show that the proposed solver with the two-level preconditioner is more robust and scalable for 
problems with millions of unknowns on a supercomputer with more than 8, 000 processor cores.
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Fig. 11. Strong scalability test: (top) Total compute times of the proposed solver using the one-level preconditioner and the two-level preconditioner with 
�t = 6.25 × 10−3 day. ‘spa’ denotes the speedup of the algorithm using the two-level preconditioner over the one-level preconditioner. (bottom) Speedup 
of the proposed solver with respect to the number of processor cores. The bottom panel is drawn on a log-log scale.

Table 6
Weak scalability test for the proposed solver using the one-level and two-level preconditioners. The time step size 
is �t = 6.25 × 10−3 day. The relative tolerance for the coarse solve is ηc = 0.1. ILU(3) is used as the subdomain 
solver for both preconditioners. ‘dof f ’ and ‘dofc ’ denote the degrees of freedom on the fine and coarse level, 
respectively.

Level dof f dofc Overlap np NI LI Time

One 245,376 δ = 2 256 3 16.7 8.23
One 509,760 δ = 2 512 3 20.5 9.17
One 984,960 δ = 2 1,024 3 23.3 9.55
One 2,115,072 δ = 2 2,048 3 30.2 10.45
One 4,652,208 δ = 2 4,096 3 29.8 11.28
One 9,103,536 δ = 2 8,192 3.6 37.9 16.94

Two 245,376 30,672 δ f = δc = 1 256 3 9.6 5.68
Two 509,760 63,720 δ f = δc = 1 512 3 9.3 6.05
Two 984,960 123,120 δ f = δc = 1 1,024 3 10.0 6.45
Two 2,115,072 264,384 δ f = δc = 1 2,048 3 8.7 6.74
Two 4,652,208 581,526 δ f = δc = 1 4,096 3 9.3 8.25
Two 9,103,536 1,137,942 δ f = δc = 1 8,192 3 9.2 8.69
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