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Abstract

In this paper� we develop a new class of overlapping Schwarz type algorithms for solving

scalar steady and unsteady convection�di�usion equations discretized by �nite element� or �nite

di�erence� methods� The preconditioners consist of two components� namely� the usual additive

Schwarz preconditioner and the sum of some second order terms constructed by using products of

ordered neighboring subdomain preconditioners� The ordering of the subdomain preconditioners

is determined by considering the direction of the �ow� For the steady case� we prove that the

algorithms are optimal in the sense that the convergence rates are independent of the mesh

size� as well as the number of subdomains� For the unsteady case� we show the algorithms are

optimal without having a coarse space� as long as the time step and the subdomain size satisfy

a certain condition� We show by numerical examples that the new algorithms are less sensitive

to the direction of the �ow than the classical multiplicative Schwarz algorithms� and converge

faster than the additive Schwarz algorithms� Thus� the new algorithms are more suitable for

�uid �ow applications than the classical additive and multiplicative Schwarz algorithms�

Key words� �nite elements� convection�di�usion equations� subdomain ordering� overlapping
domain decomposition� preconditioners� iterative methods�

AMS�MOS� subject classi�cations� ��F��� ��N	��

� Introduction

In this paper� we present some new overlapping domain decomposition methods for the numerical
solution of large� sparse� nonsymmetric and
or inde�nite linear systems of equations arising from
Galerkin �nite element discretizations of elliptic and parabolic partial di�erential equations� The
new algorithms belong to the family of overlapping Schwarz methods which is a variant of the
classical Schwarz alternating algorithm� introduced in ���� by H� A� Schwarz ���� This family of
methods has attracted much attention in the past few years as convenient and powerful compu�
tational methods for the solution of partial di�erential equations� see� e�g�� �� ���� especially on
parallel machines� The solution of such linear systems is an important computational kernel in
implicit methods� such as� solving the Jacobian equations in any Newton�like method used in com�
putational �uid dynamics� �� �� ���� This family of methods is built upon the so�called subdomain
mapping operators Ti� which solve the original problem� de�ned on a domain �� approximately in
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subdomains �
�

i � � with arti�cial boundary conditions and zero extensions to � n �
�

i� The formal
de�nitions of Ti and �

�

i will be given in the next section� By using these Ti�s as basic building blocks�
a family of polynomial Schwarz algorithms can be de�ned� Let N be the number of subdomains
and T� the coarse space mapping operator� We de�ne

T � poly�T�� T�� � � � � TN�

as a multi�dimensional matrix�valued polynomial with variables Ti� and assume that the polynomial
satis�es poly��� � � � � �� � �� which simply means that the constant term in the polynomial is zero� It
is known that if u� is the exact solution of the �nite element equations then Tu� can be computed
without knowing u� itself� This is because Tiu

�� i � �� � � � � N � can be computed directly from the
right�hand side function of the �nite element equations� With g � Tu� as the new right�hand side
vector� a new linear system can be introduced as

Tu � g

and it is not di�cult to show that if T is nonsingular then the new linear system gives the desired
�nite element solution u�� For each choice of the polynomial poly� a particular Schwarz algorithm
is de�ned� The algorithm is called optimal if the condition number� or some other �equivalent
measure� for nonsymmetric or inde�nite problems� of the operator T is independent of the mesh
parameter h and the number of subdomains N � Several such optimal algorithms� such as the
additive �T �

PN
i�� Ti� and multiplicative �T � I � �N

i���I � Ti�� Schwarz algorithms� have been
identi�ed� Generally� the additive algorithms have two features among others�

� They converge slower than the multiplicative algorithms because of the lack of subdomain to
subdomain communications within each iteration

� Their convergence is independent of the ordering and coloring of the subdomains�

The features of the multiplicative algorithms include�

� They are faster in terms of the total iteration numbers

� They are not as parallel as the additive algorithms because of the data dependence between
overlapping subdomains

� They have a strong dependence on the global ordering and coloring of subdomains especially
for convection�di�usion type problems�

See the last section of this paper for a detailed discussion on the ordering and coloring issues�
To use the multiplicative algorithms e�ciently� it is important to color and order the subdomains
correctly� However� to obtain the optimal coloring and ordering is di�cult in practice especially
when the underlying mesh is unstructured and the subdomains are obtained by means of graph
partitioning� see� e�g�� �� ���� For a particular problem and a given subdomain partitioning� it is not
impossible to obtain a reasonable subdomain coloring and ordering according to certain practical
heuristics� but� in general� especially for unsteady problems where the �ow direction changes from
time step to time step� it becomes desirable to have algorithms that do not need� or need less of� the
subdomain ordering and coloring� Extensive discussions on the e�ects of ordering and coloring of
nodes or elements� in the context of iterative and direct sparse matrix computations� can be found
in many research papers� see� e�g�� �� ��� ��� ���� Some of the ideas and techniques can also be
applied� with certain modi�cations� to the coloring and ordering of overlapping subdomains� We
will not consider these techniques in this paper�
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In this paper� we shall identify some overlapping Schwarz algorithms� which we call the local
multiplicative Schwarz methods� The new algorithms are not only optimal but also have conver�
gence rates that are

� better than that of the additive Schwarz method

� not sensitive to the coloring and global ordering of the subdomains� nor the �ow direction

� more parallel than the multiplicative Schwarz algorithm�

Our basic idea is to use the multiplicative Schwarz algorithm only locally between those pairs of
overlapping subdomains for which we have e�ective techniques to determine the �ow direction with�
out any global operations� We also use the additive techniques to handle the global communication
between pairs of subdomains and the coarse level preconditioning�

The paper is organized as follows� In Section �� we shall de�ne our model elliptic and parabolic
problems� their discretizations and the overlapping partitioning of the �nite element mesh� In
Section 	� we introduce and analyze the new local multiplicative Schwarz algorithms� In the last
section of the paper we provide some numerical examples regarding to the performance of the new
algorithms� as well as some comparisons with the classical additive and multiplicative Schwarz
algorithms�

� Model problems and subdomain partitioning

Let � be an open� bounded polygonal region in Rd� d � � or 	� with boundary ��� We consider
the homogeneous Dirichlet boundary value problem�

Lu�x� � f�x� in ��
u�x� � � on ���

���

Here the elliptic operator L has the form Lu�x� � �r��ru�����x� �ru�c�x�u�All the coe�cients
are� by assumption� su�ciently smooth and the right�hand side f � L����� We assume that the
equation has a unique solution in H�

����� Let ��� �� denote the usual L
���� inner product and k � k

or k � kL� the corresponding norm� Let Vh � H�
���� be the usual shape�regular� piecewise linear

continuous �nite element space �details come up later in this section�� The �nite element form of
��� is� Find u� � Vh such that

b�u�� v� � �f� v�� �v � Vh� ���

The bilinear form b�u� v� is de�ned by

b�u� v� �

Z
�
ru � rvdx�

Z
�
�� � ru�vdx�

Z
�
r � ��u�vdx�

Z
�
��cuv�dx�

Here �c�x� � c�x� � r � � � �c� � �� We assume that b�u� v� is uniformly elliptic and bounded
in H�

����� In addition to the following bilinear form a�u� v� �
R
�ru � rvdx� which is used as

the usual energy inner product in H�
���� with norm de�ned by kuka � �a�u� u������ we also use

two other bilinear forms s�u� v� �
R
��� � ru�vdx �

R
�r � ��u�vdx and c�u� v� � ��cu� v�� which

correspond to the skew�symmetric and zeroth order parts of L� respectively� It is easy to verify
that s�u� v� � �s�v� u�� �u� v � H�

�����

	



We shall consider the second model problem�

����
���

�u�x� t�

�t
� Lu�x� t� � f�x� t� for x � � t � ��� T �

u�x� t� � � for x � �� t � ��� T �
u�x� �� � u��x� for x � ��

�	�

Here T � � and u��x� are given� L is the same as in ��� except that the coe�cients can be time
dependent� We assume that �c�x� t� � c�x� t� � rx � ��x� t� � �c� � �� where �c� is a constant� and
b�u� v� is uniformly elliptic and bounded in both x and t� Let � � T�m be the time step� and uk�x�
be an approximation of u�x� k��� With the given initial solution u��x� � u��x�� we advance in time
with the implicit backward Euler�s method by solving the problem� Find uk�� � Vh satisfying�

uk�� � uk

�
� v

�
� b�uk��� v� � �fk��� v�� �v � Vh�

Equivalently� at each time step� we need to solve a linear system of the form� Find u� � Vh such
that

b� �u
�� v� � � �f� v�� �v � Vh� ���

where b� �u� v� � �u� v� � �b�u� v� and � �f� v� � ��fk�� � uk � v��
Following Dryja and Widlund ���� we de�ne a two�level conforming �nite element triangulation

of �� The region � is �rst divided into nonoverlapping subdomains �i� i � �� � � � � N � such that
�� �

SN
i��

��i� Then all the subdomains �i� which are assumed to have diameter of order H � are
divided into triangular elements of size h� We assume that the union of all of the elements� size
h� forms a regular �nite element triangulation of �� The common assumption� in �nite element
theory �cf� ���� that all elements are shape regular is adopted� With such a triangulation� we let
Vh � H�

���� be the usual piecewise linear continuous �nite elements space on �� To obtain an
overlapping decomposition of the domain� we extend each subdomain �i to a larger region �

�

i� i�e�
�i � �

�

i � �� We assume that the overlap is uniformly large and let Vi � Vh
T
H�
���

�

i� � Vh be the
usual �nite element subspace de�ned over �

�

i� with zero extension to � n �
�

i� Here uniformly large
overlap means that distance���

�

i ��� ��i��� � cH � where c � � is a constant independent of H �
It is clear that �� �

S
i
��

�

i and Vh � V� � V� � � � �� VN � The coarse space V� is de�ned below�
Another key ingredient in the design of optimal domain decomposition preconditioners is the use

of at least one global coarse space� which in a way connects the local subdomains just introduced�
A number of coarse spaces have been introduced in the literature� see� e�g�� ��� �	�� We shall focus
only on a simple one� Let �H � f�ig be a quasi�uniform triangulation of � and �i one of the
triangles with a diameter on the order of H � �H is the coarse grid� Let V� be the piecewise linear
continuous �nite element space on �H � In the analysis part of this paper we assume� for simplicity�
that V� � Vh� and that the diameter of the coarse elements �i is of the same order as the diameter
of the subdomains �i� The theory can easily be extended to the case of a non�nested coarse� ���
and to cases with small overlap� ���� In the numerical experiments section� we shall present some
cases where the sizes of the subdomains and the coarse elements are of di�erent order�

For each i � �� �� � � � � N � we de�ne a mapping operator Ti � Vh 	 Vi by

b�Tiu� v� � b�u� v�� �u � Vh� �v � Vi ���

and T �
i � Vh 	 Vi by

b��T
�
i u� v� � b��u� v�� �u � Vh� �v � Vi ���

�



These Ti and T �
i will serve as the basic building blocks of the algorithms to be discussed in

the next sections� We shall mention that these Ti�s can also be de�ned inexactly if we replace the
left�hand side bilinear form� in ���� by a di�erent bilinear form� which in some sense� is equivalent
to b��� ��� Details on inexact Schwarz algorithms can be found in� for examples� �� �� ����

� New algorithms and analysis

In this section� we de�ne the local multiplicative Schwarz algorithms by using the basic Schwarz
building blocks Ti and T �

i de�ned in the previous section�

��� Steady�state convective�di�usion problems

We consider the general nonsymmetric case in this subsection� The techniques are mainly borrowed
from Cai and Widlund �� ��� Let us begin by summerizing the main results� namely that the
preconditioned matrix is uniformly bounded and its symmetric part� with respect to the inner
product a��� ��� is uniformly positive de�nite� in the following theorem� This theorem provides
the optimal convergence of several Krylov space iterative methods� including GCR and GMRES
��� ��� among others� For each pair of neighboring subdomains� with indices i and j� we de�ne a
multiplicative Schwarz operator

Pij � I � �I � Tj��I � Ti��

Note that for any u � Vh� Piju � Vi�Vj � and generally Pij 
� Pji� unless �
�

i and �
�

j have no common
points� Let

P � T� �
X

Pij � ���

where the summation is taken over all possible Pij �s� Let gij � Piju
� and g� � T�u

�� as mentioned
earlier� both can be computed without the knowledge of u�� With g � g� �

P
gij � it can be seen

that if the operator P is nonsingular� then the linear system

Pu� � g ���

has the same solution as that of ���� We shall prove in the remainder of the paper that P is
indeed nonsingular and uniformly well�conditioned� and that therefore ��� can be solved by using
certain Krylov space type iterative acceleration methods� such as CG or GMRES ���� We remark
that if the bilinear form b��� �� is symmetric� then the operator P is also symmetric with respect
to b��� ��� In other words� the local multiplicative Schwarz operator P is symmetric if both Pij and
Pji are included in its de�nition� Later� in this section� we shall take only one of the two terms
when solving nonsymmetric problems� Keeping only the terms in the upwind direction makes the
algorithm very useful for convection�di�usion equations� Like other upwinding type discretization
schemes� we shall also introduce a parameter � that controls the amount of the upwinding� or
arti�cial di�usion� in the Schwarz preconditioning polynomial�

Theorem � There exist positive constants H�� c � c�H�� and C� independent of the mesh param�
eters h and H� such that if H � H�� the operator P is uniformly bounded� i�e��

kPuka � Ckuka� �u � Vh�

and its symmetric part is uniformly positive de�nite� i�e��

a�Pu� u� � ckuk�a� �u � Vh�

�



To prove the above theorem� we need a result from Cai and Widlund �� regarding to the
optimality of the additive Schwarz preconditioner�

Lemma ��� �Cai and Widlund���� There exist positive constants H�� c�H�� and C� indepen�
dent of the mesh parameters� such that if H � H�

k
NX
i��

Tiuka � Ckuka and
NX
i��

kTiuk
�
a � ckuk�a�

for any u � Vh�

We next present a number of useful lemmas before giving the proof of the main theorem later
in this subsection� The following lemma says that the symmetric part of Ti is more or less positive
de�nite if the size of the subdomains� i�e� H � is su�ciently small� The proof is relatively simple�
and therefore not included� The constant C appearing in the lemma depends on the coe�cients
��x� and c�x� of the elliptic operator L�

Lemma ��	 There exists a positive constant C� independent of the mesh parameters� such that

a�u� Tiu� � ��� CH�kTiuk
�
a � CHkuk�

a��
�

i
�
�

for any � � i � N � and u � Vh�

The contribution from the �rst and zeroth order terms of the elliptic operator L is estimated
in the next lemma� We prove that the contribution is of lower order in H �

Lemma ��� There exists a positive constant C� independent of the mesh parameters h and H�
such that for any i� j 
� � for which �

�

i and �
�

j overlap

�� s�Tiu� Tju� � CH
�
kTiuk�a � kTjuk�a

�

�� s�TiTju� Tiu� � CH
�
kTiuk

�
a � kTjuk

�
a

�

�� s�u� TiTju� � CH

	
kTjuk�a � kuk�

a��
�

i
�




for all u � Vh� The same estimates hold if the bilinear form s��� �� is replaced by the bilinear form
c��� ���

We leave the proof of this lemma to the interested reader� The basic idea of the proof is to
use that kTlukL���

�

l
� � CHkTluka���

l
�� for any l 
� �� As in the previous lemma� the constants C

depend on the coe�cients ��x� and c�x� of the elliptic operator L� Using Lemmas 	�� and 	�	� we
now proceed to give a lower bound of the two�subdomain multiplicative Schwarz operator Pij �

Lemma ��
 There exists a positive constant C� independent of the mesh parameters h and H�
such that for any i� j for which �

�

i and �
�

j overlap

a�Piju� u� �

	
�

�
� CH



kTiuk

�
a �

	
�

�
� CH



kTjuk

�
a � CHkuk�

a��
�

i
�
�

for any u � Vh�

�



Proof� We �rst note� by using the de�nition of the operators Ti and Tj and the fact that b��� �� �
a��� �� � s��� �� � c��� ��� that

a�Piju� u� � a�Tiu� u� � a�Tju� u�� a�TiTju� u�

� a�Tiu� u� � a�Tju� u�� a�Tiu� Tju� �

s�Tiu� Tju�� c�Tiu� Tju� � �s�TiTju� Tiu� �

s�u� TiTju� � c�u� TiTju��

The desired proof follows immediately by using Lemmas 	�� and 	�	� �
We are now ready to prove the main theorem of this subsection� The upper bound is easy� It

can be seen that
Pij � Ti � Tj�I � Ti��

By using the fact that �I � Ti� is uniformly bounded� we obtain

kPijuka � C�kTiuka � kTjuka��

The upper bound of P can then be obtained by summing the above estimate for all possible pairs
of subdomains and using Lemma 	��� To establish the lower bound� we sum the estimate in Lemma
	�� and use the lower bound part of Lemma 	��� and the assumption that H is su�ciently small�

We next introduce a variant of the local multiplicative algorithm that is particularly useful
for �uid �ow problems� The basic philosophy is the same as in the design of any upwinding type
discretization schemes� We �rst note that the operator P has the following� more explicit� form

P �
X

��i�N

Ti �
X

��i��j�N

TiTj � ���

In other words� P is equal to the regular two�level additive Schwarz operator plus some second
order perturbation terms� Since the additional second order terms enchance the nearest neighbor
communication� we therefore believe they will make the overall convergence faster for the classical
additive Schwarz algorithms� This observation will be con�rmed by a number of numerical experi�
ments in the next section� Borrowing a term from the Streamline Upwind Petrov�Galerkin �SUPG�
methods ��� ���� the second order terms TiTj � if used properly� �stablize� the preconditioner when
solving convection�di�usion equations� The SUPG method also suggests the following version of
the algorithm with weights in the upwinding directions� Let

T �
X

��i�N

Ti �
X

��i��j�N

�ijTiTj � ����

Here �ij equals zero or �� where � � � � ��� is a constant� The choice of �ij depends on
the direction of the �ow� The intuition is that if the �ow goes from �

�

j to �
�

i and if these two
subdomains are neighbors� then we set �ij to be a positive constant �� and �ji to zero� We have
not exploited the possibility of using di�erent �ij for di�erent pairs of subdomains� Of course� if �

�

i

and �
�

j are not neighbors we then set �ij � �ji � �� The motivation here is exactly the same as in
using the upwinding techniques in the solution of problems that involve hyperbolic components� A
di�erence is that the usual upwinding techniques are used only at the discretization level� and our
�upwinding� is introduced as a way to de�ne the preconditioning polynomial� It is understandable
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Figure �� The term TiTj is kept in the Schwarz polynomial only if the �ow goes from �
�

j to �
�

i�

that� for problems that have a strong characteristic direction� such as convection�di�usion problems�
some kind of upwinding can speed up the convergence�

We now propose a heuristic method to be used to determine the �ow direction� Let ��x� �
�b��x�� � � � � bd�x��T be the characteristic vector of the �ow� For each pair of neighboring subdomains�
we choose a curve� such as  ij in Fig� � or ��i

T ��j � that more or less� separates the subdomains�
Since we are de�ning preconditioners� it is not necessary to �nd the precise separating curve� Let
nij � de�ned on  ij � be the unit vector pointing from subdomain �

�

j to �
�

i� We de�ne the parameters
�ij by looking at the sign of a line integral

�ij �

����
���

� if

Z
��x� � nijds � �

� otherwise�

where the integral is taken along the curve  ij �

Theorem 	 Assume that ��ij � ��ji 
� �� and � � �ij � �� for all i� j� Then there exist positive
constants H�� c�H�� and C� independent of the mesh parameters h and H� such that if H � H��
the operator �P is uniformly bounded� i�e��

k �Puka � Ckuka� �u � Vh�

and its symmetric part is uniformly positive de�nite� i�e��

a� �Pu� u� � ckuk�a� �u � Vh�

��� Unsteady convective�di�usion problems

We consider the unsteady problem �	�� As the �ow direction changes for most unsteady problems�
the local Schwarz algorithm has more advantage over the multiplicative Schwarz methods whose
convergence depends heavily on the ordering of the subdomains� A good global ordering is very
hard to obtain in practice� Other Schwarz type methods for unsteady problems can be found in
	� ��� �	��

For each pair of neighboring subdomains� with indices i and j� we de�ne a multiplicative Schwarz
operator

P �
ij � I � �I � T �

j ��I � T �
i ��

�



As observed in 	� ���� for unsteady problems� the coarse space is usually not necessary� we therefore
de�ne

P � �
X

P �
ij ����

without the coarse space operator� To analyze the spectral condition of P � � we need the bilinear
form a� �u� v� � �u� v� � �a�u� v��

We prove that

Theorem � ��� There exists a constant C � � independent of the mesh parameters� such that

kP �uka� � Ckuka� � �u � Vh�

��� If cH�� � H�� � ��H�� is small enough� i�e� � � cH�� � �c�� then there exists a constant
c��c�� � �� such that

a��P
�u� u� � c��c��a� �u� u�� �u � Vh�

The proof can be obtained by applying similar techniques as what we do in the previous sub�
section with Lemma 	�	 replaced by the following lemma�

Lemma ��� There exists a positive constant C� independent of the mesh parameters h� H and � �
such that for any i� j 
� � for which �

�

i and �
�

j overlap

�� �s�T �
i u� T

�
j u� � CH

�
kT �

i uk
�
a� � kT �

j uk
�
a�

�

�� �s�T �
i T

�
j u� T

�
i u� � CH

�
kT �

i uk
�
a� � kT �

j uk
�
a�

�

�� �s�u� T �
i T

�
j u� � CH

	
kT �

j uk
�
a� � kuk�

a� ��
�

i
�




for all u � Vh� The same estimates hold if the bilinear form s��� �� is replaced by the bilinear form
c��� ���

We remark that for unsteady problems� the inclusion of a coarse space is usually not necessary�
As shown in ��� of Theorem 	� the bad factor ��H� is multiplied by the time step � � which must
be reasonably small in order to obtain a time accurate solution�

Similarly� we can introduce �P � containing parameters �ij � It is not di�cult to show that as
long as the conditions ��ij � ��ji 
� � and � � �ij � � hold for all i� j� Theorem 	 remains valid�

� Numerical experiments

In this section� we present some experimental results to numerically understand the local multi�
plicative Schwarz algorithms� and to compare them with the classical additive and multiplicative
Schwarz algorithms for both symmetric positive de�nite and nonsymmetric problems� Although
the proposed methods belong to the class of optimal preconditioners� some e�ort is needed to obtain
the best performance for a particular test problem� especially in the selection of the parameter �
in both symmetric and nonsymmetric cases� We note that � � ��� is usually not a good choice� As
mentioned earlier� our optimal convergence theory requires that the coarse grid is su�ciently �ne�
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Figure �� The curves show the iteration history of the additive� multiplicative and the local multi�
plicative Schwarz preconditioned CG methods� The solid curve represents the local multiplicative
Schwarz method� the dashed curve represents the additive Schwarz and the broken curve represents
the multiplicative Schwarz method�

however� in practice� especially in the nonsymmetric cases� it is quite di�cult to �nd a coarse grid
of proper size such that the convergence is not slower than the pure local�means no coarse space�
Schwarz algorithms�

We consider the following model problem on the unit square�
Lu � f in � � ��� ��� ��� ���
u � � on ���

The right�hand side f is always chosen such that the exact solution is u � xexysin�	x�sin�	y��
The coe�cients of L will be speci�ed later for each test problem� We use an ��� � ��� uniform
�ne mesh throughout this section� The number of subdomains is �� in all test cases� i�e�� we use an
�� � uniform partitioning of the domain into subdomains� with a uniform �h overlap between each
neighboring subdomains� where h � ������ In our experiments� the coarse grid linear system and
all the subdomain linear systems are solved exactly by using a sparse linear system solver from the
Argonne National Laboratory software package PETSc of Gropp and Smith ���� All the Schwarz
methods are used as left preconditioners for the CG method� or the non�restarted GMRES method�
with a zero initial guess� We stop the CG or GMRES iteration as soon as the preconditioned initial
residual is reduced by a factor of ����� We discretize the PDE at both the �ne and the coarse
levels by the usual �ve�point central� or upwinding� �nite di�erence method�

Example �� We �rst test the algorithms on a simple Poisson�s equation �This is not what
the new algorithm is designed for�� In Fig� �� we show that the new algorithm is slower than the
multiplicative Schwarz algorithm� but with parameter � � ��	� faster than the additive Schwarz
algorithm� Without using a proper �� the algorithm can be slow� An �� � coarse solve is included
in all cases� The multiplicative Schwarz algorithm is symmetrized in order to be able to use CG�
We remark again that even though the symmetrized multiplicative Schwarz is the fastest among the
three algorithms� it has the lowest parallelism� The per�step arithmetic cost of the new algorithm
is higher due the repetition of the subdomain solves�

Example �� We let Lu � �r � �ru� �r � ��u�� where � � �b�� b�� is a constant vector with
b�� b� � ������ or ������� We discretize the PDE with the usual �ve�point central �nite di	erence
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Figure 	� Central �nite di�erence discretization with � � ����� ����� The left �gure shows cases
without coarse spaces� and the right �gure shows cases with coarse spaces� The curves show the
iteration history of the additive� multiplicative and the local multiplicative Schwarz preconditioned
GMRES methods� The solid curves represent the local multiplicative Schwarz method� the dashed
curves represent the additive Schwarz and the broken curves represent the multiplicative Schwarz
method�

method� We �rst compare the new method� with � � ���� with the additive and multiplicative
Schwarz methods without coarse space in the case � � ����� ����� For the multiplicative Schwarz�
we order the subdomains by the natural ordering� No coloring is incorporated in the implemen�
tation� The results are presented in the left �gure of Fig� 	� It can be seen clearly that � for
� � ����� ����� the multiplicative Schwarz method is the fastest of the three� However� the sit�
uation changes� if we let � � ����������� and do not change the subdomain ordering in the
multiplicative Schwarz method� As shown in the left �gure of Fig� �� the new method becomes the
fastest of the three� Apparently� the changing of the �ow characteristics hurts the convergence of
the multiplicative Schwarz algorithm� but the new method does not su�er�

We next present cases when coarse spaces are included in the preconditioners� The optimal
convergence theory for all three Schwarz algorithms requires that the coarse grid is su�ciently
�ne� Our numerical experiments suggest that they in fact need coarse grid of di�erent sizes� i�e��
a su�ciently �ne coarse grid for one Schwarz method may not be su�ciently �ne for the others�
We say a coarse space is �good� if the total number of iterations is smaller than without it� A
coarse grid� not su�ciently �ne� usually lead to a slower convergence in all Schwarz type methods�
In the right �gure of Fig� 	� we present three Schwarz algorithms with three di�erent coarse grid
sizes� namely the multiplicative Schwarz with an �� � �� coarse grid! the additive Schwarz with
an 	�� 	� coarse grid! the new method with an ��� �� coarse grid� and � � ���� Comparing the
right �gures in Fig� 	 and Fig� �� we observe that the multiplicative Schwarz method with a coarse
space of proper size is always the best of the three�

Example 	� We let Lu � �r � �ru� �r � ��u�� where � � �b�� b�� is a constant vector with
b�� b� � ������ or �������� The equation is discretized by the usual �ve�point upwinding �nite
di	erence method� We run the test code without using coarse spaces for four di�erent constant
�ow directions� As before� for the multiplicative Schwarz preconditioner� we order the subdomains
in the natural ordering� No coloring is assumed� For the new algorithm we use � � ���� The
residual history is presented in Fig� �� It is clear that if the subdomain ordering does not follow
the �ow characteristic direction the convergence of multiplicative Schwarz becomes signi�cantly
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Figure �� Central �nite di�erence discretization with � � ������������ The left �gure shows cases
without coarse spaces� and the right �gure shows cases with coarse spaces� The curves show the
iteration history of the additive� multiplicative and the local multiplicative Schwarz preconditioned
GMRES methods� The solid curves represent the local multiplicative Schwarz method� the dashed
curves represent the additive Schwarz and the broken curves represent the multiplicative Schwarz
method�

Table �� nd denotes the number of subdomains

� nd � � nd � �� nd � ��

� � �� ��

��� � �� ��

���� � �� �	

����� � �� ��

������ � � ��

worse than in a case when the ordering follows the �ow� Additive Schwarz is not sensitive at all
to such an ordering� but is quite slow� The new algorithm does not need any special attention to
the ordering� and converges faster than �a� the additive Schwarz algorithm in all four cases! �b� the
worst case of the multiplicative Schwarz algorithm�

Our experience suggests that it is by no means easy to �nd a coarse space of proper size in the
case that the PDE is discretized by upwinding �nite di�erence methods� Further theoretical and
numerical investigation of this situation is underway�

Example �� We test a problem obtained from the implicit discretization of an unsteady
equation� Let Lt � I � �L� where L is de�ned in Example 	� with � � ������ ����� and I is
the identity operator� We choose the number of subdomains as nd � �� ��� �� and the time step
� � �� ����� ����� ���	� ���
� We �x � � ����� We summerize the number of GMRES iterations
in Table ��

� Conclusion

In this paper� we introduce a new class of overlapping domain decomposition methods for solving
convection�di�usion equations� The method improves the classical multiplicative Schwarz methods
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Figure �� The �gures show the iteration history of the additive �upper left�� multiplicative �upper
right� and the new �lower left� Schwarz preconditioned GMRES method� The line types correspond
to the �ow directions� i�e�� solid lines � � �������������� dashed lines � � ������ ������ dotted
lines � � ������������ and broken lines � � ������� ������
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by reducing their sensitivity with respect to the �ow direction� For the Galerkin �nite element
discretization� we prove that the method is optimal in the sense that the convergence rate is
independent of the mesh size and also the number of subdomains in both R� and R	� For unsteady
problems� as long as ��H is reasonably small� the algorithms are optimal without a coarse space�
Numerical experiments are also reported�
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