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Abstract
In the past few years, the number of processor cores of top ranked supercomputers has increased drastically. It is challenging 
to design efficient parallel algorithms that offer such a high degree of parallelism, especially for certain time-dependent prob-
lems because of the sequential nature of “time”. To increase the degree of parallelization, some parallel-in-time algorithms 
have been developed. In this paper, we give an overview of some recently introduced parallel-in-time methods, and present 
in detail the class of space-time Schwarz methods, including the standard and the restricted versions, for solving parabolic 
partial differentialequations. Some numerical experiments carried out on a parallel computer with a large number of proces-
sor cores for three-dimensional problems are given to show the parallel scalability of the methods. In the end of the paper, 
we provide a comparison of the parallel-in-time algorithms with a traditional algorithm that is parallelized only in space.

Keywords  Parallel space-time method · Additive Schwarz method · Parabolic problem · Implicit method · Parallel 
scalability

Mathematics Subject Classification  65N55 · 65M55 · 65M60

1  Introduction

Generally speaking, time is sequential in nature. Traditional 
parallel algorithms for solving time-dependent problems 
restrict the parallelization in the spatial dimension, and 
are purely sequential in the temporal dimension. In such 
approaches, the solution at the current time step can not 
be obtained without knowing the solution at previous time 
steps. For applications with sufficient amount of degrees of 
freedom in the spatial dimension, parallelization in space is 
often enough for the efficient use of the parallel machine. 
However, for applications with limited degrees of freedom 
in the spatial dimension and many time steps are required to 
resolve the dynamics of the time-dependent solution, paral-
lelization in both space and time is a better option. The old-
est time parallel algorithm was present in 1964 by Nievergelt 
(1964). In the recent years, parallel algorithms with space-
time concurrency have received more and more attention and 
we briefly review some of the approaches below.

Waveform relaxation (WR) is an important time parallel 
algorithm which was initially presented for solving prob-
lems in large-scale circuit simulations (Lelarasmee et al. 
1982). The word waveform denotes signals traveling along 
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the circuit, and relaxation is related to the algebraic relaxa-
tion scheme, such as Gauss–Seidel relaxation and Jacobi 
relaxation. The basic idea of WR is decomposing the system 
into decoupled subsystems by applying relaxation directly 
to the system of linear or nonlinear algebraic-differential 
equations, and the decoupled subsystems can be solved in 
parallel on the whole time interval. As a special iterative 
method, WR has been successfully applied to many prob-
lems in circuit simulations (Beyene 2008; Jiang et al. 2000; 
Ruehli and Johnson 1999) and to solving ordinary differen-
tial equations (ODEs) (Burrage 1995). Further, this method 
has been extended to solving parabolic PDEs (Bjorhus and 
Stuart 1997; Jeltsch and Pohl 1995), in which the PDE is first 
transformed into ODEs by a semi-discretization in space, 
then the system of ODEs is solved by WR. Actually, WR 
is closely related to the well-known simple Picard-Lindelöf 
iteration. We refer to Miekkala and Nevanlinna (1987), 
Nevanlinna (1990) for the convergence analysis and Bel-
len et al. (1993) for the stability analysis. One drawback of 
WR is its slow convergence for some problems. By combin-
ing WR and the overlapping domain decomposition (DD) 
method (Smith et al. 1996; Toselli and Widlund 2005), the 
Schwarz WR (SWR) method was developed for linear and 
semilinear parabolic equations in Gander and Stuar (1998), 
Giladi and Keller (2002), Simoens and Vandewalle (2000), 
Tran (2014). It shows that the convergence of SWR is faster 
than the classical WR Gander (1999), Gander and Stuar 
(1998), Giladi and Keller (2002). By introducing optimal 
transmission operators, such as the Robin or Ventcell type 
operators, one can obtain some optimized SWR (oSWR) 
methods (Bennequin et al. 2009; Gander 2006; Wu and Xu 
2017) that are faster than SWR, however, it is sometimes 
expensive to find the optimization parameters in the opti-
mal transmission operators. Some techniques about how 
to choose the optimization parameters are presented in Al-
Khaleel et al. (2014), Halpern et al. (2012).

The parareal algorithm was first presented in Lions et al. 
(2001) for solving evolution problems. The name parareal 
is derived from parallel real time computations of evolution 
problems. The basic idea of the algorithm is to decompose 
the global problem in the temporal dimension into a series 
of independent problems on smaller time intervals, which 
are then solved in parallel. The parareal algorithm can be 
described in terms of two computation processes, i.e., the 
propagator � on the coarse mesh with time step size �T  
and the propagator ℱ on the fine mesh with time step size 
�t , respectively. And these two time propagators are com-
bined by a predictor-corrector scheme. More precisely, the 
fine time propagator ℱ solves the independent problems 
on time subdomains in parallel using certain sequential-
in-time methods, such as backward-Euler, Crank-Nicolson, 
Runge–Kutta and other high-order methods. Since 𝛿t ≪ 𝛿T  , 
the solution computed by propagator ℱ is more accurate, but 

the cost is high. On the contrary, the coarse time propagator 
� solves the problem by a simple, often less accurate, fast 
sequential time integrator. The solution computed by � pro-
vides a correction for ℱ and therefore the overall algorithm 
converges. The parareal algorithm has received a lot of atten-
tion over the past few years (Bal 2005; Dai and Maday 2013; 
Gander and Vandewalle 2007; Wu and Zhou 2015), and it 
has been successfully applied to a variety of problems, such 
as parabolic problems (Gander and Vandewalle 2007; Rupre-
cht et al. 2016), hyperbolic problems (Dai and Maday 2013), 
optimal control problems (Du et al. 2013; Maday et al. 2007; 
Mathew et al. 2010), Navier–Stokes equations (Trindade and 
Pereira 2006) and non-differential equations (Bal and Maday 
2002). The parallel efficiency of the parareal algorithm is far 
from ideal, it is proportional to 1 / k, here k denotes the num-
ber of iterations (Bal 2005; Farhat and Chandesris 2003). 
To improve the parallel efficiency, a hybrid algorithm has 
recently been proposed based on the parareal algorithm and 
the spectral deferred corrections algorithm. It shows that the 
parallel efficiency of this algorithm can be much closer to 
1 (Minion 2010). Several variants of the parareal algorithm 
are also available, for example, PITA (parallel implicit time 
integrator) (Farhat and Chandesris 2003) and PFASST (par-
allel full approximation scheme in space and time) (Bolten 
et al. 2017; Minion et al. 2015).

The space-time multigrid method (Hackbusch 1984) is 
an interesting method that uses the elliptic multigrid method 
with a standard spatial smoother to solve parabolic PDEs on 
many time-levels simultaneously. This parabolic multigrid 
method is further studied in Horton (1992). A Fourier mode 
analysis shows that the success of this method requires that 
the meshes have a large aspect ratio �∕h2 ( � and h denote 
the time step size and the mesh size, respectively) (Van-
dewalle and Horton 1995). Instead of the spatial smoother 
used in the parabolic multigrid method, the multigrid WR 
method with a zebra Gauss–Seidel smoother was proposed 
in Lubich and Ostermann (1987). This method was carefully 
studied for solving incompressible Navier–Stokes equations 
(Oosterlee and Wesseling 1993) and a chemical reaction-
diffusion problem (Vandewalle and Piessens 1991). A vari-
ant of the multigrid WR algorithm with a line relaxation 
smoother was introduced in (Horton et al. 1995), which has 
a fast convergence rate but the computational complexity is 
increased by a logarithmic factor. By employing a parallel 
pointwise smoother instead of the line-wise smoother, Hor-
ton and Vandewalle (1995) presented a space-time multigrid 
that solves the entire space-time problem simultaneously. 
For some applications, the fully discrete parabolic problem 
may become strongly anisotropic. To improve the robustness 
of the method one can change the coarsening strategy, i.e., 
using coarsening only in the direction where point smooth-
ing is successful. Another approach presented in Gander and 
Neumüller (2016) is to use a block Jacobi smoother instead 
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of the point Jacobi smoother. A local Fourier mode analysis 
shows that this new space-time multigrid method with block 
Jacobi smoother converges well, and numerical experiments 
demonstrate that it has excellent strong and weak scalability 
properties on large scale parallel computers.

Recently, a nonintrusive, optimal-scaling time paral-
lel method based on multigrid reduction (MGR) was pro-
posed Dobrev et al. (2017), Falgout et al. (2014), Falgout 
et al. (2017). The main advantage of this method is that the 
software is built on top of some existing sequential time-
stepping routines, and the numerical comparison with the 
traditional time-stepping algorithm shows that this method 
is able to achieve a significant speedup. More details on 
numerical comparisons between the space-time multigrid 
with point-wise relaxation (Horton and Vandewalle 1995), 
space-time multigrid with block relaxation (Gander and 
Neumüller 2016), space-time concurrent multigrid wave-
form relaxation with cyclic reduction (Horton et al. 1995) 
and multigrid-reduction-in-time (Falgout et al. 2014) can 
be found in Falgout et al. (2017). Some other time parallel 
methods, such as the direct time parallel methods, can be 
found in a recent review paper (Gander 2015).

Note that all the methods mentioned above are devel-
oped by modifying some existing, standard time integration 
schemes (parallel in space, but sequential in time). The mod-
ifications introduce the desired extra parallelism, but also 
alter the discretization error and/or the stability conditions. 
Recently, several implicit space-time DD precondition-
ers were presented for parabolic PDEs (Cong et al. 2014), 
including some one- and two-level overlapping Schwarz pre-
conditioned GMRES methods. Different from other space-
time methods, these methods do not alter the accuracy or 
stability condition of the original, non-time-parallel schemes 
since they are precondiitoners. The optimal convergence 
analysis of two-level and multilevel space-time additive 
Schwarz methods for solving parabolic PDEs was estab-
lished in Li and Cai (2015), Li et al. (2018). The numerical 
experiments carried out on a parallel supercomputer show 
that these methods exhibit excellent strong and weak scal-
abilities when the number of processors is large. Some of the 
techniques have also been used to solve the unsteady inverse 
source problems (Deng et al. 2015, 2016) and flow control 
and heat transfer problems (Yang and Cai 2017). In Badia 
and Olmand (2017), a space-time BDDC (balancing DD by 
constraints) preconditioned GMRES method was introduced 
for solving a set of linear and nonlinear parabolic problems, 
and an excellent weak scalability result is achieved on a 
supercomputer with thousands of processors.

In this paper, we focus mainly on the space-time Schwarz 
methods including both additive and restricted additive 
Schwarz. We investigate the parallel performance of these 
methods and show their superiority compared to a traditional 

time-stepping method. This rest of the paper is organized as 
follows. In Sect. 2, we introduce a model parabolic bound-
ary value problem and describe the space-time Schwarz algo-
rithms. In Sect. 3, some numerical experiments are reported 
to illustrate the performance of the algorithms. Finally, some 
conclusions are given in the last section.

2 � A model problem and the space‑time 
additive Schwarz algorithms

We consider a model parabolic equation:

where 𝛺 ⊂ Rd (d = 2 or 3) is a bounded, open polygonal 
(or polyhedra) domain and f (x, t) ∈ L2(� × [0, T]) . Let 
0 = t0 < t1 < ⋯ < tn = T  and � ≡ Δtk = tk − tk−1 . Suppose 
uk is the solution at time tk . Traditional time-stepping meth-
ods solve (1) time step by time step. Consider the backward 
Euler scheme for the time discretization, the variational form 
of (1) at time tk is to find uk ∈ H1

0
(�) , k ≥ 1 , such that

where the bilinear forms A(u, v) = ∫
� ∇u ⋅ ∇vdx and 

(u, v) = ∫
� u ⋅ vdx.

Different from the traditional time-stepping methods, 
the idea of the space-time method is to group equations for 
s (s ≤ n) time steps into a single system which is then solved 
by a Schwarz preconditioned Krylov subspace method in 
parallel

where s is often called the window size. By using the Galer-
kin finite element method for the spatial discretization, we 
obtain a fully discretized linear system of equations:

where � is the vector associated with the right-hand side of 
(3) and

(1)

⎧
⎪⎨⎪⎩

ut − Δu = f , in � × (0, T],

u(x, t) = 0, on �� × (0, T],

u(x, 0) = u0(x), in �,

(2)(uk, v) + �A(uk, v) − (uk−1, v) = �(f , v) ∀v ∈ H1
0
(�),

(3)

⎧⎪⎨⎪⎩

(u1, v1) + �B(u1, v1) − (u0, v1) = �(f 1, v1)
(u2, v2) + �B(u2, v2) − (u1, v2) = �(f 2, v2)

⋮

(us, vs) + �B(us, vs) − (us−1, vs) = �(f s, vs),

(4)�u∗ = � ,

� =

⎛
⎜⎜⎜⎜⎜⎝

�A +M

−M �A +M

⋱ ⋱

⋱ ⋱

−M �A +M

⎞
⎟⎟⎟⎟⎟⎠

,
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here M and A denote the mass matrix associated with the 
bilinear form (⋅, ⋅) and the stiffness matrix associated with 
the bilinear form A(⋅, ⋅) , respectively.

To present the space-time Schwarz algorithms, we first 
introduce a space-time partition (Li et  al. 2018). Let 
�l = {Kl

i
}N

l

i=1
(l = 0, 1,… , L) be a shape regular family of 

nested conforming meshes covering � , here L is the number 
of levels and Nl denotes the number of elements on level l. Let 
Vl = Vhl

 be the space of continuous piecewise linear functions 
associated with the partition �l . Set hl = maxi diam(Kl

i
) . For 

simplicity, we set VH = V0 with mesh size H = h0 and Vh = VL 
with mesh size h = hL . Let {�0

li
}
Nl

i=1
 be a set of non-overlapping 

spatial subdomains such that � =
⋃Nl

i=1
�0

li
 , and {Ilj}

Ml

j=1
 be a 

non-overlapping partition of I = [0, T] = [0, t
sl
l
] such that 

I =
⋃Ml

j=1
Ilj , where sl denotes the window size of the time level 

l. Denote the overlapping subdomains corresponding to {�0
li
} 

and {Ilj} by {��
li
} (with size Hl = O(hl−1) ) and {I�

lj
} (with size 

H�
l
= O(�l−1) ), respectively. The corresponding overlaps are 

denoted by 𝛿l > 0 and ��
l
≥ 0 . In this paper, we only consider 

the case ��
l
= 0 , i.e., there is no overlap in the temporal direc-

tion. slj denotes the number of time steps in Ilj . For conveni-
ence, a three-level space-time mesh is presented in Fig. 1.

For each ��
li
 , the finite element space is defined as 

Vi
l,�

= Vl ∩ H1
0
(��

li
) . Then, we can define the space-time finite 

element subspaces on subsomain ��
li
× Ilj as

where Vik
l,�

= 0 ×⋯ × 0 ×

k

Vi
l,� × 0 ×⋯ × 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
sl

, and the 0’s denote 

the zero spaces at the other time steps and k = 1, 2,… , sl. Let 
�

T
0
∶ (VH)

s0 → (Vh)
s and (�l,�

ij
)T ∶ (Vi

l,�
)sj → (Vl)

s be the 
interpolation operators, then the whole space-time finite 

(Vi
l,�)

slj =
⋃
tk
l
∈Ilj

Vik
l,� ,

element space (Vh)
s can be decomposed into the sum of the 

coarse space (VH)
s0 and the subspaces as

where s0 denotes the window size of the coarsest time level.
By restricting and extending the global matrix � , we 

obtain a coarse matrix �0 = �0��
T
0
 and all the subspace 

matrices �l,�
ij

= �
l,�
ij
�(�l,�

ij
)T . The l-level space-time additive 

Schwarz preconditioners for the matrix � are defined by 
using the coarse and the submatrices

as �−1
MAS

= �
−1
0

+
∑L

l=1
�

−1
l,�

 . More precisely, the multilevel 
space-time additive Schwarz algorithm for solving (4) can 
be written as

where �MAS = �
−1
0
� +

∑L

l=1
�

−1
l,�
� = �

−1
MAS

�, and �
MAS

=

�
−1
0
��∗ +

∑L

l=1
�

−1
l,�
��∗ = �

−1
MAS

�.
Now we present the multilevel space-time additive 

Schwarz algorithm.

Algorithm 1  (Multilevel space-time additive Schwarz algo-
rithm) Find the solution of (4) by solving (6) with GMRES, 
where the action of the preconditioner �−1

MAS
 on the global 

residual � is carried out as follow:
   � ← �

T
0
�

−1
0
�0�

   For l = 1, 2,… , L

      � ← � +
∑Ml

j=1

∑Nl

i=1
(�l,�

ij
)T (�l,�

ij
)−1�l,�

ij
�

   End

(Vh)
s = �

T
0
(VH)

s0 +

L⋃
l=1

Ml⋃
j=1

Nl⋃
i=1

(�l,�
ij
)T (Vi

l,�)
slj ,

(5)

�
−1
0

= �
T
0
�

−1
0
�0 and

�
−1
l,� =

Ml∑
j=1

Nl∑
i=1

(�l,�
ij
)T (�l,�

ij
)−1�l,�

ij
, l ≥ 1

(6)�MAS� = �MAS,

Fig. 1   A multilevel space-time mesh of � × [0,T] consisting of three meshes. Space-time interpolations and restrictions are used to transfer 
functions from one mesh to another
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The restricted additive Schwarz (RAS) precondition-
ing technique was first introduced for solving nonsingular 
linear systems (Cai and Sarkis 1999). It shows that RAS 
outperforms the classical AS since it requires fewer itera-
tions, as well as less communication and CPU time (Smith 
et al. 1996). RAS has receive great attention and is the 
default Schwarz preconditioner for solving linear systems 
in the popular PETSc software package (Balay et al. 2018). 
Next, we present a multilevel space-time restricted additive 
Schwarz algorithm.

Define the space-time finite element subspaces on sub-
somains �0

li
× Ilj as

w h e r e  Vik
l,0

= 0 ×⋯ × 0 ×

k

Vi
l,0
× 0 ×⋯ × 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
sl

 a n d 

Vi
l,0

= Vl ∩ H1
0
(�0

li
) . Let (�l,0

ij
)T ∶ (Vi

l,0
)sj → (Vl)

s be the inter-
polation operators. Define the l-level space-time restricted 
additive Schwarz preconditioners by

The multilevel space-time restricted additive algorithm for 
solving (4) can be written as

H e r e  �MRAS = �
−1
0
� +

∑L

l=1
�

−1
l,0
� = �

−1
MRAS

�  a n d 
�MRAS = �

−1
MRAS

�.

Algorithm  2  (Multilevel space-time restricted additive 
Schwarz algorithm) Find the solution of (4) by solving (8) 
with GMRES method, where the action of the precondi-
tioner �−1

MRAS
 on the global residual � is computed as follow:

   � ← �
T
0
�

−1
0
�0�

   For l = 1, 2,… , L

      � ← � +
∑Ml

j=1

∑Nl

i=1
(�l,0

ij
)T (�l,�

ij
)−1�l,�

ij
�

   End

For elliptic problems, an optimal convergence theory 
was develoepd for the additive Schwarz methods (Toselli 
and Widlund 2005), but the theory does not apply for the 
restricted Schwarz methods. A convergence analysis at the 
algebraic level is presented in Frommer and Szyld (2001), 
Nabben and Szyld (2003). Recently an optimal space-time 
additive Schwarz theory is also developed (Li et al. 2018); 
under some reasonable conditions, the convergence rate of 
the two- and multilevel space-time additive Schwarz meth-
ods is bounded independently of the mesh sizes, the number 

(Vi
l,0
)slj =

⋃
tk
l
∈Ilj

Vik
l,0
,

(7)�
−1
l,0

=

Ml∑
j=1

Nl∑
i=1

(�l,0

ij
)T (�l,�

ij
)−1�l,�

ij
, l ≥ 1.

(8)�MRAS� = �MRAS.

of subdomains and the window size. Let �̂ be the symmetric 
and positive part of � , we define the �̂-inner product by

The convergence rate of Algorithm 1 can be characterized 
by the two quantities

and the residual at the kth iteration is bounded as

where �k = � − �MAS�
k . Here cp = c

(
max1≤l≤L(1 + hl−1∕�l)

)−1 
and Cp = C

�
1 + ‖�‖2

�
 in Li et al. (2018), where C and c are 

constants independent of the mesh sizes, the number of sub-
domains, the window size and the number of levels. And the 
matrix � = {�lk

jq,ip
}l,k≤L,j≤Ml,q≤Mk ,i≤Nl,p≤Nk

 , �lk
jq,ip

 is the cosine 
of the angle between the subspaces (Vi

l
)slj and (Vp

k
)skq , i.e., 

�lk
jq,ip

= cos
(
(Vi

l
)slj , (V

p

k
)skq

)
.

3 � Numerical results

In this section, we present some numerical results to illus-
trate the parallel performance of the space-time Schwarz 
algorithms. We implement these algorithms on the top of an 
open source package PETSc (Balay et al. 2018). All experi-
ments are carried out on the Tianhe-2 supercomputer located 
at the National Supercomputer Center in Guangzhou. Only 
CPUs are used in the tests.

In the numerical experiment, we divide the space-time 
domain [0, 1]3 × [0, 32] into Np = Px × Py × Pz × Pt subdo-
mains and assign each subdomain to one processor. All the 
subdomain problems are solved using ILU, and the over-
lap is set as 1. The problem is solved by a preconditioned 
GMRES(30) method with the stopping condition

Example 1  Consider a three dimensional convection diffu-
sion equation

(�, �)
�̂
= �

T
�̂�.

cp = inf
�≠�

(�MAS�, �)�̂

(�, �)
�̂

and Cp = sup
�≠�

‖�MAS�‖�̂
‖�‖

�̂

,

‖�k‖�̂ ≤

�
1 −

c2
p

C2
p

� k

2

‖�0‖�̂,

‖�k‖2
‖�0‖2 ≤ 10−6.

{
ut − Δu + � ⋅ ∇u = f , in � × (0, T],

u(x, y, z, 0) =
1

0.8
e−(x

2+y2+z2)∕(0.8), in �,
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where � = (1, 1, 1) , f = 1−x−y−z

8(t+0.2)2
e−(x

2+y2+z2)∕(4(t+0.2)) and the 
analytical solution is

with consistent Dirichlet boundary conditions.

u(x, y, z, t) =
1

4(t + 0.2)
e−(x

2+y2+z2)∕(4(t+0.2))

We test this example to illustrate the strong scal-
ability of the space-time methods with different s on a 
65 × 65 × 65 × 2048 space-time mesh. The mesh size and the 
time step size on level l (l = 0, 1) are set as h0 = �0 = 1∕32 
and h1 = �1 = 1∕64 , respectively. To obtain better parallel 
performance, the spatial mesh is decomposed evenly such 
that each processor holds approximately the same number 

Table 1   The averaged 
number of iterations and 
the total compute time for 
solving Example 1 on a 
65 × 65 × 65 × 2048 space-time 
mesh using Algorithm 1

(corresponding to rows with s > 1 ) and the traditional time stepping method parallelized only in space with 
a two-level additive Schwarz method with h0 = �0 = 1∕32 and h1 = �1 = 1∕64 (corresponding to the row 
with s = 1)

N
p

8 16 32 64 128 256 512 1024 2048 4096 8192

s = 1 GMRES 4.3 – – 4.4 – – 4.5 – – 4.7 4.9
Time(s) 293.3 – – 58.1 – – 42.0 – – 64.0 67.5

s = 2 GMRES 4.5 – – 4.7 – – 4.8 – – 5.0 5.2
Time(s) 321.2 – – 55.9 – – 28.1 – – 43.1 48.3

s = 4 GMRES 4.7 – – 5.0 – – 5.1 – – 5.2 5.4
Time(s) 348.6 – – 56.5 – – 22.7 – – 28.7 35.8

s = 32 GMRES * 8.0 8.0 8.0 8.0 8.5 8.5 8.5 9.7 9.5 9.5
Time(s) * 307.6 155.2 79.8 44.3 30.6 22.6 20.7 17.9 15.2 16.0

s = 256 GMRES * * 9.0 9.0 9.0 9.0 9.0 9.0 9.5 9.5 9.5
Time(s) * * 324.4 163.4 86.2 46.5 30.0 21.0 15.4 10.4 11.8

s = 512 GMRES * * * 9.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0
Time(s) * * * 255.3 134.1 72.4 44.1 28.0 15.7 13.5 13.5

s = 1024 GMRES * * * * 10.5 10.5 10.5 10.5 10.5 10.5 11.0
Time(s) * * * * 233.1 122.7 72.7 44.6 24.0 14.9 17.4

s = 2048 GMRES * * * * * 12.0 12.0 12.0 12.0 12.0 12.0
Time(s) * * * * * 216.0 118.6 67.8 39.2 21.5 13.9

Table 2   The averaged 
number of iterations and 
the total compute time for 
solving Example 1 on a 
65 × 65 × 65 × 2048 space-time 
mesh using Algorithm 2

(corresponding to rows with s > 1 ) and the traditional time stepping method parallelized only in space with 
a two-level additive Schwarz method with h0 = �0 = 1∕32 and h1 = �1 = 1∕64 (corresponding to the row 
with s = 1)

N
p

8 16 32 64 128 256 512 1024 2048 4096 8192

s = 1 GMRES 4.3 – – 4.4 – – 4.5 – – 4.7 4.9
Time(s) 292.9 – – 59.3 – – 41.6 – – 62.2 66.6

s = 2 GMRES 4.5 – – 4.7 – – 4.8 – – 5.0 5.2
Time(s) 324.2 – – 55.3 – – 28.0 – – 41.5 48.0

s = 4 GMRES 4.7 – – 5.0 – – 5.1 – – 5.2 5.4
Time(s) 348.5 – – 56.0 – – 22.9 – – 28.7 35.3

s = 32 GMRES * 8.0 8.0 8.0 8.0 8.5 8.5 8.5 9.7 9.5 9.5
Time(s) * 307.1 154.8 79.7 44.3 30.4 22.6 20.1 17.8 15.2 15.9

s = 256 GMRES * * 9.0 9.0 9.0 9.0 9.0 9.0 9.5 9.5 9.5
Time(s) * * 322.9 162.6 86.2 46.3 29.9 20.8 15.6 10.6 11.6

s = 512 GMRES * * * 9.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0
Time(s) * * * 256.6 134.4 71.5 44.0 28.6 15.4 13.5 12.9

s = 1024 GMRES * * * * 10.5 10.5 10.5 10.5 10.5 10.5 11.0
Time(s) * * * * 233.0 122.3 72.7 44.9 23.8 14.5 17.2

s = 2048 GMRES * * * * * 12.0 12.0 12.0 12.0 12.0 12.0
Time(s) * * * * * 215.1 118.5 68.1 39.3 21.6 12.6
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of mesh points. And we omit some cases marked by “-” in 
Tables 1 and 2. Moreover, “*” indicates that the number of 
processors is too small to solve the problem.

The numerical results of Algorithm 1 are presented in 
Table 1 and Fig. 2. Note that the sequential time stepping 
algorithm is the special case of Algorithm 1 with s = 1 . 
Table  1 shows that the average number of iterations is 
bounded independent of the number of processors for each 
window size s. For the case s = 1 , the total compute time 
decreases quickly at the beginning and then increases a lit-
tle with the number of processors. It means that the com-
putation/communication ratio decreases as we increase the 
number of processors. The compute time curve on the left 
of Fig. 2 shows that the strong scalability of the classical 
time stepping algorithm is not good when the number of 

processors is large. For the cases s = 2, 4, 32, 256, 512, 1024 , 
the compute time curves behave similar to the case of s = 1 , 
but they preform much better than the classical time stepping 
algorithm as we increase the number of processors. It is clear 
that the compute time curve is linear for the case s = 2048 , 
i.e., we obtain linear speedup when solving all time steps 
of the problem at once. The crossover points (intersections 
with the curve corresponding to s = 1 ) in Fig. 2 demonstrate 
the benefit of the space-time algorithm compared to the time 
stepping algorithm. For examples, the crossover point is at 
about 64 processors for the cases s = 2, 4 , and it is at larger 
number of processors with larger s. When the problem size 
is fixed, we observe that the time stepping algorithm is faster 
when the number of processors is small, but the space-time 
Schwarz algorithm performs much better once the number 
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Fig. 2   The total compute time for solving Example 1 using sequential time-stepping (left) and Algorithm 1 with different window size s (right)
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Fig. 3   The total compute time for solving Example 1 using sequential time-stepping (left) and Algorithm 2 with different window size s (right)
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of processors goes beyond a certain number. We next study 
Algorithm 2. The numerical results in Table 2 and Fig. 3 
show that the average number of iterations is almost the 
same as that of Algorithm 1, and the compute time is a little 
less than that required by Algorithm 1 for each s.

4 � Concluding remarks

To exploit the full power of supercomputers, a new genera-
tion of methods with space-time concurrency are developed 
to solve time-dependent problems. In this paper, we gave an 
overview of several important time parallel methods includ-
ing waveform relaxation, parareal and space-time multigrid. 
And we also introduced a class of implicit space-time domain 
decomposition methods for solving parabolic PDEs. More pre-
cisely, we extend the classical Schwarz methods for elliptic 
problems as space-time preconditioners applied to solving par-
abolic problems, and describe the optimal convergence theory 
for the space-time additive Schwarz algorithms by using the 
matrix-based formulation. The theory for the restricted ver-
sion of the method is not available. The numerical experiments 
for three dimensional problems show both the additive and 
the restricted additive Schwarz methods have excellent par-
allel scalability and both outperform the classical time step-
ping method when the number of processors is large, but they 
require more memory as expected. Future work will focus on 
extending the methods for more realistic applications.
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