
Journal of Computational Physics 399 (2019) 108926
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A nonlinear elimination preconditioned inexact Newton 

method for blood flow problems in human artery with 

stenosis

Li Luo a, Wen-Shin Shiu b, Rongliang Chen b,c, Xiao-Chuan Cai d,∗
a Extreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
b Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
c Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
d Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 February 2019
Received in revised form 11 August 2019
Accepted 31 August 2019
Available online 9 September 2019

Keywords:
Blood flow problem
Navier-Stokes equations with resistive 
boundary conditions
Finite element
Inexact Newton method
Nonlinear preconditioning
Parallel computing

Simulation of blood flows in the human artery is a promising tool for understanding the 
hemodynamics. The blood flow is often smooth in a healthy artery, but may become locally 
chaotic in a diseased artery with stenosis, and as a result, a traditional solver may take 
many iterations to converge or does not converge at all. To overcome the problem, we 
develop a nonlinearly preconditioned Newton method in which the variables associated 
with the stenosis are iteratively eliminated and then a global Newton method is applied 
to the smooth part of the system. More specifically, we model the blood flow in a patient-
specific artery based on the unsteady incompressible Navier-Stokes equations with resistive 
boundary conditions discretized by a fully implicit finite element method. The resulting 
nonlinear system at each time step is solved by using an inexact Newton method with a 
domain decomposition based Jacobian solver. To improve the convergence and robustness 
of the Newton method for arteries with stenosis, we develop an adaptive restricted 
region-based nonlinear elimination preconditioner which performs subspace correction to 
remove the local high nonlinearities. Numerical experiments for several cerebral arteries 
are presented to demonstrate the superiority of the proposed algorithm over the classical 
method with respect to some physical and numerical parameters. We also report the 
parallel scalability of the proposed algorithm on a supercomputer with thousands of 
processor cores.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of computing technology, numerical simulation of blood flows has become a useful tool for 
the understanding of the hemodynamics in many biomechanical applications, such as the assessment of blood characteristics 
[8,32] and the prediction of surgery outcomes [26,31]. The computational based approaches are expected to become more 
popular due to their attractive merits: non-invasive, flexible and fast. However, there are several challenges. The complex 
geometry of the arterial tree, with stenosis in diseased patients, can generate highly nonuniform flows with recirculation and 
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possibly turbulence, and sometimes extra difficulties are induced by the physiological inflow/outflow boundary conditions 
needed in order to obtain a truncated domain of interest.

Several classes of numerical methods have been developed recently for the accurate calculation of blood flows in patient-
specific arteries. Taylor et al. [18,33,34] developed a framework of stabilized finite element method for solving the 3D 
incompressible Navier-Stokes equations coupled with 0D lumped parameter models for inflow and outflow boundary con-
ditions. The computational technology was used to study cardiac hemodynamics for coronary arteries with stenosis in [32]. 
Most of the published works for studying blood flows in human arteries with stenosis [20,21,25] were based on commercial 
software which is easy to utilize but offers limited parallelism, for instance, ANSYS-CFX [1] is scalable with only a few 
hundred processor cores. If a full 3D model is used for the blood flow, the discretization of incompressible Navier-Stokes 
equations leads to a large system (millions of degrees of freedom) of nonlinear equations, and the system is required to solve 
many times in the unsteady cases. To make the computational technology clinically feasible, the use of supercomputers and 
scalable parallel algorithms are indispensable.

In this paper, we introduce a fully implicit finite element method for the 3D unsteady incompressible Navier-Stokes 
equations, and aim to develop efficient, robust and scalable solution algorithms for the resulting discretized system. An 
inexact Newton method is used to solve the nonlinear algebraic system, within which a Krylov subspace method is used 
to solve the analytically computed Jacobian systems. The parallel scalability of the inexact Newton-Krylov method depends 
heavily on the performance of the linear preconditioner [9,19,36,37]. In this work, we consider the overlapping restricted 
additive Schwarz (RAS) preconditioner which has been shown to be scalable for a class of integral type resistive boundary 
conditions [36] adopted here.

The inexact Newton method is efficient when the nonlinearities in the system are well-balanced and a good initial guess 
is available. However, for arteries with stenosis, the nonlinearities of the system are usually not well-balanced, and addi-
tionally a good initial guess is difficult to obtain. In such cases, the classical inexact Newton method often suffers from slow 
convergence or fails to converge, and the convergence is rather sensitive to the system parameters, e.g. the Reynolds num-
ber, the mesh size, and the time step size, etc. Moreover, during these slow nonlinear iterations, the preconditioned Jacobian 
solver is called repeatedly by the outer Newton steps, thus wasting a lot of compute time. To overcome this difficulty, we 
introduce a class of nonlinear elimination (NE) preconditioners to improve the convergence of the classical Newton method. 
The NE preconditioner is applied in the intermediate Newton iteration to implicitly remove the local high nonlinearities. The 
NE preconditioner has been applied successfully to some challenging nonlinear problems, such as transonic full potential 
flow [16,17], lid-driven cavity flow at high Reynolds numbers [7,15,41], and two-phase flow in porous media [24,39,40]. Dif-
ferent strategies have been proposed to identify the bad components that slow down the convergence. Huang et al. [15] and 
Yang et al. [41] applied a point-wise approach to eliminate the components associated with certain mesh points that cause 
the local high nonlinearities for multi-component systems, such as steady lattice Boltzmann equations and Navier-Stokes 
equations in the velocity-vorticity form. More recently, Yang et al. [39,40] proposed a field-based approach to eliminate the 
components associated with some field variables that have stronger nonlinearity than the others in the system, i.e. the sat-
uration field in reservoir simulation. The authors systematically studied several performance-related parameters in the NE 
preconditioner to achieve optimal performance for the simulation. In these studies, only model problems in regular compu-
tational domains are considered. In this paper, we apply the NE preconditioner to the more realistic blood flow problem in 
patient-specific artery with stenosis. We propose an adaptive region-based elimination strategy and the region corresponds 
to the complexity of the fluid. The new method outperforms the classical method and other available elimination strategies 
in terms of global nonlinear iterations and the total compute time. We perform extensive numerical experiments to show 
the robustness and efficiency of the proposed algorithm with respect to certain physical and numerical parameters. Parallel 
scalability of the algorithm on a supercomputer with thousands of processor cores is also reported.

The remainder of this paper is organized as follows. In Section 2, the system of incompressible Navier-Stokes equations 
with a fully implicit finite element discretization is presented. In Section 3, we discuss in detail the proposed nonlinear 
elimination preconditioned inexact Newton method. Numerical experiments for several arteries with stenosis are reported 
in Section 4. The robustness and scalability of the proposed method are comprehensively studied in this section. Some 
concluding remarks are given in Section 5.

2. Governing equations and discretization

As shown in Fig. 1, we consider a human artery as the domain �, that consists of the artery wall �W , one or two inlets 
�Ii , i = 1, 2, and multiple outlets �O j , j = 1, . . . , m. Although blood flow exhibits complex rheological properties, we model 
it as a Newtonian fluid described by the incompressible Navier-Stokes equations [32]:⎧⎨

⎩ ρ

(
∂u

∂t
+ (u · ∇)u

)
− ∇ · σ = ρf, in �,

∇ · u = 0, in �.

(1)

Here u = (u, v, w)T is the velocity, ρ is the blood density, f is a given body force per unit mass, and σ = −pI +
μ 

(∇u + ∇uT
)

is the Cauchy stress tensor, where I is an identity matrix, p is the pressure, and μ is the viscosity coef-
ficient.
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Fig. 1. Two sample arteries.

We consider a no slip boundary condition on the wall

u = 0, on �W , (2)

and a velocity profile derived from a flow rate on the inlets

u = vIi , on �Ii , i = 1,2. (3)

On the outlets, we apply a resistive boundary condition which is based on the assumption of a linear dependence between 
the pressure and the flow rate

p = R j Q j, on �O j , j = 1, . . . ,m. (4)

Here R j is the resistance, and Q j is the flow rate through the jth outlet:

Q j =
∫

�O j

u · n jd�, j = 1, . . . ,m, (5)

where n j is the outward unit normal vector on �O j . It was first proposed by Murray [28] that the flow rate is related to the 
vessel size by Q j ∝ d3

j , where d j is the diameter of the jth outlet. Taylor et al. [32] indicates that such a morphometry law 
provides additional physiological information for assessing the resistance relative to the flow rate. Under resting conditions, 
the mean pressure p is largely constant through the artery. In accordance with the boundary condition (4), the Murray 
law also implies that R j ∝ d−3

j , in the sense that small branches have a higher resistance compared with larger branches. 
Assuming the total resistance is given as RT , the resistance for each outlet can be computed as

R j = RT

∑m
j=1 d3

j

d3
j

, j = 1, . . . ,m. (6)

Different values of RT will be considered in the Numerical Experiments section of the paper.
For a patient-specific problem, the initial fields of velocity and pressure are usually not known in advance. Therefore we 

often start with zero as the initial guess, i.e., u = 0 and p = 0 over the domain at t = 0. We run the numerical simulation 
for one cardiac cycle, and the use the resulting u and p as the actual initial guess for the next cardiac cycle.

Next, we introduce the weak form and a stabilized finite element discretization of the governing equations. The trial 
function spaces for the velocity and the pressure are defined as

V =
{

u |u ∈ [H1(�)]3,u = 0 on �W and u = vIi on �Ii , i = 1,2
}

,

P =
{

p | p ∈ L2(�)
}

.

The weighting function space for the velocity is defined as:

V0 =
{

u |u ∈ [H1(�)]3,u = 0 on �W ∪ �Ii , i = 1,2
}

.
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Following standard notations, the weak form reads: find (u, p) ∈ V × P , such that for ∀ (w,q) ∈ V0 × P ,

B(u, p;w,q) = 0, (7)

with

B(u, p;w,q) =
∫
�

ρ
∂u

∂t
· wd� +

∫
�

ρ (u · ∇) u · wd� −
∫
�

p∇ · wd� +
∫
�

μ
(
∇u + ∇uT

)
: ∇wd�

+
∫
�

(∇ · u)qd� −
∫
�

ρ f · wd� +
m∑

j=1

∫
�O j

(
R j Q j n j · w − μn j ·

(
∇u + ∇uT

)
· w

)
d�. (8)

We consider a P1-P1 stabilized finite element method [13,35] for the spatial discretization of the weak form (7). Addi-
tional stabilization terms are needed in order to meet the Ladyzenskaja-Babuska-Brezzi (LBB) inf-sup condition. Let �h = {K }
be a conforming tetrahedral mesh of � with hK the diameter of the element K ∈ �h , denote by (·, ·)K the L2-inner 
product over element K . We define the finite element subspaces Vh , Vh

0, and P h as the counterparts of their infinite di-
mensional subspaces. Then, the semi-discrete system of (7) is described as follows: find (uh, ph) ∈ Vh × P h , such that for 
∀ (wh,qh) ∈ Vh

0 × P h ,

B S(uh, ph;wh,qh) = 0, (9)

with

B S(uh, ph;wh,qh) = B(uh, ph;wh,qh) +
∑

K∈�h

(Sh, τm ((uh · ∇)wh + ∇qh))K +
∑

K∈�h

(∇ · uh, τc∇ · wh)K , (10)

where Sh , τm , and τc are defined as

Sh = ρ
∂uh

∂t
+ ρ (uh · ∇) uh + ∇ph − ρfh,

τm =
(√

4/�t2 + uh · G · uh + 36μ2/ρ2G : G

)−1

,

τc = (8τmtr(G))−1 .

Here (G)i j = ∑3
l=1

∂ξl
∂xi

∂ξl
∂x j

(i, j = 1, 2, 3) is the covariant metric tensor and ∂ξ
∂x refers to the Jacobian of the mapping between 

the reference and the physical element. �t is the step size to be introduced below for the temporal discretization. We refer 
to [30,35] for more details of the spatial discretization scheme.

With the spatial discretization, (9) can be rewritten as a time-dependent nonlinear system

∂x(t)

∂t
= N (x(t)), (11)

where N (x(t)) is a nonlinear function, and x(t) is a time-dependent vector of unknowns defined at the nodal points of 
�h at time t . To describe the temporal discretization scheme, we first define xn as the approximation of x(t) at the nth 
time step. Then, a second-order backward differentiation formula (BDF2) is used to further discretize (11) in a fully implicit 
manner

xn − 4

3
xn−1 + 1

3
xn−2 = 2�t

3
N

(
xn) , for n ≥ 2. (12)

To provide an accurate approximation of x1 in the above scheme, we separate the first time step into two fractional steps: 
(i) 

(
0, �t

2

)
and (ii) 

(
�t
2 ,�t

)
, and proceed as follows:

(i) Compute x
1
2 : x

1
2 − x0 = �t

2
N

(
x

1
2

)
, (13)

(ii) Update x1 : x1 − 4

3
x

1
2 + 1

3
x0 = �t

3
N

(
x1) . (14)

The above spatial and temporal discretization result in a nonlinear system

F
(
xn) = 0 (15)

that has to be solved at each time step. We remark that the ordering of unknowns in xn and F
(
xn

)
has a significant impact 

on the convergence properties of the algebraic solver and the parallel scalability of the overall method [14]. In contrast to 
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field by field ordering as usually required by other methods, here the components of velocity and pressure are ordered node 
by node, for example,

xn = (
un

0, vn
0, wn

0, pn
0, un

1, vn
1, wn

1, pn
1, . . . , un

M−1, vn
M−1, wn

M−1, pn
M−1

)T
,

where M is the total number of mesh points. We refer to this ordering as the point-block ordering, in which the un-
knowns associated with each mesh point are always together in the same small block, which improves the robustness of 
ILU preconditioner, as well as the cache performance.

3. A nonlinearly preconditioned inexact Newton method

In this section, we describe the proposed nonlinearly preconditioned inexact Newton method for solving (15). We first 
recall the popular inexact Newton method with backtracking (INB) [10–12] as the outer iterative process, which consists of 
the following steps:

1. Take the initial guess or the solution of the previous time step as the initial guess xn
0 = xn−1.

2. Construct the Jacobian matrix, analytically, Jn
k =F ′ (xn

k

)
.

3. Find the inexact Newton direction sn
k by approximately solving the linear Jacobian system

Jn
k sn

k = −F
(
xn

k

)
, (16)

4. Find a step length λk using a line search procedure [10] and compute the new approximation,

xn
k+1 = xn

k + λksn
k . (17)

5. Set k = k + 1, go to Step 2.

In the INB method, the linear solver in Step 3 is stopped if

‖ Jn
k sn

k +F(xn
k)‖ ≤ ηr‖F(xn

k)‖, (18)

where ηr is a prescribed relative tolerance. The nonlinear iteration is stopped if

‖F(xn
k+1)‖ ≤ γr‖F(xn

0)‖, (19)

where γr is a prescribed relative tolerance for the nonlinear solver. We remark that λk is a critically important parameter 
in INB. The slow convergence of INB happens when the value of λk is too small. In practice, the value of λk is often 
determined by a small number of components of F that are more nonlinear than the others. A nonlinear preconditioner 
will be introduced in the next subsection to approximately eliminate these ‘bad’ components.

3.1. The nonlinear elimination preconditioner

To balance the nonlinearities in F so that larger step length can be used, we introduce a nonlinear preconditioner. We 
consider ρn

k = ‖F(xn
k )‖

‖F(xn
k−1)‖ as a measure of the relative reduction of the residual at the kth Newton iteration. If ρn

k is too large 
(for example, if ρn

k > ρ0, where 0 < ρ0 < 1 is a preselected parameter), then we consider the current Newton direction is 
not effective, and a preconditioning step is then introduced to produce a different xn

k . In the preconditioning step, we first 
identify the components of F that slow down the convergence, and then eliminate them using a few subspace Newton 
iterations. For the rest of the paper, we refer to this step as a nonlinear elimination (NE) preconditioner and it is applied 
as a subspace correction step within a Newton iteration. This can be viewed as a right nonlinear preconditioning method 
[3,7], as opposed to the left nonlinear preconditioning method [6,22–24]. A high level description of the INB-NE method for 
solving (15) at each time step is presented in Algorithm 1.

Algorithm 1 A nonlinear elimination preconditioned inexact Newton method with backtracking (INB-NE).
1. Take the initial guess or the solution of the previous time step as the initial guess xn

0 = xn−1. Set k = 0, xn−1 = xn
0.

2. If the global nonlinear stopping condition (19) is satisfied, stop and set xn = xn
k ; otherwise, go to Step 3.

3. Compute ρn
k and if ρn

k > ρ0, go to Step 4; otherwise, go to Step 5.
4. The nonlinear elimination step:

• Identify the slow components of the nonlinear residual.
• Approximately eliminate the slow components using a few subspace Newton iterations.
• Update xn

k . Go to Step 5.
5. The global update step:

• Analytically construct the global Jacobian matrix Jn
k .

• Inexactly solve Jn
k sn

k = −F
(
xn

k

)
.

• Update xn
k+1 = xn

k + λksn
k .

• Set k = k + 1. Go to Step 2.
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Fig. 2. Decomposition of a 2D mesh to a ‘good’ region (uncolored) and a ‘bad’ region (colored). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

The key idea of NE is to remove local high nonlinearities before performing a global nonlinear update, so it is essential 
to effectively identify the components to be eliminated in the nonlinear system. Several strategies have been studied for 
different types of problems including the component-wise approach [17,41], the point-wise approach [15,41], and the field-
based approach [38–40]. For problems under consideration in this paper, we observe that a small number of components 
contribute a large percentage of the total nonlinear residual norm, and these components often cluster around the one 
corresponding to a local maximum of the absolute value of the residual function. Further use of the structure of the nonlin-
ear residual function in the region containing these bad components can effectively improve the convergence of the global 
nonlinear iteration. Hence, we propose and test an adaptive region-based nonlinear elimination approach in this paper. In 
contrast to the physics-based approach [16,17] that the components to be eliminated are known in advance, here we use 
the information of the intermediate solution to identify the location of the bad region. We compare and discuss different 
elimination strategies in Section 3.2.

In the remaining part of this subsection, we focus on Step 4 of the algorithm which is the nonlinear preconditioning 
step. We first introduce some notations. Let I = {0, 1, . . . , M − 1} be an index set of the whole mesh with M points

P = {p0,p1, . . . ,pM−1},
where each index corresponds to four unknown components xic ∈ {

un
i , vn

i , wn
i , pn

i

}
and four nonlinear residual components 

Fic , c = 0, . . . , 3. At the kth Newton iteration, we decompose I into a ‘bad’ subset Ik
b with Mk

b mesh points and a ‘good’ 
subset Ik

g with 
(
M − Mk

b

)
mesh points, such that Ik

g = I\Ik
b . In our approach, we introduce a collection of ‘seed points’

{p j0 ,p j1 , . . . ,p jL−1} ⊂ P.

Each of these seed points owns the component with local maximum absolute residual value βl‖F‖∞ , l = 0, . . . , L − 1. Here 
{βl} are a series of prescribed parameters. Then, we consider the bad region as an union set of r-balls that grow from these 

seed points, i.e. 
L−1∪
l=0

Br(p jl ). Here r is a given positive constant. An illustration of the bad region on a 2D mesh is shown in 

Fig. 2. The corresponding index set Ik
b is defined as

Ik
b = Ik

b,0 ∪ · · · ∪ Ik
b,L−1, (20)

where

Ik
b,l = {

i | If ‖pi − p jl ‖ ≤ r, i = 0, . . . , M − 1
}
, l = 0, . . . , L − 1. (21)

With the index set Ik
b , we define two subspaces

V k
b =

{
v | v = (v0, . . . , v N−1)

T ∈ RN , vic = 0 if i /∈ Ik
b, c = 0, . . . ,3

}
, (22)

V k
g =

{
v | v = (v0, . . . , v N−1)

T ∈RN , vic = 0 if i ∈ Ik
b, c = 0, . . . ,3

}
, (23)

respectively, where N = 4M is the total number of unknowns. The corresponding restriction operators are denoted as Rk
b

and Rk
g , that are sub-identity matrices mapping the vectors from RN to V k

b and V k
g , respectively. Then, we define the 

following nonlinear system
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G(x) ≡ Rk
b (F (x)) +Rk

g

(
x − xn

k

) = 0. (24)

G is simply a restriction of F to the bad region. The ‘inverse’ of G is considered as a nonlinear preconditioner of F . Here 
by ‘inverse’, we mean a solve of (24) by using the classical INB method with the initial guess xn

k . x∗
k is accepted as the 

approximate solution if the stopping condition ‖G(x∗
k )‖ ≤ γ NE

r ‖G(xn
k)‖ is satisfied, where γ NE

r is the relative tolerance for 
solving (24). Note that the nonlinear preconditioner may change from iteration to iteration since the selection of the bad 
region may change.

Since x∗
k is the same as xn

k in the ‘good’ region and is replaced by a new solution in the ‘bad’ region, F(x∗
k ) may have 

a sharp jump near the interface between the bad region and the good region since the calculation of F(x∗
k ) involves the 

derivatives with respective to a function which is not guaranteed to be smooth across the interface. Below we introduce a 
restricted version of the NE preconditioner which keeps the corrected solution only in the interior of the bad region and 
throws away the values near the interface. For each seed point p jl , we consider a restricted r-ball Br,ε(p jl ) ⊆ Br(p jl ) with 
restricted size ε ∈ [0, r). The corresponding index set Ik,ε

b for the union set is defined as

Ik,ε
b = Ik,ε

b,0 ∪ · · · ∪ Ik,ε
b,L−1, (25)

where

Ik,ε
b,l = {

i | If ‖pi − p jl‖ ≤ r − ε, i = 0, . . . , M − 1
}
, l = 0, . . . , L − 1. (26)

With the index set Ik,ε
b , we define two subspaces

V k,ε
b =

{
v | v = (v0, . . . , v N−1)

T ∈ RN , vic = 0 if i /∈ Ik,ε
b , c = 0, . . . ,3

}
,

V k,ε
g =

{
v | v = (v0, . . . , v N−1)

T ∈ RN , vic = 0 if i ∈ Ik,ε
b , c = 0, . . . ,3

}
,

respectively. The corresponding restriction operators are denoted as Rk,ε
b and Rk,ε

g , which map the vectors from RN to V k,ε
b

and V k,ε
g , respectively. Then, with the approximate solution x∗

k , we update the solution xn
k by

xn
k := Rk,ε

g (xn
k) +Rk,ε

b (x∗
k ), (27)

so that the good part of xn
k is retained while only the interior of the bad part is replaced by the corrected solution.

Remark 3.1. Generally, different r, ε can be used for different r-balls. For the particular test cases in this paper, a single r
value is enough to capture the bad region for the artery with one stenosis, hence we only consider the case of one seed 
point that owns the component with global maximum value of ‖F‖∞ .

3.2. Discussion on different elimination strategies

For multi-component systems, different strategies have been proposed to choose the bad components that slow down 
the convergence of the classical INB method, such as the component-wise approach [17,41], the point-wise approach [15,
41], and the field-based approach [38–40]. However, designing a good strategy is often problem-dependent, and there is no 
available theoretical guidelines [41]. For the purpose of comparison, we describe different approaches within the framework 
of Algorithm 1, as follows:

• Component-wise approach. At the kth Newton iteration, the bad subset of components Nk
b is chosen as

Nk
b = {n | If |Fn| > β‖F‖∞, n = 0, . . . , N − 1} , (28)

where β > 0 is a preselected constant. Then, the subspaces V k
b and V k

g corresponding to (22) and (23) are defined as

V k
b =

{
v | v = (v0, . . . , v N−1)

T ∈RN , vn = 0 if n /∈ Nk
b

}
,

V k
g =

{
v | v = (v0, . . . , v N−1)

T ∈RN , vn = 0 if n ∈ Nk
b

}
.

The restriction operators can be defined correspondingly and applied directly to (24). The updated solution is obtained 
by solving (24) and defined as xn

k := x∗
k . The component-wise approach was initially designed for scalar systems [17]. 

For multi-component systems, the approach is blind to the physical nature of different variables and select the bad 
components according to the algebraic criteria (28). The component-wise approach may eliminate only one of the 
variables associated with a mesh point if its residual component dominates the magnitude of the whole residual.
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• Point-wise approach. In this approach, when one variable at a mesh point is selected to be eliminated, all other variables 
associated with this mesh point are also eliminated. The bad subset of mesh points Ik

b is defined as

Ik
b = {

i | If maxc{|Fic |} > β‖F‖∞, c = 0, . . . ,3
}
. (29)

The subspaces V k
b and V k

g are defined the same as (22) and (23). Following the idea of restricted elimination, we define 
the restricted bad subset Ik,ε

b by excluding some mesh points near the interface, such that

Ik,ε
b = {

i | If maxc{|Fic |} > (β + ε1)‖F‖∞, c = 0, . . . ,3
}
, (30)

where ε1 is a preselected constant. The point-wise approach has been successfully used for multi-component systems 
such as steady lattice Boltzmann equations [15] and Navier-Stokes equations in the velocity-vorticity form [41], both 
on 2D structured meshes. The point-wise approach can be viewed as an extension of the domain decomposition based 
elimination method NKS-RAS [7].

• Field-based approach. The field-based approach was studied in [38–40] for the situation when the nonlinearity of one 
field variable is stronger than the others in the multi-component system (for example, the pressure field in the Navier-
Stokes equations). In the approach, all components corresponding to one particular field are selected to eliminate, 
without the need of any feedback from the intermediate solution or residual. Once the field to eliminate is determined, 
the ‘bad’ components are fixed through the whole computation. Hence, this approach is considered to be of a static 
fashion.

• Field-split approach. This approach alternatively eliminates each field of the system, i.e., the velocity field and the pres-
sure field of our problem. The subspace correction step (Step 4 in Algorithm 1) is performed in a multiplicative manner, 
and an algebraic criterion is introduced to select the bad components adaptively. Specifically, in the first phase, the ve-
locity field is corrected by choosing the bad components with index ic if maxc{|Fic |} > β‖Fv‖∞ , c = 0, 1, 2, where Fv
is the subvector of residual associated with the velocity components. Then, the pressure field is corrected in the second 
phase by choosing the bad components using the condition |Fi3 | > β‖Fp‖∞ , where Fp is the subvector of residual as-
sociated with the pressure components. Practically, the bad components in each phase belong to the subset of those in 
the point-wise approach, hence the implementation can be done easily by sweeping the subspace correction step of the 
point-wise approach and choosing one particular field to eliminate at each sweep. The restricted subsets of components 
can be defined similarly as (30).

• Region-based approach. The region-based approach can be viewed as an extension of the point-wise approach. In contrast 
to the algebraic criteria used in other approaches, the criteria in the region-based approach is of a hybrid physical-
algebraic type, accounting for the continuous domain where the blood flow may become locally chaotic. In order to 
resolve the flow structures in the local region, all variables should be included and eliminated simultaneously. We show 
later in the numerical tests that this approach leads to better convergence than other approaches for our problem.

3.3. The linear solver

A linear solver is required for obtaining the solution of the Jacobian systems arising from both the outer Newton iteration 
and the nonlinear elimination process. Good candidates include the class of Krylov subspace methods with effective linear 
preconditioners. In this study, a restricted additive Schwarz (RAS) preconditioned Generalized Minimal RESidual (GMRES) 
method [4,29] is employed to solve the Jacobian systems.

We consider a right-preconditioned problem

AM−1
RAS y = b, with x = M−1

RAS y, (31)

where A is the Jacobian matrix, MRAS is the RAS preconditioner, x is the solution, and b is the right-hand side. Denote by np
the number of processor cores of the parallel computer, we partition the computational domain �h into np nonoverlapping 
subdomains �l (i.e. �i ∩ � j = ∅, ∀ i �= j) for l = 1, . . . , np, such that �h = �1 ∪ · · · ∪ �np . The subvector associated with �l

is denoted as yl . We then extend �l to overlap with its neighbors by δ layers of mesh elements and denote the overlapping 
subdomain as �δ

l . On each overlapping subdomain, we define the corresponding subvector yδ
l and the restriction operator 

Rδ
l that maps the global vector of unknowns in �h to yδ

l , i.e.

yδ
l = Rδ

l y = (I 0)

(
yδ

l

y\yδ
l

)
.

We denote R0
l as the restriction operator that returns yl defined on the nonoverlapping subdomain. Then, the RAS precon-

ditioner [5] is defined as

M−1
RAS =

np∑
l=1

(
R0

l

)T
(Al)

−1 Rδ
l , (32)

Al = Rδ
l A

(
Rδ

l

)T
. (33)
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Fig. 3. A straight cylindrical vessel with an idealized stenosis. In (b), different colors refer to different partitions.

In (32), (Al)
−1 is understood as the inverse of the subdomain Jacobian matrix, its product with a vector is computed 

by solving a subdomain linear system inexactly. In our work, this is done by using a point-block incomplete LU (ILU) 
factorization of Al based on the reverse Cuthill-McKee ordering.

4. Numerical experiments

In this section, we provide some examples to study the robustness and efficiency of the proposed algorithm. We first ver-
ify the correctness of the proposed discretization scheme by calculating the pressure distribution along a straight cylindrical 
vessel with an idealized stenosis. Next, we conduct simulations of blood flows in some patient-specific cerebral arteries. We 
focus on: (1) the robustness of the algorithm with respect to some physical and numerical parameters, (2) a comparison of 
the numerical performance between the new INB-NE method and the classical INB method, and (3) the parallel scalability 
of the new algorithm.

The algorithms are implemented using PETSc [2]. All computations are carried out on a supercomputer which has two 
12-core Intel Ivy Bridge Xeon CPUs and 64 GB local memory in each of its compute nodes. The relative tolerance for the 
global nonlinear solver is set to be 10−6. The relative tolerance for the linear solver is set to be 10−3. The Jacobian matrices 
arising from both the outer Newton iteration and the NE step are computed analytically. The restart value of GMRES is fixed 
at 400. For the NE preconditioner, we set the preselected parameter ρ0 to be 0.8 for judging if the residual is reduced 
slowly. In the rest of this paper, ‘NIglobal ’ denotes the averaged number of outer Newton iterations per time step, ‘LIglobal ’ 
denotes the averaged number of GMRES iterations per outer Newton iteration, ‘Nne ’ is the averaged number of applications 
of the NE preconditioner per time step, ‘NIne ’ refers to the averaged number of Newton iterations per NE application, ‘LIne ’ is 
the averaged number of GMRES iterations per Newton in NE, ‘Timene (s)’ is the compute time in second per NE application, 
and ‘Timetotal (s)’ is the total compute time in second per time step. In the Navier-Stokes equations, the body force is 
ignored for all experiments. The blood is characterized with viscosity μ = 0.035 g/(cm s), and density ρ = 1.06 g/cm3.

4.1. A straight cylindrical vessel with idealized stenosis

To verify the proposed fully implicit finite element discretization scheme, we first consider a straight cylindrical vessel 
with an idealized stenosis. Here the classical INB method is used to solve the discretized nonlinear system, while the 
NE-based preconditioner will be examined in the next section.

In this test, a circular tube with reference length L = 6.16 cm, diameter D = 0.35 cm and a stenosis of 60% diameter 
reduction is used. The computational domain and a sample partition into 8 subdomains are shown in Fig. 3. This simple 
case was also studied in Taylor et al. [32] for modeling the left anterior descending coronary artery. The resistance is chosen 
as RT = 120, 000 dynes·s/cm2, and the inflow velocity is vI = (uI , 0, 0) with uI = 10.525 cm/s.

The solution is considered to be steady if ‖xn − xn−1‖∞ ≤ 10−7. The time step size is given as �t = 0.01 s. A sequence 
of unstructured meshes ranging from 207,467 elements to 1,118,548 elements are used for the tests. The overlap size of the 
RAS preconditioner is fixed to δ = 1, ILU(2) is used as the subdomain solver. The velocity and pressure distribution along 
the tube are shown in Fig. 4. It is observed that a jet caused by sudden acceleration of velocity appears behind the stenotic 
territory and dissipates gradually along the central line of the vessel. We compare our results with those obtained in Taylor 
et al. [32] by calculating the outflow rate Q �O (cm3/s), the pressure difference pa − pd (mmHg), as well as the pressure 
ratio pd/pa between the proximal point Pa(0, 0, 0) and the distal point Pd(6.16, 0, 0). Details of the comparison are listed 
in Table 1. As the mesh is refined to over a million elements, the estimated quantities match quite well with those results 
in the reference [32], which confirm the correctness of the proposed discretization scheme.

4.2. Two patient-specific cerebral arteries

To further study the numerical performance of the proposed algorithm, we consider two patient-specific cerebral arteries, 
respectively, the one-inlet case and the two-inlet case, as shown in Fig. 1. The 3D geometry of the arteries is generated from 
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Fig. 4. The distribution of velocity and pressure for the straight cylindrical vessel with an idealized stenosis, in comparison of the published results in [32].

Table 1
Comparison of the outflow rate Q �O (cm3/s), the pressure difference pa − pd (mmHg), and the 
pressure ratio pd/pa obtained using different meshes for the case of a straight vessel.

Case # of 
nodes

# of 
elements

Q �O pa − pd
pd

pa

Mesh_1 39,506 207,467 0.927 3.231 0.9627
Mesh_2 126,697 604,231 0.933 2.307 0.9732
Mesh_3 221,281 1,118,548 0.972 2.472 0.9725
Taylor et al. [32] 0.972 2.500 0.9722

Table 2
The case configuration and mesh information for two patient-specific cerebral arteries.

Case Mean Re RT

(dynes s/cm2)
# of 
inlets

# of 
outlets

# of 
elements

# of 
nodes

One-inlet 443.2 21,923.0 1 6 437,538 2,190,164
Two-inlet 262.6 6,642.2 2 15 1,069,767 5,225,949

MRI scans and reconstructed by the software Mimics [27]. We then use ANSYS [1] to create the volume mesh that is finer 
nearby the stenosis. The case configuration and mesh information are summarized in Table 2. Fig. 5 shows the meshes used 
for these two cases with sample partitions into 16 subdomains.
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Fig. 5. The meshes used for two patient-specific cerebral arteries with sample partitions into 16 subdomains. Different colors refer to different partitions.

Fig. 6. The flow rate profiles imposed on the artery inlets. For the two-inlet case, the flow rate is adjusted by multiplying a factor of 1.53 for the left inlet 
�I1 and 0.51 for the right inlet �I2 , respectively.

A flow rate profile with a period of 1 s is imposed on the artery inlet �I for the one-inlet case and on �Ii (i = 1, 2) for 
the two-inlet case, as plotted in Fig. 6. Here, for the two-inlet case, the flow rate is adjusted by multiplying two different 
factors, 1.53 for �I1 and 0.51 for �I2 , respectively. The mean Reynolds number Re is defined based on the mean inlet 
velocity and the diameter of the artery. The total resistance RT for these two cases are given according to different clinical 
experiments in [25]. The time step size is set as �t = 0.01 s. The region-based approach is used for the NE preconditioner, 
the radius of r-ball and the restricted size are given as r = 0.4 cm and ε = 0.1 cm, respectively. The relative tolerance for 
the nonlinear solver in the NE step is γ NE

r = 10−3. For the linear solver, we fix the overlap size as δ = 1 and use ILU(3) as 
the subdomain solver. The effect of these numerical parameters will be studied later. The simulations are carried out using 
480 processor cores.
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Fig. 7. Numerical solution at t = 0.7s for the one-inlet case.

Numerical solutions for these two cases at t = 0.7s are shown in Figs. 7 and 8, including the distribution of pressure 
and the views of streamlines colored by velocity magnitude. Distal pressure loss is apparently observed due to the severe 
intracranial stenosis.

Fig. 9 shows the bad region in the region-based INB-NE method for the one-inlet case at two states: (a) the fourth 
nonlinear step in the first time step and (b) the second nonlinear step in the second time step. When the flow moves 
forward to a developed state, the bad region is located right behind the stenosis, where some complex flow structures are 
generated. Fig. 10(a) shows the residual contour for the u-component in the bad region at the second nonlinear step in 
the second time step. After the subspace correction is performed, such local high nonlinearities are removed as shown in 
Fig. 10(b).

4.2.1. Comparison of INB and different INB-NE approaches
The complex geometry of the artery and the use of physical parameters impose great challenges to the nonlinear solution 

algorithms. It is worthwhile to compare the performance of INB and different INB-NE approaches for such difficult problems. 
In Figs. 11 and 12, we show the histories of the nonlinear residuals by using INB and INB-NE for the two test cases. In the 
figures, we denote by Field-based(velocity/pressure) the field-based approach that eliminates only the velocity field or the 
pressure field. Optimal parameters are used for different approaches: r = 0.4 cm, ε = 0.1 cm, and β = ε1 = 0.01. For the 
first time step (fractional step (i)), the component-wise INB-NE, the point-wise INB-NE, and the field-based(velocity) INB-NE 
stagnate with a longer period than the classical INB, while the field-based(pressure) INB-NE performs almost identically 
with INB. On the other hand, though the field-split and region-based INB-NE methods endure a small overshoot at the 
beginning, they reach the tolerance with fewer number of iterations. Once the first time step solution is obtained, all 
INB-NE approaches perform better than the classical INB in the second time step. A detailed comparison for the average 
number of Newton iterations and compute time for different approaches are shown in Table 3. It is seen that although 
the cost of the region-based approach is comparable to the other approaches, it leads to the smallest number of global 
Newton iterations and the least amount of total compute time. As discussed in Section 3.2, the region-based approach 
returns a better local solution in the domain enclosed by the bad region, which is believed to be crucial for the blood flow 
in an artery with stenosis. Overall, the region-based approach results in the best performance among different elimination 
strategies. Therefore, we focus only on the region-based INB-NE for the rest of the paper.
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Fig. 8. Numerical solution at t = 0.7s for the two-inlet case.

Fig. 9. The bad region Br and its restricted part Br,ε for the one-inlet case at the fourth nonlinear step in the first time step (a) and the second nonlinear 
step in the second time step (b). r = 0.4 cm, ε = 0.1 cm.
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Fig. 10. Residual contours for the u-component at the second nonlinear step in the second time step for the one-inlet case.

Fig. 11. Nonlinear residual history for the one-inlet case in the first and second time steps.

4.2.2. Impact of the parameters in nonlinear elimination
To understand the impact of the parameters on the performance of the NE preconditioner, we test the one-inlet case 

with different values of r, ε and γ NE
r while fixing other parameters as mentioned above. In Table 4, we show the effect of r

and ε on the number of nonlinear and linear iterations, as well as the compute time. When r becomes larger, the number 
of bad components increases, in general the cost for solving subspace nonlinear problems may also increase. Paying such 
a price helps reduce the number of global Newton iterations. On the other hand, adjusting the restricted size ε changes 
the number of global GMRES iterations needed for solving the linear Jacobian system. From Table 4, we find that the pair 
of values (r, ε) = (0.4, 0.1) is suitable to minimize the total compute time and guarantees the convergence of the overall 
algorithm. In Table 5 we show the impact of γ NE

r on the performance of the NE preconditioner. It is seen when a smaller 
γ NE

r is used, the numbers of global Newton and GMRES iterations decrease, while the time spent on the inner Newton 
iterations increases. The choice of γ NE

r = 10−3 gives the best results in terms of the total compute time. Therefore, we keep 
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Fig. 12. Nonlinear residual history for the two-inlet case in the first and second time steps.

Table 3
Comparison of INB and different INB-NE approaches for the two test cases. Optimal parameters are used for 
different approaches: r = 0.4 cm, ε = 0.1 cm, and β = ε1 = 0.01. ‘Pct.’ denotes the maximum percentage of the 
eliminated components.

Method NIglobal Timetotal (s) Nne NIne Timene (s) Pct.

The one-inlet case
INB 10.50 458.04 – – – –
INB-NE (Component-wise) 8.67 376.80 1.50 3.22 49.27 0.5%
INB-NE (Point-wise) 8.50 501.69 1.83 3.82 22.97 2.3%
INB-NE (Field-based(velocity)) 8.50 368.46 1.67 2.90 49.90 75%
INB-NE (Field-based(pressure)) 8.00 319.66 1.50 2.00 33.70 25%
INB-NE (Field-split) 7.17 363.13 1.33 4.31 28.46 6.1%/0.1%†
INB-NE (Region-based) 5.67 225.94 1.67 3.20 20.55 7.7%

The two-inlet case
INB 7.17 206.72 – – – –
INB-NE (Component-wise) 7.00 184.72 1.33 2.25 9.53 0.6%
INB-NE (Point-wise) 6.83 256.05 1.33 3.12 13.02 2.4%
INB-NE (Field-based(velocity)) 7.00 191.08 1.17 2.14 9.62 75%
INB-NE (Field-based(pressure)) 6.83 160.37 1.50 2.11 9.41 25%
INB-NE (Field-split) 5.50 200.00 1.08 4.15 19.20 5.7%/1.1%†
INB-NE (Region-based) 5.17 149.17 1.33 2.88 14.36 6.3%

a/b† here means that Pct. for the first phase is a and for the second phase is b.

using these optimal choices for all the following tests. It is also seen from the table that the compute times for the NE 
preconditioner are about 15% of the total compute times.

4.2.3. Robustness with respect to physical parameters
We next study the robustness of both the classical INB method and the proposed INB-NE method with respect to two 

significant physiological parameters: the total resistance RT and the blood viscosity μ. Here, RT evaluates the resistivity and 
compliance in the distal artery, and μ characterizes the blood viscosity of a patient in certain physical situation. Numerical 
results for the one-inlet case with different values of RT and μ are summarized in Table 6 and Table 7, respectively.

As shown in Table 6, when RT varies from O (102) to O (105), the number of global GMRES iterations in INB increases 
considerably, leading to a substantial growth of the total compute time. For INB-NE, both the numbers of global Newton 
iterations and GMRES iterations are fewer than those in INB. Overall, the total compute times for INB-NE are roughly 2/3 of 
those required for INB.

When we decrease the blood viscosity μ, the mean Reynolds number in the system increases. It is seen from Table 7 that 
for INB, both the numbers of global Newton iterations and GMRES iterations increase when μ decreases, as a result the total 
compute time increases as well. In contrast, the total compute times of INB-NE are always less than those of INB, saving 
over 40% of the total cost. Note that the classical INB fails to converge when μ reduces to 0.025 g/(cm s). Comparatively, the 
proposed method is more robust with respect to a smaller viscosity.
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Table 4
Results for the one-inlet case obtained using different values for the preselected constants r
and ε. The time step size is 0.01 s, the resistance is RT = 2.1923 ×104 dynes s/cm2, the density 
and viscosity of blood are ρ = 1.06 g/cm3 and μ = 0.035 g/(cm·s), respectively. The tests are 
carried out on 480 processor cores. The mark ‘–’ indicates that the case fails to converge.

ε (cm) 0.05 0.1 0.15 0.05 0.1 0.15

r = 0.2 cm r = 0.3 cm

NIglobal 6.83 7.00 9.66 6.33 6.00 6.50
LIglobal 547.27 514.64 490.83 548.08 431.31 450.54
Nne 1.50 1.50 1.50 1.67 1.50 1.83
NIne 3.00 2.78 4.00 4.30 3.11 3.82
LIne 12.30 6.60 19.72 25.12 10.29 10.89
Timene (s) 18.50 16.64 27.11 29.95 21.10 22.85
Timetotal (s) 306.05 299.34 411.41 307.46 258.21 276.91

r = 0.4 cm r = 0.5 cm

NIglobal 6.17 5.67 6.00 5.67 5.33 –
LIglobal 546.65 403.21 415.17 552.62 446.03 –
Nne 1.50 1.67 1.50 1.50 1.50 –
NIne 4.67 3.20 3.00 3.33 4.00 –
LIne 31.83 17.19 11.74 22.97 24.17 –
Timene (s) 33.75 20.55 18.73 22.51 26.55 –
Timetotal (s) 301.12 225.94 234.37 269.50 229.63 –

Table 5
Results for the one-inlet case obtained using different values of γ NE

r . The 
time step size is 0.01 s, the density and viscosity of blood are ρ = 1.06
g/cm3 and μ = 0.035 g/(cm·s), respectively. The resistance is RT = 2.1923 ×
104 dynes s/cm2. The tests are carried out on 480 processor cores.

γ NE
r 10−1 10−2 10−3 10−4

NIglobal 5.83 5.83 5.67 5.67
LIglobal 422.08 407.34 403.21 377.62
Nne 1.50 1.50 1.67 1.67
NIne 2.33 2.77 3.20 3.70
LIne 17.52 18.08 17.19 16.60
Timene (s) 16.51 18.83 20.55 23.27
Timetotal (s) 230.57 230.69 225.94 226.98

Table 6
Results for the one-inlet case obtained using different values for the resistance RT . The time step size is 
0.01 s, the density and viscosity of blood are ρ = 1.06 g/cm3 and μ = 0.035 g/(cm·s), respectively. The 
tests are carried out on 480 processor cores.

RT (dynes·s/cm2) 2.1923 × 102 2.1923 × 103 2.1923 × 104 2.1923 × 105

The classical INB method
NIglobal 9.83 10.33 10.50 8.17
LIglobal 246.49 295.73 592.75 1431.74
Timetotal (s) 277.77 306.55 458.04 676.65

The proposed INB-NE method
NIglobal 5.83 5.83 5.67 5.67
LIglobal 216.43 235.46 403.21 1080.85
Nne 1.67 1.67 1.67 1.33
NIne 3.40 4.30 3.20 3.00
LIne 18.68 27.35 17.19 19.08
Timene (s) 22.82 31.22 20.55 20.00
Timetotal (s) 186.87 205.82 225.94 400.82

4.2.4. Robustness with respect to the time step size
We further investigate how the time step size influences the performance of the algorithms. Although the fully implicit 

scheme (12) allows to use a large time step size, it is still a challenge to solve the nonlinear system if �t is given inap-
propriately. Results for the one-inlet case obtained using different values of �t are shown in Table 8. For INB, the numbers 
of global Newton iterations and GMRES iterations increase rapidly as �t increases. INB fails to converge when �t increases 
to 0.04 s. In contrast, INB-NE features a good convergence when �t is up to 0.06 s. It is observed that the performance of 
NE preconditioning is not sensitive to the change of the time step size. In all, the total compute time of INB-NE increases 
slowly when a larger �t is used, this merit is favorable for long time calculation of medical applications.
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Table 7
Results for the one-inlet case obtained using different values for the viscosity μ. The time step 
size is 0.01 s, the blood density is ρ = 1.06 g/cm3, and the resistance is chosen as RT = 2.1923 ×
104 dynes s/cm2. The tests are carried out on 480 processor cores. The mark ‘–’ indicates that the case 
fails to converge.

μ (g/(cm·s)) 0.025 0.03 0.035 0.045 0.055

The classical INB method
NIglobal – 10.83 10.50 7.67 6.67
LIglobal – 615.92 592.75 593.72 561.88
Timetotal (s) – 504.64 458.04 334.26 280.38

The proposed INB-NE method
μ (g/(cm·s)) 0.025 0.03 0.035 0.045 0.055
NIglobal 7.17 6.17 5.67 5.33 5.17
LIglobal 440.72 468.49 403.21 345.09 383.45
Nne 2.00 1.67 1.67 1.50 1.17
NIne 4.25 3.90 3.20 3.00 2.57
LIne 22.82 21.39 17.19 16.48 11.50
Timene (s) 28.29 26.12 20.55 20.27 16.98
Timetotal (s) 316.61 274.80 225.94 198.96 193.20

Table 8
Results for the one-inlet case obtained using different values for the time step size �t . The density 
and viscosity of blood are ρ = 1.06 g/cm3 and μ = 0.035 g/(cm s), respectively. The resistance is RT =
2.1923 × 104 dynes s/cm2. The tests are carried out on 480 processor cores. The mark ‘–’ indicates that 
the case fails to converge.

�t (s) 0.005 0.01 0.02 0.04 0.06

The classical INB method
NIglobal 6.33 10.50 11.66 – –
LIglobal 522.16 592.75 605.17 – –
Timetotal (s) 253.95 458.04 537.44 – –

The proposed INB-NE method
NIglobal 5.50 5.67 7.00 8.17 8.83
LIglobal 410.39 403.21 357.26 320.35 314.60
Nne 1.33 1.67 1.33 1.50 1.50
NIne 2.63 3.20 2.87 2.56 3.00
LIne 16.48 17.19 10.74 11.74 15.44
Timene (s) 17.76 20.55 19.40 17.35 20.06
Timetotal (s) 214.08 225.94 254.34 277.00 299.98

4.2.5. Study of the parallel scalability
In this subsection, we report the parallel performance of INB-NE and focus on two important factors: the fill-in level 

k of the ILU subsolver and the overlap size δ of the linear RAS preconditioner. We first fix δ = 1 and study the effect of 
k on the strong scalability by increasing the number of processor cores np from 240 to 1,920. In this test, a fixed mesh 
with 5,225,949 elements and 1,069,767 nodes is used for the two-inlet case, and the time step size is �t = 0.0025s. The 
simulation is stopped after five time steps. Numerical results are summarized in Table 9. From the table we observe that, 
as the number of processor cores increases, the number of Newton iterations stays almost constant while the number of 
GMRES iterations grows mildly. In general, the linear solver converges better when a larger fill-in level is used, but this does 
not necessarily result in a better performance in terms of the total compute time. It is observed that ILU(2) leads to the 
smallest amount of total compute time when np is up to 1,920. Next, we fix the fill-in level to k = 2 and study the effect 
of δ on the parallel performance by varying np from 512 to 3,072. We use a refined mesh with 9,807,822 elements and 
1,854,661 nodes for the one-inlet case in this experiment. As shown in Table 10, a larger overlapping size usually results in 
fewer number of GMRES iterations, but the cost per iteration for communication and computation increases. It is seen that 
the small overlap δ = 1 provides a good trade off between the linear iterations and the total compute time. In Fig. 13, we 
report the speedup for INB-NE with the above optimized parameters. Overall, a reasonably good efficiency of around 65% is 
achieved for both cases.

5. Concluding remarks

We developed a nonlinearly preconditioned inexact Newton method for the simulation of blood flow in human artery 
with stenosis. The blood flow is modeled by the unsteady incompressible Naiver-Stokes equations discretized by a fully 
implicit finite element method. When a classical inexact Newton method with backtracking is used to solve the resulting 
nonlinear system, it often suffers from slow convergence or stagnations. In this work, we proposed a nonlinear elimination 
preconditioner to handle this issue. The key idea is to perform subspace correction to remove the local high nonlineari-
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Table 9
Scalability test for the two-inlet case obtained using the INB-NE method with different fill-in levels of the ILU 
subsolver. A fixed mesh with 5,225,949 elements and 1,069,767 nodes is used. The overlap size of RAS precondi-
tioner is δ = 1. The time step size is 0.0025 s.

np Subsolve NIglobal LIglobal NIne LIne Timene (s) Timetotal (s)

240 ILU(0) 3.83 1068.52 1.33 6.75 11.04 243.79
ILU(1) 3.67 668.59 1.20 3.66 10.42 171.54
ILU(2) 3.83 525.70 1.20 3.33 10.82 171.83
ILU(3) 3.50 488.47 1.20 3.00 11.54 179.63

480 ILU(0) 3.83 1115.04 1.33 6.50 6.19 133.81
ILU(1) 3.50 683.47 1.20 4.00 5.83 87.84
ILU(2) 3.67 532.91 1.20 3.67 6.05 88.66
ILU(3) 3.50 491.91 1.20 3.50 6.47 96.40

960 ILU(0) 3.83 1179.70 1.33 6.63 3.72 77.45
ILU(1) 3.50 743.81 1.20 4.00 3.69 52.88
ILU(2) 3.50 541.76 1.20 3.67 3.76 48.08
ILU(3) 3.67 505.50 1.20 3.50 4.02 56.74

1,920 ILU(0) 3.83 1436.56 1.20 5.00 2.27 53.17
ILU(1) 3.67 900.36 1.20 4.16 2.30 38.33
ILU(2) 3.67 653.05 1.20 3.67 2.34 33.31
ILU(3) 3.67 630.18 1.20 3.83 2.43 38.58

Table 10
Scalability test for the one-inlet case obtained using the INB-NE method with different overlap size δ in the 
RAS preconditioner. A fixed mesh with 9,807,822 elements and 1,854,661 nodes is used. ILU(2) is used as the 
subdomain solver. The time step size is 0.0025 s.

np δ NIglobal LIglobal NIne LIne Timene (s) Timetotal (s)

512 0 3.83 763.30 1.40 12.57 13.17 225.36
1 3.83 677.39 1.40 11.29 13.19 212.89
2 4.00 643.38 1.40 10.57 13.28 218.39

1,024 0 4.17 811.52 1.40 13.43 7.69 135.79
1 4.17 665.52 1.40 11.86 7.77 120.54
2 4.17 633.04 1.40 11.14 7.83 120.34

2,048 0 4.00 805.46 1.50 18.00 5.79 88.80
1 4.00 692.75 1.40 13.86 5.21 76.47
2 4.00 645.00 1.40 12.71 5.31 73.14

3,072 0 4.17 774.56 1.40 16.86 4.08 58.37
1 4.00 687.17 1.40 14.71 4.17 52.92
2 4.00 687.04 1.40 13.71 4.19 56.65

Fig. 13. Scalability results for the two-inlet case (left) and the one-inlet case (right). ‘Sp.’ denotes the speedup and ‘Eff.’ denotes the efficiency. The mesh 
used for the two-inlet case has 5,225,949 elements and 1,069,767 nodes, and the mesh used for the one-inlet case has 9,807,822 elements and 1,854,661 
nodes. The overlap size of RAS preconditioner is δ = 1. ILU(2) is used as the subdomain solver. The time step size is 0.0025 s.
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ties that cause difficulty for the convergence of the inexact Newton method. We tested the algorithm using two realistic 
cases of human cerebral artery with stenosis. Results of numerical experiments show that the proposed method is more 
robust and faster than the classical method with respect to some physical and numerical parameters, and is scalable on a 
supercomputer with thousands of processor cores.
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