
Research Paper

Point-block incomplete LU preconditioning
with asynchronous iterations on GPU for
multiphysics problems

Wenpeng Ma1 and Xiao-Chuan Cai2

Abstract
Point-block matrices arise naturally in multiphysics problems when all variables associated with a mesh point are ordered
together, and are different from the general block matrices since the sizes of the blocks are so small one can often invert
some of the diagonal blocks explicitly. Motivated by the recent works of Chow and Patel and Chow et al., we propose an
efficient incomplete LU (ILU) preconditioner for point-block matrices targeting applications on GPU. The construction of
the preconditioner involves two critical steps: (1) the initial guessing of values for the lower and upper triangular matrices;
and (2) several sweeps of asynchronous updating of the triangular matrices. Three representative problems are studied to
show the advantage of the proposed point-block approach over the standard point-wise approach in terms of the number
of GMRES iterations and also the total compute time. Moreover, we compare the proposed algorithm with the level-
scheduling based parallel algorithm employed in NVIDIA’s cuSPARSE library as well as the serial method implemented in
Intel MKL library, and the experiments show that a 2�–5� speedup can be achieved over the block-based ILU(p) fac-
torizations from the cuSPARSE library.

Keywords
Point-block matrix, inexact ILU preconditioning, GPU architecture, asynchronous iteration, multiphysics problems

Introduction

Incomplete LU factorization (ILU) is one of the most

important building blocks for constructing preconditioners

for solving large linear system of equations. However, the

parallelization of ILU is still a bottleneck in high perfor-

mance computing, especially on GPU accelerators, because

it is inherently a sequential process. In order to improve the

parallel performance of ILU, several versions of the algo-

rithm have been introduced. These algorithms can be clas-

sified into three categories. One category is often referred

to as the parallel level-scheduling algorithms studied in

Saad (2003), Pakzad et al. (1997) that aim to efficiently

solve the upper/lower sparse triangular systems; see Ander-

son and Saad (1989). This approach involves two steps, a

pre-processing step that analyzes the parallelism of the

problem and groups the components into different level

sets, and then parallel solve that carries out the actual par-

allel computations on each level. Since the computing

between different level sets is performed sequentially, the

efficiency of this approach depends heavily on the sparsity

pattern of the matrix. NVIDIA’s cuSPARSE (2014) library

has a GPU implementation of this algorithm. One draw-

back of this method is that it sometimes takes a consider-

able amount of time to find the parallelism in the

pre-processing step, which significantly affects the overall

performance.

The second category is based on a technique that rear-

ranges the ordering of the matrix into a new matrix by using

some multi-coloring schemes, as in Saad (2003), Poole and

Ortega (1987), for example red-black coloring when the

number of desired colors is 2. Compared to the level-

scheduling algorithms, this method is capable of capturing

more parallelism but the resulting ILU preconditioner may

become less effective than the preconditioner constructed

based on the original matrix. GPU performance of the

method can be found in Li and Saad (2013).

The third category consists of “inexact” ILU algorithms

developed for the purpose of achieving higher parallel per-

formance by not satisfying some constraints required by the

regular ILU factorization. Chow and Patel (2015) proposed

1 School of Computer and Information Technology, Xinyang Normal

University, Henan, China
2 Department of Mathematics, University of Macau, Macau, China

Corresponding author:

Xiao-Chuan Cai, Department of Mathematics, University of Macau,

Macau, China.

Emails: xccai@um.edu.mo; cai@cs.colorado.edu

The International Journal of High
Performance Computing Applications
1–15
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020981153
journals.sagepub.com/home/hpc

https://orcid.org/0000-0003-0296-8640
https://orcid.org/0000-0003-0296-8640
mailto:xccai@um.edu.mo
mailto:cai@cs.colorado.edu
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020981153
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020981153&domain=pdf&date_stamp=2020-12-28

an iterative method in which nonzeros in L and U are updated

asynchronously without any data dependency. Compared

with the traditional exact ILU, their experiments showed that

the inexact ILU algorithm often requires five sweeps to

achieve the same convergency level as the regular ILU. Chow

et al. (2015) then implemented their algorithm on GPUs with

highly efficient light-weighted threads, and their experiments

show a 2.0�–28.9� speedup for some matrices from Davis

and Hu (2011) over NVIDIA’s cuSPARSE library. This algo-

rithm is already integrated into popular parallel numerical

packages including PETSc Balay et al. (2020) and ViennaCL

Rupp et al. (2016). There are many other works on parallel

factorizations on shared or distributed memory architectures,

for examples Abdelfattah et al. (2016a), Rennich et al. (2016)

and Anzt et al. (2017).

In this paper, we address matrices from multiphysics prob-

lems in which each mesh point has more than one unknowns.

For example, in a two-dimensional flow field, there are two

velocity variables and one pressure variable, with proper

ordering, the resulting matrix would have 3� 3 blocks. Dif-

ferent from traditional block matrices with large blocks, this

kind of block matrix has sufficiently small blocks so that the

inverse of the diagonal blocks can be hard-coded. In the rest of

paper, we refer to this type of matrices as point-block

matrices. It is important to point out that for all algorithms

to be introduced in this paper for point-block matrices, only

matrix–vector and matrix–matrix operations are required, and

there is no scalar operations. Note that a block is considered as

a non-zero block if one of its elements is non-zero. On the

other hand, we refer to a general sparse matrix as a point-wise

matrix. Note that algorithms involving point-wise matrices

require many scalar operations.

Point-block matrices arise from multiphysics problems

naturally. Mathematically speaking, they can be treated as

point-wise matrices when every element in a block is inde-

pendently considered and zero values are not allocated. But

numerical instability may occur if all zero elements in

blocks are eliminated, because some coupling between the

variables associated with the same mesh point is removed

consequently. While with the point-block format, each

block is supposed to be stored and computed as a unit

without removing the zeros in a non-zero block, then the

coupling feature of the physics is preserved. This is equiv-

alent to say that fill-ins are allowed between unknowns

associated with the same point-block or mesh point. Gen-

erally speaking, this consumes more memory, also involves

more arithmetical operations, but for some applications this

offers more stability and parallelism, thus more robust and

faster in terms of the total compute time. Note that there are

some classical papers for ILU factorizations of block

matrices; for examples Saad and Zhang (1999a, 1999b) and

Axelsson et al. (1989), and the parallelization of block ILU

factorization is realized from either level-scheduling or

multi-coloring algorithm on point-wise matrices in Chen

et al. (2018) and Yang and Liu (2015). Some other parallel

block ILU schemes are studied in Luo et al. (2015a), Luo et

al. (2015b), Kim and Yun (2000) and Yun (2000).

The level of parallelism for exact ILU for certain sparse

matrices may not be enough for the high concurrency of a

GPU card, therefore, following Chow et al. (2015) we only

attempt to compute an inexact ILU. Unlike the point-wise

operations in Chow et al. (2015), for some applications the

point-block matrix can offer more parallelism. Unlike stan-

dard block algorithms in which the inversion of the diag-

onal blocks requires LU factorizations, for point-block

matrices, we invert the diagonal blocks by an explicit for-

mula. Generally speaking, as a preconditioner, inexact

incomplete LU is not as strong as the corresponding exact

incomplete LU for many problems, therefore, some sweeps

are often performed. As expected, synchronization hurts

the performance of GPU badly, therefore we apply these

sweeps asynchronously.

The rest of the paper is organized as follows. We first

provide a quick review of incomplete LU factorization in

point-block format in the second section. In the third sec-

tion, an asynchronous point-block ILU(p) factorization is

introduced, then an efficient GPU implementation of the

proposed algorithm is discussed in detail. Three multicom-

ponent problems are studied and the performance compar-

isons are reported in the fourth section. Some concluding

remarks are given in the final section.

Standard point-block ILU(p) factorization

We consider a n� n sparse matrix An�n ¼ fAi;j; i; j ¼
1; ::;mg as a m� m point-block matrix. For simplicity we

assume all blocks are of the same size l � l, and we also

assume l is small since it is often related to the number of

variables associated with a single point (or an element) of

the finite element mesh. For example, l ¼ 3 for two-

dimensional Navier–Stokes equations with two velocity

variables and one pressure variable. The complete point-

block LU factorization of An�n is expressed as

A ¼ LexactUexact

where Lexact ¼ fLi; j; i; j ¼ 1; :::;mg is a block lower

triangular matrix, U exact ¼ fU i; j; i; j ¼ 1; :::;mg is a block

upper triangular matrix.

When applying the factorization as a preconditioner, we

are interested in an incomplete version of the point-block

LU factorization (ILU) with a sparsity pattern Sp ¼ fði; jÞ;
1 � i � m; 1 � j � mg

A ¼ LU � R

where L ¼ fLi; j; i; j ¼ 1; :::;mg is a block lower triangular

matrix, U ¼ fU i; j; i; j ¼ 1; :::;mg is a block upper trian-

gular matrix, and Li; j ¼ U i; j ¼ 0, 8ði; jÞ=2Sp, and Ri; j ¼ 0,

8ði; jÞ 2 Sp. In general, the sparsity pattern is chosen to be

the same as the non-zero block positions in A, and the

resulting factorization is known as the point-block ILU(0)

factorization. The sparsity pattern can be extended by

defining the level of fill, as in Saad (2003), which produces

the point-block ILU(p) factorization with p fill-in levels.

2 The International Journal of High Performance Computing Applications XX(X)

It is straightforward to write the constraints of incom-

plete LU factorization (Chow and Patel, 2015; Chow et al.,

2015) in the point-block format as

Xminði; jÞ

k¼1

Li;kUk;j ¼ Ai; j; ði; jÞ 2 Sp ð1Þ

Then we can give the explicit expressions of Li; j and

U i; j as

Li; j ¼ Ai; j �
Xj�1

k¼1

Li; kUk; j

 !
U�1

j; j ði > jÞ

Ui; j ¼ Ai; j �
Xi�1

k¼1

Li; kUk; j ði � jÞ
ð2Þ

To keep the coupled feature of the physical quantities

associated with a mesh point, we treat a block in the point-

block matrix as an unit and store the values consecutively.

Compared to the point-wise format, (2) looks similar but

contains totally different computation: All scalars are chan-

ged into l � l block matrices, the multiplication of two

scalars becomes a matrix-matrix multiplication and the

inversion of a scalar is substituted by the inverse of a

l � l block matrix. Furthermore, the data structures for

point-wise matrices and point-block matrices are also dif-

ferent in the software implementation.

The popular storage format for point-block matrices is

known as the Block Compressed Sparse Row (BCSR) format,

which is employed in libraries like PETSc (Balay et al., 2020)

and NVIDIA’s cuSPARSE (2014). Given a n� n point-

block matrix Ann with m block rows and columns, block size

l and nnzb non-zero blocks, the BCSR format stores the

matrix using three arrays ðRI ;CJ ;BVÞ as following.

� RI is an integer array with length mþ 1 where the ith

element indicates the starting column index of the

ith row in CJ . The last element equals to nnzb.

� CJ is an integer array with length nnzb, and stores all

column indices of non-zero blocks by block rows.

� BV is an array with length nnzb� l � l, and stores all

non-zero block values by block rows. The l2 values

are consecutively stored either by rows or columns

within a block.

Figure 1 shows a 6� 6 matrix written as a 3� 3 point-

block matrix with block size 2. Below the matrix, the

BCSR format is illustrated in three arrays. Within each

block, we employ a row-major ordering, which is also the

ordering we use for the rest of the paper.

Algorithm 1 lists the steps of a point-block ILU factor-

ization with fill-in levels. The algorithm requires the BCSR

format of the input matrix. To perform the operations in (2),

it is convenient to express L as row blocks and U as column

blocks during the computation. Therefore, the algorithm

outputs a lower triangular matrix L in BCSR format and

an upper triangular matrix U in Block Compressed Sparse

Column (BCSC) format. The factorization process is

described as four steps. The first step is known as symbolic

factorization (Balay et al., 2020; Saad, 2003; Yang and Liu,

2015) which sets up a non-zero pattern for L and U and

incorporates the fill-in level p. The second step is to iden-

tify the number of non-zero blocks in L and U and allocate

memory for both matrices. In the third step, the values of L

and U are initialized by the lower and upper part of A,

respectively. More precisely, we set the block-diagonal of

L to l � l identity matrices that serves as an initial condition

for nonlinear constraints in (2). The fourth step is the

numerical factorization which performs a loop over all

blocks in a specific order to compute the corresponding

block values in L and U. Inside the loop, it updates the

sth block-row of L first and then the sth block-column of

U, which is a sequentially dependent step that is necessary

to obtain the correct factorization. Thus, in this updating

order, it requires only one loop to calculate the exact lower

and upper factors with p fill-in levels.

Asynchronous point-block ILU(p)
factorization for GPUs

Algorithm 1 is not suitable for fine-grained parallel com-

puting using GPUs because of the sequential nature of

Figure 1. A sample point-block matrix with n ¼ 6, m ¼ 3, l ¼ 2,
nnzb ¼ 6, and S ¼ fð0; 0Þ; ð0; 2Þ; ð1; 1Þ; ð1; 2Þ; ð2; 0Þ; ð2; 2Þg.

Algorithm 1. Standard point-block ILU(p) factorization.

Ma and Cai 3

Steps 4.1 and 4.2. For point-wise ILU, a powerful idea was

introduced in Chow and Patel (2015) that updates

Li; jði > jÞ and U i; jði � jÞ in an order that avoids the data

dependency. Such an approach makes it possible to com-

pute many entries of L and U in parallel. But, at the same

time, the updating order makes it impossible to compute the

exact values in L and U, as a result, the incomplete factor-

ization is inexact. To make the “inexact and incomplete”

factorization useful as a preconditioner, Chow and Patel

(2015) suggests to include an outer loop to improve the

exactness of the method without sacrificing the parallelism.

In this paper, we extend the point-wise algorithm to point-

block matrices, which is referred to as the asynchronous

point-block ILU(p) described in Algorithm 2.

Since the constraints in (2) are nonlinear, the algorithm

is nonlinear and the iteration is controlled by two input

parameters, itmax and e. itmax specifies the maximum num-

ber of sweeps that the constraint equations are executed,

and e is a tolerance that determines the inexactness of the

resulting ILU factorization. Similar to the definition of the

residual of ILU factorization in Chow and Patel (2015),

we define

r ¼
X
ði; jÞ2Sp

�����
�����Ai; j �

Xminði; jÞ

k¼1

Li; kUk; j

�����
�����

2

F

0
@

1
A

1
2

ð3Þ

as the residual of the point-block inexact ILU factoriza-

tions. Note that r ¼ 0 when the factorization is exact.

One important step for the fine-grained parallelization

of the algorithm is to map chucks of the computing tasks

determined by non-zero blocks of Sp to the computing

units. Then each computing unit is responsible for updating

tasks in a sub-set of Sp. Different hardware architecture or

programming models lead to different tasks to computing

unit mapping strategies. For example, on CPUs or Intel

MIC (Nguyen, 2017) architecture, a computing unit usually

refers to a thread, and a computing unit on GPUs could be a

thread or a warp (all threads in a warp execute the same

instruction). The task of mapping Sp to threads can be easily

accomplished by using OpenMP directives on CPUs or

Intel MIC. Specifically, the key word parallel for can be

added before Step 4 in Algorithm 1 to distribute the com-

puting task to a number of OpenMP threads automatically,

and it is always followed by the key word scheduleðmodeÞ
to control how the iterations are divided into chunks and

how the chunks are assigned to threads. On the GPU archi-

tecture, however, it is the programmer’s responsibility to

work out a strategy for distributing jjSpjj tasks of Steps

4.2–4.3 in Algorithm 2 to GPU threads. This is implemen-

ted by developing a GPU kernel to specify a proper work-

load of Steps 4.2–4.3 for each thread according to thread

identifiers. Therefore, instead of executing Step 4.2 and

Step 4.3 in a sequential order, they are executed concur-

rently by launching the kernel in thousands of light

weighted threads on GPUs.

As described in the exact point-block ILU(p) algorithm

(Steps 4.1–4.2 of Algorithm 1), Li; j (or U i; j) is updated in

an order that Li; j (or Ui; j) is not computed until the data it

depends on has been calculated. In this paper, to gain more

parallelism, we remove the data dependency by updating

all Li; j and U i; j in several computing units simultaneously

without any synchronizations. Therefore, using different

number of computing units yields different updating orders,

and then different factorization results. Note that even

when the number of computing units is fixed, the results

of the computation from two different test runs could also

be different because the sequence of data accesses could be

different. When the task is divided by blocks, asynchronous

happens only among different blocks because the calcula-

tions within a block are sequential.

To describe an asynchronous version of Algorithm 1, we

define two random matrices

� Lcurr
i; j ði; j ¼ 1; :::;mÞ: The current version of the

matrix Li; j whose values are being calculated or

determined by the hardware.

� U curr
i; j ði; j ¼ 1; :::;mÞ: The current version of the

matrix U i; j whose values are being calculated or

determined by the hardware.

Following (2), the process for computing Lcurr
i; j and U curr

i; j

is given by

Lcurr
i; j ¼ Ai; j �

Xj�1

k¼1

Lcurr
i; k Ucurr

k; j

 !
ðUcurr

j; j Þ
�1 ði > jÞ

Ucurr
i; j ¼ Ai; j �

Xi�1

k¼1

Lcurr
i; k Ucurr

k; j ði � jÞ

Algorithm 2. Asynchronous point-block ILU(p) factorization.

4 The International Journal of High Performance Computing Applications XX(X)

but the outcome of the process is not necessarily the same

as that of (2). The resulting values in L and U could be far

from the desired values, especially in the point-block case

(l � 1) since some of the calculations are “unfinished”

before they are fetched by the neighboring computing units.

To improve the results, some sweeps are performed as

For it ¼ 1 to itmax

Lcurr
i; j ¼ Ai; j �

Xj�1

k¼1

Lcurr
i; k Ucurr

k; j

 !
ðUcurr

j; j Þ
�1 ði > jÞ

Ucurr
i; j ¼ Ai; j �

Xi�1

k¼1

Lcurr
i; k Ucurr

k; j ði � jÞ

End f or

Here it is a loop identifier from 1 to itmax. If itmax is

sufficiently large, then the results of the loop is usually the

same as (2). The details of the algorithm are provided in

Algorithm 2.

For point-wise matrices, Chow et al. (2015) presented a

GPU implementation in which a CUDA thread is respon-

sible for computing a scalar value li; j or ui; j. This strategy is

effective and efficient because it ensures that each CUDA

thread is assigned certain amount of workload and writes

the newest data back into the GPU’s global memory

quickly for the use by other threads. Similarly, the idea can

be extended to point-block matrices by letting a CUDA

thread compute and update a block in L or U. However,

this strategy is not suitable for Algorithm 2 on GPUs

because the matrix-matrix multiplication involves much

more computations than the scalar multiplication, which

is more than what a lightweight CUDA thread can handle.

Moreover, if one CUDA thread writes l2 values in a block

simultaneously but the two adjacent threads fail to access

adjacent global memory addresses, the global memory

accesses would be far from coalesced. The uncoalesced

global memory accesses will lead to poor performance of

writing new data, and this keeps the running threads from

using the newest data from other threads.

The works about block sparse matrix–vector multiplica-

tion by Abdelfattah et al. (2016b) and Eberhardt and Hoem-

men (2016) suggest that mapping a block to consecutive

CUDA threads can offer a lot of benefits in performance

improvement on GPUs. To make full use of the fine-

grained feature of GPUs for computing all blocks of L and

U, we decide to assign 32 threads in a warp to compute and

update a block-row in both L and U collaboratively. This is

summarized in detail in Algorithm 3.

In the GPU architecture, CUDA threads are dispatched

in warps implicitly, while a kernel that states the computing

tasks on threads is explicitly configured with two main

parameters, the number of threads in a thread block and

the total number of thread blocks. To identify which warp

corresponds to a specific block-row in the point-block

matrix, we manually map a global thread identifier to the

warp identifier through dividing the global thread identifier

by the warp size. For example, as shown in Figure 2, when

the number of threads in a thread block is set to 128, the

total 128 threads in a thread block are divided into four

warps that correspond to four block rows of L and U,

respectively. By knowing a certain identifier, i.e. a warp

identifier, all threads in a warp can confirm the starting and

ending indices of data segment they need to handle in a

BCSR formatted matrix. Within each warp, the local thread

identifier, expressed as rpos, can be calculated as the

remainder of dividing thread identifier in a thread block

(threadIdx.x) by the warp size. By obtaining the local

thread identifier in a warp, we explain how the threads

Algorithm 3. GPU implementation of Algorithm 2.

Ma and Cai 5

in a warp work independently and collaboratively for a

block-row.

In the rest of this section, we discuss the application of

Algorithm 3 for a more concrete example with 3� 3

blocks. As illustrated in Figure 2, our strategy is to make

a CUDA thread responsible for computing a single ele-

ment of a block. Specifically, each element in a block is

assigned to a thread in a warp, and elements are assigned

by rows within a block. Different blocks are assigned

from left to right. However, the total number of elements

in a block-row may exceed the warp size, and the threads

in a warp can cover only three complete blocks in this

particular example. The assignment procedure is restarted

at the fourth block and a thread in a warp may compute

more than one element. For example, there are 4 blocks in

total at the ith block-row of L and U, and 27 threads are

used in the first assignment cycle while only the first 9

threads will work in the second cycle. The second cycle

does not start until all the 27 threads in the first cycle has

completed their task. In the pseudo code of Algorithm 3,

range is declared to estimate the maximum number of

threads in a warp that can be used to cover complete

blocks. Then all threads within range are activated to start

the computation concurrently. Starting from line 14 in

Algorithm 3, each thread begins to solve one element in

Li; j or Ui; j according to the constraints at Steps 4.2–4.3 of

Algorithm 2.

We demonstrate the process of executing operation (2)

in Figure 3. Each thread has to perform a multiplication of a

row-vector and a column-vector when it encounters a pair

of blocks, Li; k and U k; j. The result is accumulated as each

thread goes over all block pairs fLi; k ;Uk; jg that satisfy

k < minfi; jg. In (2), the constraint for Li; j has one more

operation than that for Ui; j, and the extra operation

involves a matrix–matrix multiplication which uses the

accumulated values across the threads. To make the result

from each private thread visible to other threads, we exploit

shared memory on GPUs instead of registers to save the

intermediate results. Unlike registers, shared memory is

allocated per thread block and can be accessed by all

threads in the same thread block. Therefore, we allocate a

space with the thread bock size on shared memory to guar-

antee that each thread can store a value with double preci-

sion type. In line 2 in Algorithm 3, the space is arranged by

a two-dimensional array for accessing shared data in warps.

To update Li; j according to the first constraint in (2), the

inverse matrix of U j; j is needed by the threads that handle

the same block. This can be accomplished by two steps.

First, a local thread identifier, i.e. rpos, is transformed into

a ðr; cÞ pair where r and c represent the row and column

index within the corresponding l � l block respectively.

The transformation step is listed as line 9 and 10 in Algo-

rithm 3. Second, the computation of the element at ðr; cÞ
of ðAi; j �

Pj�1
k¼1Li; kUk; jÞU�1

j; j is assigned to the thread

Figure 2. Illustration of updating the irowth block-row on GPU. The first warp (32 threads) in a thread block performs two cycles to
update the four blocks of the row: (1) the first 27 threads in the warp update the first three blocks (two blocks in L and one block in U)
showing in the box with red solid border; then (2) the first nine threads in the warp update the fourth block showing in the box with red
dashed border.

6 The International Journal of High Performance Computing Applications XX(X)

corresponding to ðr; cÞ. According to line 33 in Algorithm

3, the results of Ai; j �
Pj�1

k¼1Li; kU k; j in a warp for 3 blocks

are stored in the shared memory (s) which can be accessed

by all threads in the warp. But when performing the matrix–

matrix multiplication, the thread corresponding to ðr; cÞ
needs not only the element at ðr; cÞ of U�1

j; j but other two

elements at the cth column of U�1
j; j . This issue can be solved

by giving a complete symbolic expression of U�1
j; j . Suppose

U j; j and its adjoint matrix U�j; j are expressed as

Uj; j ¼
u00 u01 u02

u10 u11 u12

u20 u21 u22

2
64

3
75 U�j; j ¼

u�00 u�01 u�02

u�10 u�11 u�12

u�20 u�21 u�22

2
64

3
75

we compute the symbolic expression of u�rc in U �jj as

u�rc ¼ uabude � uf guhk ;

where a¼ modðcþ 1; 3Þ, b ¼ modðr þ 1; 3Þ, d ¼modðcþ
2; 3Þ, e ¼ modðr þ 2; 3Þ, f ¼ modðcþ 1; 3Þ, g ¼ modðrþ
2; 3Þ, h¼ modðcþ 2; 3Þ, k ¼ modðrþ 1; 3Þ. Then the

determinant of Uj; j can be computed by

det ¼ u00u11u22 � u00u12u21 � u01u10u22

þ u01u12u20 þ u02u10u21 � u02u11u20

All threads in a block compute the determinant of Uj; j

and save it as a register variable. Then each thread associ-

ated with a specific ðr; cÞ accesses the elements in U and s

to perform one row–column computation. For example, the

thread at ð1; 2Þ firstly computes u�02, u�12, and u�22 and then

accesses the second (index starting from 0) row in s to

perform a multiply–add computation. The result is written

at ðr; cÞ of block Lirow;jcol in Algorithm 3.

Numerical experiments

In this section, we present some numerical experiments by

using the proposed GPU version of point-block ILU factor-

ization as a preconditioner for several multicomponent

problems arising in incompressible flow calculations and

phase field method for the modeling of crystal growth. We

also provide some comparisons with results obtained using

the NVIDIA’s cuSPARSE (2014) and Intel MKL (2017)

libraries.

The experiments are carried out on a cluster of comput-

ing nodes, each consisting of 2 Intel E5-2680 V2 (Ivy

Bridge, 10C, 2.8 GHz) CPUs, with 128 GB DDR3 ECC

1866 MHz physical memory and 2 Nvidia Tesla K20

GPGPU cards. The GPU card has the compute capability

Figure 3. Solving the constraints of Li;j on GPU using nine threads via three steps: (1) each thread computes one scalar element ofPj�1
k¼1Li;kUk;j and stores the result in the shared memory showing as two coloring triangles. The color of the upper and lower triangle

shows the scalar rows of Li;k and columns of Uk;j each thread needs to go over, respectively; (2) each threads accesses one element of Ai;j

to perform an in-place block subtraction in the shared memory; and (3) perform a block–block multiplication between the shared
results and U�1

j;j with the explicit expression.

Ma and Cai 7

of 3.5, 320-bit GDDR5 5 GB memory, 14 stream multi-

processors (SMs), 2496 processors in total. Each SM has

65536 registers, and a thread can use a maximum number

of 255 registers. The cluster is also configured with

libraries CUDA Toolkit 6.5.14 and Intel MKL 11.1.

NVIDIA’s cuSPARSE (2014) library provides two ILU

factorization functions. One is point-wise, and the other is

block-based. The point-wise routine requires the calls of

cusparseDcsrilu02_bufferSize, cusparseDcsrilu02_analy-

sis, and cusparseDcsrilu02 one by one in order to compute

an ILU factorization for an input matrix. The first function

calculates the memory requirement, the second function is

responsible for extracting possible parallelism, and the last

function computes the ILU factorization. cuSPARSE also

offers the ILU factorizations of point-block matrices in the

BCSR format, and the corresponding functions are cuspar-

seDbsrilu02_bufferSize, cusparseDbsrilu02_analysis and

cusparseDbsrilu02.

The Intel MKL 11.1 provides a function named dcsrilu0

which computes point-wise ILU factorizations based on the

algorithm proposed in Saad (2003).

To demonstrate the advantage of the proposed algorithm

over the point-wise version implemented with the CUDA

kernel by Chow et al. (2015), we denote the implementa-

tions as GPU_PBILU and GPU_PWILU, respectively. The

difference between the two versions is that a non-zero

block sub-matrix in a point-block format is treated as a

dense matrix with all elements stored and computed, but

in the point-wise format all zeros are removed and do not

participate in any computation.

cuSPARSE and Intel MKL libraries only offer ILU fac-

torization without fill-in levels (ILU(0)). To compare the

performance of the aforementioned approaches with higher

fill-in levels, we perform the symbolic step to obtain the

non-zero pattern Sp on CPUs and the actual factorization is

executed on GPUs.

In the experiments, we solve the linear system of equa-

tions with a right-preconditioned GMRES restarted at 30

until the following condition (Saad, 2003) is satisfied

k ðb� AxkÞM�1 k� rtol k b k

where b is the right-hand side of the linear system, M�1 is

the ILU preconditioner discussed in the previous sections

and is used here as a right preconditioner, the initial guess

x0 is chosen as 0, and some different values of the tolerance

rtol will be tested in the experiments.

For each experiment, we report the number of GMRES

iterations denoted as “GMRES”, the total compute time of

GMRES denoted as “GMREStime”, and the unprecondi-

tioned residual k b� Axkk2 denoted as “GMRESresid”. The

residual of the point-block inexact ILU factorization, as

defined in (3), is denoted as “ILUresid”, and the compute

time for the ILU factorization is denoted as “ILUtime”. We

use “itimpv” to denote the number of sweeps used in the

asynchronous ILU factorization. All results in our experi-

ments are averaged over three runs.

A two-dimensional stokes problem

We consider a matrix from the finite element discretization

of a two-dimensional Stokes problem on a mesh with 10201

mesh points. Each mesh point contains three unknowns

including two velocity components (u; v) and one pressure

(p), the resulting matrix A is of size 30603� 30603 with

3� 3 blocks.

Table 1 shows the performance of the ILU(0) factoriza-

tions as well as the number of GMRES(30) iterations when

different number of asynchronized sweeps is applied. Two

different convergence tolerances are considered as shown

in the top and bottom part of Table 1. In this case, the

ILU(0) sparsity pattern for the point-block matrix contains

70593 blocks (635337 values) while the sparsity pattern for

the point-wise matrix only contains 388625 non-zero val-

ues. Although the ILU(0) factorization of the point-block

matrix needs to solve 60% more constraints than that of the

point-wise matrix, we observe from Table 1 that GPU_P-

BILU still performs slightly better than GPU_PWILU in

terms of GPU factorization time. For GPU_PBILU, the

number of GMRES iterations decreases with increasing

itimpv, thus the compute time for GMRES is reduced gra-

dually. But in the GPU_PWILU case, when itimpv ¼ 3 is

applied, GMRES uses 263 iterations to converges to 10�5,

which is 29 and 7 fewer than when itimpv ¼ 4 and itimpv ¼ 5

although the ILUresid is larger. This is due to the stochastic

feature of applying the inexact factorization to GMRES.

We also observe that GPU_PBILU outperforms GPU_P-

WILU in terms of GMREStime even though GMRES in the

Table 1. Comparisons of GPU_PWILU and GPU_PBILU when
different number of sweeps is applied for two different relative
tolerances of GMRES(30).

itimpv GMRES GMREStime GMRESresid ILUresid ILUtime

rtol¼ 10�5

GPU_PWILU
3 263 522 ms 2.11E�3 31.0 1.95 ms
4 292 576 ms 2.12E�3 9.54 2.56 ms
5 270 538 ms 2.13E�3 3.54 3.17 ms

GPU_PBILU
3 172 410 ms 2.16E�3 2.48 1.71 ms
4 160 369 ms 2.09E�3 1.03 2.23 ms
5 148 344 ms 2.03E�3 0.58 2.76 ms

rtol¼ 10�6

GPU_PWILU
3 410 808 ms 2.15E�4 31.0 1.95 ms
4 410 811 ms 2.10E�4 9.61 2.56 ms
5 382 749 ms 2.11E�4 3.54 3.17 ms

GPU_PBILU
3 246 560 ms 2.10E�4 2.47 1.71 ms
4 208 475 ms 2.04E�4 1.03 2.23 ms
5 200 456 ms 2.11E�4 0.58 2.76 ms

8 The International Journal of High Performance Computing Applications XX(X)

point-block format is more expensive in terms of the arith-

metic complexity, this is because point-block ILU(0) fac-

torization yields fewer GMRES iterations compared to the

point-wise ILU(0) factorization in this case.

Note that with the point-block ILU(0) preconditioner

GMRES converges faster in terms of the number of itera-

tions. This can be explained by Figure 4 which shows three

consecutive blocks from a block-row of the upper triangu-

lar factor. To understand the faster convergence, we com-

pare three preconditioners: point-block ILU(0), point-wise

ILU(0), and point-wise ILU(1), and show that point-block

ILU(0) retains more nonzeros than point-wise ILU(0) and

is actually closer to point-wise ILU(1). Green squares in

Figure 4(a) and Figure 4(b) show the non-zero 3� 3

blocks, and 18 constraints need to be solved for these three

blocks in the point-block ILU(0). In the case of point-wise

factorizations, the black circles in Figure 4(a) show the

sparsity pattern of ILU(0) whereas the red circles indicate

the sparsity pattern of ILU(1) in Figure 4(b). We can see

clearly in Figure 4(b) that five circles pointed by arrows in

the point-wise ILU(1) pattern overlap with the green

squares in the second block and three circles are outside

the two blocks showing in the third block, which is not

covered by the point-block ILU(0). That means that the

constraints of ILU(0) in the point-block format partially

cover the constraints of ILU(1) in the point-wise format,

which makes the effectiveness of the point-block ILU(0)

behave between the point-wise ILU(0) and ILU(1).

For ILU factorizations with higher fill-in levels, we

compare the performance of our algorithm to that of pop-

ular libraries including cuSPARSE and Intel MKL. The

first two parts of Table 2 show the execution times of three

functions that accomplish the point-wise ILU factorization

in the cuSPARSE library. They are followed by the corre-

sponding results from point-block factorizations. We

observe from the four parts that the level-scheduling

scheme implemented in the cuSPARSE library is effective

for this case in both point-wise and point-block formats,

and the factorization time can be reduced by spending a

small amount of time on analyzing the parallelism. The last

two parts give the numbers of GMRES iterations and fac-

torization times when the two inexact ILU factorizations

are applied to solving the linear equations. We note that the

exact point-block ILU(1), ILU(2) and ILU(3) factorization

produced by cuSPARSE makes GMRES converge to 10�3

at 24th step, 17th step and 11th step, respectively. And 5

sweeps of our GPU kernel can achieve the same conver-

gence level for GMRES using 24 steps, 17 steps and 11

steps. However, compared to the point-wise factorization

from cuSPARSE, GPU_PWILU fails to offer effective

(a)

(b)

Figure 4. A comparison of the sparsity patterns of the upper triangular U matrix from three methods: (1) the point-block ILU(0)
showing as green squares in both (a) and (b); (2) the point-wise ILU(0) showing as the black circles in (a); and (3) the point-wise ILU(1)
showing as the red circles in (b). The five elements pointed by arrows are additional nonzeros provided by the point-wise ILU(1) and the
point-block ILU(0), not by the point-wise ILU(0).

Ma and Cai 9

factorizations by five sweeps, and NAN (Not A Number)

occurs in the process of ILU(2) and ILU(3). This can be

explained by the fact that the positions in Sp of ILU(p)

(p � 1) but not in that of ILU(0) are initialized as zero

values, and the simple and straightforward way to give

initial guesses in the lower(L) and upper(U) factors makes

the point-wise cycles unstable. But this doesn’t have any

impact on GPU_PBILU. Concerning the total compute

time, ILU(1), ILU(2) and ILU(3) of GPU_PBILU achieve

5.06�, 4.51� and 4.38� over the point-block ILU factor-

ization with the level-scheduling algorithm provided in the

cuSPARSE library, respectively.

We now consider a tighter tolerance of 10�10 for

GMRES(40) with ILU(p) (p ¼ 1; 2; 3). Similar to the

results for GPU_PWILU in Table 2, GMRES with ILU(1)

obtained by GPU_PWILU fails to converge even with the

increasing number of sweeps, and NAN occurs in GMRES

with ILU(2) and ILU(3). By using GPU_PBILU, we show

the number of GMRES iterations and ILUtime in Table 3.

The exact point-block ILU(p) (p ¼ 1; 2; 3) results in 1755,

295 and 80 GMRES iterations on the CPU. From Table 3,

we observe that ILU(1) on GPU leads to fewer GMRES

iterations compared to the CPU result, whereas ILU(2) on

GPU leads to more iterations. And increasing the number of

sweeps is not helpful to reduce the number of GMRES

iterations for the ILU(2) case. This is probably because the

success of solving the nonlinear constraints (Steps 4.2 and

4.3 in Algorithm 2) depends on the initial guesses, but our

initial guesses are not good enough.

A two-dimensional, nonlinear driven cavity flow
problem

In this experiment, we investigate the effects of ILU(p)

factorizations on solving linear systems in a nonlinear sol-

ver. The nonlinear algebraic system arises from the finite

difference discretization of the 2D driven cavity flow prob-

lem modeled by the incompressible Navier–Stokes equa-

tions in the velocity-vorticity formulation. The Reynolds

number is 1. The system is solved with an inexact Newton

method in which the linear Jacobian systems are solved by

a right-preconditioned GMRES. The Jacobian matrix is

stored as a point-block matrix with 3� 3 blocks. The inex-

act Newton iteration is stopped when the following condi-

tion is satisfied

k FðxkÞ k� 10�8 k Fðx0Þ k

where x0 is the initial guess. We consider two uniform

meshes of size 150� 150 and 200� 200. For these

meshes, the number of inexact Newton iterations is 4. For

each of the iterations, the Jacobian matrix is constructed

and solved with a relative tolerance of 10�3. The linear

systems for this experiment are extracted from the third

step of the Newton iterations. The timing results are shown

in Figure 5, Figure 6, Table 4 and Table 5. For the

150� 150 mesh, by employing the exact point-block

ILU(p) (p � 2) preconditioners on CPUs, GMRES(30)

uses 365, 212 and 163 iterations to converge to 10�3,

respectively. For point-block ILU(0) and ILU(1) on GPU,

it requires 7 and 6 sweeps of GPU_PBILU to make

GMRES(30) converge with the same number of iterations

obtained on the CPU. We observe that due to the stochastic

Table 3. 2D Stokes case: GMRES(40) iterations and ILUtime using
GPU_PBILU. The tolerance of GMRES(40) is set to 10�10.

GPU_PBILU

itimpv ¼ 8 ILU(1) ILU(2) ILU(3)

GMRES(40) 1693 319 80
ILUtime 5.96 ms 10.58 ms 19.5 ms

Table 2. 2D Stokes case: comparisons to cuSPARSE, Intel MKL
libraries and GPU_PWILU with higher fill-in levels. The tolerance
of GMRES(30) is set to 10�3.

cuSPARSE (point-wise): with level-scheduling

Time ILU(1) ILU(2) ILU(3)
Tbuf f ersize 0.13 ms 0.10 ms 0.12 ms
Tanalysis 3.96 ms 5.38 ms 6.16 ms
Tcsrilu 11.17 ms 18.77 ms 28.17 ms

cuSPARSE (point-wise): without level-scheduling

Time ILU(1) ILU(2) ILU(3)
Tbuf f ersize 0.14 ms 0.10 ms 0.12 ms
Tanalysis 0.22 ms 0.22 ms 0.24 ms
Tcsrilu 21.53 ms 40.95 ms 44.20 ms

cuSPARSE (block-based): with level-scheduling

Time ILU(1) ILU(2) ILU(3)
Tbuf f ersize 0.14 ms 0.16 ms 0.14 ms
Tanalysis 1.21 ms 1.23 ms 1.51 ms
Tbsrilu 17.49 ms 28.37 ms 51.67 ms

cuSPARSE (block-based): without level-scheduling

Time ILU(1) ILU(2) ILU(3)
Tbuf f ersize 0.14 ms 0.16 ms 0.16 ms
Tanalysis 0.15 ms 0.16 ms 0.18 ms
Tbsrilu 41.89 ms 52.23 ms 68.83 ms

Intel MKL

Time ILU(1) ILU(2) ILU(3)
Tdcsrilu 33.16 ms 82.03 ms 200.47 ms

GPU_PWILU

itimpv ¼ 5 ILU(1) ILU(2) ILU(3)
GMRES 150 NAN occurred NAN occurred
ILUtime 11.79 ms

GPU_PBILU

itimpv ¼ 5 ILU(1) ILU(2) ILU(3)
GMRES 24 17 11
ILUtime 3.72 ms 6.6 ms 12.18ms

10 The International Journal of High Performance Computing Applications XX(X)

feature of our algorithm, 4 sweeps are not only sufficient

for ILU(2) to make GMRES(30) converge but also requires

14 fewer iterations. A speedup of 2.93�, 3.17� and 4.68�
can be obtained by our algorithm compared to the block-

based version in cuSPARSE. GMRES(30) uses 367, 213

and 164 iterations respectively to converge using the exact

point-wise ILU(p) (p � 2) preconditioners on CPUs. We

observe from Figure 5 and Table 4 that GPU_PWILU has

some advantage over GPU_PBILU in terms of GMREStime

and ILUtime using ILU(0) and ILU(1), but GPU_PBILU is

more stable than GPU_PWILU when ILU(2) is used

because a number of sweeps of GPU_PWILU can’t provide

an effective preconditioner for GMRES to converge.

For the 200� 200 mesh, 486, 260 and 169 iterations are

needed for GMRES(30) to converge using the exact point-

block ILU(0), ILU(1) and ILU(2) on CPUs, respectively. It

is shown in Table 5 that 6 sweeps of GPU_PBILU are

needed to make the inexact ILU(0) and ILU(1) on GPU

comparable with exact ones on CPUs. Similar to the results

of ILU(2) for the 150� 150 mesh, 34 GMRES iterations can

be saved when 4 sweeps are employed for ILU(2) on GPU.

And the present method performs about 2.64�, 2.48� and

3.66� faster than the function in the cuSPARSE library.

Employing the exact point-wise ILU(0), ILU(1) and ILU(2),

GMRES uses 471, 262 and 170 iterations to converge,

respectively. Figure 6 and Table 5 show the detailed com-

parisons. We also see the advantage of GPU_PWILU with

ILU(0), but it takes almost the same time for GPU_PWILU

and GPU_PBILU to perform 6 sweeps. Since ILU(2) for

GPU_PWILU results in no convergence, we see GPU_P-

BILU shows more stability than GPU_PWILU with increas-

ing fill-in levels.

We then increase the mesh size to 300� 300. The point-

block matrix contains 448800 and 627602 non-zero blocks

for ILU(0) and ILU(1) patterns whereas the point-wise

matrix contains 1871424 and 3289466 non-zero values for

point-wise ILU(0) and ILU(1) patterns. On CPUs, when the

exact point-block ILU(0) and ILU(1) are applied, it takes

GMRES(30) 768 and 407 iterations to converge to 10�3,

whereas GMRES(30) uses 757 and 410 iterations to con-

verge to the same tolerance using exact point-wise ILU(0)

and ILU(1). We compare GPU_PBILU to all point-wise

versions where zero values are ignored in blocks as well

as the block-based version provided by the cuSPARSE

library in Figure 7. The detailed comparison between

GPU_PBILU and GPU_PWILU is shown in Table 6. Note

that since neither GPU_PBILU nor GPU_PWILU with

ILU(2) makes GMRES converge, we only report the results

using ILU(0) and ILU(1). With point-block ILU(0)

obtained by 4 sweeps, GMRES(30) uses 19 fewer iterations

to converge to 10�3 by using inexact factorizations on

GPUs than using exact factorizations on CPUs. Compare

Figure 5. 150� 150 mesh: comparisons among GPU_PBILU,
GPU_PWILU and popular libraries.

Figure 6. 200� 200 mesh: comparisons among GPU_PBILU,
GPU_PWILU and popular libraries.

Table 4. itimpv , ILUresid, GMRES, and GMREStime for GPU_PBILU
on 150� 150 mesh. “\” means no convergence.

Fill-in levels

GPU_PBILU GPU_PWILU

ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2)

itimpv 7 6 4 5 5 � 5
ILUresid 7.54 5.58 171 60.2 538 \
GMRES 365 212 149 365 169 \
GMREStime 1651 ms 1089 ms 872 ms 1374 ms 740 ms \

Table 5. itimpv , ILUresid, GMRES, and GMREStime for GPU_PBILU
on 200� 200 mesh. “\” means no convergence.

Fill-in levels

GPU_PBILU GPU_PWILU

ILU(0) ILU(1) ILU(2) ILU(0) ILU(1) ILU(2)

itimpv 6 6 4 5 6 � 5
ILUresid 30.5 10.5 498 79.7 470 \
GMRES 468 260 135 469 189 \
GMREStime 3750 ms 2424 ms 1421 ms 3122 ms 1619 ms \

Ma and Cai 11

to the exact point-wise ILU(0), 5 sweeps for point-wise

ILU(0) on GPU make GMRES(30) converge with 5 fewer

iterations. Note that GPU_PWILU performs better than

GPU_PBILU in terms of the compute time and GMRES-

time. However, GPU_PWILU fails to be the better one when

we switch to ILU(1). No more sweeps are required for

point-block ILU(1) to make GMRES converge within

407 steps. In contrast, the point-wise ILU(0) obtained by

5 sweeps of GPU_PWILU can’t make GMRES(30) con-

verge within 410 steps and one more step is required. The

extra step even makes the GPU_PWILU better than the

exact one and improves the convergence of GMRES much.

Although GPU_PWILU results in less compute time for

GMRES, we still observe GPU_PBILU with much more

constraints to be solved performs better than GPU_PWILU

in terms of the factorization time, which is attractive for

conducting ILU factorizations in parallel. 3.0� and 2.77�
speedups can be obtained by GPU_PBILU over the block-

based implementation in the cuSPARSE library.

Furthermore, we consider another point-wise version by

not eliminating zero values (NEZ) in blocks. A matrix in

BCSR firstly transformed into CSR by counting all values in

blocks, and then factorized by GPU_PWILU and subrou-

tines in MKL and cuSPARSE libraries. On CPUs, both the

point-block and point-wise NEZ versions of ILU result in the

same number of GMRES iterations. The number of itera-

tions is 768 using ILU(0) and 407 using ILU(1), respec-

tively. The clock times of factorizations are shown in

Figure 8. For ILU(0) on GPU, both the times of GPU_P-

BILU and GPU_PWILU are obtained by 4 sweeps. GPU_P-

BILU results in 749 GMRES iterations while GPU_PWILU

results in 747 GMRES iterations. But GPU_PBILU is 1.82�
faster than GPU_PWILU. For ILU(1) on GPU, 4 sweeps are

still sufficient for GPU_PBILU to make GMRES converge.

The number of iterations is 407. The number of sweeps is

tested from 4 to 7 for GPU_PWILU, but none of them pro-

vides an effective preconditioner to make GMRES con-

verge. The increasing non-zero patterns that are initialized

by zeros might cause GPU_PWILU unstable with increasing

fill-in levels in this case. We still list the time of GPU_P-

WILU obtained by 7 steps in Figure 8 even though that bar is

meaningless. We observe that GPU_PBILU achieves 6.96�
and 4.93� speedup over cuSPARSE for ILU(0) and ILU(1),

which demonstrates that our algorithm is more stable to

maintain good performance with increasing fill-in levels

compared to GPU_PWILU.

A problem from a sixth-order crystal growth problem

In this experiment, we consider a 99372� 99372 matrix

from the phase field method for solving a sixth order partial

differential equation for the modeling of crystal growth. As

reported in Yang and Cai (2014) and Yang et al. (2013)

standard GMRES preconditioned with point-wise ILU(p)

doesn’t work for the system. In this problem, each mesh

point has three variables ðv1; v2; v3Þ, standard point-wise

approaches arrange the variables as ½vð1Þ1 ; v
ð2Þ
1 ; � � � ; vðnÞ1 ;

v
ð1Þ
2 ; v

ð2Þ
2 ; � � � ; vðnÞ2 ; v

ð1Þ
3 ; v

ð2Þ
3 ; � � � ; vðnÞ3 	

T
where v

ðjÞ
i represents

the ith variable of the jth point. In the point-block approach,

we order the variables as ½vð1Þ1 ; v
ð1Þ
2 ; v

ð1Þ
3 ; v

ð2Þ
1 ; v

ð2Þ
2 ; v

ð2Þ
3 ; � � � ;

v
ðnÞ
1 ; v

ðnÞ
2 ; v

ðnÞ
3 	

T
, the resulting matrix is a point-block matrix

Table 6. itimpv , ILUresid, GMRES, and GMREStime for GPU_PBILU
and GPU_PWILU on 300� 300 mesh.

Fill-in levels

GPU_PBILU GPU_PWILU

ILU(0) ILU(1) ILU(0) ILU(1)

itimpv 4 4 5 6
ILUresid 527 68 123 754
GMRES 749 407 752 386
GMREStime 13825 ms 8543 ms 11276 ms 6818 ms

Figure 7. 300� 300 mesh: comparisons among GPU_PBILU,
GPU_PWILU and popular libraries.

Figure 8. 300� 300 mesh: comparisons among GPU_PBILU,
GPU_PWILU and popular libraries by not eliminating zeros (NEZ)
in blocks.

12 The International Journal of High Performance Computing Applications XX(X)

with 3� 3 blocks. GMRES(30) takes 15 and 6 iterations to

converge with the tolerance 10�3 on the CPU when ILU(0)

and ILU(1) are applied, respectively. It is shown in Table 7

that GPU_PBILU with 5 sweeps makes GMRES(30) con-

verge with the same number of iterations and tolerance. To

show the advantage of our algorithm over point-wise ILU

factorizations, we show the time for the factorizations

obtained by point-wise versions from cuSPARSE, Intel

MKL and GPU_PWILU in Table 7. Our algorithm is faster

than all point-wise versions and achieves 2.34� and 2.48�
speedup over the block-based version from cuSPARSE.

Then we consider a tighter tolerance of 10�10 for GMRES.

On the CPU, 59 and 19 GMRES iterations are required to

converge for the exact point-block ILU(0) and ILU(1),

respectively. For the inexact ILU(0) on GPU, 5 sweeps are

needed for GPU_PBILU to converge in 59 iterations. But

for the inexact ILU(1), 6 sweeps are required to converge in

19 iterations, and the speedup reduces to 2.07�.

Some concluding remarks

ILU(p) is a fundamental building block of many precondi-

tioning techniques, such as domain decomposition methods

in Kong and Cai (2016) and Luo et al. (2020), for solving

linear system of equations, and is also one of the most dif-

ficult components to be parallelized on a GPU because it is

originally designed for purely sequential computers. In this

paper, an inexact ILU(p) preconditioner in the point-block

form is investigated for a GPU. Note that in this paper a

“point” block matrix is viewed differently than a standard

block matrix in the sense that the size of the block has to be

small enough such that the inverse of the block can be writ-

ten out explicitly. The proposed algorithm is effective for

solving linear system of equations arising from the discreti-

zation of multicomponent partial differential equations for

which the resulting matrix can be arranged in a point-block

format. Our experiments show that the point-block ILU is

more stable than the point-wise ILU in the sense that the

point-wise preconditioned GMRES may fail to converge

while the point-block ILU converges because additional

coupling between variables associated with the same mesh

point is preserved. Even though the point-block version

involves more arithmetic operations than the corresponding

point-wise version, it could be faster on GPU because of the

inherited data locality in the point-block matrix and the pro-

posed fine-grained algorithm for block-block matrix multi-

plication and block inversion. Our experiments also show

that 2�–5� speedups can be obtained over the block-based

ILU factorizations provided by the cuSPARSE library. In all

experiments, we discuss the speedups between the approx-

imate ILU and the exact ILU under the condition that the

same number of GMRES iterations is performed to solve the

problem, which ensures that the comparisons are fair. The

success is due to two key ingredients, namely (1) the point-

block format that keeps more coupling of variables associ-

ated with a point in the mesh and (2) the asynchronized

iterations that enable the efficient use of GPU. Our future

work includes the extension of the current approach to a

cluster of GPUs.

Acknowledgment

We thank Yingzhi Liu for his help.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Table 7. The crystal growth problem: comparisons to cuSPARSE,
Intel MKL libraries and GPU_PWILU with higher fill-in levels.
The tolerance of GMRES(30) is set to 10�3. “\” means no
convergence.

cuSPARSE (point-wise): with level-scheduling

Time ILU(0) ILU(1)
Tbuf f ersize 0.15 ms 0.17 ms
Tanalysis 13.69 ms 16.07 ns
Tcsrilu 12.13 ms 18.34 ms

cuSPARSE (point-wise): without level-scheduling

Time ILU(0) ILU(1)
Tbuf f ersize 0.15 ms 0.17 ms
Tanalysis 0.42 ms 0.46 ms
Tcsrilu 90.38 ms 106.32 ms

cuSPARSE (block-based): with level-scheduling

Time ILU(0) ILU(1)
Tbuf f ersize 0.14 ms 0.12 ms
Tanalysis 2.84 ms 3.04 ms
Tcsrilu 17.05 ms 26.15 ms

cuSPARSE (block-based): without level-scheduling

Time ILU(0) ILU(1)
Tbuf f ersize 0.14 ms 0.13 ms
Tanalysis 0.23 ms 0.23 ms
Tcsrilu 175.10 ms 201.20 ms

Intel MKL

Time ILU(0) ILU(1)
Tdcsrilu 39.45 ms 99.52 ms

GPU_PWILU

itimpv ¼ 5 ILU(0) ILU(1)
GMRES \ \
ILUtime 11.20 ms 32.01 ms
ILUresid \ \

GPU_PBILU

itimpv ¼ 5 ILU(0) ILU(1)
GMRES 15 6
ILUtime 8.55 ms 11.79 ms
ILUresid 0.0193 13.7

Ma and Cai 13

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work of the first author is supported in part

by NSFC 61702438, the Nanhu Scholar Program of XYNU

and the Innovation Team Support Plan of Science and

Technology of Henan Province (19IRTSTHN014).

ORCID iD

Xiao-Chuan Cai https://orcid.org/0000-0003-0296-8640

References

Abdelfattah A, Haidar A, Tomov S, et al. (2016a) Fast Cholesky

factorization on GPUs for batch and native modes in

MAGMA. Journal of Computational Science 20: 85–93.

Abdelfattah A, Ltaief H, Keyes D, et al. (2016b) Performance

optimization of sparse matrix-vector multiplication for

multi-component PDE-based applications using GPUs. Con-

currency & Computation Practice & Experience 28(12):

3447–3465.

Anderson E and Saad Y (1989) Solving sparse triangular linear

systems on parallel computers. International Journal of High

Speed Computing 1(1): 73–95.

Anzt H, Gates M, Dongarra J, et al. (2017) Preconditioned Krylov

solvers on GPUs. Parallel Computing 68: 32–44.

Axelsson O, Eijkhout V, Polman B, et al. (1989) Incomplete

block-matrix factorization iterative methods for convection-

diffusion problems. BIT Numerical Mathematics 29(4):

867–889.

Balay S, Abhyankar S, Adams MF, et al. (2020) PETSc web page.

Available at: https://www.mcs.anl.gov/petsc (accessed 25

October 2020).

Chen Y, Tian X, Liu H, et al. (2018) Parallel ILU preconditioners

in GPU computation. Soft Computing 22: 8187–8205.

Chow E and Patel A (2015) Fine-grained parallel incomplete LU

factorization. SIAM Journal on Scientific Computing 37(2):

C169–C193.

Chow E, Anzt H and Dongarra H (2015) Asynchronous iterative

algorithm for computing incomplete factorizations on GPUs.

In: Kunkel JM and Ludwig T (eds) ISC HIGH PERFOR-

MANCE 2015, Lecture notes in computer science, Vol.

9137, pp. 1–16, 2015. DOI: 10.1007/978-3-319-20119-1_1

Davis TA and Hu Y (2011) The University of Florida sparse

matrix collection. ACM Transactions on Mathematical Soft-

ware 38(1): 1–25.

Eberhardt R and Hoemmen M (2016) Optimization of block

sparse matrix-vector multiplication on shared-memory parallel

architectures. In: 2016 IEEE international parallel and dis-

tributed processing symposium workshops (IPDPSW), Chi-

cago, IL, USA, 23–27 May 2016, pp. 663–672 USA: IEEE.

Intel Math Kernel Library Documentation (2017) Available at:

https://software.intel.com/en-us/articles/intel-math-kernel-

library-documentation (accessed 30 October 2020).

Kim SW and Yun JH (2000) Block ILU factorization precondi-

tioners for a block-tridiagonal H matrix. Linear Algebra and

its Applications 37(1–3): 103–125.

Kong F and Cai XC (2016) Scalability study of an implicit solver

for coupled fluid-structure interaction problems on unstruc-

tured meshes in 3D. The International Journal of High Per-

formance Computing Applications 32: 207–219.

Li RP and Saad Y (2013) GPU-accelerated preconditioned itera-

tive linear solvers. Journal of Supercomputing 63(2): 443–466.

Luo L, Liu L, Cai Y, et al. (2020) Fully implicit hybrid two-level

domain decomposition algorithms for two-phase flows in por-

ous media on 3D unstructured grids. Journal of Computational

Physics 409: 109312.

Luo LX, Edwards JR, Luo H, et al. (2015a) A fine-grained block

ILU scheme on regular structures for GPGPUs. Computers &

Fluids 119: 149–161.

Luo LX, Edwards JR, Luo H, et al. (2015b) Optimization of a

fine-grained BILU by CUDA inter-block synchronization. In:

22nd AIAA computational fluid dynamics conference, Dallas,

TX, 22–26 June 2015, pp. 1–17(2015–3055) USA: AIAA.

Nguyen Loc Q (2017) Quick start guide for Intel Xeon Phi pro-

cessor x200 product family. Available at: https://software.

intel.com/en-us/articles/quick-start-guide-for-the-intel-xeon-

phi-processor-x200-product-family (accessed 1 November

2020).

NVIDIA cuSPARSE library (2014) Available at: https://develo

per.nvidia.com/cuda-toolkit-65 (accessed 10 March 2020).

Pakzad M, Lloyd JL and Phillips C (1997) Independent columns:

a new parallel ILU preconditioner for the PCG method. Par-

allel Computing 23(6): 637–647.

Poole EL and Ortega JM (1987) Multicolor ICCG methods for

vector computers. SIAM Journal on Numerical Analysis 24(6):

1394–1418.

Rennich SC, Stosic D and Davis TA (2016) Accelerating sparse

Cholesky factorization on GPUs. Parallel Computing 59:

140–150.

Rupp K, Tillet PH, Rudolf F, et al. (2016) ViennaCL—linear

algebra library for multi- and many-core architectures. SIAM

Journal on Scientific Computing 38: S412–S439.

Saad Y (2003) Iterative Methods for Sparse Linear Systems, 2nd

edn. Philadelphia, PA: Society for Industrial and Applied

Mathematics.

Saad Y and Zhang J (1999a) BILUM: block versions of multi-

elimination and multilevel ILU preconditioner for general

sparse linear systems. SIAM Journal on Scientific Computing

20(6): 2103–2121.

Saad Y and Zhang J (1999b) BILUTM: a domain-based multi-

level block ILUT preconditioner for general sparse matrices.

SIAM Journal on Matrix Analysis and Applications 21(1):

279–299.

Yang B and Liu H (2015) Accelerating the GMRES solver with

block ILU(k) preconditioner on GPUs in reservoir simulation.

Journal of Geology & Geophysics 4(2): 1–7.

Yang C and Cai XC (2014) A scalable implicit solver for phase

field crystal simulations. In: 27th IEEE international parallel

& distributed processing symposium workshops & PhD forum

(IPDPSW’13), IEEE: Boston, MA, USA.

Yang C, Cai XC, Keyes DE, et al. (2013) NKS method for the

implicit solution of a coupled Allen-Cahn/Cahn-Hilliard

14 The International Journal of High Performance Computing Applications XX(X)

https://orcid.org/0000-0003-0296-8640
https://orcid.org/0000-0003-0296-8640
https://orcid.org/0000-0003-0296-8640
https://www.mcs.anl.gov/petsc
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
https://software.intel.com/en-us/articles/quick-start-guide-for-the-intel-xeon-phi-processor-x200-product-family
https://software.intel.com/en-us/articles/quick-start-guide-for-the-intel-xeon-phi-processor-x200-product-family
https://software.intel.com/en-us/articles/quick-start-guide-for-the-intel-xeon-phi-processor-x200-product-family
https://developer.nvidia.com/cuda-toolkit-65.
https://developer.nvidia.com/cuda-toolkit-65.

system. In: Lecture notes in computational science and engi-

neering, Vol. 98, pp. 819–827.

Yun JH (2000) Block ILU preconditioners for a nonsymmetric

block-tridiagonal M-matrix. BIT Numerical Mathematics

40(3): 583–605.

Author biographies

Wenpeng Ma is a lecturer at School of Computer and

Information Technology, Xinyang Normal University,

China. He received a Master’s degree from Shenzhen Uni-

versity in 2011 and PhD from Computer Network and

Information Center, Chinese Academy of Sciences in

2015. His research interests include GPU computing, het-

erogeneous computing and parallel software for scientific

applications.

Xiao-Chuan Cai is a Professor at University of Macau. He

received PhD and MSc from New York University in 1989

and 1988, and BSc from Peking University in 1984. His

research interests include domain decomposition methods

for partial differential equations and high performance sci-

entific computing.

Ma and Cai 15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

