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SUMMARY

In this paper, we study a fully implicit parallel Newton–Krylov–Schwarz method (NKS) for solving
the bidomain equations describing the electrical excitation process of the heart. NKS has been used
successfully for many non-linear problems, but this is the �rst attempt to use this method for the
bidomain model which consists of a system of time dependent partial di�erential equations of mixed
type. Our experiments on parallel computers show that the method is scalable and robust with respect
to many of the parameters in the bidomain model. In the outer layer of the algorithm, we use a non-
linearly implicit backward Euler method to discretize the time derivative, and the resulting systems of
large sparse non-linear equations are solved using an inexact Newton method. The Jacobian system
required to solve in each Newton iteration is solved with a GMRES method preconditioned by a
new component-wise restricted additive Schwarz preconditioner. The e�ciency and robustness of the
overall method depend heavily on what preconditioner we use. By comparing several preconditioners,
we found our new restricted additive Schwarz method o�ers the best performance. Our parallel software
is developed using the PETSc package of Argonne National Laboratory. Numerical results obtained on
an IBM SP will be reported. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: bidomain model; implicit method; Newton–Krylov–Schwarz algorithm; parallel
computing

1. INTRODUCTION

Understanding the electrical mechanism in the heart is crucial in the cardiac research. As
computing technologies advance, numerical simulation is becoming an increasingly useful tool
for researchers. In this paper, we study a parallel and fully implicit computational method for
solving the system of partial di�erential equations (PDE) that describes the electrical activity
of the heart. Several PDE based models exist for such kind of simulations, we will focus
on the most popular bidomain model, which assumes that the heart tissue consists of two
domains: the intracellular and the extracellular domains that are separated by a membrane. The
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changes of the electrical potential across the di�erent domains generate the electrical waves
that propagate through the cells. The bidomain model consists of a system of time dependent
non-linear partial di�erential equations of mixed type. To solve the system, we investigate a
Newton–Krylov–Schwarz (NKS) based non-linearly implicit technique on parallel computers.
We are able to achieve good convergence even when the time step size is much larger than
previously used by other researchers. We also show that the method scales well with large
number of processors. Below we give a brief overview of the research in the modelling of
the electrical system of the heart.
In 1950, Hodgkin and Huxley [1] gave the �rst description of a mathematical model of

axon nerve cells, which serves as the basis for all the current models for the electrical sys-
tem of the heart. The basic model, known as the �bre model, assumes that the tissue is
nothing more than a single �bre (or cable), and it is associated with the well-known cable
equation. This simple equation is a parabolic equation. In one-dimensional space, it can be
written as

@V
@t
=
@2V
@x2

+ f(V )

where V refers to the voltage of the electrical current, and f is some function of V repre-
senting the ionic current. Later, the model was extended to include three distinct areas within
the heart tissue: the intracellular domain, the extracellular domain, and a membrane that sep-
arates the two domains. This is the so-called bidomain model, which is the most accepted
model today, with some slight variations to its complexity. The electrical activity of the heart
originates because of the changes in potential across these domains, which in turn, generate
waveforms that propagate through the di�erent cells [2].
The bidomain model [3] can be expressed as a system of reaction–di�usion equations

consisting of a non-linear parabolic equation in V coupled with an elliptic equation in the
extracellular potential U , and is given as

�cm
@V
@t
+ Iion − Iapp =−∇ · (De∇U )

∇ · (Di∇V ) =−∇ · (D∇U )

where � and cm are constants, Iion is the ionic current, and Iapp is any current applied to the
system. The matrices De, Di refer to the conductivity tensors. The ionic current can alter the
complexity of the bidomain model considerably. Several authors have attempted to describe
this. The more complex ones are based on the Hodgkin–Huxley formulation, or its variations,
which are summarized in Reference [4] and references therein. One attempt to simplify the
Hodgkin–Huxley approach leads to the development of the FitzHugh–Nagumo equations [5],
which gives a more simpler version of the bidomain equations; for example, in the case of a
medium with proportional conductivities, we have

@V
@t
=∇ · (D∇V ) + cV (V − 1)(�− V )− w

@w
@t
= �(V − �w)
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where c; �; �, and � are membrane constants, and w is the recovery potential. Although this
is a much simpler mathematical model, it can still show some e�ect, such as the repolariza-
tion, which appears during the recovery phase or after the wavefront has passed through a
section.
In our implementation, we use the bidomain equations as just introduced. The conductivity

tensors are assumed to be diagonal arrays, and for the ionic current we use the FitzHugh–
Nagumo formulation which allows the equations to be expressed as

�cm
@V
@t
+ cV (V − 1)(�− V )− w − Iapp =−∇ · (De∇U )

∇ · (Di∇V ) =−∇ · (D∇U )

@w
@t
= �(V − �w) (1)

where c; �; �; � are membrane constants, and w is the recovery potential variable. For simplicity,
we assume the model is de�ned on a simple two-dimensional domain �= (0; 1)× (0; 1). In our
experiments, we use Neumann boundary conditions which assume that there is no conductivity
going out of the heart; i.e. sealed boundaries.
Another important issue when determining an appropriate model for the electrical activity

of the heart is the conductivity tensor D. Depending on the structure of this matrix, we are
incorporating various degrees of anisotropy to the system. The simplest one is a diagonal
matrix, which indicates that the conductivity varies only along the co-ordinate system. A
more complex system requires the inclusion of a full matrix where the conductivity varies in
every direction, or even the most complex one represented by a full tensor. An associated
element is the fact that in the bidomain model, we have di�erent degrees of anisotropy in the
intracellular and extracellular media.
There have been numerous attempts to numerically solve the heart excitation problem. In

Reference [6], Hooke et al. present a general version of algebraic transformations that have
been applied to the bidomain equations. For the most part, the explicit Euler’s method is the
choice for the time integration. In most cases, iterative methods (such as SOR) are used for
solving the resulting equations, as is in Reference [7].
Veronese and Othmer [8] used a split-step method, which is a hybrid of an alternating

direction implicit scheme for the non-linear parabolic equation, and a multigrid approach for
the linear elliptic equation (for the transmembrane potential). Bogar [4] extended the use of
a semi-implicit method for the bidomain model, which had only been used for monodomain
models. This approach splits the non-linear term into two parts: one is resolved implicitly, the
other, explicitly. For anisotropic bidomain models, simulations were run on 65× 65 grids, with
a total of 25 ms of propagation time, and time step of 0:1 ms. The resulting total CPU time
was 66:26 s. Pennacchio and Simoncini [9] studied the convergence of various linear iterative
solvers that were applied to the bidomain model at just one instant of time. They looked
at various combinations of block Gauss–Seidel, and variations of preconditioned CG, with
SOR and incomplete factorization as the preconditioner. Their estimated time for simulating
about 40 ms of the excitation, with a time step size of 0:04 ms, on a 60× 60× 18 mesh, is
about 3 h.
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Because of the complexities of implicit methods, researchers have made few attempts to
use them. Stalidis et al. [10] used an implicit �nite di�erence method to the monodomain
model on a grid of 50× 50 cells. Thakor and Fishler [11] used larger grids (200× 250 cells).
Hooke et al. [6] attempted to use an implicit scheme with Newton’s method, using the GMRES
method to solve the corresponding linear system of equations at each Newton step. They found
their methodology to be ine�ective or lacking e�ciency for the bidomain problem, however
it worked well in monodomain cases. Pormann [12] incorporated a similar approach using a
matrix splitting procedure that resulted in a complicated set of steps where individual portions
of the Jacobian matrix were inverted. They computed the solutions of these individual systems
using the conjugate gradient method or GMRES, with some sequential preconditioners, such
as SOR or incomplete LU factorizations. Lines et al. [13, 21] studied an operator splitting
approach, combined with �nite element and the Runge–Kutta method for the integration of
the ODE system representing the ionic current. They carried out the process in a sequential
manner; �rst, they integrated the ODE corresponding to the ionic current, then they solved
each equation of the bidomain model in a cascade fashion (�rst, the parabolic equation in V ,
and then the elliptic equation in Ue). In solving the reaction–di�usion for V , they used the
explicit method, and the problem became linear.
The rest of the paper is organized as follows. In Section 2, we present the details of the

bidomain model, its discretization, and the numerical methods we use to solve the discrete
system. The simulation results and the parallel performance of the numerical algorithm and
software are discussed in Section 3. We make several �nal remarks in Section 4, which
concludes the paper.

2. NUMERICAL METHODS AND PARALLEL IMPLEMENTATION

2.1. Discretization of the bidomain model

In this paper, we assume the bidomain model is de�ned on �=(0; 1)× (0; 1), which is covered
by a uniform grid. �x=�y are mesh sizes in the x and y directions, respectively. Let m
be the total number of grid points in either the x or y direction. �t is the time step size.
To discretize equation (1) we use the usual 5-point central �nite di�erence method for the
space variables and the fully implicit backward Euler for the time variable. The resulting set
of sparse, non-linear algebraic system of equations is solved using the NKS iterative method
[14] at every time step.
We �rst re-write (1) as follows:

cm
@V
@t

− �il
@2V
@x2

− �it
@2V
@y2

+ cV (�− V )(V − 1)− w= �il
@2Ue
@x2

+ �it
@2Ue
@y2

+ Iapp

−(�il + �el)
@2Ue
@x2

− (�it + �et )
@2Ue
@y2

= �li
@2V
@x2

+ �ti
@2V
@y2

@w
@t
= �(V − �w)
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To simplify the notation we let U :=Ue. The fully discretized version of the above system
take the form

cm
V ni; j − Vn−1i; j

�t
− �il

V ni−1; j − 2Vni; j + Vni+1; j
(�x)2

− �it
V ni; j−1 − 2Vni; j + Vni; j+1

(�y)2

+ cV ni; j(V
n
i; j − 1)(�− Vni; j)− wni; j

=�il
Un
i−1; j − 2Un

i; j +U
n
i+1; j

(�x)2
+ �it

Un
i; j−1 − 2Un

i; j +U
n
i; j+1

(�y)2

+ I nappi; j

− (�il + �el)(Un
i−1; j − 2Un

i; j +U
n
i+1; j)− (�it + �et )(Un

i; j−1 − 2Un
i; j +U

n
i; j+1)

=�il(V
n
i−1; j − 2Vni; j + Vni+1; j) + �it(Vni; j−1 − 2Vni; j + Vni; j+1)

and

wni; j − wn−1i; j

�t
= �(Vni; j − �wni; j)

For the initial condition, we assume our system is at rest at the initial time (t=0). As
indicated in Reference [9], both the resting potentials and w are zero. Also, in order to excite
the system, we apply a current Iapp of 40 amp=cm2 for a period of 1:0 ms, to the centre
portion of our domain. Other authors, such as [4, 15] have used the value in their numerical
experiments.
For the bidomain model, it is commonly assumed that there is no �ux across the boundaries

[4]. In other words, because the potential V has a constant value before and behind the
exciting front, we can assume that it is not a�ected by the outside medium [3]. In particular,
for our model, these boundary conditions are expressed as @V=@n=0 and @U=@n=0. In the
discretization, we use

(lower edge; y=0);

{
F(V ) = Vi;0 − Vi;1;
F(U ) =Ui;0 −Ui;1;

(upper edge; y=1);
{
F(V ) = Vi;m − Vi;m−1;
F(U ) =Ui;m −Ui;m−1;




0¡i¡m

(left edge; x=0);
{
F(V ) = V0; j − V1; j ;
F(U ) =U0; j −U1; j ;

(right edge; x=1);
{
F(V ) = Vm; j − Vm−1; j ;
F(U ) =Um; j −Um−1; j ;




0¡j¡m

In most of the existing numerical methods, for example Reference [13], for solving the
above �nite di�erence equations, the unknowns are ordered in terms of the physical variables
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separately to form the following, more compact, system of equations:

FV =Vn +�tF̃V (Vn;Un; wn)−Vn−1

FU = F̃U (Vn;Un; wn)

Fw =wn −�tF̃w(Vn;Un; wn)− wn−1
(2)

In our work, we �nd the interlacing ordering performs much better. More precisely speaking,
to write the above �nite di�erence system into a system of algebraic equations, we order the
unknowns by the mesh points as follows:

G=[(V11; U11; w11); (V21; U21; w21); : : : ; (Vmm;Umm; wmm)]T

The corresponding equations are ordered in exactly the same way, and the system is deno-
ted by

F(G)=0 (3)

For simplicity, we ignored the sub- and super-scripts.

2.2. Solving the algebraic systems

To �nd G at the nth time step, a non-linear system of the form (3) needs to be solved. Using
G at the (n − 1)th time step as the initial guess, we use an inexact Newton method [16] to
solve (3). Let J =F ′ be the Jacobian matrix, which is calculated analytically in this paper.
The two major steps of the inexact Newton’s method are
Find �Gk that satis�es

‖J (Gk)�Gk + F(Gk)‖6�‖F(Gk)‖
for any �¡1, and then set

Gk+1 =Gk −�Gk (4)

The inexact Newton method presented above requires that we solve (inexactly) the following
linear system of equations:

J (Gk)�Gk = −F(Gk)
A restricted additive Schwarz preconditioned GMRES method is used for solving such a linear
system. In particular, we use GMRES [17] for the following system

M−1J�G= −M−1F (5)

where M−1 is a parallel preconditioner. Several choices of M−1 are available in PETSc [18],
including the block Jacobi preconditioners, the regular additive Schwarz [19] and the restricted
additive Schwarz preconditioners (RAS) [20]. All of the preconditioner are algebraic in the
sense that the multi-component nature of our linear system is not taken into account. In this
work, we introduce a component-wise restricted additive Schwarz method, which is a simple
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Figure 1. A sample 9× 9 �ne mesh with a 3× 3 subdomain partition. The ‘o’ are the
mesh points. The dashed lines indicate a 3× 3=9 subdomain non-overlapping partitioning. The

solid lines indicate the subdomains with �=1.

application of the algebraic RAS idea [20] for each of the three variables (U;V; w) of the
PDE separately.
In order to de�ne a parallel preconditioner M−1, we need to partition the unknowns of

the algebraic system and map them onto di�erent processors. The standard partitioning tech-
niques in PETSc are all based on the partitioning of the matrix itself, and the quality of the
partitioning, as well as the quality of the resulting block preconditioner, depends on how the
mesh points are ordered and how the multiple unknowns at each mesh point are ordered. Our
experiences show that a better partitioning can often be obtained by looking at the mesh, not
the matrix, especially for systems arising from the discretization of multi-component PDEs.
To obtain the overlapping partition, we �rst partition the domain into non-overlapping sub-

domains �0i , i=1; : : : ; N . Then we extend each subdomain �
0
i to a larger subdomain �

�
i ,

i.e. �0i ⊂��i . Here � is an integer indicating the size of the overlap. Only simple box de-
composition is considered in this paper; i.e. all the subdomains �0i and �

�
i are rectangular

and made up of integral numbers of �ne mesh cells. For boundary subdomains, we simply
cut o� the part that is outside �. A sample mesh with an overlapping partition is shown in
Figure 1. Let n be the number of mesh points in �, ni the number of mesh points in �0i ,
and n�i the number of mesh points in �

�
i . For each subdomain �

0
i , we de�ne I

0
i as an n

0
i × n0i

block sub-identity matrix whose diagonal element, (I 0i )k; k , is either an 3× 3 identity matrix if
the mesh point xk ∈�0i or an 3× 3 zero matrix if xk is outside of �0i . Similarly, we introduce
a block sub-identity matrix (I �i )k; k for each �

�
i . Here, � is the overlapping size. With the

subdomain restriction operator I �i , we de�ne the subdomain Jacobian matrix

Ji= I �i JI
�
i
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Note that although Ji is not invertible, we can invert its restriction to the subspace

J−1i ≡ ((Ji)|Li)−1

where Li is the vector space spanned by the unit vectors de�ned on ��i (i.e., if the kth
component of the unit vector is equal to 1, then the corresponding mesh point xk must be in
��i ). Recall that the regular AS preconditioner is de�ned as [19]

M−1
AS = I

�
1 J

−1
1 I �1 + · · ·+ I �N J−1N I�N

Our new RAS preconditioner can simply be described as follows:

M−1
RAS = I

0
1 J

−1
1 I �1 + · · ·+ I 0NJ−1N I�N

One can also de�ne the so-called ‘interpolate RAS’ as follows:

M−1
RAS = I

�
1 J

−1
1 I 01 + · · ·+ I �N J−1N I 0N

The performance of the two RAS preconditioners are nearly identical for our problem.
We remark that the matrix–vector multiply I �i G does not involve any arithmetic operations,

but does involve communications among neighbouring processors. However, I 0i G involves
neither computation nor communication. This makes the RAS preconditioner much cheaper
than the AS preconditioner. We will show numerically that using the RAS preconditioner
can also reduce the number of GMRES iterations. For single component problems, the new
RAS preconditioners are the same as what was introduced in Reference [20], but for multi-
component problems, the new RAS preconditioners are less algebraic, and can not be de�ned
only based on the given sparse matrix.

3. SIMULATION RESULTS AND PARALLEL PERFORMANCE

In this section, we present some numerical results for solving the bidomain model equations.
We make extensive use of the software package PETSc of the Argonne National Laboratory
[18]. All results are obtained from experiments ran on the NPACI’s IBM-SP machine at the
San Diego Supercomputing Center.

3.1. Parameters in the bidomain model

For the conductivity parameters we use the so-called ‘nominal’ values because of the general
understanding that these are probably the values present in the actual heart tissue [15]. For the
ionic current we use the FitzHugh–Nagumo model. These parameters (as given in Reference
[4]) are given in Tables I and II.

Table I. Physical parameters for the bidomain model.

�=2000 cm−1 cm=1:0 �F cm−2

�le =4:0× 10−3 �−1 cm−1 �te =4:0× 10−3 �−1 cm−1

�li =4:0× 10−3 �−1 cm−1 �ti =1:0× 10−3 �−1 cm−1
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Table II. FitzHugh–Nagumo parameters for
the ionic current.

c=2:0 �=0:1
�=0:5 �=0:002
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V
  (

m
V

.)

Figure 2. The computed AP signal. Depolarization, plateau, and repolarization phases are present.

The computed AP signal is presented in Figure 2. The observed AP signal remain the same
among the various experiments performed using di�erent number of processors. Here, we can
see the three distinctive phases: depolarization, plateau, and repolarization. We have allowed
some degree of anisotropy in our media, as expressed by the di�erent conductivity coe�cients
used. In Figure 3, we can observe how along the axis where the conductivity is larger, the
activation has spread faster than in the other direction. The picture shows in particular the
activation process after 10ms of simulation; once the whole area is activated, the phenomenon
would not be observed.

3.2. Performance of the linear and non-linear solvers

To obtain a time accurate solution, we use �t=1 ms for all the numerical experiments. For
the non-linear solver we use the following stopping conditions: ‖F(Gk)‖610−4‖F(G0)‖, and
in the linear solver we set �=10−6.
The performance of the inexact Newton method is shown in Figure 4. In the �gure, we

show that the total number of non-linear iterations per time step. The numbers are quite
small. In all cases, the number of non-linear iterations remains nearly constant at three during
the plateau phase, and grows only to about 4 or 5 iterations during the repolarization and
depolarization phases. In some instances of time, we observed a maximum total of six or
seven iterations. We also observe that these numbers remain nearly unchanged independently
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50 100 150 200 250

50

100

150

200

250

x

y

Figure 3. The �gure shows the transmembrane potential (V ) after it has propagated for 10 ms.
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Figure 4. Non-linear iterations per time step, for a 512× 512 mesh. The number of
processors vary from 16 to 128.

of the mesh size, and the number of processors. In Figure 5, we present the non-linear residual
for the case where we use 16 processors and several di�erent mesh sizes. We can see in these
results that the variations in all these curves are small, and therefore the non-linear residual
seems to converge equally independently of the size of the problem.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:261–277



SIMULATING NON-LINEAR ELECTRICAL ACTIVITY 271

1 2 3 4 5 6 7 8
10-6

10-5

10-4

10-3

10-2

10-1

100

Nonlinear iteration

N
on

lin
ea

r 
re

si
du

al

64x64
128x128
256x256
512x512

Figure 5. Non-linear residual for various grid sizes, using 16 processors and at
time=20 ms (depolarization phase).

Another interesting feature we observed with respect to the non-linear iterations within
our method, was the average number of linear iterations that are required per each non-linear
iteration. If we �rst look at a given problem size, and allow the number of processors to vary,
then we can observe that this average of linear of iterations is relatively constant as shown
in Figure 6. We can also observe that this number of linear iterations decreases somewhat
rapidly as the non-linear iterations progress, showing a relatively larger number only on the
�rst two or three non-linear iterations.
In the case where we look at a particular number of processors, but allow the problem

size to vary, we see that the pattern of decrease in the number of linear iterations from one
non-linear iteration to the next is somewhat similar, as shown in Figure 7. However, we can
appreciate a considerable di�erence in the actual numbers, where the problems with larger
sizes require much more linear iterations for at least the �rst three non-linear iterations. This
indicates that the number of linear iterations have a clear dependence on the size of the
problem, as opposed to the case of non-linear iterations where we saw no clear variation.
In Figure 8, we compare the three additive Schwarz type preconditioners. In both the re-

stricted versions, the values from neighbouring subdomains, or neighbouring processors, are
communicated at only one of the stages of the matrix–vector multiplications (either during
restriction or during interpolation, but not both). It is clear, from Figure 8, the two restricted
versions are very similar in terms of the number of GMRES iterations per time step. However,
when we compare with regular additive Schwarz method, where values from other processors
are incorporated at both ends (restriction and interpolation), we observed a considerable in-
crease on the number of linear iterations. The phenomenon is considerably more pronounced
during the depolarization and repolarization phases. Because of these results, in the remainder
of the experiments we will only use the RAS preconditioner.
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Figure 6. Average number of linear iterations, varying the number of processors on a 256× 256 grid.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

110

Nonlinear iteration

A
ve

ra
ge

 li
ne

ar
 it

er
at

io
ns

64x64
128x128
256x256
512x512

Figure 7. Average number of linear iterations, varying the grid or problem size.

When using Schwarz type preconditioners, the number of GMRES iterations often depends,
to a certain degree, on the overlapping factor. This has been studied for many di�erent
equations. In the following experiment, we �x the mesh to 128× 128 and the number of
processors to 16. The total number of GMRES iterations are given in Figure 9 for three
di�erent overlapping sizes, 1, 4, and 20. It is a bit surprising that the number of iterations is
nearly independent of the overlapping size. In the rest of the experiments, we use overlap=1.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:261–277



SIMULATING NON-LINEAR ELECTRICAL ACTIVITY 273

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600
SP Total linear iterations (128x128, 16 nodes) 

time (ms.)

Li
ne

ar
 it

er
at

io
ns

RESTRICT ASM
BASIC ASM
INTERPOLATE ASM

Figure 8. Compare di�erent additive Schwarz preconditioners. The �gure shows the total number of
GMRES iterations per time step on a 128× 128 mesh and 16 processors.
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Figure 9. Varying the overlapping size. 16 processors and 128× 128 mesh.

To see the scalability of the preconditioner with respect to the mesh size, in Figure 10, we
show the total number of GMRES iterations per time step for four di�erent mesh sizes, from
64× 64 to 512× 512. We �x the number of subdomains, or the number of processors, to 16.
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Figure 10. The total number of GMRES iterations per time step with varying mesh sizes. 16 processors
are used in all the calculations.

The subdomain problems are solved inexactly with ILU(0). We observe that the numbers in-
crease as we re�ne the mesh. This indicates that the single level RAS preconditioned GMRES
is not scalable, in terms of the number of iterations. A coarse grid is probably necessary in
order to have a nearly constant number of iterations. However, as will be shown later in this
paper, a CPU based scalability can still be obtained even without a coarse grid.
On the other hand, if we maintain the mesh size as a constant but vary the number of

processors or nodes used, then we can observe that the pattern for the total number of linear
iterations per time step is virtually identical in all cases, as presented in Figure 11. Only small,
almost imperceptible, variations take place, and we can only observe these at the depolarization
and repolarization phases. This indicates that there is no dependency between the number of
linear iterations and the number of processors.

3.3. CPU performance

Table III summarizes the CPU times for di�erent problem sizes and di�erent number of
processors (or nodes). The number of mesh points per processor can be calculated from the
given information in Table III, since the total number of points and the total number of
processors are both given, and the partition is uniform. As expected, the CPU times increase
accordingly as we increase the problem size. For a given problem size, the CPU times decrease
as we increase the number of processors.
These CPU timing results are better understood in terms of Figure 12, in which we show

the actual values as connected lines, whereas the expected values for optimal scalability are
shown as individual points. We observe that for the smaller problems, the scalability degrades
quickly as we increase the number of processors. However, for the largest problem, we see
a superlinear curve. In other words, our CPU time results are better than expected. This is
likely due to the better cache performance of the algorithm/software.
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Figure 11. Total number of linear iterations on a �x 512× 512 mesh with varying number of processors.

Table III. CPU time (s) for solving bidomain model using di�erent mesh sizes and number of processors.
‘∗’: the mesh is either too small or too large for the given number of processors.

Processors 64× 64 128× 128 256× 256 512× 512
4 69 432 2837 ∗
8 44 270 1372 ∗
16 33 201 560 5472
32 28 165 261 2400
64 27 164 168 994
128 ∗ ∗ 136 519

We observe the same type of behaviour by looking at Figure 13, where the speedups
of various simulations are presented. In this �gure, it is clear that for the largest mesh, the
speedup is superlinear, which suggests that our algorithm and software implementation perform
better if the problem size is su�ciently large. Even though one of the three components of the
bidomain system (1) is elliptic, no coarse space seems necessary for the domain decomposition
approach to be CPU time scalable.

4. FINAL REMARKS

In this paper, we study a non-linearly implicit method for solving the non-linear system
of equations [4, 12] arising from the discretization of the bidomain equations modelling the
electrical activation of the heart. We show numerically that the non-linearity appears in
the bidomain model is weak, since the total number of non-linear iterations necessary for
the convergence at each time step is relatively small, with a maximum of 6 or 7, and only
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Figure 12. Total CPU time (s) for di�erent mesh sizes and number of processors.
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Figure 13. Fixed mesh size speedup.

at one or two instances of time during the activation process. We observe that only three
non-linear iterations are required during the plateau phase, and four or �ve during the more
complex repolarization and depolarization phases. Our numerical results also show that the
number of non-linear iterations is independent of the size of the problem and the number of
processors used to solve the problem. In short, the non-linear convergence is fast and perfectly
scalable.
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On the other hand, our results show that the total number of linear iterations depends on
the size of the problem, although not a�ected by the number of processors. In other words,
the single level RAS preconditioned GMRES is perfectly scalable in terms of the number of
processors, but not in terms of the mesh sizes.
One of the most important results of this research is that we �nd that the overall algorithm

is CPU time scalable if the mesh is �ne enough. This suggests that the combination of the
inexact Newton method with a single level RAS preconditioned GMRES is a good choice
of this kind of problem. We are able to achieve superlinear CPU time scalability for large
meshes and for large number of processors.
In summary, our experiments show that NKS methodology as applied to the bidomain

equations is stable and capable of delivering accurate solutions. This approach allows us to
use larger time step size than what is required by other methods. For example, our time step
is one order of magnitude larger than what was used in Reference [4].
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