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A parallel fully coupled implicit fluid solver based on a Newton–Krylov–Schwarz algorithm is developed on
top of the Portable, Extensible Toolkit for Scientific computation for the simulation of microfluidic mixing
described by the three-dimensional unsteady incompressible Navier–Stokes equations. The popularly used
fractional step method, originally designed for high Reynolds number flows, requires some modification
of the inviscid-type pressure boundary condition in order to reduce the divergence error near the wall.
On the other hand, the fully coupled approach works well without any special treatment of the boundary
condition for low Reynolds number microchannel flows. A key component of the algorithm is an additive
Schwarz preconditioner, which is used to accelerate the convergence of a linear Krylov-type solver for
the saddle-point-type Jacobian systems. As a test case, we carefully study a three-dimensional passive
serpentine micromixer and report the parallel performance of the algorithm obtained on a parallel machine
with more than one hundred processors.
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1. Introduction

Mixing enhancement is crucially important in many branches of emerging microfluidic tech-
nologies. Several different types of micromixers are available or proposed. Generally speaking,
micromixers can be classified into two major groups [16,27]. One of them is the so-called
active micromixer, in which mixing is achieved by some external perturbation applied, for
example, through the pressure field [25] by magneto-hydrodynamics [4] or through acoustic
disturbances [1,41]. The other group consists of passive micromixers, where mixing relies solely
on diffusion or chaotic advection without importing external energy. In comparison with the
active type, the passive-type micromixers are more popular due to several advantages, including
efficient mixing performance, simple fabrication and high integration level with other lab-on-a-
chip applications. To optimize the mixing performance, the main goal of the design of passive

*Corresponding author. Email: cwtsao@ncu.edu.tw

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 T

ow
n 

L
ib

ra
ry

 o
f 

Sh
en

zh
en

] 
at

 2
2:

49
 2

0 
Ju

ly
 2

01
3 



616 F.-N. Hwang et al.

micromixers is to increase the contact surface between two fluids and to decrease the diffusion
path between them by changing the microchannel geometry. The mixing enhancement techniques
include using a staggered herringbone microchannel to create three-dimensional twisting flows
inside the microchannel [12,17,20,35,39], placing obstacles inside the microchannel to create
chaotic mixing [30,33] or changing velocity profiles with various microchannel cross-section
geometries [37].

Most of the numerical simulations are carried out by using commercial software packages; e.g.
ANSYS CFX [23], COMSOL [36], Fluent [8] or CFD-ACE [33,39]. These package are easy to
use because of the friendly interface, but are usually not parallel, or restricted to very small number
of processors, and therefore cannot be used for high-fidelity simulations, which require very fine
meshes and large number of processors. Recently, Glatzel et al. [15] evaluated the performance of
some available computational fluid dynamics software packages with emphasis on microfluidic
applications and concluded that there is a real need for faster and more accurate algorithms and
software for microfluidic simulations on large-scale parallel computers. Thus, the aim of this
paper is to investigate a fully parallel approach for solving incompressible Navier–Stokes (NS)
equations, which is used to simulate the mixing of fluids in microsystems. We hope the algorithms
and software developed in this paper will provide engineers with a more efficient approach for the
design of microfluidic devices, and a scalable tool for understanding the physics of fluids at the
nano or micro level. As a numerical example to demonstrate the applicability of our fluid solver
to microfluidic systems and to evaluate the performance on a parallel machine, we focus on a
three-dimensional serpentine microchannel, which is the passive micromixing model proposed
by Liu et al. [24].

In this paper, we develop and study some fully implicit methods that have recently gained
in popularity [3,5,6,11,26,28,40], because they allow much larger time-step size compared to
fully explicit or linearly implicit methods due to the stability constraint of the time integrator
employed, and they are more scalable on large-scale parallel computers. Additionally, they are
able to accurately capture the nonlinear coupling between components, conserve more physical
quantities, such as mass, momentum or energy for a longer period of simulation time. As pointed
out by the authors of [21], the inviscid-type pressure boundary condition in the classical temporal
fractional step method, which is originally designed for high Reynolds number flows, needs to be
modified in order to reduce the divergence error near the boundaries (see Figure 16.2 on p. 517
[21]). On the other hand, the fully coupled implicit approach considered in this paper works well
for both high Reynolds number laminar flows and lower Reynolds number microflows without
changing the boundary condition. The price to pay is that we have to solve a nonlinear system at
every time step. The inexact Newton method is one of the popular approaches for solving such
nonlinear systems arising from time-dependent PDE problems because of its robustness and fast
convergence. The kernel of the Newton-type method is the linear Jacobian solver, which is the
most expensive part of the algorithm and the design of an efficient preconditioner is crucial for
the success of the algorithm.

Our parallel algorithm is based on a Newton–Krylov–Schwarz (NKS) algorithm [7], which
consists of three key ingredients: an inexact Newton method with backtracking as the nonlinear
solver, a Krylov subspace method [31] as the linear solver for the Jacobian systems together with
a parallel overlapping Schwarz domain decomposition-based preconditioner [34,38] to accelerate
the convergence of the linear solver. The major advantage of NKS is that it is fully parallel, since
one does not need to split the velocity and pressure fields. Furthermore, NKS is extendable to
simulate other more complex full microsystems involving coupled electrical, mechanical, thermal
and fluid components.

The rest of this paper is organized as follows. In the next section, we briefly mention the
microfluidic model based on incompressible NS equations, followed by a description of a Newton–
Krylov nonlinear solver, a parallel Schwarz preconditioner for the saddle-point-type Jacobian
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system, and an overview of parallel micro-flow simulator. In Section 4, numerical results for three
microfluidic mixing problems are presented. Concluding remarks are given in Section 5.

2. A model for incompressible micro-flows and their mixing

To simulate the motion of fluids in a microchannel, we consider the three-dimensional unsteady
incompressible NS equations defined on a bounded domain � with the boundary � = �D ∪
�N [21],

ρ

(
∂u
∂t

+ u · ∇u
)

− ∇ · σ = 0 in � × (0, T),

∇ · u = 0 in � × (0, T),

u = g on �D × (0, T),

∇ · σ = 0 on �N × (0, T),

u = u0 in � at t = 0,

(1)

where u = (u1, u2, u3)
T is the velocity, ρ is the fluid density and σ is the Cauchy stress tensor

defined as σ = −pI + μ[(∇u) + (∇u)T], where p is the pressure, I is a second-order identity
tensor and μ is the dynamic viscosity. Here, we impose two types of boundary conditions: the
Dirichlet boundary condition on �D and the homogeneous Neumann boundary condition on
�N and assume that the flow is stationary at the beginning of the computation. The Reynolds
number, Re, is defined as ρ(Q/A)Dh/μ, where Q is the volumetric flow rate through the channel,
A is the cross-sectional area and Dh = 4A/P (P is the wetting perimeter of the channel) is the
hydraulic diameter of the channel. The Reynolds number is quite low in a microfluidic system,
typically ranging from 0.01 to 100 [27]. However, due to the presence of some abrupt turns in the
computational domain, e.g. a 3D micromixer, the effect of the convective acceleration term plays
an important role during the numerical simulation, thus the diffusive term cannot be neglected. To
measure the degree of mixing of fluids, we solve a 3D convection–diffusion equation at certain
time steps,

u · ∇C − D�C = 0, (2)

where u is the velocity field obtained from the solution of the NS equations, D is the diffusivity
coefficient of the species and C is the concentration of the species. The corresponding mixing
efficiency at a cross-section of a channel is defined as

M = 1 −
√√√√ 1

nc

nc∑
i=1

(
Ci − C̄

C̄

)2

, (3)

where nc is the number of mesh points on the cross-section and Ci is the concentration at the mesh
point and C̄(= 0.5) is the average number of concentration.

3. A parallel fully coupled and fully implicit fluid solver

Our parallel time-dependent 3D incompressible fluid solver is implemented on top of the Portable,
Extensible Toolkit for Scientific computation (PETSc) [2]. The solver has been validated and
successfully applied to blood flows in the arteries [19]. In addition, the parallel fluid solver has
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618 F.-N. Hwang et al.

been integrated with other state-of the-art pre-processing and post-processing software packages,
including (1) Cubit [9] for 3D unstructured finite element mesh generation; (2) ParMETIS [22]
for mesh partitioning for the purpose of parallel processing; (3) ParaView [29] for scientific
visualization of numerical results and conducting data analysis. Below we give a description of
the discretization scheme and the parallel solution algorithm employed in the fluid solver.

To discretize the NS Equations (1), we use an implicit backward Euler finite difference
method for the temporal variable and a stabilized P1 − P1 Galerkin/least-squares finite element
method [13] in the spatial domain covered by a given tetrahedral mesh. At each time step, it is
necessary to solve a large, sparse, nonlinear algebraic system

F(x) = 0, (4)

where the vector x corresponds to the nodal values of uh = (u1
h, u2

h, u3
h) and ph at the time

t = (n + 1)�t. Here, only a uniform time step �t is considered. To solve the nonlinear algebraic
system a NKS algorithm is employed as follows. Let x(0) be a given initial guess, which is taken
from the velocity and pressure solutions at the previous time step and assume x(k) is the current
approximation of the exact solution x∗. Then a new approximation x(k+1) can be computed via
the following steps:

Step 1: Find a Newton direction s(k) by solving the following preconditioned Jacobian system
approximately by a Krylov subspace method, such as the generalized minimal residual method
(GMRES) [32],

JkM−1
k y = −F(x(k)) with s(k) = M−1

k y, (5)

where Jk is the Jacobian of F evaluated at x(k) and the additive Schwarz preconditioner, M−1
k , is

defined in detail below.
Step 2: Obtain the new approximation x(k+1) = x(k) + λ(k)s(k), where λ(k) ∈ (0, 1] is a damping

parameter used to enhance the robustness of Newton-type methods [10].
Here, we define the additive Schwarz preconditioner. Let {�h

i , i = 1, . . . , N} be a non-
overlapping subdomain partition, whose union covers the entire domain � and its mesh T h.
We denote by T h

i the collection of mesh points in �h
i . In our implementation, the subdomain

partition is obtained through ParMETIS and each subdomain problem is assigned to a single
processor of the parallel computer. For many cases, such partitioning is optimal or nearly optimal,
i.e. the total number of mesh points on each subdomain is roughly equal and the interface mesh
points between subdomains are minimized. To obtain overlapping subdomains, we expand each
subdomain �h

i to a larger subdomain �
h,δ
i with the boundary ∂�

h,δ
i . Here, δ is an integer indicating

the level of overlap. We assume that ∂�
h,δ
i does not cut any elements of T h. Similarly, we denote

by T h,δ
i as the collection of mesh points in �

h,δ
i . We define the additive Schwarz preconditioner for

the Jacobian system (5), which is an extension of that for the saddle-point-type Stokes equations
as follows [18]. First, we introduce the subdomain velocity space

V h
i = {vh ∈ V h ∩ (H1(�

h,δ
i ))

3
: vh = 0 on ∂�

h,δ
i }

and the subdomain pressure space

Ph
i = {ph ∈ Ph ∩ L2(�

h,δ
i ) : ph = 0 on ∂�

h,δ
i \�D},

where V h and Ph are the linear finite element spaces defined on the domain � for the velocity and
the pressure, respectively. L2(�) and H1(�) are the standard notations with the usual meanings
in the finite element literature [13,14]. On the physical boundaries, we impose the Dirichlet
condition according to the original Equations (1). On the artificial boundaries, we assume both
u = 0 and p = 0. Similar boundary conditions were used in [18]. Although the well-posedness
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International Journal of Computer Mathematics 619

of the subdomain problems defined in the Schwarz preconditioner by setting such boundary
conditions for the Stokes-like problem is still an open problem, it works well in practice Barker
and Cai [3], Hwang and Cai [18] and Hwang et al. [19].

Let Ri : V h × Ph → V h
i × Ph

i be a global-to-local restriction operator, which returns all degrees
of freedom (both velocity and pressure) associated with the subspace V h

i × Ph
i . Ri is an 4ni × 4n

matrix with values of either 0 or 1, where n and ni are the total number of mesh points in T h and
T h,δ

i , respectively, and
∑N

i=1 4ni ≥ 4n. Note that for linear elements, we have four variables per
mesh point, three for the velocity and one for the pressure. Then, the local-to-global interpolation
operator RT

i can be defined as the transpose of Ri. Using the restriction and interpolation operators,
we write the additive Schwarz preconditioner in the matrix form as

M−1
k =

N∑
i=1

RT
i J−1

i Ri,

where J−1
i is subspace inverse of Ji = RiJRT

i . We remark that the multiplication of Ri (and RT
i )

with a vector does not involve any arithmetic operation, but does involve communication in a
distributed memory parallel implementation. The restriction operator Ri collects the data from
neighbouring subdomains, and the local-to-global prolongation operator RT

i sends partial solution
to neighbouring subdomains. In practice, to save the computational cost and the memory use, the
J−1

i in M−1
k are often replaced by an inexact solver, such as an incomplete LU decomposition (ILU)

with some levels of fill-ins as we use for our numerical experiments presented in the next section.

4. Numerical results and discussions

We report the simulation results for the three-dimensional serpentine microchannel flows together
with a straight microchannel and a square-wave microchannel for the purposes of comparison;
see Figure 1 for the geometrical configurations for these three test cases. Note that only one unit
for each case is shown in the figure and the microchannel geometric models are constructed by
connecting these units repeatedly. The number of units is selected so that the travelling paths for
each case are roughly the same.

The simulations are performed using np = 64 starting from t = 0 and finishing at t = 10 with
�t = 0.1, where np is the number of processors. Detailed information for the three test cases are
summarized in Table 1. The unstructured tetrahedral finite element meshes are generated by using
Cubit and the mesh size for each case is roughly equal to 0.1.

All numerical simulations are performed on the Vger PC cluster with a peak performance of
5184 Gflop/s at the National Central University in Taiwan. The system consists of 108 compute
nodes, and each node has two Intel Xeon 3.0 GHz Dual-Core processor with 4 GB memory. The
nodes are interconnected by a InfiniBand switch. All computations are done in double precision.
The execution time is reported in seconds. The Jacobian matrices are constructed by a hybrid
approach; i.e. all the linear terms and nonlinear terms associated with the Galerkin formula-
tion are computed analytically, other stabilization terms are approximated by multicolored finite
differences.

At each time step, we employ NKS to solve Equation (4) with the previous time-step solution
as the initial guess. We claim the intermediate solution converges when the stopping condition
for Newton

‖F(x(k))‖ ≤ max{10−6‖F(x(0))‖, 10−10}
is satisfied. A cubic lines search technique [10] is employed to determine the step length λ(k).
Note that the previous time-step solution is a good initial guess for most cases so that the line
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620 F.-N. Hwang et al.

Figure 1. The dimensions of three microchannel models (only one unit is shown). From left to right: 1D straight, 2D
square-wave and 3D serpentine.

Table 1. Detailed information of three test cases.

Models # of elements # of nodes # of unknowns

1D straight 590,445 115,140 460,560
2D square-wave 558,695 109,704 438,816
3D serpentine 642,300 124,569 498,276

search procedure is seldom invoked. A right additive Schwarz preconditioned GMRES with a
zero initial guess is employed to solve the Jacobian system. The accuracy of the solution to the
Jacobian system is controlled by the stopping condition

‖F(x(k)) + (Jk(x
(k))M−1

k )(Mks(k))‖ ≤ max{10−4‖F(x(k))‖, 10−10}.
Due to the nature of convection-dominated characteristic (typical Peclet number ranges

from 102 to 105), the Galerkin/least-squares finite element method is employed to discretize
Equation (2), where the stabilization parameter employed is the one suggested by Franca et al.
[14]. The corresponding linear system is solved by one-level additive Schwarz preconditioned
GMRES, with the LU decomposition as the subdomain solver.

4.1 Simulation results

The fluids in the channel are assumed to be stationary at t = 0. At the beginning of the numerical
simulation, two fluids with the same velocity are injected into a single microchannel and they
merge at the vertical middle line at the inlet. The concentration of the left stream is set to be 0
(blue) and the right stream is set to be 1 (red) as the inlet boundary condition for the concentration
in Equation (2) and the homogeneous Neumann boundary condition is imposed on the wall and
at the outlet. Such a condition implies that there is no mixing taking place before entering the
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micromixer. Note that it is observed that the flow in the 3D serpentine channel reaches the quasi-
steady state at around t = 2 for the case of Re = 6 and t = 6 for the case of Re = 70. All the
figures for the concentration distribution and its contours at the viewing windows, the streamlines
and the pressure distributions shown in this subsection are produced by using ParaView.

Figure 2 displays the concentration distribution in each microchannel at t = 2 for the case of
Re = 6. Due to the nature of laminar flows in the micro-scale channel, mixing relies mainly on
diffusion.As shown on the top picture of Figure 2, two fluid streams move forward smoothly along
the 1D straight channel without any fluid perturbation involved and mixing occurs only along the
interface of the two fluids near the middle of the channel. The situation is improved for the 2D
square-wave micromixer (the middle picture of Figure 2), since the fluids skewing at the 90◦ turn
result in having a larger contact surface area at the fluid interface. This induces a better mixing.
This can be seen clearly from the left column of Figure 3, which shows the concentration contours
at different viewing windows. About one-third of the area of the cross-section is the complete
mixing region (green area in the middle) near the outlet of the channel. Finally, both the bottom
picture of Figure 2 and the right column of Figure 3 suggest that in the 3D serpentine micromixer,
chaotic advection occurs, which greatly increases the contact surface area and shortens the mixing
path between the two fluids, in other words, the mixing performance is significantly improved.
Superior mixing performance is observed at the cross-section near the outlet of the 3D serpentine
microchannel.

Figures 4 and 5 show a comparison of the streamlines and the pressure distribution in the 1D
straight, 2D square-wave and 3D serpentine microchannel at t = 6 for the case of Re = 70. It
should be noted that the visualization of the streamlines is useful for studying the dead volume or
eddies in the microchannel. And the pressure drop is of interests to the engineers, as it provides
important information about the pump needed to drive the flow in the micro-device.

4.2 Impact of the viscosity

We next evaluate the mixing performance of the serpentine microchannel with respect to different
values of Reynolds number, which is measured by the volumetric flow rate Q through the channel
ranging from 0.1 to 1.2 mL/min. The mixing efficiency defined in Equation (3) at a cross-section
is used as the metric. Note that the total number of mesh points nc on the cross-section is about
500. We show in Figure 6 the computed mixing efficiency at different viewing windows for four
different values of the Reynolds number. It is clear that the mixing efficiency increases as the
fluids flow towards the downstream direction and is at least 70% for all four cases when the fluids
reach the 10th viewing window. As expected, the higher Reynolds number implies better mixing
efficiency. Similar observation obtained from experiments was also reported in [24].

4.3 Parallel performance of the algorithm

To achieve the optimal performance of the parallel fluid solver in terms of the computing time,
several parameters need to be well tuned. Particularly, in this section, we study how the algorithmic
parameters involved Krylov–Schwarz algorithms, as well as some physical parameters, affect the
overall performance of the algorithm applied to the microchannel flows. These parameters include
the number of levels of ILU fill-ins, the degree of overlap for the additive Schwarz preconditioner,
the geometric configuration of the microchannel and the Reynolds number. Such a study provides
a guideline that helps the users to choose appropriate parameters in their numerical simulations.
Note that the number of levels of ILU fill-ins and the degree of overlap are related to the solution
quality of the subdomain problem, which affects significantly the overall performance. Since
solving the subdomain problem is the most time-consuming step in the algorithm, our goal is
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622 F.-N. Hwang et al.

Figure 2. Concentration distribution in each microchannel for the case of Re = 6 at time t = 2. From top to bottom:
1D straight, 2D square-wave and 3D serpentine (colour online only).
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International Journal of Computer Mathematics 623

Figure 3. Concentration contours for 2D and 3D microchannels at the viewing windows 2, 4, 6, 8 and 10 at t = 2 from
top to bottom. Re = 6 is considered. 2D (left) and 3D (right) (colour online only).

to reduce the computing time spent on the subdomain solution as much as possible but not
to degrade too much the convergence rate of the Krylov subspace method, which is a trade-off
between the number of iterations and the cost per iterations. Timing results reported in this section
are obtained by running the simulation for 10 time steps. The total execution time, the average
number of nonlinear iterations per time step (ANNI), the average number of linear iterations
per Newton iteration (ANLI) are reported for the case of Re = 6 and Re = 70 in Table 2. As
expected, the more ILU fill-ins and more overlap, the fewer GMRES iterations are required to
achieve convergence. In these particular cases, ILU with a small number of fill-ins is too inexact
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624 F.-N. Hwang et al.

Figure 4. The streamlines for the 1D straight (top), the 2D square-wave (middle) and the 3D serpentine (bottom). Note
that the last two units for all cases are shown in the figures (colour online only).

to make the Schwarz preconditioner efficient. The same trends for both the 1D straight and 2D
square-wave microchannels are also observed (not shown here). Furthermore, the communication
cost is high; therefore, we are not able to save any computing time by increasing the degree of
overlap.
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International Journal of Computer Mathematics 625

Figure 5. The pressure for the 1D straight (top), the 2D square-wave (middle) and the 3D serpentine (bottom) (colour
online only).

Next we summarize the timing results for three cases for Re = 6 and Re = 70 in Table 3. This
table suggests that, generally speaking, the larger the Reynolds number, the more difficult it is
for the GMRES to converge. Without a coarse space, which may improve the communication
between subdomains, the ANLI is usually high. Such a problem becomes more severe in the case
of a long and thin computational domain such as a microchannel even for a low Reynolds number
flow with Re = 70. In many situations, Jacobian solves reach the maximum number of iterations,
which is set to be 500. A multilevel method could be used to further reduce the number of GMRES
iterations for convergence. However, finding an appropriate coarse space is not an easy task for
3D complex geometries and developing efficient multilevel methods for real applications is still
an active research topic in scientific computing. Some successful 2D examples for multilevel
incompressible flow computations can be found in Barker and Cai [3] and Hwang and Cai [18].
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626 F.-N. Hwang et al.

Figure 6. The mixing efficiency at different viewing windows for the cases with different values of the Reynolds number
(colour online only).

Table 2. 3D serpentine micromixing. Different subdomain solves: LU and ILU(k),
k = 0, 1, 2, 3 for varied sizes of overlapping for Re = 6 and Re = 70. �t = 0.1, 10 time
steps are performed. np = 64.

Re = 7 ovlp = 1 ovlp = 2 ovlp = 3 ovlp = 5

LU ANNI (ANLI) 2.1 (131.3) 2.1 (122.0) 2.1 (119.6) 2.1 (107.0)
Total time 875.4 1176.1 1447.8 2024.1

ILU(0) ANNI (ANLI) 4.5 (495.4) 4.6 (495.7) 4.6 (496.0) 4.7 (496.1)
Total time 931.4 991.3 1150.2 1256.6

ILU(1) ANNI (ANLI) 2.8 (459.9) 2.8 (460.4) 2.8 (459.4) 2.3 (435.0)
Total time 675.3 763.5 824.4 764.1

ILU(2) ANNI (ANLI) 2.2 (359.5) 2.1 (320.2) 2.3 (232.1) 2.1 (186.1)
Total time 574.1 581.4 553.6 510.7

ILU(3) ANNI (ANLI) 2.1 (187.0) 2.1 (180.5) 2.1 (173.1) 2.1 (158.0)
Total time 478.4 558.9 622.7 722.4

Re = 70 ovlp = 1 ovlp = 2 ovlp = 3 ovlp = 5
LU ANNI (ANLI) 3.1 (382.6) 3.1 (176.4) 3.1 (163.7) 3.1 (136.6)

Total time 2169.6 1981.0 2377.2 3200.9
ILU(0) ANNI (ANLI) 7.1 (475.3) 7.2 (475.7) 7.2 (475.8) 6.9 (474.8)

Total time 1266.6 1413.6 1506.5 1635.2
ILU(1) ANNI (ANLI) 5.1 (461.2) 4.9 (461.4) 5.1 (460.2) 4.5 (454.3)

Total time 1332.4 1501.7 1540.9 1688.6
ILU(2) ANNI (ANLI) 4.0 (447.3) 4.0 (440.4) 3.9 (431.8) 3.5 (428.9)

Total time 1229.6 1419.0 1521.5 1638.5
ILU(3) ANNI (ANLI) 3.4 (434.5) 3.4 (424.5) 3.2 (404.1) 3.1 (389.7)

Total time 1405.0 1672.2 1739.5 2040.8

Table 3. Timing results for three microchannel cases for Re = 6 and 70.
�t = 0.1, 10 time steps are performed.

1D 2D 3D

Re = 6 ANNI (ANLI) 2.1 (188.5) 2.1 (195.0) 2.1 (187.0)
Total time 439.6 372.0 478.4

Re = 70 ANNI (ANLI) 5.5 (500) 3.3 (424.5) 3.4 (496.0)
Total time 1361.6 1053.3 1405.0

For the case of Re = 6, although the best choices for the level of ILU fill-ins and the
degree of overlaps are slightly different, for example, ovlp = 5 and ILU(2) for 1D, ovlp = 2
and ILU(2) for 2D and ovlp = 1 and ILU(3) for 3D, the number of GMRES iterations and
the number of Newton iterations are quite independent of the geometric configurations of
microchannels.
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Table 4. Parallel efficiency for the 3D serpentine micromixing case with Re = 26. The
additive Schwarz preconditioner uses ovlp = 1 and ILU(3) as the subdomain solver.

np ANNI ANLI Time (s) Efficiency (%)

16 2.1 158.6 1587.3 100
32 2.1 163.5 877.3 90
64 2.1 187.0 478.4 83
128 2.2 264.2 370.0 54
256 2.4 394.2 317.5 31

Table 5. Parallel efficiency for the 3D serpentine micromixing case with Re = 70. The
additive Schwarz preconditioner uses ovlp = 1 and ILU(1) as the subdomain solver.

np ANNI ANLI Time (s) Efficiency (%)

16 4.7 456.8 3888.3 100
32 4.4 455.7 1989.9 98
64 5.1 461.2 1224.3 79
128 5.0 460.6 734.2 66
256 5.0 464.8 505.8 48

Finally, to evaluate the parallel performance of our fluid solver, we consider the parallel
efficiency defined as

Ef =
(

16

np

)
T16

Tnp
,

where T16 and Tnp are the computing time obtained with 16 and np processors.
From Tables 4 and 5, we observe that the parallel efficiency reaches at least 50% with up to

128 processors but degrades slightly when 256 processors are used.

5. Conclusions

In this work, we introduced a parallel algorithm for the 3D microfluidic simulation and the
corresponding software was developed on top of PETSc and several state-of-the-art open source
packages, including Cubit, ParMETIS and ParaView. The core of the approach is based on a fully
coupled and fully implicit scalable NKS method. Our studies showed good qualitative agreements
between our numerical solutions and the experimental observation shown in [24]. Moreover, we
used the three-dimensional serpentine microchannel as a numerical example to demonstrate the
applicability of our software to the simulation of microfluidic mixing. Our solver achieved above
54% of parallel efficiency with up to 128 processors on a cluster of PCs. Our research focused
on that the mixing of the fluids induced by a passive transport diffusion. The model is based on
incompressible Navier–Stokes equations for single-phase flows. It is worth to extend our parallel
solver for the case of coupled multi-phase flows with surface tension, which represents broader
applications in microfluidic mixing.
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