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Abstract. In the first part of the paper, we introduce an overlapping mortar finite element meth-
ods for solving two-dimensional elliptic problems discretized on overlapping non-matching grids. We
prove an optimal error bound and estimate the condition numbers of certain overlapping Schwarz
preconditioned systems for the two-subdomain case. We show that the error bound is independent
of the size of the overlap and the ratio of the mesh parameters. In the second part, we introduce
three additive Schwarz preconditioned conjugate gradient algorithms based on the trivial and har-
monic extensions. We provide estimates for the spectral bounds on the condition numbers of the
preconditioned operators. We show that although the error bound is independent of the size of the
overlap, the condition number does depend on it. Numerical examples are presented to support our
theory.
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1. Introduction. The mortar element method was first developed for the pur-
pose of coupling different discretizations in different nonoverlapping subdomains. Sev-
eral studies have been carried out; see e.g., [1, 2, 3, 4, 5, 6, 7, 11, 12, 15, 16, 22, 25, 29,
30]. In this paper, we consider the case of overlapping subdomains. We provide an
optimal error analysis for the two-subdomain case, and also spectral bound estima-
tions for the Schwarz preconditioned systems. The main advantage of non-matching
grid methods is that highly structured local grids and corresponding fast solvers (and
software) can be used easily. To preserve the global accuracy of the discretization,
the interpolation between the neighboring subdomains has to be sufficiently accurate.
The mortar method provides one such interpolation scheme that passes the values of
a function from one grid to another without loosing accuracy as will be shown in this
paper. It is somewhat surprising that the discretization error is independent of the
overlap as long as a trivial requirement is satisfied; the overlap is not smaller than the
size of the coarser mesh. We also show that the error is independent of the ratio of the
mesh sizes. Another interesting finding is that larger overlap can make the resulting
linear system easier to precondition. We note that, independent of the development
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of mortar based methods, overlapping non-matching grids techniques have been used
for more than ten years by computational engineers in many large scale simulations
as a way to reduce the cost of grid generation. The methods are often referred to as
the Chimera methods or overset grid methods ([13, 20, 26]).

We are interested in solving the following elliptic variational problem: Find u∗ ∈
H1

0 (Ω), such that

a(u∗, v) = f(v), ∀ v ∈ H1
0 (Ω),(1)

where

a(u, v) =
∫
Ω
∇u · ∇v dx and f(v) =

∫
Ω

fv dx.

Here f(x) ∈ L2(Ω) is a given function and Ω = Ω1 ∪ Ω2 an open polygonal domain
in �2. We assume that both Ω1 and Ω2 are open polygonal domains and that the
diameters of Ω, Ω1 and Ω2 are of order 1. We shall introduce two independent
triangulations on Ω1 and Ω2, respectively, and a mortar element method defined on
the union of the two, generally non-matching, triangulations. We assume that u∗

satisfies the following local regularity conditions:

u∗|Ωi ∈ H1+τi(Ωi), and 0 < τi ≤ 1

for i = 1, 2. No global regularity of u∗ is assumed.
As mentioned earlier a lot of work has been done in the area of non-overlapping

non-matching grid methods. There are also several methods that use overlapping non-
matching grid preconditioners for matrix problems obtained from non-overlapping
discretization schemes; see [12, 15]. Some very interesting recent development in
using overlapping non-matching grid methods can be found, for examples, in the
papers of Kuznetsov [23], Blake [8] and Cai, Mathew and Sarkis [10]. However, to the
best of our knowledge, this is the first paper that provides an optimal error analysis
for the overlapping mortar element method.

To avoid unnecessary complications, we restrict our discussion to Poisson’s equa-
tion with zero Dirichlet boundary condition. The extension to the smooth variable
coefficient case is straightforward. The paper is organized as follows. In Section 2,
we introduce some notations. The mortar element method and some implementation
remarks are given in Section 3. The analysis of the method is provided in Section 4.
Several technical lemmas, used in Section 4, are actually introduced and proved in
Section 5. Section 6 reports several numerical experiments that are used to verify the
theory on the accuracy. Three preconditioning techniques are proposed and analyzed
in Section 7. Section 8 contains some numerical examples supporting the theory of
the preconditioning methods. A short conclusion is given in Section 9.

2. Model cases and function spaces. In this paper, we shall focus on two
model cases that have different technical difficulties. The main theorem on accuracy
holds for both cases, however, different proofs are needed. Most of our results can be
extended to more general cases.
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Case R: The union of Ω1 and Ω2 is a rectangular domain, as shown in Fig. 1.

Case L: The union of Ω1 and Ω2 is an L-shaped domain, as shown in Fig. 2.

Before introducing the mortar element method in Ω with non-matching grids
in the overlapping subdomains, we need to define some notations. First of all, let
γi = ∂Ωi ∩ Ω, i = 1, 2, be the interfaces. For Case R we define δ as the distance
between the two interfaces, shown in Fig. 1, and for Case L we assume δ = O(1).

• Triangulations and finite element spaces. For i = 1, 2, let

T hi = {Khi
j , j = 1, . . . , Mi}

be a standard finite element triangulation in Ωi; see for example Fig. 1. Here Khi
j is

a triangle and hi the mesh size. Mi is the total number of triangles. We assume that
they are shape regular and quasi-uniform; see Ciarlet [14]. The two triangulations
need not to match in the overlapping region. Let V hi ≡ V hi(Ωi) be the space of
continuous piecewise linear functions on T hi which vanishes on ∂Ω ∩ ∂Ωi. For each
node xhi

l in T hi we denote by φhi
l (x) the usual basis function, i.e., φhi

l (x) ∈ V hi, and
φhi

l (x) = 1 if x = xhi
l and zero at all the other nodes. We define the support of a basis

function by

supp(φhi
l ) ≡ supp(xhi

l ) ≡ {x| ∈ Ωi and φhi
l (x) 	= 0}.

Note that supp(xhi
l ) is an open set. We also need the space

Xh = {(u1, u2)|ui ∈ V hi, i = 1, 2}.

We denote by V hi
0 as a subspace of V hi containing all functions that vanish on ∂Ωi.

• Trace spaces. We denote by V hi(γi) the restriction of V hi on γi. Let us denote
by ai

1, a
i
2, · · · , ai

mi
the nodes of T hi(Ω̄i) on γ̄i, and also denote by ai

0 and ai
mi+1 the two

endpoints of γi; see Fig. 2 (a) and Fig. 3. We assume that if ai
0 (or ai

mi+1) is a node
of T hi(Ω̄i) then ai

0 = ai
1 (or ai

mi
= ai

mi+1); see Fig. 1 and Fig. 2 (a). It is important
to note that for vi to belong to V hi , vi must vanish at ai

1 and ai
mi

; see Fig. 3 (a) for
an example of a function in V hi(γi).

• Trivial extension operators. For any ri ∈ V hi(γi), we define a function
denoted by Eir

i in V hi(Ωi) satisfying: Eir
i = ri at the nodes ai

2, a
i
3, · · · , ai

mi−1, and
Eir

i equals to zero at the remaining nodes of T hi.

• Interface test function spaces. For i = 1, 2, W̃hi(γi) denote the space of
continuous piecewise linear functions on the grid ai

0, a
i
2, · · · , ai

mi−1, a
i
mi+1, subject to

the constraints that these continuous piecewise linear functions are constants in the
intervals [ai

0, a
i
2] and [ai

mi−1, a
i
mi+1]; see Fig. 3 (b).
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• Mortars, mortar spaces and slave nodes. The curve γi has two sides. We
refer to one of them as the mortar side, and the other as the non-mortar side. In most
mortar element methods, see e.g. [7], the choice is rather arbitrary. In our case, we
have only one choice. For γ1, we define the T h2 side as the mortar side and the T h1

side as the non-mortar side. On the non-mortar side, a finite element space is defined
by using the mortar projection given below by (2). A similar definition is used for γ2.
We define the mortar space V h2(γ1) (resp. V h1(γ2)), as the restriction to the interface
γ1 (resp. γ2) of the space V h2 (resp. V h1). Among the points ai

0, a
i
1, · · · , ai

mi
, ai

mi+1, as
will be seen later, the values of the solution are known at ai

0, a
i
1, a

i
mi

and ai
mi+1 through

the given boundary conditions. We shall refer to the other points, ai
2, a

i
3, · · · , ai

mi−1

as the slave nodes since their values are determined by the mortar projections to be
defined below.

• Mortar projections. The mortar projection π1 maps the space V h2(γ1) into
V h1(γ1). Given a ϕ ∈ L2(γ1), we set (π1ϕ) ∈ V h1(γ1) to zero in the intervals [a1

0, a
1
1]

and [a1
m1

, a1
m1+1] and determine the values of (π1ϕ) at the slave nodes a1

2, a
1
3, · · · , a1

m1−1

by ∫
γ1

(ϕ − π1ϕ)ψ ds = 0, ∀ψ ∈ W̃h1(γ1).(2)

Similarly, we define the mortar projection π2 on γ2, which maps V h1(γ2) into V h2(γ2).

• The solution space. We define the solution space V h as follows:

V h =
{
(u1, u2)|ui ∈ V hi, i = 1, 2, u1|γ1

= π1(u2|γ1
) and u2|γ2

= π2(u1|γ2
)
}

.
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Fig. 1. The subregions Ωi, i = 1, 2, are rectangles Ωi = �i
x × �y. �i

x, �y are of O(1). δ is the size
of the overlap.

Before closing this section, we need to make an important assumption under
which the mortar projections are computable.

Assumption 1. Let ai
k be a slave node on γi, then

supp(ai
k) ∩ γj = ∅, for i 	= j,
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Fig. 2. Case L, i.e. the union of Ω1 and Ω2 is an L-shaped region.

and i, j = 1, 2.

Remark 2.1. For Case R, the assumption implies that δ ≥ max{h1, h2}; oth-
erwise the subdomains are not connected on the mesh level. For Case L, it means
that the two darkened regions in Fig. 2 (b) do not intersect each other. Without this
condition, the two mortar projections cannot be calculated independently.

3. Overlapping mortar element methods. In this section, we introduce the
overlapping mortar element method and discuss some implementation issues, such as
the construction of basis functions in V h. Our variational problem associated with
(1) is defined by: Find u = (u1, u2) ∈ V h, such that

ah(u, v) = fh(v) ∀v = (v1, v2) ∈ V h,(3)

where the weighted bilinear form is defined as

ah(u, v) =
∫
Ω1\Ω2

∇u1 · ∇v1 dx +
1

2

∫
Ω1∩Ω2

∇u1 · ∇v1 dx+

1

2

∫
Ω1∩Ω2

∇u2 · ∇v2 dx +
∫
Ω2\Ω1

∇u2 · ∇v2 dx

and

fh(v) =
∫
Ω1\Ω2

fv1 dx +
1

2

∫
Ω1∩Ω2

fv1 dx+

1

2

∫
Ω1∩Ω2

fv2 dx +
∫
Ω1\Ω2

fv2 dx.
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The main motivation for defining the variational problem this way is that the
resulting stiffness matrix is symmetric. We will show later that the space V h is
non-empty under Assumption 1. We remark that for matching overlapping grids,
by identifying the nodes that are in the overlapping region, (3) reduces to the usual
finite element problem associated with (1). In fact, (1) is well defined for continuous
functions and in this case it is equivalent to (3).

Since vi vanishes on part of ∂Ωi, i = 1, 2, we can define a norm in Xh by

‖v‖2
h = ah(v, v).

It is easy to see that the bilinear form ah(·, ·) is bounded in the sense that

ah(u, v) ≤ ‖u‖h‖v‖h, ∀u, v ∈ Xh.(4)

For our estimate of the discretization error, we assume that

u∗ ∈ H1+τ1(Ω1) × H1+τ2(Ω2),

where 0 < τi ≤ 1, for i = 1, 2. The main result of the paper is summarized as
Theorem 1. Assume that Assumption 1 is true. Then, the exact solution u∗ of

(1) and the mortar element solution u of (3) satisfy

‖u∗ − u‖h ≤ C
(
hτ1

1 ‖u∗‖H1+τ1 (Ω1) + hτ2
2 ‖u∗‖H1+τ2(Ω2)

)
,(5)

where C > 0 is a constant independent of h1, h2, h1/h2, h2/h1, and δ.
In the next few sections, we shall prove the theorem for both Case R and Case

L, with slightly different techniques. We note that V h ⊂ Xh. The selection of
basis functions in V h is not as trivial as in the usual finite element case because the
matching conditions have to be satisfied. As a result of the mortar mapping, some
of the basis functions, near the interfaces, are not local functions, i.e. the support of
the basis function covers all the elements that intersect the interface.

Let Zi = {xhi
l , l = 1, . . . , Nhi

0 } be the set of nodal points in Ωi, not including
boundary or interface nodes. Nhi

0 indicates the total number of nodes in Ωi. For each
xhi

l , recall that φhi
l (x) denotes the corresponding regular finite element basis function.

Let Z̃i = {x̃hi
l , l = 1, . . . , Ñhi

0 } ⊂ Zi be a subset of nodes such that supp(xhi
l )

⋂
γj 	= ∅

( for i 	= j). For each xhi
l ∈ Z̃i, we define

ψ
hj

l = Ej(πj(φ
hi
l |γj)), j 	= i.

Then, every function u = (u1, u2) ∈ V h has a unique representation of the form

u1 =
∑

x
h1
l ∈Z1

u1(x
h1
l )φh1

l (x) +
∑

x
h2
l ∈Z̃2

u2(x
h2
l )ψh1

l (x)

and

u2 =
∑

x
h2
l

∈Z2

u2(x
h2
l )φh2

l (x) +
∑

x
h1
l

∈Z̃1

u1(x
h1
l )ψh2

l (x).

6
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Fig. 3. (a) A function in the space V h1(γ1), which is the image of π1. (b) A test function in
the space W̃h1(γ1).

In summary, the basis functions have the form:

Ω̄1 :

{
(φh1

l (x), 0) if xh1
l ∈ Z1 \ Z̃1

(φh1
l (x), ψh1

l (x)) if xh1
l ∈ Z̃1

and

Ω̄2 :

{
(0, φh2

l (x)) if xh2
l ∈ Z2 \ Z̃2

(ψh2
l (x), φh2

l (x)) if xh2
l ∈ Z̃2.

Note that the interface slave nodes are not accounted for the degree of freedoms. The
total degree of freedoms is Nh1

0 + Nh2
0 . The functions ψhi

l (x) (i = 1, 2) have to be
pre-calculated by solving some small linear systems of equations determined by the
mortar projection. Two additional linear systems need to be solved for finding the
slave values. The numbers of unknowns of these two linear systems are equal to the
numbers of the slave nodes on the interfaces. In the two dimensional cases that we
consider, the linear systems are always tridiagonal, symmetric and well-conditioned
due to the nature of the mortar projection.

We note that two equivalent formulations for overlapping non-matching grids are
given by Kuznetsov in [23]. One approach is the based on a minimization principle
and the other uses Lagrange multipliers.

4. Analysis of the discretization error. To analyze the discretization error,
we use the well-known Second Strang’s Lemma, in Strang and Fix [27], for the non-
conforming situation. Let u∗ and u be the solutions of (1) and (3), respectively. We
have

‖u∗ − u‖h ≤ inf
v∈V h

(‖u∗ − v‖h + ‖u − v‖h).

Here and below we use u∗ to represent (u∗|Ω1, u
∗|Ω2). Using the fact that

‖u − v‖2
h = ah(u − v, u − v) = ah(u

∗ − v, u − v) + {fh(u − v) − ah(u
∗, u − v)},

7



and (4), we obtain

‖u − v‖h ≤ ‖u∗ − v‖h +
|fh(u − v) − ah(u

∗, u − v)|
‖u − v‖h

≤ ‖u∗ − v‖h + sup
0�=w∈V h

|fh(w) − ah(u
∗, w)|

‖w‖h

.

Therefore,

‖u∗ − u‖h ≤ inf
v∈V h

2‖u∗ − v‖h + sup
0�=w∈V h

|fh(w) − ah(u
∗, w)|

‖w‖h
.(6)

In the rest of this paper, we shall refer to the first and the second term of the
right-hand side of (6) as the best approximation error and the consistency error,
respectively.

4.1. The best approximation error. Let us denote the subregion Ω̄h1
12 as the

union of all closed simplices K̄h1
j , where Kh1

j ∈ T h1 and Kh1
j belongs to Ω1 ∩Ω2. Let

us assume that Assumption 1 holds; therefore, Ωh1
12 is a non-empty connected open

subregion. Let V h1(Ωh1
12) denote the space of continuous piecewise linear functions on

Ωh1
12 that vanish on ∂Ωh1

12\γ1. Let Hh1
12 denote the discrete harmonic extension operator

on V h1(Ωh1
12) with boundary data on γ1 and zero data on ∂Ωh1

12\γ1.
Similarly, let us denote the subregion Ω̄h2

12 as the union of all closed simplices K̄h2
j ,

where Kh2
j ∈ T h2 and Kh2

j belongs to Ω2 ∩ Ω1. Let us assume that Assumption 1

holds; therefore, Ωh2
12 is a non-empty connected open subregion. Let V h2(Ωh2

12) denote
the space of continuous piecewise linear functions in Ωh2

12 which vanishes on ∂Ωh2
12\γ2.

Let Hh2
12 denote the discrete harmonic extension operator in V h2(Ωh2

12) with boundary
data on γ2 and zero data on ∂Ωh2

12\γ2.
In the next lemma, we prove that the best approximation error is optimal. In

the proof, we use several technical lemmas that will be discussed in Section 5.
Lemma 1. Assume Assumption 1 holds. Then, for any u∗ ∈ H1+τi(Ωi), i = 1, 2,

and 0 < τ1, τ2 ≤ 1, there exists v = (v1, v2) ∈ V h such that

|u∗ − v1|H1(Ω1) ≤ C
(
hτ1

1 ‖u∗‖H1+τ1 (Ω1) + hτ2
2 ‖u∗‖H1+τ2 (Ω2)

)
,(7)

and

|u∗ − v2|H1(Ω2) ≤ C
(
hτ1

1 ‖u∗‖H1+τ1 (Ω1) + hτ2
2 ‖u∗‖H1+τ2 (Ω2)

)
.(8)

Here the constant C > 0 is independent of h1, h2, h1/h2, h2/h1, and δ.
Proof. We first construct w = (w1, w2) ∈ Xh. Let wi be a continuous piecewise

linear function defined in Ωi by using the pointwise interpolation of u∗ at the nodal
points of T hi. The standard interpolation theory ([14]) gives

‖u∗ − wi‖L2(Ωi) + hi|u∗ − wi|H1(Ωi) ≤ Ch1+τi
i ‖u∗‖H1+τi(Ωi), 0 < τi ≤ 1.(9)

8



Note however that w 	∈ V h, in general, since wi, i = 1, 2, do not vanish at the nodes
{ai

1} and {ai
mi
}. Also, w does not satisfy the matching conditions across the interfaces

γi, i = 1, 2.
Let zi ∈ V hi be a continuous piecewise linear function that equals to zero at the

nodes ai
1 and ai

mi
, and to wi at the remaining nodes of T hi. Thus, the piecewise linear

function wi−zi is equal to u∗(ai
1) at ai

1, and to u∗(ai
mi

) at ai
mi

. Then by using Lemma
4 (to be introduced in the Technical Lemmas Section 5), we obtain, for 0 < τi ≤ 1,

|wi(a
i
1) − zi(a

i
1)| = |u∗(ai

1)| ≤ Chτi
i ‖u∗‖H1+τi(Ωi),(10)

and

|wi(a
i
mi

) − zi(a
i
mi

)| = |u∗(ai
mi

)| ≤ Chτi
i ‖u∗‖H1+τi(Ωi).(11)

Since wi − zi is equal to zero at all nodes of T hi except ai
1 and ai

mi
, we can use (10),

and (11) to obtain, for 0 < τi ≤ 1,

‖wi − zi‖L2(Ωi) + hi|wi − zi|H1(Ωi) ≤ Ch1+τi
i ‖u∗‖H1+τi (Ωi),(12)

and consequently, using a triangle inequality and (9), we obtain

‖u∗ − zi‖L2(Ωi) + hi|u∗ − zi|H1(Ωi) ≤ Ch1+τi
i ‖u∗‖H1+τ (Ωi).(13)

Now zi ∈ V hi (i = 1, 2), but z = (z1, z2) 	∈ V h because the matching conditions
across the interfaces are not satisfied. To match the interface values, we need to
further modify zi. Let

r1 = π1(z2(γ1)) − z1 on γ1,

and

r2 = π2(z1(γ2)) − z2 on γ2.

We define the function v = (v1, v2) as

vi = zi + Hhi
12r

i, i = 1, 2.

Note that Assumption 1 is used to guarantee the existence of Hhi
12r

i. Note also that
Hh1

12r
1 (resp. Hh2

12r
2) vanishes on γ2 (resp. γ1). Since vi belongs to V hi(Ωi), for

i = 1, 2, and they satisfy the matching conditions, v belongs to V h. We next show
that v satisfies (7) and (8). By the triangle inequality

|u∗ − vi|H1(Ωi) ≤ |u∗ − zi|H1(Ωi) + |Hhi
12r

i|H1(Ωi).(14)

The first term above has been estimated in (13). For the second term, we use Lemma
8 of Section 5, to obtain

|Hhi
12r

i|H1(Ωi) ≤ C
(
‖ri‖2

H
1/2
00 (γi)

+
1

δ
‖ri‖2

L2(γi)

)
.(15)

9



We bound ‖r1‖L2(γ1), and similarly ‖r2‖L2(γ2), as follows,

‖r1‖L2(γ1) = ‖π1z2 − z1‖L2(γ1) = ‖π1z2 − π1z1‖L2(γ1)

≤ ‖π1z2 − π1u
∗‖L2(γ1) + ‖π1z1 − π1u

∗‖L2(γ1).

A consequence of the L2 stability of Lemma 5 is that

‖r1‖L2(γ1) ≤ 6‖z2 − u∗‖L2(γ1) + 6‖z1 − u∗‖L2(γ1).

Using Assumption 1, we have that z2 = w2 on γ1. Then,

‖z2 − u∗‖L2(γ1) = ‖w2 − u∗‖L2(γ1).

According to the standard estimate for pointwise interpolation, we get, for 0 < τ2 ≤ 1,
that

‖w2 − u∗‖L2(γ1) ≤ Ch1/2+τ2
2 ‖u∗‖H1+τ2 (Ω2).(16)

Thus, we have obtained

‖π1z2 − π1u
∗‖L2(γ1) ≤ Ch1/2+τ2

2 ‖u∗‖H1+τ2(Ω2), 0 < τ2 ≤ 1.(17)

We also have,

‖π1z1 − π1u
∗‖L2(γ1) ≤ 6‖z1 − u∗‖L2(γ1)

and therefore, by using a triangle inequality

‖z1 − u∗‖L2(γ1) ≤ ‖w1 − u∗‖L2(γ1)

+
∥∥∥u∗(a1

1)φ
h1

a1
1

∥∥∥
L2(γ1)

+
∥∥∥∥u∗(a1

m1
)φh1

a1
m1

∥∥∥∥
L2(γ1)

.

Together with (10), (11) and (12), we arrive at

‖π1z1 − π1u
∗‖L2(γ1) ≤ Ch

1/2+τ1
1 ‖u∗‖H1+τ1(Ω1), 0 < τ1 ≤ 1.

This implies

‖ri‖L2(γi) ≤ C
2∑

i=1

h
1/2+τi

i ‖u∗‖H1+τi(Ωi), i = 1, 2.(18)

We next bound ‖r1‖
H

1/2
00 (γ1)

, and similarly ‖r2‖
H

1/2
00 (γ2)

. We use the H
1/2
00 stability

of Lemma 5 to obtain

‖r1‖
H

1/2
00 (γ1)

≤ ‖π1z2 − π1u
∗‖

H
1/2
00 (γ1)

+ ‖π1z1 − π1u
∗‖

H
1/2
00 (γ1)

≤

C ‖z2 − u∗‖
H

1/2
00 (γ1)

+ 6‖z1 − u∗‖
H

1/2
00 (γ1)

.

Now with (13), we get

‖ri‖H
1/2
00 (γi)

≤ C
2∑

i=1

hτi
i ‖u∗‖H1+τi (Ωi), i = 1, 2.(19)

Finally (7) and (8) follow immediately from (14), (15), (18), (19), and the fact
that δ is larger than max{h1, h2}.
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4.2. The consistency error. The consistency error can be estimated rather
easily. For a smooth u∗, by using Green’s formula and that −∆u∗ = f in the L2

sense, we obtain

fh(w) − ah(u
∗, w) =

∫
Ω1

(f + ∆u∗)w1 dx − 1

2

∫
γ1

∂u∗

∂n
(w1)ds+

1

2

∫
γ2

∂u∗

∂n
(w1)ds +

∫
Ω2

(f + ∆u∗)w2 dx − 1

2

∫
γ2

∂u∗

∂n
(w2)ds +

1

2

∫
γ1

∂u∗

∂n
(w2)ds =

1

2

∫
γ1∪γ2

∂u∗

∂n
[w]ds =

1

2

∫
γ1

∂u∗

∂n
(w2 − w1)ds +

1

2

∫
γ2

∂u∗

∂n
(w1 − w2)ds,

where ∂u∗

∂n
denotes the normal derivative of u∗, with the unit vector n pointing to the

outside of Ω1 ∩ Ω2. Later, we use the density argument (Grisvard [19]) to estimate
fh(w) − ah(u

∗, w) for any u∗ ∈ H1(Ω).
We summarize the result in the following lemma.
Lemma 2. Let u∗ ∈ H1+τi(Ωi), 0 ≤ τi ≤ 1, i = 1, 2. Then, there exists a constant

C > 0 independent of δ, hi and u∗, such that

sup
0�=w∈V h

0

| ∫γ1∪γ2

∂u∗

∂n
[w]ds|

‖w‖h

≤ C
(
hτ1

1 ‖u∗‖H1+τ1(Ω1) + hτ2
2 ‖u∗‖H1+τ2 (Ω2)

)
.

Proof. We derive a bound for the consistency error on γ1. The bound on γ2 can
be obtained in a similar way. Let w = (w1, w2) ∈ V h, we have∣∣∣∣∣

∫
γ1

∂u∗

∂n
(w2 − w1)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

γ1

∂u∗

∂n
(w2 − π1w2)ds

∣∣∣∣∣ ,
and by using the definition of the mortar mapping (2), we also have, ∀ψ ∈ W̃h1(γ1),∣∣∣∣∣

∫
γ1

∂u∗

∂n
(w2 − π1w2)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

γ1

(
∂u∗

∂n
− ψ

)
(w2 − π1w2)ds

∣∣∣∣∣
≤

∥∥∥∥∥∂u∗

∂n
− ψ

∥∥∥∥∥
[H1/2(γ1)]′

‖w2 − π1w2‖H1/2(γ1)

≤
∥∥∥∥∥∂u∗

∂n
− ψ

∥∥∥∥∥
[H1/2(γ1)]′

(
‖w2‖H1/2(γ1) + ‖w1‖H1/2(γ1)

)
.

Applying the trace theorem for w, we deduce that∣∣∣∣∣
∫

γ1

∂u∗

∂n
(w2 − w1)ds

∣∣∣∣∣ ≤ C‖w‖h inf
ψ∈W̃h1

(γ1)

⎧⎨
⎩

∥∥∥∥∥∂u∗

∂n
− ψ

∥∥∥∥∥
[H1/2(γ1)]′

⎫⎬
⎭ .

With the help of Lemma 3 (or Lemma 4.1 of Bernardi, Maday and Patera [7]), we
obtain∣∣∣∣∣

∫
γ1

∂u∗

∂n
(w2 − w1)ds

∣∣∣∣∣ ≤ Chτ1
1 ‖w‖h

∥∥∥∥∥∂u∗

∂n

∥∥∥∥∥
H1/2+τ1 (γ1)

≤ Chτ1
1 ‖w‖h‖u∗‖H1+τ1(Ω1).
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5. Technical lemmas. In this section, we discuss several technical estimates.
We formulate and prove some of the lemmas in a way that is more general than
needed in this paper since we believe their applicabilities go beyond this paper.

The proof of the following lemma can be found in Bernardi, Maday and Patera
[7], although their definition of the mortar mapping is slightly different from ours for
Case L because of the two extra intervals [ai

0, a
i
1] and [ai

mi
, ai

mi+1]. Their proof also
holds here because the length of the intervals [ai

0, a
i
2] and [ai

mi−1, a
i
mi+1] are O(hi); we

do not include the proof here.
Lemma 3. Let π̃i be the orthogonal projection from L2(γi) onto W̃hi(γi). Then,

for any 0 ≤ τi ≤ 1, the following estimate holds for any v ∈ Hτi(γi),

‖v − π̃iv‖L2(γi) + h−1/2
i ‖v − π̃iv‖[H1/2(γi)]′ ≤ Chτi

i ‖v‖Hτi(γi).

As a consequence,

inf
ψ∈W̃hi

(γi)

{
‖v − ψ‖[H1/2(γi)]′

}
≤ Ch

1/2+τi

i ‖v‖Hτi(γi).

Here C > 0 is independent of hi.
The next lemma is useful only for Case L. Let us restrict our arguments to Ω1,

similar argument applies for Ω2. Recall that in the definition of the finite element
space V h1(Ω1), we insist that the functions vanish at two interior points a1

1 and a1
m1

,
which is a bit unusual in the classical finite element theory. Due to the following
lemma, we show that the interior zero points do not affect the second order (or 1+ τi

order) accuracy of the overall discretization.
Lemma 4. Let Ω1 be a bounded open subset of �2 with a piecewise C0,1 boundary

∂Ω1. Assume that the aspect ratio and the size of Ω1 are both O(1). Let ν ⊂ ∂Ω1 be
a C1,1 (differentiable Lipschitz) curve with end points A and B. Also let η ⊂ ν ∩ ∂Ω
be an open non-empty connected curve with end points A and x0. Then for any
u ∈ H1+τ1(Ω1), 0 < τ1 ≤ 1, that vanishes on ∂Ω, we have

|u(x)| ≤ Cdτ1
x ‖u‖H1+τ1(Ω1), ∀x ∈ ν.(20)

Here dx is the arc distance of the point x to η along the curve ν. The constant C > 0
does not depend on u, x0 and x, but in general depends on the Lipschitz constant of
∂Ω1.

Proof. If x ∈ η then u(x) = 0 and (20) holds trivially. Let us assume that
x ∈ ν \ η. Let z(x) be a point in the interior of η such that

d(z(x), x0) ≤ d(x, x0) = dx.

We shall first assume that u is a smooth function and then pass it to any functions
in H1+τ1(Ω1) using the classical density argument; see e.g. Grisvard [19] or Lions and
Magenes [24]. Now let u ∈ C∞(Ω1), then

u(x) = u(z(x)) +
∫ x

z(x)
u

′
(s)ds.

12



Since u(z(x)) = 0 and u
′
(s) = 0 on s ∈ η, we have

u(x) =
∫ x

x0

u
′
(s)ds.

Using Schwarz inequality, we have

|u(x)| ≤
∫ x

x0

|u′
(s)|ds ≤ d1/2

x |u|H1(ν).(21)

With the Fundamental Theorem of Calculus,

u
′
(s) = u

′
(z(x)) +

∫ s

z(x)
u

′′
(t)dt

and using that u
′
(s) = 0 on s ∈ η, we get

u(x) =
∫ x

x0

∫ s

z(x)
u

′′
(t)dtds.

By using the fact that u
′′
(y) = 0, y ∈ η, the Schwarz inequality, and that d(x0, z(x)) ≤

d(x, x0) we obtain

|u(x)| ≤ Cd(x, x0)
3/2|u|H2(ν).(22)

We obtain the estimate in H1+τ1(ν) by interpolating the H1(ν) estimate (21) and
the H2(ν) estimate (22) (Lions and Magenes [24]). Thus, for 0 ≤ τ1 ≤ 1,

|u(x)| ≤ Cd1/2+τ1
x ‖u‖H1+τ1(ν).(23)

With the usual density argument, the above estimate holds for any u ∈ H1+τ1(ν).
Finally, to obtain (20) from (23), we consider two cases 1/2 ≤ τ1 ≤ 1 and

0 < τ1 ≤ 1/2 separately.
For 1/2 ≤ τ1 ≤ 1, we use the trace theorem for C0,1 (differentiable Lipschitz)

curve (cf. Theorem 1.5.2.1 of Grisvard [19]), which gives

|u(x)| ≤ Cdτ1
x ‖u‖H1/2+τ1(ν) ≤ Cdτ1

x ‖u‖H1+τ1(Ω1).

For 0 < τ1 ≤ 1/2, it is known that the continuous function space is embedded
into H1/2+τ1(Ω1). Using that u vanishes on η, we can use the Bramble-Hilbert lemma
and scaling arguments to obtain, for 0 < τ1 ≤ 1/2,

|u(x)| ≤ Cdτ1
x ‖u‖H1+τ1(Ω1) ∀u ∈ H1+τ1(Ω1).

The last arguments can be found in detail in the proof of Theorem 3.3 in Xu [31].
Remark 5.1. We remark that we use the above lemma by taking x0 = a1

0 (or
x0 = a1

m1+1) and ν as an edge of an element Kh1
j of T h1(Ω̄1) that contains a1

0 and a1
1.

The lemma is useful only when a1
0 	= a1

1, and therefore (using the definition of a1
0 and

a1
1) a1

0 belongs to the interior of ν.
13



We next show the boundness of the mortar projection in two different norms.
Since the mortar projection is, in some sense, close to the regular L2 projection, the
L2 bound is rather easy to obtain. It is a bit involved to obtain its H

1/2
00 bound.

Lemma 5. The mortar mapping πi is bounded in L2(γi), i.e.,

‖πiw‖L2(γi) ≤
√

6‖w‖L2(γi), ∀w ∈ L2(γi)(24)

and πi is also bounded in H
1/2
00 (γi), i.e.,

‖πiw‖
H

1/2
00 (γi)

≤ C‖w‖
H

1/2
00 (γi)

, ∀w ∈ H
1/2
00 (γi),(25)

where the constant C > 0 is independent of h1, h2, h1/h2, h2/h1 and δ.
Proof. Let us consider the proof for π1. The proof for π2 is similar. Using (2), and

taking ψ, here denoted by v, which equals to π1w at the nodal points a1
2, a

1
3, · · · , a1

m1−1,
we obtain,

‖π1w‖2
L2(γ1) ≤ (π1w, v)L2(γ1) = (w, v)L2(γ1).

Using simple calculations, we have

‖v‖2
L2(γ1) ≤ 6‖π1w‖2

L2(γ1),

and (24) follows easily. We next estimate the H
1/2
00 bound. Let w ∈ H1

0 (γ1). By the
triangle inequality and then the inverse inequality, we have

‖π1w‖2

H
1/2
00 (γ1)

≤ C
(

1

h1
‖π1w −Qh1w‖2

L2(γ1) + ‖Qh1w‖
H

1/2
00 (γ1)

)
.(26)

Here Qh1 : V h2(γ1) → V h1(γ1) is the usual orthogonal L2 projection. Note that
π1Qh1w = Qh1w. Therefore, using (24) we have

‖π1w −Qh1w‖2
L2(γ1) = ‖π1w − π1Qh1w‖2

L2(γ1) ≤ C‖w −Qh1w‖L2(γ1).(27)

The next step is to bound ‖w−Qh1w‖L2(γ1). Now we follow the proofs of Theorems
3.2 and 3.4 of Bramble and Xu [9]. Let us denote by Ih1 the usual nodal value
interpolant on the grid a1

0, a
1
1, a

1
2, · · · , a1

m1
, a1

m1+1. The interpolator is well-defined in
H1(γ1). Let us denote by φa1

i
the standard basis functions associated to the continuous

piecewise linear functions on the grid a1
0, a

1
1, a

1
2, · · · , a1

m1
, a1

m1+1. It is easy to see that

w̃ = Ih1w − w(a1
1)φa1

1
− w(a1

m1
)φa1

m1

belongs to V h1(γ1). Therefore

‖w −Qh1w‖L2(γ1) ≤ ‖w − w̃‖L2(γ1)

≤ ‖w − Ih1w‖L2(γ1) + ‖w(a1
1)φa1

1
‖L2(γ1) + ‖w(a1

m1
)φa1

m1
‖L2(γ1).
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Since Ih1w is well-defined for w ∈ H1(γ1), by using a well-known result of Ciarlet
[14], we obtain

‖w − Ih1w‖L2(γ1) ≤ Ch1|w|H1(γ1).

Using that w vanishes at a1
0 and a1

m1+1, we have

|w(a1
1)| ≤ Ch

1/2
1 |w|H1(γ1) and |w(a1

m1
)| ≤ Ch

1/2
1 |w|H1(γ1),

and then obtain

‖w −Qh1w‖L2(γ1) ≤ Ch1|w|H1(γ1).(28)

Using that Qh1 is a L2 projection, we have ‖w−Qh1w‖L2(γ1) ≤ 2‖w‖L2(γ1). Then
by the interpolation procedure we obtain

‖w −Qh1w‖L2(γ1) ≤ Ch
1/2
1 ‖w‖

H
1/2
00 (γ1)

.(29)

The next step is to show that

|Qh1w|H1(γ1) ≤ C|w|H1(γ1).(30)

Let w0 = w on [a1
0, a

1
1] and [a1

m1
, a1

m1+1], and w0 = w(a1
1)φa1

1
(x) on [a1

1, a
1
2] and w0 =

w(a1
m1

)φa1
m1

(x) on [a1
m1−1, a

1
m1

], and zero at the remaining points of γ1. Hence,

|Qh1w|2H1(γ1) ≤ 2
(
|Qh1(w − w0)|2H1(γ1) + |Qh1w0|2H1(γ1)

)
.

By using an inverse inequality, the L2 stability result (24), and the definition of
w0, we have

|Qh1w0|2H1(γ1) ≤
C

h2
1

‖Qh1w0‖2
L2(γ1) ≤

C

h2
1

‖w0‖2
L2(γ1) ≤

C

h2
1

(
‖w‖2

L2(a1
0,a1

1) + ‖w(a1
1)φa1

1
‖2

L2(a1
1,a1

2) + ‖w(a1
m1

)φa1
m1
‖2

L2(a1
m1−1,a1

m1
) + ‖w‖2

L2(a1
m1

,a1
m1+1)

)

≤ C|w|2H1(γ1).

In the last inequality, we use (21), which holds for functions w that vanish at a1
0 and

a1
m1+1.

Note that Qh1(w−w0) = Q̃h1(w−w0), where Q̃h1 is the standard L2 projection in
the space of piecewise linear functions defined on the grids a1

1, a
1
2, · · · , a1

m1
and vanish

at the end points a1
1 and a1

m1
. Hence by using standard results of the L2 projection,

and some previous arguments, we obtain (30) by

|Qh1(w − w0)|2H1(γ1) ≤ C|w − w0|2H1(γ1) ≤ C|w|2H1(γ1)+
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C
1

h2
1

(
‖w(a1

1)φa1
1
‖2

L2(a1
1,a1

2) + ‖w(a1
m1

)φa1
m1
‖2

L2(a1
m1−1,a1

m1
)

)
≤ C|w|2H1(γ1).

We then use (30), the L2 stability of Qh1 , and an interpolation procedure to obtain

‖Qh1w‖2

H
1/2
00 (γ1)

≤ C‖w‖
H

1/2
00 (γ1)

.(31)

The inequality (25) follows from (31), (29), (27) and (26).
To simplify the discussion of the next lemma we assume that Ω1 = (0, 1)× (0, 1)

is a unit square with sides parallel to the coordinate axes. The result of the following
lemma can be extended to any Lipschitz regions by using the techniques developed in
e.g. Nečas [21]. Let the x-coordinate of γ1 equal to 1. Let Γδ ⊂ Ω1 be the set of points
that is within a distance δ of γ1 and define ζ = ∂Γδ ∩Ω1. Thus the x-coordinate of ζ
equals to (1 − δ).

Lemma 6. There exists a constant C > 0 independent of δ, such that

‖w‖2
L2(ζ) ≤ C (‖w‖2

L2(γ1) + δ|w|2H1(Γδ)),(32)

and

‖w‖2
L2(ζ) ≤ C

(
δ|w|2H1(Γδ) +

1

δ
‖w‖2

L2(Γδ)

)
(33)

hold for any w ∈ H1(Ω1).
Proof. By using the Fundamental Theorem of Calculus we have

w(1 − δ, y) = w(1, y)−
∫ 1

1−δ

∂w

∂x
(s, y)ds.

Squaring both sides and taking the integral in y from 0 to 1, we obtain

∫ 1

0
(w(1 − δ, y))2dy ≤ 2

∫ 1

0
(w(1, y))2dy + 2

∫ 1

0

(∫ 1

1−δ

∂w

∂x
(s, y)ds

)2

dy.

Now using Schwarz inequality on the last term,

∫ 1

0
(w(1 − δ, y))2dy ≤ 2

∫ 1

0
(w(1, y))2dy + 2

∫ 1

0
δ

⎛
⎝∫ 1

1−δ

(
∂w

∂x
(s, y)

)2

ds

⎞
⎠ dy,

and (32) follows. To prove (33), we note that for x ∈ (1 − δ, 1),

w(1 − δ, y) = w(x, y) −
∫ x

1−δ

∂w

∂x
(s, y)ds,

which implies, by squaring both sides and using Schwarz inequality, that

(w(1 − δ, y))2 ≤ 2

⎛
⎝w(x, y))2 + δ

∫ 1

1−δ

(
∂w

∂x
(s, y)

)2

ds

⎞
⎠ .
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The proof of (33) is now obtained by integrating this inequality over (1−δ, 1)×(0, 1).

Remark 5.2. A similar estimate plays a very important role in the study of
the optimal convergence of the overlapping Schwarz methods with small overlap; see
Dryja and Widlund [17].

The next two lemmas are devoted to Case R. For a given overlap δ, we introduce
a finite element triangulation of size O(δ) on Ω1. More precisely, we let T δ(Ω̄1) be a
triangulation of Ω1, which may or may not be nested with T h1(Ω̄1). We assume the
triangulation is quasi-uniform with size O(δ) and V δ(Ω1) is the space of continuous
piecewise linear functions on the triangulation T δ(Ω̄1). We denote by γδ

1 the set of
nodal points of T δ(Ω̄1) belonging to γ̄1. Following Dryja, Sarkis and Widlund [18],
we define an interpolation operator IM

δ : V h1(Ω1) → V δ(Ω1) as follows.

Definition 1. Given w ∈ V h1(Ω1), define wδ = IM
δ w ∈ V δ(Ω1) by the values of

wδ at two types of nodes of T δ(Ω̄1):
i) For an interior nodal point P ∈ T δ(Ω̄1)\γδ

1, let τP ∈ T δ(Ω̄1) be a
triangle with P as one of its vertices. We define wδ(P ) as the average
of w over τP , i.e.,

∫
τP

wdx/
∫
τP

1dx.
ii) For a boundary nodal point P ∈ γδ

1, let τ̄P ∈ T δ(Ω̄1) be a triangle
with P as one of its vertices, and having an edge on γ1. We de-
fine wδ(P ) as the average of w over τ̄P ∩ γ1, i.e. the line integral∫
τ̄P ∩γ1

wds/
∫
τ̄P∩γ1

1ds.

Lemma 7. There exists a constant C > 0, independent of δ and h1, such that

‖(I − IM
δ )w‖L2(Ω1) ≤ C δ |w|H1(Ω1),(34)

|IM
δ w|H1(Ω1) ≤ C |w|H1(Ω1),(35)

and

‖IM
δ w‖L2(γ1) ≤ C ‖w‖L2(γ1)(36)

hold for any w ∈ V h1(γ1).
Remark 5.3. A proof can be found in the paper of Dryja, Sarkis and Widlund

[18]. The interpolation operator IM
δ is used only as part of the proof of the next

lemma, not in the implementation of any of the algorithms proposed in this paper.
For the next lemma, let us assume that ζ is aligned with the h1-grid, and let Hδ

1

be the h1-discrete harmonic extension operator in V h1(Γδ) with boundary data on γ1

and zero data on ∂Γδ\γ1. Also, let H1 be the h1-discrete harmonic extension operator
in V h1(Ω1) with boundary data on γ1 and zero data on ∂Ω1\γ1.

Lemma 8. There exists a constant C > 0 independent of δ and h1, such that

|Hδ
1w|2H1(Γδ) ≤ C

(
‖w‖2

H
1/2
00 (γ1)

+
1

δ
‖w‖2

L2(γ1)

)
(37)
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for any w ∈ V h1(γ1).
Proof. Using a triangle inequality, we have

|Hδ
1w|2H1(Γδ) ≤ 2|Hδ

1(w − IM
δ w)|2H1(Γδ) + 2|Hδ

1I
M
δ w|2H1(Γδ) = 2I1 + 2I2.

Let θδ be a smooth function with values equal to one on γ1 and to zero on Ω1\Γδ. Let
Ih1 be the usual pointwise piecewise linear continuous interpolation operator. Using
the fact that the discrete harmonic extension has minimal energy,

I1 ≤ |Ih1(θδ(H1w − IM
δ H1w))|2H1(Ω1) ≤

C
(
|H1w − IM

δ H1w|2H1(Ω1) +
1

δ2
‖H1w − IM

δ H1w‖2
L2(Ω1)

)
.

In the last inequality, we used the standard estimate as in the additive Schwarz theory
(see e.g. [17]). Finally we use (34) and (35) to obtain

I1 ≤ C|H1w|2H1(Ω1) ≤ C‖w‖2

H
1/2
00 (γ1)

.

Using again that the discrete harmonic extension has minimal energy, and estimate
(36), we obtain

I2 ≤ C
∑

xk∈γδ
1

(IM
δ w)2(xk) ≤

C

δ
‖w‖2

L2(γ1).

The proof of the lemma follows immediately.
Remark 5.4. This lemma is used only for Case R.

6. Numerical experiments: Accuracy. To support the accuracy theory de-
veloped in the last few sections, we conduct some numerical experiments. We only
consider Case R, and the problem domain is shown in Fig. 1. In all tests, we assume
that the exact solution u has the form

u∗(x, y) =
(
sin(πx) + sin

(
π

2
x
))

sin(πy)

and Ω = (0, 2) × (0, 1). We denote Ω0
1 = (0, 1) × (0, 1), Ω0

2 = (1, 2) × (0, 1). and
the computed solution u = (u1, u2) ∈ V h. Let Ihi be the pointwise piecewise linear
interpolation operator in T hi. The error that we report in this section is defined by

e = (e1, e2) = (Ih1u
∗ − u1, Ih2u

∗ − u2).

Our theory applies only to the H1 norm, but three discrete norms L2, L∞ and H1

are used to measure the numerical error. More precisely, we use

‖e‖L2(Ω) =
√
‖e1‖2

L2(Ω0
1)

+ ‖e2‖2
L2(Ω0

2)
.
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Table 1

The initial grid on Ω1 is 6× 5 and 5× 4 on Ω2. The element sizes are h1 = 0.2 and h2 = 0.25.
δ = 0.45. In row l, the number in ( ) is the ratio with the number in row l − 1. The ratio indicates
the order of the accuracy of the discretization.

L2 L∞ H1 L∞(∇e)

l=0 8.629D-02 0.1375 1.363 1.717

l=1 2.274D-02(3.79) 3.754D-02(3.66) 0.7108(1.92) 0.8686(1.98)

l=2 5.905D-03(3.85) 9.469D-03(3.96) 0.3569(1.99) 0.4346(2.00)

l=3 1.480D-03(3.99) 2.375D-03(3.99) 0.1785(2.00) 0.2172(2.00)

l=4 3.704D-04(4.00) 5.945D-04(3.99) 8.927D-02(2.00) 0.1086(2.00)

l=5 9.264D-05(4.00) 1.486D-04(4.00) 4.463D-02(2.00) 5.429D-02(2.00)

Table 2

We fix the refinement to l = 5, i.e, h1 = 0.2/32 and h2 = 0.25/32. The grids are (160+ovlp)×160
and (128 + ovlp) × 128.

L2 L∞ H1 L∞(∇e)

ovlp = 1 9.159D-05 1.415D-04 4.462D-02 5.429D-02

ovlp = 2 9.158D-05 1.415D-04 4.463D-02 5.429D-02

ovlp = 4 9.170D-05 1.417D-04 4.462D-02 5.429D-02

ovlp = 8 9.190D-05 1.421D-04 4.462D-02 5.429D-02

ovlp = 16 9.220D-05 1.435D-04 4.463D-02 5.429D-02

ovlp = 32 9.264D-05 1.486D-04 4.463D-02 5.429D-02

Similarly, we can define ‖e‖H1(Ω). ‖e‖L∞(Ω) is given as

‖e‖L∞(Ω) = max{‖e‖L∞(Ω1), ‖e‖L∞(Ω2)}.

The refinement is done by simply cutting each triangle into four equal triangles. We
use l to denote the level of refinement.

In the first test case, we take h1 and h2 close to each other. We choose Ω1 =
(0, 1.2) × (0, 1) and Ω2 = (0.75, 2) × (0, 1). The overlapping size is fixed to δ = 0.45.
The initial mesh (i.e. l = 0) sizes are h1 = 0.2 and h2 = 0.25, which translate to two
non-matching grids of 6 × 5 and 5 × 4. The results are summarized in Table 1. Five
levels of uniform refinements are performed. One can see clearly that the method is
of first order in H1(Ω) and second order in L2(Ω).

We next examine the dependence on the overlap. We fix the mesh sizes at h1 =
0.2/32 and h2 = 0.25/32, i.e. the refinement level l = 5. Let ovlp be an integer
denoting the number of elements in the x direction in the overlapping region, we let
ovlp go from 1 to 32. The results can be found in Table 2. As predicted in Theorem
1, the accuracy is independent of the overlap.
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Table 3

We fix the overlap delta = 0.275. The initial grid is 6 × 5 and 5 × 4. The table below gives the
error on Ω1 and Ω2 when we refine both grids uniformly with different level of refinement denoted
by lΩ1 and lΩ2 , respectively.

L2 L∞ H1 L∞(∇e)

error in Ω1

lΩ1 = 3, lΩ2 = 0 3.059D-02 7.890D-02 1.538 0.6549

lΩ1 = 4, lΩ2 = 1 8.126D-03(3.76) 2.238D-02(3.52) 0.6592(2.33) 0.3942(1.66)

lΩ1 = 5, lΩ2 = 2 2.119D-03(3.83) 6.177D-03(3.62) 0.3070(2.14) 0.1417(2.78)

error in Ω2

lΩ1 = 3, lΩ2 = 0 4.732D-02 9.488D-02 0.3460 1.2002

lΩ1 = 4, lΩ2 = 1 1.294D-02(3.66) 2.596D-02(3.65) 0.1754(1.97) 0.6110(1.96)

lΩ1 = 5, lΩ2 = 2 3.310D-03(3.91) 6.709D-03(3.87) 8.646D-02(2.03) 0.3095(1.97)

Instead of using the same level of refinement in both subdomains, we experiment
with different level of refinement denoted by lΩ1 and lΩ2 . We also measure the error
separately in Ω1 and Ω2. We start with the same initial mesh (6× 5 and 5 × 4), and
refine three times in each subdomain with levels equal to lΩ1 = 3, 4, 5 and lΩ2 = 0, 1, 2.
The results are provided in Table 3.

7. Additive Schwarz preconditioners. The linear system of equations corre-
sponding to (3) is usually large, sparse, symmetric positive definite and ill-conditioned.
Preconditioning is necessary if iterative methods are used to solve it. In this section,
we introduce several additive Schwarz preconditioners. A good introduction on the
abstract additive Schwarz method (ASM) and its theory can be found in the book
by Smith, Bjørstad and Gropp [28]. The key element of the abstract ASM theory is
the introduction of a bounded decomposition of the finite element solution space V h.
Three such decompositions will be discussed in this section. Some numerical results
are given at the end to support our theory.

7.1. An additive Schwarz method based on the harmonic extension
(ASHE). We first introduce a method that uses discrete harmonic extensions in the
overlapping region. The subspace decomposition is given by

V h = I1V1 + I2V2, V1 = V h1
0 (Ω1), V2 = V h2

0 (Ω2),

where the interpolation operator I1 : V h1
0 (Ω1) → V h(Ω) is given as follows: For

v1 ∈ V h1
0 (Ω1), we define I1v1 ∈ V h(Ω) by

I1v1 =

⎧⎪⎨
⎪⎩

v1 in Ω1(interior, zero on γ1)
π2v1 on γ2

Hh2
12π2v1 in Ω2
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and the interpolation operator I2 : V h2
0 (Ω2) → V h(Ω) is given as follows: For v2 ∈

V h2
0 (Ω2), we define I2v2 ∈ V h(Ω) by

I2v2 =

⎧⎪⎨
⎪⎩

v2 in Ω2(interior, zero on γ2)
π1v2 on γ1

Hh1
12π1v2 in Ω1.

Let the bilinear forms bi(ui, vi) : V hi
0 (Ωi) × V hi

0 (Ωi) → �, i = 1, 2, be defined by

bi(ui, vi) = ai(ui, vi) ≡
∫
Ωi

∇ui · ∇vi dx.(38)

The subspace projection operator T̃i : V h(Ω) → V hi
0 (Ωi), i = 1, 2, satisfies

bi(T̃iu, v) = ah(u, Iiv), ∀v ∈ V hi
0 (Ωi).

Now we define the operator Ti = IiT̃i : V h(Ω) → V h(Ω), and let

T = T1 + T2.

To analyze the spectral condition of the operator T , we use the abstract ASM
theory. The following lemma is a slightly modified version of the abstract ASM
lemma in Smith, Bjørstad and Gropp [28], for two overlapping subregions with no
coarse space.

Lemma 9. Suppose the following three assumptions hold:
i) There exists a constant C0 such that for all u ∈ V h(Ω) there exists

a decomposition u =
∑2

i=1 Iiui, ui ∈ V hi
0 (Ωi), with

2∑
i=1

bi(ui, ui) ≤ C2
0ah(u, u).

ii) There exist constants εij , i, j = 1, 2, such that

ah(Iiui, Ijuj) ≤ εij ah(Iiui, Iiui)
1/2ah(Ijuj, Ijuj)

1/2

∀ui ∈ V hi
0 (Ωi) ∀uj ∈ V

hj

0 (Ωj).

iii) There exists a constant ω such that

ah(Iiui, Iiui) ≤ ωbi(ui, ui) ∀ui ∈ V hi
0 (Ωi), i = 1, 2.

Then, T is invertible, ah(Tu, v) = ah(u, Tv), ∀u, v ∈ V h(Ω), and

C−2
0 ah(u, u) ≤ ah(Tu, u) ≤ (ρ(E)ω)ah(u, u) ∀u ∈ V h(Ω).(39)

Here ρ(E) is the spectral radius of E , which is a 2 × 2 matrix made of {εij}.
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We estimate the condition number of T in the next theorem. Both Case R and
Case L are considered. For Case R, we define the overlapping size δ as usual, and for
Case L, we assume that δ = O(1).

Theorem 2. Assume that Assumption 1 holds. Then,

cδah(u, u) ≤ ah(Tu, u) ≤ Cah(u, u), ∀u ∈ V h(Ω),

where c > 0 and C > 0 are constants independent of hi and δ. Therefore if the overlap
is sufficiently large, i.e., δ = O(1), the preconditioner is optimal.

Proof. We follow the abstract theory stated in Lemma 9. We need only to verify
the three assumptions.

Assumption i). Given v = (v1, v2) ∈ V h(Ω), we define ui ∈ V hi
0 (Ωi) as follows:

u1 = v1 −Hh1
12v1 = v1 −Hh1

12(π1v2) in Ω1,

and

u2 = v2 −Hh2
12v2 = v2 −Hh2

12(π2v1) in Ω2.

It is easy to check that ui ∈ V hi
0 (Ωi) and that v = I1u1 + I2u2, since

I1u1 + I2u2 =

{
v1 −Hh1

12v1 + Hh1
12π1v2 = v1 in Ω1

Hh2
12π2v1 + v2 −Hh2

12v2 = v2 in Ω2.

For i = 1, 2, we have

ai(ui, ui) ≤ 2
(
ai(vi, vi) + ai(Hhi

12vi,Hhi
12vi)

)
≤ C

δ
ai(vi, vi).(40)

To obtain the last inequality, we use Lemma 8 and the standard trace theorem

|Hhi
12vi|2H1(Ω

hi
12)

≤ C
(
‖vi‖2

H
1/2
00 (γi)

+
1

δ
‖vi‖2

L2(γi)

)
≤ C

δ
ai(vi, vi).

Note that the above inequality holds for Case L with δ = O(1). From (40), we obtain
C2

0 = C/δ, since

b1(u1, u1) + b2(u2, u2) ≤
C

δ
ah(u, u).

Assumption ii). It is easy to see that ρ(E) ≤ 2.
Assumption iii). We prove for i = 1. Let u1 ∈ V h1

0 (Ω1). Then,

ah(I1u1, I1u1) ≤ 2a1(u1, u1) + 2a2

(
Hh2

12(π2u1),Hh2
12(π2u1)

)
.

To bound the second term, we again use Lemma 8, which implies that

|Hh2
12(π2u1)|2H1(Ω

h2
12 )

≤ C
(
‖π2u1‖2

H
1/2
00 (γ2)

+
1

δ
‖π2u1‖2

L2(γ2)

)
.
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To bound ‖π2u1‖H
1/2
00 (γ2)

, we apply the H
1/2
00 stability result of Lemma 5

‖π2u1‖2

H
1/2
00 (γ2)

≤ C‖u1‖2

H
1/2
00 (γ2)

≤ Ca1(u1, u1).

To bound ‖π2u1‖L2(γ2), we use the L2 stability result of Lemma 5

‖π2u1‖2
L2(γ2) ≤ C‖u1‖2

L2(γ2)

and use the fact that u1 vanishes on γ1 and Lemma 6 we have

‖u1‖2
L2(γ2) ≤ Cδ b1(u1, u1).

Therefore ω = C, which appears in the above inequality.
Remark 7.1. We remark that if the overlap is sufficiently large, i.e., δ = O(1),

then the algorithm is optimal in the sense that the convergence rate is independent of
the mesh parameters h1 and h2. The large overlap condition is satisfied automatically
for Case L.

7.2. An additive Schwarz method based on the trivial extension (ASTE).
We propose another additive Schwarz method in which the harmonic extension op-
erator used in the previous subsection is replaced by a trivial zero extension. This
method is computationally cheaper and easier to implement. Let us recall the defi-
nition of the trivial extension operators. For i = 1, 2, let Eir

i : V hi(γi) → V hi(Ωi) be
the zero extension of ri to Ωi, i.e., Eir

i = ri at the nodes ai
2, a

i
3, · · · , ai

mi−1, and Eir
i

equals to zero at the remaining nodes of T hi .
The subspace decomposition is given by

V h = Î1V1 + Î2V2, V1 = V h1
0 (Ω1), V2 = V h2

0 (Ω2),

where the interpolation operator Î1 : V h1
0 (Ω1) → V h(Ω) is given as follows: For

v1 ∈ V h1
0 (Ω1), we define Î1v1 ∈ V h(Ω) by

Î1v1 =

⎧⎪⎨
⎪⎩

v1 in Ω1

π2v1 on γ2

E2π2v1 in Ω2

and the interpolation operator Î2 : V h2
0 (Ω2) → V h(Ω) is given as follows: For v2 ∈

V h2
0 (Ω2), we define Î2v2 ∈ V h(Ω) by

Î2v2 =

⎧⎪⎨
⎪⎩

v2 in Ω2

π1v2 on γ1

E1π1v2 in Ω1.

The bilinear forms bi(ui, vi) : V hi
0 (Ωi) × V hi

0 (Ωi) → �, ,i = 1, 2, are defined the same
as in (38). We define the projection operator T̂i : V h(Ω) → V hi

0 (Ωi), i = 1, 2, by

bi(T̂iu, v) = ah(u, Îiv), ∀v ∈ V hi
0 (Ωi).
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Now we define the operator Ti = ÎiT̂i : V h(Ω) → V h(Ω), and let T = T1 + T2. The
spectral bounds of T are estimated in the following theorem. Again, for Case L, we
assume δ = O(1).

Theorem 3. Assume that Assumption 1 holds, and let h = min{h1, h2}. Then,

chah(u, u) ≤ ah(Tu, u) ≤ C
δ

h
ah(u, u), ∀u ∈ V h(Ω),

where c > 0 and C > 0 are constants independent of hi and δ.
Proof. We only need to verify the assumptions in Lemma 9.
Assumption i). Given v = (v1, v2) ∈ V h(Ω), we define ui ∈ V hi

0 (Ωi) as follows:

u1 = v1 − E1v1 = v1 − E1(π1v2) in Ω1,

and

u2 = v2 − E2v2 = v2 − E2(π2v1) in Ω2.

It is easy to check that ui ∈ V hi
0 (Ωi), and that u = Î1u1 + Î2u2. It is straightforward

to show that

bi(ui, ui) ≤
C

hi

ai(vi, vi) ≤
C

hi

ah(v, v)

and therefore C2
0 = C/h.

Assumption ii). It is easy to see that ρ(E) ≤ 2.
Assumption iii). We only discuss the case i = 1. Let u1 ∈ V h1

0 (Ω1). Then,

ah(Î1u1, Î1u1) ≤ 2 (a1(u1, u1) + a2(E2(π2u1), E2(π2u1))) .

Using an inverse inequality and the L2 stability result of Lemma 5, we obtain

a2 (E2(π2u1), E2(π2u1)) ≤
C

h2
‖π2u1‖2

L2(γ2) ≤
C

h2
‖u1‖2

L2(γ2).

Recall the fact that u1 = 0 on γ1, and using Lemma 6, we have

‖u1‖2
L2(γ2) ≤ Cδ|u1|2H1(Ω1∩Ω2)

.

Note that for Case L, δ can be replaced by 1. Therefore,

ah(Î1u1, Î1u1) ≤ C
δ

h2

b1(u1, u1).

Similarly, we can get

ah(Î2u2, Î2u2) ≤ C
δ

h1
b2(u2, u2).

Thus, we can take ω = C δ/h.
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Remark 7.2. The algorithm is not optimal, and both lower and upper bounds
are dependent on h and the overlapping size δ. But, the algorithm is easy to imple-
ment. A slightly improved version of the algorithm is given in the next subsection. A
comparison with ASHE is given in the numerical examples section.

Remark 7.3. The upper bound depends on δ in a rather bad way, i.e., it increases
when the overlap increases. This also shows up in the numerical examples.

Remark 7.4. We note however that the lower bound for Case R can be improved
from Ch to Ch/(1 − δ) for large overlap. For the proof we use (32) to obtain

|E1v1|2H1(Ω1) ≤ C
1

h1

‖v1‖2
L2(γ1) ≤ C

1

h1

‖v2‖2
L2(γ1) ≤ C

1 − δ

h1

‖v2‖H1(Ω\Ω1).

7.3. A method based on a modified trivial extension (ASTE1). Both
of the upper and lower bounds of ASTE depend on the mesh parameters. Here we
propose a modification of the bilinear form bi(·, ·) and as a result the upper bound
becomes independent of the mesh parameters. We assume the subspace decomposi-
tion is the same as in the previous subsection. Here we modify the bilinear forms,
i.e., bi(ui, vi) : V hi

0 (Ωi) × V hi
0 (Ωi) → �, ,i = 1, 2, are now defined by:

b1(u1, u1) ≡
(

1 +
h1

h2

)
a1(u1, u1) +

h1

h2

∑
x∈D

h1
2

u2
1(x),

and

b2(u2, u2) ≡
(

1 +
h2

h1

)
a2(u2, u2) +

h2

h1

∑
x∈D

h2
1

u2
2(x).

Here Dhi
j (i 	= j) denotes the set of mesh points x in the triangulation T hi, such that

supp(x) ∩ γj 	= ∅.

We define the projection operator T̃i : V h(Ω) → V hi
0 (Ωi), i = 1, 2, by

bi(T̃iu, v) = ah(u, Îiv), ∀v ∈ V hi
0 (Ωi).

Now we define the operator Ti = ÎiT̃i : V h(Ω) → V h(Ω), and let T = T1 + T2.
Theorem 4. Assume that Assumption 1 holds, then

c
(

1

h1

+
1

h2

)−1

ah(u, u) ≤ ah(Tu, u) ≤ Cah(u, u), ∀u ∈ V h(Ω),

where c > 0 and C > 0 are constants independent of hi and δ.
Proof. We exam the assumptions in Lemma 9.
Assumption i) Given v = (v1, v2) ∈ V h(Ω) we define ui ∈ V hi

0 (Ωi) as follows:

u1 = v1 − E1v1 = v1 − E1(π1v2) in Ω1,
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and

u2 = v2 − E2v2 = v2 − E2(π2v1) in Ω2.

We have

b1(u1, u1) ≤ 2

(
1 +

h1

h2

)
(a1(v1, v1) + a1(E1v1, E1v1)) +

h1

h2

∑
D

h1
2

v2
1(x)

≤ C

(
1 +

h1

h2

) (
a1(v1, v1) +

1

h1

||v1||2L2(γ1)

)

+
C

h2

(
‖v1‖2

L2(γ−
2 )

+ ‖v1‖2
L2(γ+

2 )

)
,

where γ+
2 and γ−

2 are the lines parallel to γ2 and contain the nodal points of Dh1
2 .

Using the standard trace theorem, we have

b1(u1, u1) ≤ C
(

1

h1
+

1

h2

)
a1(v1, v1).

And similarly

b2(u2, u2) ≤ C
(

1

h1
+

1

h2

)
a2(v2, v2).

Adding these estimates, we get

b1(u1, u1) + b2(u2, u2) ≤ C
(

1

h1

+
1

h2

)
ah(u, u).

Therefore, C2
0 = C( 1

h1
+ 1

h2
).

Assumption ii). ρ(E) ≤ 2.
Assumption (iii). For u1 ∈ V h1

0 (Ω1), and using the L2 stability of Lemma 5

ah(Î1u1, Î1u1) ≤ 2a1(u1, u1) + C
1

h2

||u1||2L2(γ2).

Now we use inequality (33) for a strip Dh1
2 of width 2h1, i.e.,

||u1||2L2(γ2) ≤ C
(
h1|u1|2H1(D

h1
2 )

+
1

h1
||u1||2L2(D

h1
2 )

)

to obtain

ah(Î1u1, Î1u1) ≤ C

⎛
⎜⎝

(
1 +

h1

h2

)
a1(u1, u1) +

h1

h2

∑
D

h1
2

u2
1(x)

⎞
⎟⎠ = Cb1(u1, u1).

Similarly, we have

ah(Î2u1, Î2u2) ≤ Cb2(u2, u2).

Thus, we obtain ω = C.
Remark 7.5. Note that the bounds appear in the lemma are independent of the

overlapping parameter δ, even for Case R. Numerical examples given in the next sec-
tion indeed show that increasing overlap does not decrease the number of iterations.
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8. Numerical Results: Preconditioning. In this section, we present some
numerical results concerning the convergence rate of the preconditioned conjugate
gradient(PCG) methods. We are particularly interested in the dependence of the
algorithms on the mesh parameters h1 and h2, and the overlapping size δ. All tests
are for Case R.

In Table 4, we present the number of PCG iterations and the condition number
of the preconditioned system for each of the three algorithms, plus the case when no
preconditioner is used. We stop the iteration when the initial preconditioned residual
is reduced by a factor of 10−12. The initial grids are 6 × 5 and 5 × 4, and the grids
are refined simultaneously for up to l = 5 times. The overlapping size is fixed at
δ = 0.45. It can be seen clearly that the number of iterations for ASHE stays as a
constant, however all other methods have some dependence of the refinement level.
The modified method ASTE1 is considerably better than ASTE.

Table 4

A comparison of four methods in terms of the iteration numbers and condition numbers, given
in ( ). The initial grids are 6 × 5 and 5 × 4. The overlap is fixed at δ = 0.45. l is the level of
refinement.

no prec ASHE ASTE ASTE1

l = 0 27(15.8) 14(3.0) 17(3.7) 19 (3.8)

l = 1 60(73.5) 14(2.2) 22(6.5) 21(5.5)

l = 2 121(310.95) 14(2.6) 28(14.8) 26(9.4)

l = 3 241(1270.) 14(2.5) 37(38.2) 31(17.3)

l = 4 472(5132) 13(2.5) 54(118.4) 39(33.1)

l = 5 916(20621) 13(2.5) 85(404.4) 52(64.6)

In the second set of tests, we fix the mesh sizes and vary the overlapping parameter
δ. As predicted by our theory, ASHE gets better when the overlap becomes larger.
The other two preconditioners do not share this property. The results can be found
in Table 5. We should mention that although ASTE and ASTE1 do not perform as
well as ASHE they still have practical value since they are much easier to implement.

9. Concluding remarks. In the first part of the paper, we introduce a mortar
finite element method defined on overlapping non-matching grids. An optimal accu-
racy theory is provided for the two-subdomain cases. When a geometrical condition
is satisfied we prove that the accuracy is independent of the overlap, as well as the
ratio of the subdomain mesh sizes. In the second part of the paper, we study three
additive overlapping Schwarz preconditioning techniques. One of the preconditioners,
based on the local harmonic extension, is optimal in the sense that the convergence
rate of the corresponding PCG method is independent of the mesh parameters h1

and h2. Much more work needs to be done in the area of overlapping mortar element
methods, such as extending the methods and theory to the case when more than two
subdomains overlap, and to three dimensional problems.
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Table 5

Verifying the overlapping size. The mesh sizes are h1 = 0.2/25 and h2 = 0.25/25. The actual
meshes are (160 + ovlp)× 160 and (128 + ovlp)× 128. Note that ovlp = 32 is the same as δ = 0.45.

no prec ASHE ASTE ASTE1

ovlp = 1 751(14418) 50(74.4) 61(116.0) 44(101.0)

ovlp = 2 759(14585) 32(27.3) 65(158.8) 53(99.0)

ovlp = 4 774(14937) 22(12.6) 70(230.4) 49(95.5)

ovlp = 8 788(15702) 17(6.1) 74(318.2) 49(88.2)

ovlp = 16 809(17364) 15(3.3) 79(396.4) 48(77.6)

ovlp = 32 916(20621) 13(2.5) 85(404.4) 52(64.6)
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