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Abstract� We study parallel two�level overlapping Schwarz algorithms for solving nonlinear �nite
element problems� in particular� for the full potential equation of aerodynamics discretized in two dimensions
with bilinear elements� The main algorithm� Newton�Krylov�Schwarz �NKS�� employs an inexact �nite�
di�erence Newton method and a Krylov space iterative method� with a two�level overlapping Schwarz method
as a preconditioner� We demonstrate that NKS� combined with a density upwinding continuation strategy for
problems with weak shocks� can be made robust for this class of mixed elliptic�hyperbolic nonlinear partial
di�erential equations� with proper speci�cation of several parameters� We study upwinding parameters�
inner convergence tolerance� coarse grid density� subdomain overlap� and the level of �ll�ins in the incomplete
factorization� and report favorable choices for numerical convergence rate� overall execution time� and parallel
e�ciency on a distributed�memory parallel computer�
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�� Introduction� In the past few years domain decomposition methods for linear par	
tial di
erential equations� including overlapping Schwarz methods ��� �� �� ���� have grad	
uated from theory into practice in many applications ��� ��� ��� ���� In this paper� we
study several aspects of the parallel implementation of a Krylov	Schwarz domain decom	
position algorithm for the �nite element solution of the nonlinear full potential equation
of aerodynamics� extending our model studies of linear convection	di
usion problems in ���
and of linear aerodynamic design optimization problems in ����� Newton	Krylov methods
��� �� �� �� ��� are potentially well suited and increasingly popular for the implicit solution
of nonlinear problems whenever it is expensive to compute or store a true Jacobian� We
employ a combined algorithm� called Newton	Krylov	Schwarz� and focus on the interplay
of the three nested components of the algorithm� since the amount of work done in each
component a
ects and is a
ected by the work done in the others�

Newton	Krylov	Schwarz is a general purpose parallel solver for nonlinear partial di
er	
ential equations and has been applied to complex multicomponent systems of compressible
and reacting �ows in� e�g� ��� �� ���� This paper is concerned with the simpler scalar problem
of the full potential equation� which describes inviscid� irrotational� isentropic compressible
�ow� Though the full potential model is highly idealized� it remains the model of choice

� Department of Computer Science� University of Colorado at Boulder� Boulder� CO �	
	��
cai�cs�colorado�edu� This work was supported in part by NSF grants ASC����
�� ASC�����
��� and
ECS�������� by NASA grant NAG������ and by NASA contract NAS������	 while the author was in
residence at the Institute for Computer Applications in Science and Engineering�

y Mathematics and Computer Science Division� Argonne National Laboratory� Argonne� IL �	�
��
gropp�mcs�anl�gov� This work was supported by the O�ce of Scienti�c Computing� U�S� Department of
Energy� under Contract W�
���	��Eng�
��

z Department of Computer Science� Old Dominion University� Norfolk� VA �
���	��� and ICASE� NASA
Langley Research Center� Hampton� VA �
���� keyes�icase�edu� This work was supported in part by NSF
grants ECS������ and ECS�������� by the State of Connecticut and the United Technologies Research
Center� and by NASA contract NAS������	 while the author was in residence at the Institute for Computer
Applications in Science and Engineering�

x The Boeing Company� Seattle� WA ������ rgm�����cfdd���cfd�ca�boeing�com�
� The Boeing Company� Seattle� WA ������ dpy�����cfdd���cfd�ca�boeing�com�

�



of external aerodynamic designers to date� because codes based thereupon o
er reasonable
turnaround times and in many cases high accuracy compared to state	of	the	art Navier	
Stokes solvers� Though derived under the condition of isentropy� the full potential model
remains useful in �ows with weak shocks� with pre	shock Mach numbers of about �� or
less� It can also be extended by boundary layer patching to incorporate viscous e
ects� by
a branch cut to accommodate lift� and by source terms to simulate powered engines� In
engineering practice� accurately modeling such nonideal e
ects in complex geometries ac	
counts for almost all of the lines of code� but the solution of the resulting discrete equations
accounts for the majority of the execution time� The lower per	cell storage and computa	
tional requirements of the potential model allow the use of grids dense enough to achieve low
truncation error levels for complex geometries� The full potential equation also avoids the
spurious entropy generation near stagnation often associated with Euler and Navier	Stokes
codes for industrial complex geometries of interest� We justify the simply coded examples
in this paper by our focus on a solution algorithm that should not require any changes other
than greater irregularity in its sparse data structures to be useful in more practical settings�

With Newton�s method as the outer iteration� a highly nonsymmetric and�or inde�nite
large� sparse Jacobian equation needs to be solved at every iteration to a certain accuracy�
which is often progressively tightened in response to a falling nonlinear residual norm� The
most popular family of preconditioners for large sparse Jacobians on structured or unstruc	
tured grids� incomplete factorization� is di�cult to parallelize e�ciently �op	for	�op in its
original global form� In our approach� the ILU	preconditioner for the Newton correction
equations is replaced by a multi	level overlapping Schwarz preconditioner� The latter is
not only scalably parallelizable up to available parallel granularities� but also possesses
an asymptotically optimal mesh	 and granularity	independent convergence rate for ellipti	
cally dominated problems� Our two	level overlapping additive Schwarz algorithm uses a
non	nested coarse space� Subdomain granularity� quality of subdomain solves� coarse grid
density� strategy for coarse grid solution� and inner iteration termination criteria are im	
portant factors in overall performance� We report numerical experiments on an IBM SP�
with up to �� processors�

The outline of this paper is as follows� In x�� we brie�y derive the form of the full
potential equation that serves as the point of departure for the numerics� The �nite ele	
ment discretization and the construction of an approximate Jacobian for the full potential
equation are discussed in x�� x� is devoted to the description of the basic components of
the NKS algorithm� Several parallel implementation issues are explained in x�� Numerical
results are summarized in x�� Finally� we o
er some general remarks on the use of NKS
algorithms in x��

�� The full potential problem� For completeness� we summarize the derivation and
assumptions of the full potential equation of aerodynamics� For a more thorough develop	
ment� see �����

The equation of mass conservation in a steady state �uid �ow can be written in diver	
gence form�

r � ��v� � ����

where v � �v�� v��T is the velocity and � is the local density� respectively� We assume that
the �ow is irrotational� which implies that there exists a velocity potential � such that
v � r�� Furthermore� the relation p

�� � const� holds for isentropic �ow of a perfect gas�
With the above assumptions� we can integrate the inviscid momentum equations and obtain
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Bernoulli�s equation

q�

�
�

a�

� �  � const�����

where q � �v�� � v���
��� � jjr�jj� is the local �ow speed� The sound speed a is de�ned by

a� � dp�d�� where p is the local static pressure� By means of the above relations� the �ve
unknown �elds v�� v�� p� a� and � can be eliminated in favor of a single unknown function ��
which solves the full potential equation�

r � �����r�� � �����

Two forms of this equation are standard in the literature� depending upon whether the
density is referenced to a uniform freestream �at�� or to a stagnation point condition� We
derive the freestream version as follows� From Bernoulli�s equation ����
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where M � q�a is the Mach number� and M� is the freestream Mach number� From the
de�nition of the sound speed and the pressure	density relation� we obtain

a� �
d�c���

d�
� c���������

or equivalently� � a
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�� � � �
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Observe that while the density is positive in regions of validity� ��� may be locally hyperbolic�
Equation ��� requires boundary conditions� In this paper� we consider only subsonic

far�eld boundaries� Since our emphasis is on the performance of the Schwarz precondi	
tioning� we study a symmetric nonlifting case� thus avoiding consideration of the Kutta	
Joukowsky boundary condition� To keep the geometry of the domain trivial� we use a
classical transpiration boundary condition on a slit to represent the airfoil� Transpiration
refers to a continuously parameterized injection and removal of �uid along a portion of
the boundary to create a recirculation pocket with a bounding streamline attached to the
domain boundary at both ends� over which the �ow of interest passes inviscidly� Transpira	
tion is implemented as an inhomogeneous Neumann condition� A theoretical discussion of
the use of transpiration boundary conditions to model displaced surfaces can be found in
����� For the far�eld boundary condition� we use Dirichlet values of the potential upstream�
More sophisticated far�eld conditions are possible� and are required in the case of a lifting
airfoil� but these conditions are su�cient for reasonable agreement of our numerical results
with accepted nonlifting solutions�






�� Finite element approximation� Following Boeing�s TRANAIR code ���� we em	
ploy a �nite element formulation of the two	dimensional full potential equation using bilinear
elements� The existence� uniqueness� and regularity of the solution are not central to this
paper� but have been discussed in the papers ���� ��� and references therein� Related �nite
element approaches for this class of full potential equations can also be found in �� ��� A
�nite volume scheme was given in �����

���� Basic �nite element scheme� The �nite element problem is formulated in
terms of the weak form

a��� v� �
Z
�
����r� � rv d��

We use bilinear elements on a rectangular partition of � denoted by �h � f�i� i � � � � � �Mhg�
Let f�i�x� y�g be the usual nodal basis functions� The numerical solution we seek has the
form

��x� y� �
X
�i�i�x� y��

and satis�es the following nonlinear algebraic equations

MhX
i��

����xci � y
c
i ��
Z
�i

r�rv d� � �����

for all v in the test function space� Here �xci � y
c
i � is the center point of the rectangle �i�

To simplify and speed up numerical integration� we introduce certain approximations when
dealing with some of the nonlinear forms� The way that we treat the local nonlinear
numerical integration in ��� is similar to that in ���� Let us de�ne a system of nonlinear
equations

F ��� �

�
B�

F����� � � � ��N � ����� � � � ��N��
���

FN���� � � � ��N � ����� � � � ��N��

�
CA � �����

where

Fi��� ����� �
X
���h

����xc� � y
c
���
Z
�
r�r�id�����

and �xc� � y
c
�� is the center point of the element � � We construct the Jacobian matrix J � fJijg

of the nonlinear system F � �� approximately� as follows� For each pair of indices i� j� we
de�ne

�Fi���
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X
���h

Z
�
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where s � kr�k��� In our numerical scheme� to simplify the numerical integration� the
exact Jacobian value above is replaced by

Jij �
X
���h

����xc� � y
c
���

Z
�
�r�j � r�i�d� �

X
���h

d�

ds

Z
�

�

��j
�kr�k����r� � r�i�d��

��

where the value of d��ds is calculated at the element center point� We remark here that�
because the density function � is not a constant� the Jacobian matrix is generally non	
symmetric and possibly inde�nite� The explicit construction of the Jacobian matrix is not
necessary if we use an unpreconditioned Newton	Krylov method� however� to implement a
Schwarz preconditioner� explicit approximation of the Jacobian matrix is needed in each
subdomain�

���� Density upwinding schemes� For subsonic problems� the above mentioned �	
nite element method is su�cient� however� for transonic cases upwinding has to be intro	
duced in the density calculation in order to capture the weak shock in the solution� The
proper use of an upwinding scheme is essential both to the success of the overall approach
in �nding the correct location and strength of the shock and to the convergence� or the fast
convergence� of the inexact Newton�s method�
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Fig� �� The 	nite element stencil� � is stored at the cell vertices and � at the cell centers�

As mentioned earlier� density � is assumed to be a constant in each element� and this
constant is ordinarily determined by the four values of � at the corners of the element�
through ���� Following ���� ��� if an element is determined to be supersonic� or nearly so�
its density value is replaced by

�� � �� �V � r������

where V is the normalized element velocity and r�� is an upwind undivided di
erence�
For example� with reference to Fig� � if V � �Vx� Vy� and Vx� Vy 	 � in the element marked
with ��� then

��� � �� � ��Vx��� � �	� � Vy��� � �����





Here � is the element switching function�

� � 
maxf�� �M�
c �M

�g����

where M is the element Mach number� Mc is a pre	selected cuto
 Mach number chosen to
introduce dissipation just below Mach ��� and 
 is a constant usually set to something
between �� and ��� to increase the amount dissipation in the supersonic elements� Param	
etersMc and 
 are selected by hand� and are varied to advantage between Newton steps in
problems with shocks� Roughly speaking� Mc controls the spatial extent of the upwinding�
as it drops below �� upwinding is triggered in a greater number of subsonic �but nearly
sonic� cells� Mc� 
� and V together control the amount of the upwinding in a triggered cell�
A low Mc and a high 
 stabilize convergence but di
use the shock� As iterations progress�
Mc should approach �� and 
 should be decreased to steepen up a shock whose location
and strength has converged� A well resolved shock will take many Newton steps to settle
on its correct location� whereas a di
use shock centers quickly on this location� A carefully
chosen sequence of Mc and 
 can considerably accelerate the Newton�s convergence� more
details on this �viscosity damping� can be found in ����� Another way to control the con	
vergence of Newton�s method is through the use of iterated maximization of the switching
function� as described below and �rst discussed in �����

For each element� � as de�ned by ��� is called the zeroth level switching function and

is denoted more precisely as ���� In Fig� � there is a nonzero �
��
i for each element marked

with �i� The �rst level switching function for the element marked with �� is de�ned as

�
���
� � maxf���� � � � � � �

��
� g�

namely� �
���
� is the maximum of the all the � values in its immediate neighborhood� A

�k � �	level switching function is de�ned recursively as the maximum of the neighboring
k	level � values�

Results for k � � are reported in x�� A rather tight Mach cuto
 is used� namely
M�

c � ����� and we set 
 to ���
We remark that large k results in greater discrete data dependency� or larger e
ective

stencil size� in both the nonlinear function and the Jacobian� For example� if k � �� the
stencil contains at most � points �e�g�� the nine mesh points immediately surrounding �i� j�
in Fig� �� If k � � then some of the ��� points may join the stencil depending the
�ow direction� and the stencil may contain as many as � points� The increase in the
stencil bandwidth does not cause much of a problem in the nonlinear function evaluation�
but substantially increases the memory requirement of the true Jacobian matrix� which is
constructed and stored for the Schwarz preconditioner at the beginning of each Newton
iteration� To keep the memory requirements small in practice� we do not calculate or store
the matrix elements introduced by using the iterated switching function� Our numerical
experiments show that this extra level of approximation of the Jacobian matrix does not� in
fact� appreciably reduce its power as a preconditioner� This is analogous to the practice in
��� of using Jacobian blocks based on �rst	order upwinding to drive a second	order upwinded
residual to zero� in an inexact Newton iteration� Though not much discussed in the theory of
approximate Newton methods for systems arising fromPDEs� such techniques are commonly
applied in stationary iterations in steady	state aerodynamics codes� Especially in three
space dimensions� using simpli�ed upwinding in the Jacobian matrix dramatically reduces
cost at a small expense in convergence rate degradation�
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�� Newton�Krylov�Schwarz algorithms� NKS is a family of general purpose algo	
rithms for solving nonlinear boundary value problems of partial di
erential equations� In
terms of software development� NKS has three components that can be handled indepen	
dently� However� to achieve reasonable overall convergence� the three components have to
be tuned simultaneously� We discuss these components in turn�

���� The matrix�free Newton method� In this subsection� we brie�y discuss the
well known matrix	free inexact �nite	di
erence Newton algorithm� and the Eisenstat	Walker
forcing functions ���� Starting from an initial guess �� which is su�ciently close to the
solution� a solution of the nonlinear system ��� is sought by using an inexact Newton
method� For some �k � ��� � �nd sk that satis�es

kF ��k� � J��k�skk � �k���

and set �k�� � �k � �ksk � where �k � ��� � is determined by a line search procedure
��� In practice� the method is insensitive to the details of the method used to determine
�k� Much more important is nonlinear continuation in grid density� dissipation� and other
parameters� The iteration is continued until convergence� typically de�ned in terms of a
su�ciently small kF ��k�k� The vector sk is obtained by approximately solving the linear
Jacobian system

J��k�sk � �F ��k�

with a Krylov space iterative method� The action of Jacobian J on an arbitrary Krylov
vector w can be approximated by

J��k�w � 


�F ��k � w�� F ��k�� �

Finite	di
erencing with  makes such matrix	free methods potentially more susceptible to
�nite word	length e
ects than ordinary Krylov methods� Left preconditioning of the Jaco	
bian with an operator B�� can be accommodated via

B��J��k�w � 



�
B��F ���k � w��� �F ��k�

�
�

where �F ��k� � B��F ��k� is stored once� and right preconditioning via

J��k�B
��w � 



�
F ���k � B��w��� F ��k�

�
����

Right preconditioning is preferable when the focus is on comparing di
erent preconditioners
in vitro� since the true linear residual norm that is measured as a by	product in Krylov
method GMRES �see next subsection� and used in the termination test is independent
of any right preconditioning� On the other hand� any left preconditioning changes this
by	product residual norm� For this very reason� left preconditioning may be preferable
when GMRES is applied in vivo as the solver for an inexact Newton method� When the
preconditioning B�� is of high quality� the left	preconditioned residual serves as an estimate
of the error in the Newton update vector� This estimate can be employed in a termination
condition� In this paper� one of our emphases is preconditioner quality� and we report only
right	preconditioned results�

The most expensive component of the algorithm is the solution of the linear system with
the Jacobian at each Newton iteration� As discussed in Eisenstat and Walker ���� when
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�k is far from the solution� the local linear model used in deriving the Newton method may
disagree considerably with the nonlinear function itself� and it is unproductive to �over	
solve� these linear systems� We tested several stopping conditions� including those discussed
in ���� and found that the best choice for our problems� based on elapsed execution time for
a �xed relative nonlinear residual norm reduction� is simply to set �k � ���kF ��k�k�� In
fact� even the looser �k � �

��kF ��k�k� is su�cient for the �rst few Newton iterations� but
not much time is saved by switching dynamically among these two already loose criteria�
so we use the �rst throughout�

���� Krylov iterative methods� We use the GMRES method ����� to solve the linear
system of algebraic equations�

Px � b����

where P is the matrix appears in ���� and b is the negative of the nonlinear Newton
residual vector in ���� The method begins with an initial approximate solution x � Rn and
an initial residual r � b� Px� At the m

th iteration� a correction vector zm is computed
in the Krylov subspace

Km�r� � spanfr� Pr� � � � � Pm��rg

that minimizes the residual� minz�Km�r�� kb � P �x � z�k�� The mth iterate is thus xm �
x � zm� To �t the available memory� one is sometimes forced to use the k	step restarted
GMRES method ����� However� in this case neither an optimal convergence property nor
even convergence is guaranteed� In our experiments� we do not need to solve the linear
systems very accurately� i�e�� � � ��� in

kb� Pxmka � �krk�
is su�cient to capture an accurate solution to the nonlinear problem� in both subsonic and
transonic cases� We do observe that� for certain maximum Krylov subspace dimensions
�for example ��� in a problem with approximately �� times as many discrete unknowns�
and certain Mach numbers �M� � ����� the restarted GMRES can never reduce the initial
residual below ���� In other words� there is no linear convergence� It is further noticed
in such cases that the residual norm measured as a by	product in GMRES is no longer the
same as� or even close to� the true residual norm except at the restarting points� where it
is freshly updated�� A loose linear convergence tolerance avoids this problem by returning
to the Newton method with a step that is far from exact� In the delicate balance between
few nearly exact Newton steps with expensive inner linear solutions and many inexact
Newton steps with bounded	cost inner linear solutions� we �nd the bottom line of overall
execution time best served by bounding the inner linear work� This approach is also found
most e
ective in the context of inviscid aerodynamics based on the primitive variable Euler
equations in ���� It deprives Newton�s method of its asymptotic quadratic convergence� but
provides steep linear convergence�

� We believe� after Saad �personal communication�� that this may be due to a lack of �oating point
commutativity in the product that expresses zm in GMRES� namely zm � PVmy� where Vm is a Gram�
Schmidt basis for Km and y is a coe�cient vector of dimension m that satis�es a related least squares
problem �see �
��� The e�ect seems related to drastic variations in the magnitude of successive elements of
y�
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���� Two�level overlapping Schwarz preconditioners with non�nested coarse

spaces� In this subsection� we discuss a two	level overlapping Schwarz preconditioner with
inexact subdomain solvers and non	nested coarse grid� Let � be the domain of the full
potential equation� We �rst partition the domain into nonoverlapping substructures �i�
i � � � � � � N � To obtain an overlapping decomposition of the domain� we extend each
subregion �i to a larger region �

�

i� i�e�� �i � ��

i�Only simple box decomposition is considered
in this paper� all the subdomains �i and �

�

i are rectangular and are made up of integral
numbers of �ne mesh cells� For simplicity� we also assume that all substructures are of the
same size� More precisely� the size of �i� i � � � � � � N � is Hx � Hy and the size of �

�

i is
H

�

x�H
�

y � where the H
�

are chosen so as to ensure a discrete overlap� denoted by ovlp� which
is uniform in the number of �ne grid cells all around the perimeter� i�e��

ovlp � �H
�

x �Hx��� � �H
�

y �Hy����

for interior subdomains� For boundary subdomains� we simply cut o
 the part that is
outside �� Fig� �� which appears later with the de�nition of numerical boundary conditions�
illustrates a decomposition with an overlap of three �ne mesh cells�

On each extended subdomain �
�

i� we construct a so	called subdomain preconditioner
Bi � fJijg� where the node indexed by �i� j� belongs to the interior of ��

i� Jij is calculated
by using the formula ��� Density upwinding discussed earlier is used in the transonic
cases� Zero Dirichlet boundary is used on the internal subdomain boundary ��

�

i � �� and
the appropriate external boundary condition is used on the physical boundary if present�

We next discuss the construction of the coarse grid and the coarse grid preconditioner�
The coarse grid is built independently of the �ne mesh� We cover � with another uniform
rectangular mesh �H � f�Hi � i � � � � � �MHg� and at each coarse node we introduce a
bilinear �nite element basis function  i�x� y�� The set of coarse nodes is not generally a
subset of the �ne mesh nodes� In other words� the discrete subspaces de�ned by the two
meshes are generally non	nested ���� Both coarse and �ne grids cover the entire �� and
they share the same boundary� which they both resolve exactly because of its prescribed
simplicity� �The case of a multi	level Schwarz preconditioner for geometrically complex
grids� in which only the �nest level exactly resolves the boundary geometry is considered
in ����� The coarse grid preconditioning matrix B is de�ned by using formula �� with
respect to the basis functions f ig� The coarse grid matrix arises from an independent
discretization� not an agglomeration of �ne grid matrix� No upwinding is used on the
coarse grid even in the transonic case� Empirically� the convergence may be slowed down
if the density upwinding is used at the coarse grid� since a poorly located shock may be
�resolved� and added to the �ne grid solution� We do not fully understand the reason
for this slowdown� and are not alone in regarding the choice of a coarse grid operator for
mixed elliptic	hyperbolic problems as one of the most important outstanding questions in
multilevel preconditioning�

The interaction of the coarse and the subdomain preconditioners is through the inter	
polation and restriction operations� We de�ne the coarse	to	�ne interpolation matrix� IhH �
as follows� Let IhH � flijg be an Mh �MH matrix� and

li�j �  j�xi��

where xi is ith �ne mesh node� The �ne	to	coarse restriction matrix is de�ned as �I
h
H�

T �
the transpose of IhH � The additive Schwarz preconditioner can be written as

B�� � IhHB
��
 �IhH�

T � I�B
��
� �I��

T � � � �� INB
��
N �IN �

T ����

�



Let n
�

i be the total number of nodes in �
�

i� then Ii is an Mh � n
�

i extension matrix that
extends each vector de�ned on �

�

i to a vector de�ned on the entire �ne mesh by padding
an n

�

i � n
�

i identity matrix with zero rows�
Various inexact additive Schwarz preconditioners can be constructed by replacing the

matrices Bi� i 	 �� in ��� with convenient and inexpensive to compute matrices� such as
those obtained by using local incomplete factorizations� The coarse grid operator B��

 is
always applied exactly� Some detailed comparisons of ��� with global ILU preconditioners
on rather general scalar problems can be found in ���� Experience with transonic potential
problems in the Boeing TRANAIR code can be found in �����

	� Parallel implementation issues� We implemented the family of NKS algorithms
on the IBM SP�� The top	level message	passing calls are implemented through the Chameleon
Package of Gropp and Smith ���� which uses the IBM MPL library�

The code is written in a hostless manner� Each processor is assigned one subdomain�
and the information pertaining to the interior of the subdomain is uniquely owned by that
processor and is not available to any other processors except by message passing� Following
the parallel complexity study in ���� the low	storage coarse mesh information is duplicated
in each of the processors� On each processor� we store the subvectors and subblocks of
the Jacobian matrix associated with an extended subdomain� For the coarse	grid precondi	
tioner� the right	hand vector is built by a parallel �ne	to	coarse restriction operation� Once
the right	hand vector is obtained� the coarse linear system is solved simultaneously on all
of the processors� The solution is then added to the local subdomain solutions by using a
parallel coarse	to	�ne interpolation operation� In all the experiments that we have done� the
size of the coarse linear system is so small that the execution time spent on it is negligible�
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Fig� �� Illustration of two
way bu�er copies required at each nearest
neighbor boundary� For each
action of the Schwarz preconditioner on a vector the data needed in the extended regions are copied from the
interior of neighboring subdomains� The amount of data moved for each processor is proportional to the area
of overlap�

The multiplication of a vector with the Schwarz preconditioner is the most expensive
operation in terms of memory consumption and execution time� At the beginning of each
nonlinear iteration� the �	dependent local and coarse grid preconditioning matrices are
computed explicitly� and stored in Compressed Sparse Row �CSR� format� According to
the desired type of local solver �see below�� the matrices are factored� and the upper and
lower triangular parts stored� The matrices for the interpolation and restriction between
the coarse and �ne meshes are independent of �� and are calculated in a preprocessing
step� After the solution of each subproblem is obtained� those portions that lie within
the overlapping regions �bounded by the dashed boxes in Fig� �� are sent to neighboring
subdomains to complete the summation de�ned in ���� The length of the message is
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proportional to the area of overlap�
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Fig� �� Domain � with an exaggerated NACA ���� curve at the bottom� The dashed lines indicate
the partition of the domain into nonoverlapping substructures and the dotted lines indicate the overlapping
subdomains� The incomplete 	ne mesh of solid lines illustrates an overlap of � subintervals� �� is the in�ow
�� the freestream and �� the out�ow boundary�


� Numerical results� In this section� we report some numerical results obtained on
the IBM SP� with up to �� processors for both subsonic and transonic �ows� The SP� o
ers
subsets of dedicated nodes through a batch scheduler� Other jobs on di
erent dedicated
subsets share the communication network� but processor allocation tends to concentrate
intercommunicating processors onto independent subnetworks� We report �ve performance
metrics for each run� �� the total number of Newton iterations� ��� the total number of
GMRES iterations� ��� the total execution time �including the pre	processing step such
as the decomposition of the mesh� the calculation of message lengths and the allocation of
sparse matrices� all communication and synchronization overhead� etc��� which is an average
over all processors� ��� the mega�op rate� which is a sum of the rates on each processor�
and ��� the total communication time� which is an average over all processors �isolated out
of ����� The �rst two metrics are of interest in understanding convergence rates� while ���
and ��� are useful in assessing bottom	line performance and modeling scalability�

The computer code was �rst developed on a network of workstations� and then moved
to the IBM SP�� changing only a UNIX make�le� To obtain the best performance of the
code� in terms of either the elapsed time or the mega�op rate� is not the main purpose of
this paper� We provide the execution time and mega�op information for all the calculations
for completeness� Though compiler optimization was used� the listed mega�op rates are an
order of magnitude below their peak values� Greater attention to cacheing is undoubtedly
required to improve this situation� and will potentially be simpli�ed when addressed in the
future by the domain	oriented structure of the software�


��� Test problem and parameter selection� � is a unit	aspect ratio square par	
titioned into a uniform rectangular meshes up to ��� �� in size� Let q�� the far�eld �ow
speed� be normalized to � In Fig� �� let �� �

R
x q�dx� We assume the following boundary
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conditions�

	 On the far�eld boundaries !�� !� and !	� we assume � � ���
	 On !��

��

�y
� �r�� � �nx� ny��

where n � �nx� ny� is the unit outward normal� and where y � f�x� describes the
shape of airfoil for x � !�� Once the function f�x� is given� this condition becomes

��

�y
� �q�f

�

�x��

	 On !� and !�� we impose for symmetry the no penetration condition
��

�n
�

��

�y
� ��

The functional form used for the NACA��� geometry ���� is

f�x� � ������
p
x� x� � ������x�� x��� ������x��� x� � �������x��� x��

for x � ��� �� This unit interval is scaled to ���� ���� in the overall domain� The blunt
leading edge of the airfoil poses a technical problem for the transpiration boundary condi	
tion� since f ��x� is unde�ned there� so we slightly modify the function f�x�� The curve in
the interval ��� ��������� is replaced by a parabola with a matching function value at x � ��
and matching function and �rst derivative values at x � ���������

A number of parameters need to be speci�ed in the NKS algorithms� The selection of
some parameters� such as the number of subdomains� is related to the granularity of the
architecture� not to the equation� itself� Altogether� we have

	 Switching	function parameters� in the transonic case �x����� The level of maximiza	
tion of the switching function is set to �� 
 is ��� and the cuto
 Mach value is
M�

c � �����
	 Finite di
erencing parameter�  �x���� We �nd that for the nondimensional scalar
full potential equation� the numerics are not very sensitive to � We simply set it
to ���� near the square root of the machine epsilon�

	 Newton convergence parameters �x���� The initial guess is a simple interpolation
of the far�eld boundary condition� Nonlinear convergence is declared following a
��� relative reduction of the initial residual� The step size reduction ratio in the
line search is ��� and the termination tolerance is ����

	 Krylov convergence parameters �x����� The convergence tolerance for the linear
iterative solver at each Newton iteration �k � �

��kF ��k�k� � We restart GMRES
at every ��th iteration�

	 Number of subdomains� ns �x����� Since only the additive version of Schwarz is
under consideration� we always set that the number of subdomains is the same as
the number of processors� np� which varies from � �the minimum required to store
the problem� to �� �the maximum available within power	of	two con�gurations��
�In a multiplicative algorithm ����� we would set n to np times the number of colors��

	 Overlapping size� ovlp �x����� In fact� there are two overlapping sizes� in x and y
directions� In this paper� we assume the same number of �ne mesh cells� ovlp �
� � � � � �� are extended in both directions�
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	 Coarse grid size �x����� This varies from no coarse grid ����� to a coarse grid with
a modest number of points in each subdomain ��� �� �The coarse grid cells are
square� but asymmetry in the employment of Neumann boundary conditions in the
x and y directions makes the total number of gridpoints o
 by one��

	 Level of �ll� k� in ILU �x����� According to our past experience with multilevel
preconditioning ��� and similar experience on a industrial	grade transonic potential
code ����� relatively modest �ll	in is optimal for small subdomains� Intuitively� little
is lost relative to the coupling already sacri�ced at subdomain boundaries� However�
as the local memory keeps increasing on powerful modern parallel computers� such
as the IBM SP�� the size of the subdomain problems can be quite large� For large
subdomain problems� low level of �ll	in is no longer as e
ective� k varies from �
to � in our experiments� then jumps discontinuously to the full band in the case of
exact subdomain solves�


��� Observations � subsonic case� Our �rst test case corresponds to a subsonic
problem with M� � ��� The linear systems that arise fall within the elliptic theory for
Schwarz ����� It takes � Newton iterations to reduce the initial nonlinear residual by a
factor of ���� Because of the Krylov dimension cut	o
� the convergence is linear� see the
left panel in Fig� �� The top portion of Table  shows the convergence performance for a
�xed	size problem of ��� �� uniform cells with an increasing number of subdomains� ��
� and ��� The overlap size is �xed at �h� The density of the unnested uniform coarse grid
varies from �� � to �� � Key observations from this example are as follows� �� Even a
modest coarse grid makes a signi�cant improvement in an additive Schwarz preconditioner�
especially when the number of subdomains is large� As much as ��" of the execution
time can be saved when adding a �� � coarse grid to a no coarse grid preconditioner� for
the ��	subdomain case� ��� A law of diminishing returns sets in at roughly one point per
subdomain� ��� When using � processors� the total communication time is always less than
�" of the total computational time� however� it becomes as much as ��" when using ��
processors� �This includes synchronization delays as well as the time actually delivering the
message packets from application process to application process�� Table � shows the e
ects
of the overlap size� For simplicity� we �x the coarse grid to � � � for all test cases� The
overlap size is given here in absolute terms� i�e�� the distance between the boundary of the
unextended subdomain and the extended subdomain� not relative to the diameter of the
subdomain� All the subproblems are solved with the exact Gaussian elimination in sparse
format� Since the �ne mesh size is �xed� when using small number of processors� such as
np � �� the single processor memory requirement is substantial� In this case� increase the
overlap size can indeed reduce the total number of GMRES iterations� but the reduction of
the total execution time is rather limited�

In Table �� we present the results when the subproblems are solved with ILU�k� for
various levels of �ll	in� The overlap size is �h� and the coarse grid is �� �� The conclusion
from the tests shown is that the larger the k� the faster the method becomes� see the boxed
numbers in Table �� When using a small number of processors� like �� the best execution
time is obtained with ILU���� compare the upper portions of Tables � � and �� However� if
the processor number is large� the optimal result can only be obtained by considering several
parameters� ovlp� k� the coarse mesh size� and perhaps others� We have not simultaneously
varied all relevant parameters to get the best results� but have presented controlled slices
through parameter space for insight�

Load balancing should not be a signi�cant issue in the dedicated	processor subsonic
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case� All processors have nearly the same computational load� except those which have
to handle the Neumann boundary conditions� This is no longer true for the transonic
calculation� when a shock resides in some of the subdomains� See x����


��� Observations � transonic case� The �rst� and probably the most important�
observation is that without a proper upwinding discretization� all three components of NKS
can fail�

Fig� � shows the convergence history in terms of the Cp curves� We note that it takes
only � to � iterations for the Newton�s method to establish the neighborhood of the shock�
but another � or so iterations to move it to the exact location� Mach contours at the
�nal solution are given in Fig� �� While the shock is setting up� the linear convergence of
Newton�s method is interrupted� see the left panel of Fig� ��

The results for coarse grids of varying size are summarized at the bottom part of Table �
The columns marked ��� and ��� reveal an interesting result for a mixed elliptic	hyperbolic
problem� The inclusion of a small coarse grid can reduce the total number of the linear
iterations� as well as the total execution time� by a factor of ��"� An optimally chosen
coarse grid size can lead to a greater savings� In Fig� �� we overlay the convergence histories
of all the linear solutions in a complete nonlinear calculation� The history in the left panel
is without a coarse grid� and that in the right with a �� � coarse grid� The corresponding
execution time requirements can be found in Table �

The number of linear iterations and the total execution time can be reduced even further
if a proper overlap size� which is not usually very small� is used� see Table ��

The best result� in terms of the total execution time� among all the test calculations is
obtained using a ILU�k�� with k � �� as the subproblems solver� see Table �� It takes less
than ��� minutes on the ��	processor IBM SP� to set up and solve the Mach ��� nonlinear
system with more than a quarter of a million unknowns�


��� Parallel e�ciency� The parallel e�ciency of the present algorithm	software	
hardware system is encouraging� but it is useful to sort out in detail where e�ciency is lost
in going from � to �� processors� We display the parallel performance in Table �� whose �rst
three columns are excerpted from the �rst and last columns of Table �� The execution time
data in the last column of Table � is the best� or nearly the best� for each Mach number and
parallel granularity out of all of the parameter combinations considered� and is therefore the
most meaningful from which to draw parallel e�ciency conclusions� though more �attering
conclusions could be drawn from runs that were performing more �too much� computation
per node per communication exchange�

After the number of processors� we list the number of linear GMRES iterations per �
Newton steps in the upper �subsonic� half of the table� and per � Newton steps in the
lower �transonic� half of the table� Then we list the execution time� per � or � Newton
steps� respectively� these being the typical number of Newton steps required to fully solve
the nonlinear problem� Fig� � shows that� for the transonic case� the number of GMRES
steps can vary signi�cantly over the course of a complete set of Newton iterations� but the
mean and the median are close�

Consider the following idealized model for the execution time of the �xed	size problem
on p processors� Let T �p� be the overall execution time� I�p� the number of linear iterations�
and C�p� the average cost per iteration� �We note that in GMRES� the average cost per
iteration is not independent of the number of iterations� because of the orthogonalization
overhead of later Krylov vectors is greater than earlier vectors� but we assume that the
dominant cost per iteration is the parallel Schwarz preconditioning��
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The overall parallel e�ciency is de�ned as ��p� � T ���
p�T �p�� where T �p� � I�p� � C�p��

Since we lack results for p �  on this problem of industrial size ��� � ���� we replace
all e�ciencies by relative e�ciencies with respect to the minimum con�guration of p� � ��
The overall relative parallel e�ciency is therefore de�ned as ��p� 
 p� � p��T �p��

p�T �p� � The
numerical e�ciency� a measure of the robustness of the preconditioning with respect to
increasing granularity� is �numer�p� 
 p� � I�p��

I�p� � The implementation e�ciency is the

remaining factor� �impl�p� 
 p� � p��C�p��
p�C�p� � so that ��p� 
 p� � �numer�p�� �impl�p��

The numerical e�ciency is nearly ��" or above for all cases # that is� the convergence
rate of the preconditioned linear system hardly degrades with increasing parallel granu	
larity� Approximately � GMRES steps are required for each subsonic Jacobian system
and approximately �� GMRES steps for each transonic Jacobian system� This insensitivity
to granularity for a multilevel preconditioned operator is predicted by the Schwarz theory
for the subsonic case� and seems to be a fortunate consequence of the relatively con�ned
supersonic pocket of �ow in the transonic case�

The implementation e�ciency accounts for the most signi�cant factor of overall ef	
�ciency decline� The di
erence between the subsonic and transonic implementation e�	
ciencies at high granularity can be attributed to load imbalance� since the cells requiring
upwinding are concentrated into a small number of processors� �A more sophisticated dy	
namic mapping algorithm could address this problem� but this is beyond present scope��
The subsonic degradation of ��" in going from � to �� nodes is identi�ed as the chief
remaining loss� Redundant work and higher communication	to	computation ratio in the
overlap regions� which account for a steadily increasing fraction of all points in a �xed	
size problem explain the majority of this e�ciency loss� which would disappear in a scaled
problem with �xed	size subdomains on each processor�


�	� Sequential comparison with global ILU�k� preconditioners� The results
of this section establish Schwarz preconditioning as numerically attractive and reasonably
parallel e�cient� but it is natural to ask whether its utility is limited to distributed memory
implementations of Newton	Krylov methods� To satisfy curiosity on this point� we conclude
with tests of Schwarz preconditioning against the popular global ILU�k�� k � �� � � ��� family
of preconditioners on a non	dedicated single	processor SUN SPARCstation with ��MB of
memory� The results are summarized in Table �� Because of the overlap and the coarse
solve� the Schwarz preconditioner needs more memory� even if all subdomain problems are
solved inexactly with ILU���� than the other global ILU�k� preconditioners� On the other
hand� Schwarz outperforms all the global solvers in terms of total GMRES iteration count
and the total execution time� Part of the reason for the �ne performance of the Schwarz
method is the much higher uni	processor Mega�op rating� which is presumably related to
much improved cache locality�

� Concluding remarks� We have investigated computationally the e
ectiveness of
Newton	Krylov	Schwarz methods applied to the full potential equation of aerodynamics
in some simpli�ed situations in two space dimensions� Best performance is obtained with
modest overlap� a modest coarse grid �one or two points per processor�� modest	to	generous
�ll in the subdomain ILU preconditioners� and uniformly loose convergence tolerances on
the Krylov iterations within each Newton step� For subsonic problems� the theoretically
expected performance of the method is essentially achieved� For the transonic case� the
numerics are more encouraging than existing theory� Overall computation time is approxi	
mately six times greater for the transonic than for the subsonic case� with current upwinding
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strategies� This can be factored into a three	fold increase in the number of Newton steps in
the transonic case� and a two	fold increase in the number of Krylov iterations per Newton
step�

Two strategies that should be employed on more nonlinearly taxing problems that
we have not considered here are mesh sequencing and pseudo	transient continuation� Their
purpose is to deliver an initial iterate for the steady	state form of Newton�s method employed
in this paper that is already in the local domain of convergence on the �nest grid� �Observe�
for instance� that the number of Newton steps required onM� � ��� problem the �������
grid in Table �� is roughly half that of the corresponding problem on the ��� �� grid in
Table �� If the shock is correctly located on a �relatively� coarse grid� the plateau of Fig� �
will be diminished on a �ner grid that is initialized from the coarse grid solution�� Our rapid
turnaround times for two	dimensional problems arti�cially deemphasize the importance
of these strategies in large� complex nonlinear problems� In addition to globalizing the
Newton convergence� continuation strategies tend to improve the linear conditioning of the
intermediate problems� and are therefore potentially useful even in problems �such as ours�
for which simple initial guesses on the �nest grid lead to convergence�

The broadest motivation for Newton	Krylov	Schwarz methods is the need to solve large	
scale problems with complex discretizations on distributed	memory systems with limited
memory per node� The matrix	free aspect of Newton permits shortcuts in Jacobian for	
mation storage while the domain decomposition aspect of Schwarz leads to load	balanced
data	to	memory maps that render communication subdominant in the preconditioning� The
amount of work done in the Krylov iteration can be adjusted to produce an overall method
with the best balance between the nested components�
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Fig� �� For M� � 	�� the left 	gure shows the history of the Newton residual and the right shows the
�upper surface� Cp curve at convergence�

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Newton steps

N
ew

to
n 

re
si

du
al

NACA0012, Mach = 0.80 

0.35 0.4 0.45 0.5 0.55 0.6 0.65

−1.5

−1

−0.5

0

0.5

1

C
p

Uniform mesh 512 X 512

NACA0012, Mach = 0.80 

Fig� �� For M� � 	�� the left 	gure shows the history of the Newton residual and the right shows the
�upper surface� Cp curve at convergence�
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Table �

Varying the coarse grid size� Fine mesh ����� M� � 	�� and 	�� sparse LU for all subproblems
ovlp � 
h� �Newton� is the total number of Newton iterations� �GMRES� is the total number of GMRES
iterations occur in all of the Newton iterations� �EXEC� is the execution time per processor in seconds for
the entire calculation� �COMM� is the total communication time per processor in seconds�

np Coarse Grid �� � �� � �� � �� � �� � �� 
M� � ��

Newton � � � � � �
GMRES �� � �� �� �� �

� EXEC ����� ����� ���� ����� ���� �����
COMM ��� ��� ��� ���� ���� ����
M�op�s ����� ����� ����� ����� ����� �����

Newton � � � � � �
GMRES �� �� �� �� �� ��

� EXEC ���� ����� ���� ���� ����� �����
COMM ���� ���� ���� ���� ���� ����
M�op�s ����� ������ ������ ����� ������ ������

Newton � � � � � �
GMRES ��� �� �� �� �� ��

�� EXEC ����� ����� ����� ����� ����� �����
COMM ���� ���� ���� ��� ��� ����
M�op�s ������ ������ ������ ������ ����� ������

M� � ���

Newton �� � � �� � �
GMRES �� ��� ��� ��� ��� �

� EXEC ������ ������ ������ ������ ������ ������
COMM ���� ��� ��� ���� ���� �����
M�op�s ����� ����� ����� ����� ����� ���

Newton � � �� �� � �
GMRES ��� ��� ��� ��� ��� ���

� EXEC ������ ������ ������ ���� ������ ������
COMM ��� ���� ��� ���� ����� �����
M�op�s ������ ������ ���� ����� ����� ������

Newton � � � � �� ��
GMRES �� ��� ��� ��� �� ���

�� EXEC ������ ������ ������ ����� ����� ������
COMM ���� ���� ���� ����� ����� �����
M�op�s ����� ������ ����� ������ ������ ������
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Table �

Varying the overlapping size ovlp� Fine mesh �� � �� M� � 	�� and 	��� Exact LU for all
subproblems� Coarse grid size � � �� �Newton� is the total number of Newton iterations� �GMRES� is the
total number of GMRES iterations occur in all of the Newton iterations� �EXEC� is the execution time per
processor in seconds for the entire calculation� �COMM� is the total communication time per processor in
seconds�

np ovlp � h ovlp � �h ovlp � �h ovlp � �h ovlp � �h

M� � ��

Newton � � � � �
GMRES �� �� �� �� ��

� EXEC ��� ����� ���� ���� �����
COMM ���� ���� ���� ���� ����
M�op�s ���� ����� ���� ���� �����

Newton � � � � �
GMRES �� � �� �� ��
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M�op�s ������ ������ ����� ������ ������
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COMM ���� ���� ���� ���� ���
M�op�s ������ ���� ����� ������ �����

M� � ���

Newton � � �� �� ��
GMRES ��� ��� ��� �� ��

� EXEC ������ ������ ������ ����� ������
COMM ���� ���� ��� ���� ����
M�op�s ���� ��� ��� ����� �����

Newton � � �� �� �
GMRES ��� ��� ��� ��� ���

� EXEC ����� ������ ������ ����� �����
COMM ����� ���� ���� ���� ���
M�op�s ����� ���� ����� ����� �����

Newton � � � � �
GMRES ��� ��� ��� ��� ���

�� EXEC ����� ����� ����� ����� �����
COMM ����� ���� ���� ����� ����
M�op�s ������ ����� ������ ����� ������
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Table �

Varying the level of ILU�k� �ll�in� Fine mesh ��� �� M� � 	�� and 	��� Coarse grid is �� ��
ovlp � 
h� �Newton� is the total number of Newton iterations� �GMRES� is the total number of GMRES
iterations occur in all of the Newton iterations� �EXEC� is the execution time per processor in seconds for
the entire calculation� �COMM� is the total communication time per processor in seconds�

np ILU�k� k � � k �  k � � k � � k � � k � �

M� � ��

Newton � � � � � �
GMRES ��� �� �� �� �� ��

� EXEC ���� ���� ����� ��� ����� ����
COMM ���� ��� ���� ���� ���� ����
M�op�s ���� ���� ����� ����� ����� �����
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GMRES ��� �� �� � �� ��
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GMRES ��� �� �� �� �� ��
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M�op�s ������ ������ ������ ����� ������ ������
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Table �

Parallel e�ciency� Fine mesh �� � �� M� � 	�� and 	��� Coarse grid is � � �� ovlp � 
h�
�GMRES� and �EXEC� are the total number of GMRES iterations and seconds of execution time per �
Newton steps in the upper half of the table and per �� Newton steps in the lower half�

np GMRES EXEC �numer �impl �

M� � ��

� �� �� $ $ $
� �� ��� ���� ���� �����
�� �� ���� ���� ����� ����

M� � ���

� ��� ���� $ $ $
� ��� ���� ���� ����� ����
�� ��� ���� ���� ����� ����

Table �

Sequential comparison of the additive Schwarz preconditioner�OSM� with the global ILU�k� k �
	� � � � �  preconditioners on a single processor Sun workstation� The 	ne mesh is ������ The speci	cations
of OSM are� � subdomains 
h overlap �� � coarse grid and ILU��� as the subdomain solver� MEM is the
total memory needed to store the preconditioning matrix in Megabytes�

OSM ILU��� ILU�� ILU��� ILU��� ILU��� ILU���

M� � ��

Newton � � � � � � �

GMRES �� ��� ��� �� �� � ��

EXEC ������ ������� ������ ����� ������ ����� �����

MEM�MB� ����� ���� ���� ���� ���� ���� �����

M�op�s ���� ���� ���� ��� ���� ���� ����

M� � ���

Newton  � �    

GMRES �� �� ��� ��� ��� ��� ��

EXEC ����� ������� ������� ������� ������ ����� ������

MEM�MB� ����� ���� ���� ���� ���� ����� �����

M�op�s ����� ���� ���� ���� ���� ���� ����
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