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Abstract. In this paper, we provide a maximum norm analysis of a finite difference scheme
defined on overlapping non-matching grids for second order elliptic equations. We consider a domain
which is the union of p overlapping subdomains where each subdomain has its own independently
generated grid. The grid points on the subdomain boundaries need not match the grid points from
adjacent subdomains. To obtain a global finite difference discretization of the elliptic problem, we
employ standard stable finite difference discretizations within each of the overlapping subdomains and
the different subproblems are coupled by enforcing continuity of the solutions across the boundary
of each subdomain, by interpolating the discrete solution on adjacent subdomains. If the subdomain
finite difference schemes satisfy a strong discrete maximum principle and if the overlap is sufficiently
large, we show that the global discretization converges in optimal order corresponding to the largest
truncation errors of the local interpolation maps and discretizations. Our discretization scheme and the
corresponding theory allows any combination of lower order and higher order finite difference schemes
in different subdomains. We describe also how the resulting linear system can be solved iteratively by
a parallel Schwarz alternating method or a Schwarz preconditioned Krylov subspace iterative method.
Several numerical results are included to support the theory.
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1. Introduction. In recent years, much interest within the domain decomposition
literature has focused on techniques for obtaining global discretizations of elliptic equa-
tions by combining discretizations on local non-overlapping or overlapping subdomains
triangulated by non-matching grids. If each subdomain is independently triangulated
using grids most suitable to its geometry or the local smoothness of the solution, then
the resulting grids may not match at the boundaries. In the domain decomposition
literature, techniques based on “Lagrange multipliers” and “mortar spaces” have been
devised to “glue” together high accuracy local discretizations (for instance, based on
spectral methods or p-version finite elements), see for instance, [2, 4, 5, 8, 9, 24], and
also lower order local discretizations based on h-version finite elements, see for instance,
[1, 7, 21, 33]. By contrast, in the finite difference literature, even prior to the devel-
opment of domain decomposition techniques, several early works have focused on dis-
cretizations on non-matching composite grids, see [11, 17, 19, 29, 30]. Even though the
available theory is limited, several large computations have shown that non-matching
grid techniques have tremendous advantages over the traditional matching grid meth-
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ods due to the time saved on the grid generation stage of the computation, especially
for problems with complex geometry ([20, 30]).

In [29], Starius provided an analysis for the two subdomain case, and our purpose
in this paper is to extend the result of Starius on the maximum norm stability of global
finite difference discretizations of elliptic equations, to the case of many subdomains.
The extension we consider will be applicable to domains with general shapes, involve
an arbitrary number of composite subgrids, and allow local finite difference schemes
of any order, provided the discretizations satisfy locally a maximum principle and the
overlap between the subdomains is sufficiently large. Further, the analysis, based on
constructing a contraction mapping, will permit parallel solution of the subgrid problems
iteratively.

The linear elliptic equation we consider will be of the following form on a domain
Ω in R2 or R3: {

Lu ≡ −∆u +�b(x) · ∇u + c(x)u = f(x) in Ω
u = g(x) on ∂Ω.

(1)

Throughout the rest of this paper, we will assume that c(x) ≥ c0 > 0 on Ω, and that
the forcing term f , the boundary value function g, the coefficients �b and c, and the
exact solution u are smooth. On each subdomain, we will consider local discretizations
that satisfy a discrete maximum principle.

One of the fundamental issues in studying non-matching grid methods is to un-
derstand the relation between the order of the global discretization error, the orders
of the subdomain discretization errors, the orders of the interpolation errors between
non-matching subgrids, and the size of the overlap. Suppose that Ω is the union of p
overlapping subdomains Ω

′
1, . . . , Ω

′
p. Let hi be the mesh size of subdomain Ω

′
i, and let

pi and qi be the orders of the discretization and interpolation errors on Ω
′
i and ∂Ω′

i,
respectively. Further, let ΩΓc

i
denote a neighborhood of the subdomain boundary seg-

ment Γc
i = ∂Ω′

i ∩ Ω containing all grid points used in the local interpolation. Then we
show in this paper that the maximum norm of the global error is bounded by

C
(
1 +

σ

1 − δ0

) ( p∑
i=1

hpi
i ‖u‖pi+2,∞,Ω′

i
+

p∑
i=1

hqi
i ‖u‖qi,∞,ΩΓc

i

)
,(2)

which yields a bound that depends on the local smoothness of the solution (so that
for instance, the mesh size hi may need to be chosen smaller on a subregion Ω′

i where
‖u‖pi+2,∞,Ω′

i
or ‖u‖qi,∞,ΩΓc

i
is large). Here σ is a bound for the maximum norm of the

subdomain interpolation operators. δ0 < 1 is a parameter that depends on σ and
on a contraction factor ρ associated with homogeneous solutions of subdomain elliptic
equations. For elliptic equations with c(x) ≥ c0 > 0, it is known that the maximum
norm of a homogeneous solution in the true interior of a domain is bounded by the
maximum norm of its boundary data multiplied by a factor 0 < ρ < 1, see for instance
Smoller [28] or Lions [23]. For the discrete case, see [16, 26]. The parameter δ0 is the
product of σ with the largest factor ρ from different subdomains. Thus, factor δ0 may
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depend on the size of the overlap between the subdomains, while σ may depend on the
choice of the local grids.

The method and the theory described in this paper are quite different from the
mortar based approach developed in [7]. In the mortar method, the discretization error
is proved to be totally independent of the overlap size. Whereas the method to be
studied in this paper has some degree of dependency on the overlap size but is a lot
easier to implement than any of the mortar type methods. The mortar theory of [7]
is valid only for the two-subdomain case involving simple interfaces without corner
points, while the maximum principle based theory developed in this paper applies for
any number of subdomains in both R2 and R3.

Although the focus of this paper is on the accuracy of the overlapping non-matching
grid method, we will include a short discussion on Schwarz type iterative methods
for solving the resulting linear system of equations. We prove that if the overlap is
sufficiently large, the convergence of the Schwarz method is independent of the mesh
sizes. Related topics can also be found in the book [27].

The rest of the paper is organized as follows. In Section 2, we describe a finite
difference procedure for obtaining a global discretization on non-matching composite
grids, see [11, 29]. In Section 3, we describe a technique for analyzing the stability
of the global discretization. In Section 4, we apply the stability result of Section 3
to derive bounds for the accuracy of the global discrete solution. In Section 5, we
describe two iterative procedures for solving the resulting linear system satisfied by the
global discrete solution, by using a parallel Schwarz alternating method and an additive
Schwarz preconditioned Krylov subspace iterative method. Finally, in Section 6, we
present the results of sample numerical tests.

2. Discretization on overlapping non-matching grids. The global discretiza-
tion method we use is the composite grid method, see for instance, Starius [29] and
Cheshire and Henshaw [11]. It involves independently discretizing the elliptic equation
Lu = f on each of the subgrids and coupling the discretizations by requiring continuity
of the solutions across the boundaries.

Given a domain Ω, we first choose a partition of Ω into p non-overlapping subdo-
mains such that

Ω = ∪p
i=1Ωi, Ωi ∩ Ωj = ∅, for j �= i.

We then enlarge each subdomain Ωi to include all points in Ω within a distance θ > 0
and denote the resulting enlarged subdomain by Ω

′
i

Ω
′
i ≡ {x ∈ Ω : dist (x, Ωi) ≤ θ} .

Thus the enlarged domains will satisfy

Ω ⊂
(
Ω

′
1 ∪ · · · ∪ Ω

′
p

)
.

On each subdomain Ω
′
i we independently construct a grid of size hi. We will use Ω

′
i,hi

to denote the grid on Ω
′
i, for i = 1, . . . , p. The grid points on the boundary ∂Ω

′
i need

not align with the grid points in the adjacent subdomains, see Fig 1.
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Fig. 1. An example of a global grid consisting of four overlapping non-matching subgrids.

On grid Ω
′
i,hi

, we use Uhi to denote the discrete solution approximating the exact

solution u on Ω
′
i,hi

. The global solution Uh is then denoted as the collection of local
solutions

Uh =
(
Uh1, . . . , Uhp

)
.

We use the notation Γi to denote the portion of the boundary ∂Ω
′
i intersecting ∂Ω,

i.e., Γi ≡ ∂Ω
′
i ∩ ∂Ω. We can then partition ∂Ω

′
i into two pieces, Γi and its complement

Γc
i ≡ ∂Ω

′
i \ Γi:

∂Ω
′
i =

(
∂Ω

′
i ∩ ∂Ω

)
∪

(
∂Ω

′
i ∩ Ω

)
= Γi ∪ Γc

i .

We use Γi,hi to denote the grid on Γi and Γc
i,hi

the grid on Γc
i .

To motivate the composite grid discretization, we observe that the solution u(x) of
the elliptic equation (1) satisfies:

⎧⎪⎨
⎪⎩

Lui = fi, on Ω
′
i

ui = gi, on Γi

ui = u on Γc
i ,

where ui denotes the continuous restriction of u to Ω
′
i, where fi is the restriction of f

to Ω
′
i, and gi is the restriction of g to Γi.
Analogous to the continuous case above, the local discretization on Ω

′
i,hi

of prob-
lem (1) in the composite grid method will approximate the above problem:

⎧⎪⎨
⎪⎩

LhiUhi = fhi , on Ω
′
i,hi

Uhi = ghi, on Γi,hi

Uhi = I iUh on Γc
i,hi

,
(3)
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where fhi is the restriction of the forcing term f to the grid points in Ωi,hi, where ghi is
the restriction of the Dirichlet boundary data g to the grid points in Γi,hi and I iUh will
be suitably chosen as an interpolation of the discrete solution Uh to enforce continuity
of the local solution. If a grid point in ∂Ω

′
i,hi

matches with a grid point in an adjacent

grid Ω
′
j,hj

then I iUh would ideally be chosen to equal the grid value of Uhj at that grid
point. However, for non-matching grids, we define I iUh as an interpolation of the grid
values of Uhj on adjacent grid points.

Assumption A1 (Truncation error of local discretizations): We assume that the
local discretizations have a truncation error αi(x) of order pi at a point x in Ω

′
i,hi

.

More specifically, if u(x) is a smooth function, and uhi denotes the restriction of
u(x) to the grid points in Ω

′
i,hi

, then we define the local truncation error αi(x) at grid
point x by

(Lhiuhi) (x) = (Lu) (x) + αi(x).(4)

We assume that the local discretization scheme is chosen so that the truncation error
αi(x) satisfies the following bounds

|αi(x)| ≤ Chpi
i ‖u‖pi+2,∞,Ω

′
i
.

Here ‖u‖pi+2,∞,Ω
′
i
denotes the Sobolev W pi+2,∞(Ω

′
i) norm of u (Grisvard [18]).

We require intergrid interpolation maps I i for i = 1, · · · , p, to define the boundary
data I iUh in the global discretization (7), where I iUh uses the value of Uhj at grid
points in the adjacent domains Ω

′
j,hj

for j �= i. This interpolation map I i is a linear
transformation

I i : Uh → Uhi,Γc
i,hi

.

Assumptions A2 (Subgrid interpolation): We assume that the interpolation map
I i does not use values of Uhi in Ω

′
i,hi

, and further, that I i only uses nodal values at grid
points x in ∪j �=iΩj,hj , i.e., I i does not use nodal values at grid points in the domains
{Ω′

j,hj
\ Ωj,hj}j �=i.

As an example, consider Fig 2. Let × denote a grid point in ∂Ω
′
i,hi

and let ◦ denote

grid points in Ω
′
j,hj

for some j �= i. If × lies in the convex hull of the grid points ◦, then
the interpolated value at × can be obtained by linear interpolation of the nodal values
on the triangle with vertices ◦. We need to define a similar interpolation rule for each

grid point on Γc
i,hi

. For a suitable ordering of the grid points in ∪p
j=1Ω

′

j,hj
and in ∂Ω

′
i,hi

the stencil is stored in the matrix I i.
Remark 2.1. The intergrid interpolation maps I i may also be defined by matching

various moments of the traces of the subdomain functions on the interfaces, as in mortar
methods [7].
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Fig. 2. Example of an interpolation stencil

The maximum norm of each interpolation map I i is denoted by ‖I i‖∞,Γc
i,hi

. It

corresponds to the largest absolute row sum of the matrix I i. We use σ to denote the
largest of the maximum norms amongst all the interpolation maps

σ ≡ max
i

‖I i‖∞,Γc
i,hi

.(5)

For example, if I iUh are all obtained at each grid point by piecewise linear interpolation
of nodal values of Uh on adjacent domains, then the linear interpolation stencil will
correspond to a convex combination of three nodal values of Uh in adjacent domains.
For such a stencil, we obtain

‖I i‖∞,Γc
i,hi

= 1, for i = 1, · · · , p,

and consequently σ = 1.

Assumption A3 (Interpolation error): The error I−I i of the interpolation operator
I i is of order qi.

Let u(x) be a smooth function. Then the interpolation error βi(x) at a grid point
x ∈ ∂Ω

′
i,hi

is defined as:

βi(x) ≡ u(x) −
(
I iu

)
(x).

This interpolation error βi(x) can be estimated using a Taylor series expansion of u(x)
involving adjacent grid points in an enlarged region ΩΓc

i
containing Γc

i,hi
. We assume

that the interpolation map I i is chosen such that the following bound holds for the
interpolation error βi(x) at the point x

|βi(x)| = |
(
I − I i

)
u| ≤ Chqi

i ‖u‖qi,∞,ΩΓc
i
,(6)

where ‖·‖qi,∞,ΩΓc
i
denotes the Sobolev W qi,∞(ΩΓc

i
) norm and C is a constant independent

of hi.
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The global discretization for Uh = (Uh1, · · · , Uhp) in the composite grid method is
obtained by coupling the local discretizations by requiring that the solution “matches”
the interpolation of the discrete solution from adjacent grids on Γc

i,hi⎧⎪⎨
⎪⎩

Lhi
Uhi

= fhi
, on Ω

′
i,hi

Uhi = ghi, on Γi,hi

Uhi = I iUh, on Γc
i,hi

,
(7)

for i = 1, · · · , p. The above linear system can be solved iteratively, for instance, by
using the Schwarz alternating procedure, see Section 5.

For example, in the case of two composite grids, our global discrete solution is
denoted by Uh = (Uh1 , Uh2), and it satisfies

⎧⎪⎨
⎪⎩

Lh1Uh1 = fh1 , on Ω
′
1,h1

Uh1 = gh1, on Γ1,h1

Uh1 = I1 (Uh1 , Uh2) , on Γc
1,h1

,

and ⎧⎪⎨
⎪⎩

Lh2Uh2 = fh2 , on Ω
′
2,h2

Uh2 = gh2, on Γ2,h2

Uh2 = I2 (Uh1 , Uh2) , on Γc
2,h2

.

If there are n1 grid points in Ω
′

1,h1
and n2 grid points in Ω

′

2,h2
(including all the grid points

on the boundaries), then the above global discretization yields a system of n1+n2 linear
algebraic equations for the discrete solution Uh = (Uh1 , Uh2), including the boundary
conditions on ∂Ω.

Remark 2.2. Due to the non-symmetric nature of the interpolation maps, the
above global discretization does not yield a symmetric linear system in general, even if
the local discretizations are symmetric.

Remark 2.3. If the subgrids match, then the global discretization just introduced
reduces to the usual discretization on the whole domain. The global linear system can
also be reduced by removing the redundant variables.

3. Maximum norm stability of the global discretization. In this section,
we prove that the global discretization (7) is solvable, and further that it is stable in
the maximum norm. We first state the assumptions under which this analysis is valid.

Assumption B1 (Local stability): We assume that the local finite difference dis-
cretizations (3) are chosen so that they are stable in the maximum norm.

More precisely, for i = 1, · · · , p, we assume that there exists a constant Ki indepen-
dent of hi such that if Uhi solves

⎧⎪⎨
⎪⎩

LhiUhi = fhi, in Ω
′
i,hi

Uhi = ghi, on Γi,hi,
Uhi = zhi , on Γc

i,hi
,

7



then for i = 1, · · · , p

‖Uhi‖∞,Ω′
i
≤ Ki‖fhi‖∞,Ω

′
i,hi

+ max{‖ghi‖∞,Γi,hi
, ‖zhi‖∞,Γc

i,hi
}.

We note that in the special case that fhi = 0, then the above stability assumption
requires that a homogeneous solution Uhi satisfies a weak discrete maximum principle

‖Uhi‖∞,Ω
′
i
≤ max{‖ghi‖∞,Γi,hi

, ‖zhi‖∞,Γc
i,hi

}.

Assumption B2 (Contraction factor for homogeneous solutions): We assume
that the local discretizations satisfy a strong discrete maximum principle of the following
form. If ehi is the solution of the following homogeneous problem on the overlapping
domain Ω

′
i ⎧⎪⎨

⎪⎩
Lhiehi = 0, on Ω

′
i,hi

ehi = 0, on Γi,hi,
ehi = zhi, on Γc

i,hi
,

then in the non-overlapping domain Ωi

‖ehi‖∞,Ωi
≤ ρi,hi‖zhi‖∞,Γc

i,hi
,(8)

where 0 < ρi,hi < 1 is a contraction factor for the error on the i’th grid. It will further
be assumed that

ρi,hi ≤ ρi < 1,

for some ρi < 1 when hi is sufficiently small.

Below, we briefly discuss some results concerning assumption B2. Given an elliptic
operator Lu ≡ −∆u +�b(x) · ∇u + c(x)u, its contraction factor ρi on subdomain Ω′

i can
be defined in the continuous case as

ρi ≡ max
Ωi

wi(x), where

⎧⎪⎨
⎪⎩

Lwi = 0, in Ω′
i

wi = 0, on Γi

wi = 1, on Γc
i .

For the continuous problem, ρi may depend on the magnitudes of �b(x), c0 (where c(x) ≥
c0 > 0), the overlap parameter θ, and the shape and diameter of Ω′

i. When c(x) ≥ c0 >
0, the contraction factor ρi can be estimated for the continuous problem by constructing
“barrier” (or “comparison”) functions Bi(x) ≥ wi(x) ≥ 0 satisfying

⎧⎪⎨
⎪⎩

LBi ≥ 0, in Ω′
i

Bi ≥ 0, on Γi

Bi ≥ 1, on Γc
i

=⇒ ρi = max
Ωi

wi(x) ≤ max
Ωi

Bi(x),
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see for instance [23, 25]. In particular, a barrier function Bi(x) satisfying LBi ≥ c0/2 > 0
and

max
Ωi

Bi(x) ≤ e−αθ =⇒ ρi ≤ e−αθ,

can be constructed for the continuous problem [23, 25, 28]. Here α > 0 depends on c0

(indeed, α → 0 as c0 → 0) but is independent of the overlapping parameter θ. When
c(x) = 0, two cases may be distinguished:
Case 1. c(x) = 0 and Ω′

i is a “floating” subdomain (i.e., Ω
′
i ⊂ Ω). In this case, ρi = 1

for Ω′
i (since constants will be homogeneous solutions).

Case 2. c(x) = 0 and the boundary ∂Ω′
i intersects the zero Dirichlet boundary ∂Ω on a

set of positive measure

meas (∂Ω′
i ∩ ∂Ω) > 0.

In this case, we may have a contraction factor ρi < 1 for Ω′
i, due to the influence of

the zero Dirichlet boundary conditions (see Remark 4.4). Rigorous results for this case
however are not known to the authors (the procedure in [23, 25] for constructing barrier
functions fails in this case).

Next, we briefly discuss assumption B2 for finite difference discretizations satisfying
a discrete maximum principle. A contraction factor ρi,hi can be defined analogous to
the continuous case. Furthermore, this discrete contraction factor can be estimated if
discrete barrier functions are constructible. Below, we indicate the key idea in [26] that
can be used to relate the discrete contraction factor ρi,hi to the continuous contraction
factor ρi when hi is sufficiently small, when c0 > 0 and when a discrete maximum prin-
ciple holds within each subdomain Ω′

i,hi
. Let Bi(x) be the continuous barrier function

defined on Ω′
i satisfying ⎧⎪⎪⎨

⎪⎪⎩
LBi ≥ c0

2
, in Ω′

i

Bi ≥ 0, on Γi

Bi ≥ 1, on Γc
i

as constructed in [23, 25]. Using Bi(·) define a discrete barrier function Bhi by restricting
Bi(·) to the local gridpoints xj ∈ Ω′

i,hi
. Let the local discretization be accurate to order

pi (where pi ≥ 1) with truncation error tjh
pi
i at a grid point xj ∈ Ω′

i,hi
. Then, the

following will hold

LhiBhi(xj) = LBi(xj) + tjh
pi
i

≥ c0

2
+ tjh

pi
i ≥ 0.

The last inequality above will hold only if hi is sufficiently small such that

hpi
i ≤ c0

2|tj|
, ∀xj ∈ Ω′

i,hi
,

see [26] (the term tj will generally depend on higher order derivatives of Bi(x) evaluated
at points x̃j near xj). Since the discrete barrier function equals the continuous barrier
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function at the grid points in Ω′
i,hi

(by construction), it immediately follows that for
the above hi

ρi,hi ≤ ρi.

Throughout the rest of this paper, we will use ρi (omiting ρi,hi) to denote the discrete
contraction factor (though according to the above discussion, it will be bounded by the
continuous contraction factor for small hi). Other discussions of discrete contraction
factors may be found in [12, 16].

It can also be noted that the local contraction factors ρi will generally deteriorate
(ρi → 1) if diam (Ω′

i) → 0. (A quantitative estimate of the contraction factor’s depen-
dence on the diameter of the domain can be obtained by mapping a domain Ω′

i to a
reference domain of diameter 1, and studying the change in the coefficient c0).

Assumption B3 (Product of σ and ρi): Recall that ρi denotes the maximum norm
contraction factor for each subdomain as in (8), and σ denotes the largest maximum
norm of the interpolation maps, as in (5). We assume that

max
i

(ρiσ) = δ0 < 1.

We now describe the stability result for the global discretization.
Lemma 3.1. Let Wh =

(
Wh1 , · · · , Whp

)
satisfy the following discrete equations

⎧⎪⎨
⎪⎩

LhiWhi = fhi, on Ω
′
i,hi

Whi = ghi, on Γi,hi

Whi − I iWh = zhi , on Γc
i,hi

.
(9)

If assumptions A1, A2, A3, B1, B2 and B3 hold, then

p∑
i=1

‖Whi‖∞,Ω
′
i,hi

≤
(
1 +

σ

1 − δ0

) ( p∑
i=1

Ki‖fhi‖∞,Ω
′
i,hi

+
p∑

i=1

max{‖ghi‖∞,Γi,hi
, ‖zhi‖∞,Γc

i,hi
}
)

,

where Ki, σ and δ0 are independent of hi.
Proof. We apply Picard’s theorem on the existence of a fixed point for contraction

mappings as follows, see for instance [3]. Let H be a complete metric space endowed
with a metric d (·, ·), and let T : H → H be a contraction mapping satisfying

d (T U, T V ) ≤ δ0d (U, V ) ,

for all U and V in H, where 0 < δ0 < 1. Then, T has a unique fixed point U∗ ∈ H
satisfying

T U∗ = U∗,
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and given any initial iterate U0 ∈ H we have the estimate

d
(
U0, U∗

)
≤ d (U0, T U0)

1 − δ0

.

In order to apply Picard’s contraction mapping principle, we define H, a metric
d (·, ·) and a contraction mapping T : H → H such that the solution of the discrete
problem (9) is the fixed point of T . Accordingly, we define H as follows

H =

⎧⎨
⎩Wh =

(
Wh1, · · · , Whp

)
:

LhiWhi = fhi, in Ω
′
i,hi

Whi = ghi, on Γi,hi,
for i = 1, · · · , p

⎫⎬
⎭ ,

and endow H with the metric

d (Uh, Wh) ≡ maxi ‖Uhi − Whi‖∞,Ω
′
i,hi

= maxi ‖Uhi − Whi‖∞,∂Ω
′
i,hi

= maxi ‖Uhi − Whi‖∞,Γc
i,hi

.

We note that the second and third definitions of the metric (involving maximum on the
boundary ∂Ω

′
i,hi

or boundary segment Γc
i,hi

, respectively) are equivalent to the former
by an application of the discrete maximum principle since{

LhiUhi = fhi, in Ω
′
i,hi

LhiWhi = fhi, in Ω
′
i,hi

=⇒ Lhi (Uhi − Whi) = 0, in Ω
′
i,hi

,

and so by assumption B1

‖Uhi − Whi‖∞,Ω
′
i,hi

= ‖Uhi − Whi‖∞,∂Ω
′
i,hi

= ‖Uhi − Whi‖∞,Γc
i,hi

.

The latter holds since Uhi − Whi = 0 on Γi,hi.
We note that H is complete under the given metric, since H is an affine set (defined

by linear constraints) in a Euclidean space endowed with the maximum norm. Given
Uh = (Uh1 , · · · , Uhp) ∈ H we define our mapping T Uh = Wh as follows

⎧⎪⎨
⎪⎩

LhiWhi = fhi , on Ω
′
i,hi

Whi = ghi, on Γi,hi

Whi = I iUh + zhi, on Γc
i,hi

.
(10)

Clearly T : H → H.
We now verify that T is a contraction mapping. Accordingly, consider Xh ∈ H

and Yh ∈ H. We estimate d (T Xh, T Yh). Let Uh = T Xh and Vh = T Yh. Using the
definition of T in equation (10) we note that

⎧⎪⎨
⎪⎩

Lhi (Uhi − Vhi) = 0, in Ω
′
i,hi

Uhi − Vhi = 0, on Γi,hi

Uhi − Vhi = I i (Xh − Yh) , in Γc
i,hi

.
11



Consequently, we obtain

‖Uhi − Vhi‖∞,Γc
i,hi

= ‖I i(Xh − Yh)‖∞,Γc
i,hi

≤ σ‖Xh − Yh‖∞,∪j �=iΩj,hj

≤ σ maxj �=i ‖Xh − Yh‖∞,Ωj,hj

≤ σ maxj �=i ρj‖Xh − Yh‖∞,∂Ω
′
j,hj

≤ δ0 maxj �=i ‖Xh − Yh‖∞,∂Ω
′
j,hj

≤ δ0 d (Xh, Yh) ,

where the fourth line follows by an application of assumption A2 on the contraction of
homogeneous solutions. Taking maxima over all i on the left-hand side, we obtain

d (Uh, Vh) = maxi ‖Uhi − Vhi‖∞,Γc
i,hi

≤ δ0 d (Xh, Yh) .

Since Uh = T Xh and Vh = T Yh, and since δ0 < 1 by assumption A3, this verifies that
T satisfies a contraction property with contraction factor δ0 < 1.

Next, we verify that Uh is a fixed point of this contraction mapping. Using the
definition of T in equation (10), we note that if Uh is a fixed point of T then Uh

satisfies ⎧⎪⎨
⎪⎩

LhiUhi = fhi, on Ω
′
i,hi

Uhi = ghi, on Γi,hi

Uhi = I iUh + zhi, on Γc
i,hi

.

Thus, the solution Uh of system (9) is a fixed point of T .
As a final step in establishing the stability of the discrete system (9), we need to

determine the distance d (U0, T U0) for a suitable choice of initial iterate U0 ∈ H. We
choose U0 = (U0

h1
, · · · , U0

hp
) as follows

⎧⎪⎪⎨
⎪⎪⎩

LhiU
0
hi

= fhi, on Ω
′
i,hi

U0
hi

= ghi, on Γi,hi

U0
hi

= zhi , on Γc
i,hi

.

Then, T U0 satisfies ⎧⎪⎪⎨
⎪⎪⎩

Lhi(T U0)hi = fhi, on Ω
′
i,hi

(T U0)hi = ghi, on Γi,hi

(T U0)hi − I iU0 = zhi, on Γc
i,hi

.

Thus, U0
hi
− (T U0)hi satisfies

⎧⎪⎪⎨
⎪⎪⎩

Lhi(U
0 − T U0)hi = 0, on Ω

′
i,hi

(U0 − T U0)hi = 0, on Γi,hi

(U0 − T U0)hi = I iU0, on Γc
i,hi

.
12



Using the discrete maximum principle we obtain that

‖(U0 − T U0)hi‖∞,Ω
′
i,hi

≤ ‖I iU0‖∞,Γc
i,hi

≤ σ‖U0‖∞,Ωh

≤ σ

( p∑
i=1

Ki‖fhi‖∞,Ω′
i,hi

+ max{‖ghi‖∞,Γi,hi
, ‖zhi‖∞,Γc

i,hi
}
)

.

Thus

d
(
U0, T U0

)
≤ σ

( p∑
i=1

Ki‖fhi‖∞,Ω′
i,hi

+ max{‖ghi‖∞,Γi,hi
, ‖zhi‖∞,Γc

i,hi
}
)

,

and so

d
(
U0, Uh

)
≤ σ

1 − δ0

( p∑
i=1

Ki‖fhi‖∞,Ω′
i,hi

+ max{‖ghi‖∞,Γi,hi
, ‖zhi‖∞,Γc

i,hi
}
)

,

and using the definition of d (·, ·), we obtain that

p∑
i=1

‖Uhi‖∞,Ω
′
i,hi

≤
(
1 +

σ

1 − δ0

) ( p∑
i=1

Ki‖fhi‖∞,Ω′
i,hi

+ max{‖ghi‖∞,Γi,hi
, ‖zhi‖∞,Γc

i,hi
}
)

.

This establishes the global stability of scheme (9).

4. Accuracy of the global discretization. In this section, we estimate the
accuracy of the global discretization (7). We assume that the solution u(x) of the
original elliptic problem (1) is sufficiently smooth. We have the following theorem.

Theorem 4.1. Let uh(x) denote the restriction of the exact solution u(x) of prob-
lem (1) to the composite grid. Let Uh denote the discrete solution. If assumptions B1,
B2, B3 hold, and if assumptions A1, A2 and A3 hold, then the error uhi − Uhi in the
discrete solution satisfies the following bounds

p∑
i=1

‖uhi − Uhi‖∞,Ω′
i,hi

≤ C
(
1 +

σ

1 − δ0

) ( p∑
i=1

Kih
pi
i ‖u‖pi+2,∞,Ω′

i
+

p∑
i=1

hqi
i ‖u‖qi,∞,ΩΓc

i

)
.

where C, σ, Ki and δ0 are independent of hi.
Proof. We substitute uh into the global discretization to obtain⎧⎪⎨

⎪⎩
Lhiuhi = fhi + αi, on Ω

′
i,hi

uhi = ghi, on Γi,hi

uhi = I iuh + βi, on Γc
i,hi

,

where αi are the local truncation errors and βi are the local interpolation errors. We
define the error eh by subtracting the exact solution uh = (uh1, · · · , uhp) from the discrete
solution Uh = (Uh1 , · · · , Uhp), with ehi ≡ uhi −Uhi. By subtracting the above equations
from the global discretization (7) we obtain⎧⎪⎪⎨

⎪⎪⎩
Lhiehi = αi, on Ω

′
i,hi

ehi = 0, on Γi,hi

ehi − I ieh = βi, on Γc
i,hi

.
13



By applying the stability of the global scheme from Section 3 we obtain that

p∑
i=1

‖ehi‖∞,Ω′
i,hi

≤
(
1 +

σ

1 − δ0

) (∑p
i=1 Ki‖αi‖∞,Ω′

i,hi
+

p∑
i=1

‖βi‖∞,Γc
i,hi

)

≤ C
(
1 +

σ

1 − δ0

) ( p∑
i=1

Kih
pi
i ‖u‖pi+2,∞,Ω′

i
+

p∑
i=1

hqi
i ‖u‖qi,∞,ΩΓc

i

)
.

This establishes the accuracy of the global scheme.
Remark 4.1. The parameters C, σ and δ0 are independent of the ratios hi/hj of

the mesh sizes.
Remark 4.2. We may alternatively use the largest of the maximum norms on the

subgrids since

max
i

‖ehi‖∞,Ω′
i,hi

≤
p∑

i=1

‖ehi‖∞,Ω′
i,hi

.

Remark 4.3. The above global error bound provides some guidance on the choice
of local grid sizes on each subregion and on the accuracy of the local interpolation maps.

Local grid size. Given a desired global accuracy ε, the local grid size hi on Ω′
i

should ideally be chosen to depend on the local smoothness of the solution so that:
hpi

i ‖u‖pi+2,∞,Ω′
i
= O(ε/p). Thus, a smaller choice for hi should be used on subregions Ω′

i

where the exact solution u is less smooth; i.e., where ‖u‖pi+2,∞,Ω′
i
is large.

Local interpolation error. The order of accuracy qi of the local interpolation maps
should ideally be chosen depending on the local smoothness of the solution u on the
subregion ΩΓc

i
(which encloses Γc

i = ∂Ω′
i ∩ Ω) so that: hqi

i ‖u‖pi,∞,ΩΓc
i

= O(ε/p). Alter-

natively, Ω′
i may be chosen so that its boundary ∂Ω′

i lies in a region where the exact
solution u is smooth; i.e., so that ‖u‖pi,∞,ΩΓc

i
is small.

Remark 4.4. If c(x) = 0 and Ω′
i is a “floating” subdomain, then ρi = 1 (yielding

δ0 ≥ 1). In this case, T will not be a contraction mapping and the theoretical results in
this paper will not apply.

However, even if c(x) = 0 it is possible in some special cases that T n can be
contractive for some integer n ≥ 2. To see this, consider the model problem

−d2u

dx2
= f(x), on Ω = (0, 3),

with u(0) = u(3) = 0.0. Choose Ω′
1 = (0, 1.5), Ω′

2 = (0.5, 2.5) and Ω′
3 = (1.5, 3). For

this example, Ω′
2 will be a “floating” subdomain with ρ2 = 1. It can be easily verified,

since the continuous homogeneous solutions are affine linear in x, that ρ1 = ρ3 = 2/3.
A simple calculation will yeild that T 2 is contractive with contraction factor 2/3, even
though c(x) = 0.

More generally, subdomains adjacent to the boundary may have non-trivial con-
traction factors. If so, the error contraction may “propagate” to interior “floating”
domains, as T is iteratively applied. However, rigorous results are not known to the
authors.
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5. Iterative methods for solving the global discretization. In this section we
discuss two iterative methods for solving the linear system corresponding to the global
discretization (7). One is a Schwarz type iterative method and the other is a Krylov
subspace iterative method with the additive Schwarz method as a preconditioner.

5.1. A parallel Schwarz iterative method. The iterative procedure we de-
scribe is a parallel variant of the Schwarz alternating method, see for instance [6, 10,
13, 14, 22, 27] and involves solving problems on each of the subgrids Ω

′
i,hi

. We describe
the iterative procedure using the contraction mapping T .

For i = 1, · · · , p compute U0
hi

as follows:⎧⎪⎨
⎪⎩

LhiU
0
hi

= fhi, on Ω
′
i,hi

U0
hi

= ghi, on Γi,hi

U0
hi

= 0, on Γc
i,hi

.

Until convergence, for {n = 0, 1, · · ·} do:
Compute Un+1

h = T Un
h , for i = 1, · · · , p in parallel, as follows:⎧⎪⎨

⎪⎩
LhiU

n+1
hi

= fhi, on Ω
′
i,hi

Un+1
hi

= ghi, on Γi,hi

Un+1
hi

= I iUn
h , on Γc

i,hi
.

Define Un+1
h = (Un+1

h1
, · · · , Un+1

hp
).

End do

The following theorem provides an estimate for the rate of convergence of Un
h to

the exact discrete solution Uh.
Theorem 5.1. Let δ0 be the contraction factor of T . Then, the iterates {Un

h }
converge geometrically to the exact discrete solution Uh, i.e.,

d
(
Un+1

h , Uh

)
≤ δ0d (Un

h , Uh)

≤ δn
0 d (U0

h , Uh) .

Proof. This is a standard result about contraction mappings, see for instance [3].

5.2. An additive Schwarz preconditioned GMRES method. The Schwarz
iterative method introduced in the previous subsection does converge, but is generally
slow when the overlap is small, as one can see from the examples in Section 6.1 of this
paper. It turns out a slight modification of the algorithm in Section 5.1 offers a very
good preconditioner for any Krylov subspace type iterative methods, such as GMRES
[31]. To define the additive Schwarz preconditioner, we let Ai be the stiffness matrix
corresponding to the discretization of⎧⎪⎨

⎪⎩
LhiU

0
hi

= fhi, on Ω
′
i,hi

U0
hi

= ghi, on Γi,hi

U0
hi

= 0, on Γc
i,hi

.
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Note that zero Dirichlet boundary condition is used on all subdomain boundaries. We
define

M−1 = diag(A−1
1 , A−1

2 , . . . , A−1
p )

as a block diagonal matrix. Let

AUh = Fh

be the matrix form of the global linear system (7). Then the additive Schwarz precon-
ditioned GMRES reads as follows. Find the solution Uh by solving

M−1AUh = M−1Fh

using GMRES.
We remark that this is a block diagonal preconditioner, and is fully parallel. In

a parallel implementation, if the submeshes and the associated vectors are assigned to
different processors, then the preconditioner is communication free. We also note that
our maximum principle based theory is not applicable for analyzing the optimal conver-
gence of the additive Schwarz preconditioned GMRES. Numerically, we do observe that
when the overlap is fixed, the number of GMRES iterations is independent of the level
of refinement. And for a fixed mesh, the number of iterations decreases as we increase
the size of the overlap. Several numerical experiments with this method are reported
in the next section.

6. Numerical results. In this section, we present some results of sample numeri-
cal tests involving non-matching overlapping grids. We refer to [15] for recent literature
on matching composite grids, where the interfaces match the grid lines. The elliptic
equation we consider is of the form

{
−∆u + cu = f, in Ω,

u = 0, on ∂Ω,

where c is a constant given below. The domain Ω is the union of some rectangular sub-
domains. On each of the rectangular subdomains, we use a uniform mesh as indicated
in the tables. The local discretization is the standard 5-point finite difference scheme,
which satisfies a discrete maximum principle and is stable in the maximum norm.

6.1. Two-subdomain case. We first exam the two subdomain cases. Let Ω =
[0, 2] × [0, 1], and we consider a partition involving two subdomains with Ω1 = [0, 1] ×
[0, 1], and Ω2 = [1, 2] × [0, 1]. The overlapping domains Ω

′
1 and Ω

′
2 are chosen as

indicated in the tables. The forcing term f is chosen so that the exact solution is
u(x, y) = (sin(πx) + sin(π

2
x)) sin(πy). For the interpolation maps I1 and I2, we use

piecewise linear interpolations, and consequently we have

‖I1‖∞,Γc
1,h1

= 1, ‖I2‖∞,Γc
2,h2

= 1.
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Table 1

Global error in the maximum norm when varying the level of refinement as h1 = 0.2 ∗ 2−l, h2 =
0.25 ∗ 2−l. The number of Schwarz iterations is given in (·). l is the level of refinement.

l c = 1.0 c = 0.1 c = 0.01 c = 0.0

0 4.128D-2(11) 4.312D-2(11) 4.331D-2(11) 4.333D-2(11)

1 1.203D-2(11) 1.262D-2(11) 1.269D-2(11) 1.269D-2(11)

2 3.075D-3(11) 3.235D-3(11) 3.252D-3(11) 3.254D-3(11)

3 7.831D-4(11) 8.246D-3(11) 8.290D-3(11) 8.295D-4(11)

4 1.907D-4(11) 2.006D-4(11) 2.017D-4(11) 2.018D-4(11)

5 4.886D-5(11) 5.144D-5(11) 5.172D-5(11) 5.175D-5(11)

The global linear system is solved by the Schwarz alternating method introduced
in Section 5, and the stopping criteria for the iteration is to reduce the maximum norm
of the initial residual by a factor 10−12.

In our first test, we fix the overlapping parameter to be θ = 0.45. The mesh size
in subdomain 1, is chosen to be h1 = 0.2 × 2−l and in subdomain 2, it is chosen to
be h2 = 0.25 × 2−l, where l is the level of refinement to be given later. The resulting
global grid is non-matching. In Table 1 below, we list the maximum norm of the global
errors, and also list in brackets, the number of Schwarz iterations for the values of c
listed. As predicted by the theory, since the overlap is fixed, the contraction factor δ0

is independent of the mesh sizes hi. It can be easily verified that the global accuracy of
the resulting scheme is of 2nd order, and the number of Schwarz iterations is bounded
independent of the mesh sizes.

In our second test, we fix the mesh sizes in the subdomains to be h1 = 0.2 × 2−5

and h2 = 0.25 × 2−5. The overlapping parameter θ varies as θ = 0.45 × 2−5γ for some
γ to be given in Table 2. Note that for γ = 32 = 25, we recover the overlap used
in our previous tests. We tabulate the maximum norm of the global error for several
values of c. The number of Schwarz iterations is given in brackets. We note that as the
overlap increases, the global accuracy increases, and the number of Schwarz iterations
decreases. It can be shown that the contraction factor δ0 of the mapping T increases
to 1 as the overlap decreases, see for instance [26]. Thus the results are consistent with
the theory.

In both of the tests, we note that the error and the number of iterations do not de-
pend strongly on the parameter c which was assumed to be positive in [26] for obtaining
the desired theoretical bounds.

6.2. Many-subdomain case. We next run several tests for the cases of many
subdomains. Let Ω = (0, 1) × (0, 1). We choose the forcing term f so that the exact
solution is u(x, y) = sin(πx) sin(πy). We first divide Ω into k×k equal subdomains in the
checkerboard form, and each subdomain has its own mesh size hi,j, i, j = 1, . . . , k. The
overlapping subdomains are obtained by extending each subdomain outward by ovlp
layers of size hi,j. Bilinear interpolations are used for all the subdomain boundaries.
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Table 2

Global error in the maximum norm and the number of Schwarz iterations when varying the over-
lapping size. The mesh sizes are h1 = 0.2× 2−5, and h2 = 0.25× 2−5.

γ c = 1.0 c = 0.1 c = 0.01 c = 0.0

1 1.207D-3(264) 1.250D-3(275) 1.255D-3(277) 1.255D-3(277)

2 7.014D-4(137) 7.241D-4(142) 7.265D-4(143) 7.268D-4(143)

4 2.338D-4( 71) 2.419D-4( 74) 2.427D-4( 74) 2.428D-4( 74)

8 1.219D-4( 37) 1.249D-4( 39) 1.253D-4( 39) 1.254D-4( 39)

16 3.977D-5( 20) 4.142D-5( 21) 4.159D-5( 21) 4.161D-5( 21)

32 4.886D-5( 11) 5.144D-5( 11) 5.172D-5( 11) 5.175D-5( 11)

Table 3

Error in the maximum norm for the case of 4 = 2 × 2 subdomains. The initial submeshes are of
sizes 6 × 6, 7 × 7, 8× 8 and 9 × 9. ovlp denotes overlap size and n is the total number of unknowns.

l 0 1 2 3

ovlp 1 2 4 8

n 294 1044 3924 15204

c = 0.0

Error 4.312D-2 1.162D-2 2.912D-3 6.699D-4

Order 3.7108 3.9904 4.3469

GMRES 11 12 12 13

c = 1.0

Error 4.219D-2 1.134D-2 2.849D-3 6.560D-4

Order 3.7205 3.9803 4.3430

GMRES 11 12 12 13

We shall restrict ourselves to the case c = 0.0. We solve the preconditioned system with
GMRES and we stop the iteration when the initial preconditioned residual is reduced by
a factor of 10−6. The subdomain problems are solved exactly with the sparse Gaussian
elimination.

Table 3 summarizes the four subdomain case. The initial mesh contains four sub-
grids of sizes 6× 6, 7× 7, 8× 8 and 9× 9 and is refined 3 times. The order of accuracy,
Order, is obtained by comparing the error with the error of the previous refinement
level, as in row 4 of Table 3. n is the total number of unknowns. ovlp denotes the
number of elements in the overlapping domain. As the level of refinement increases,
we increase ovlp so that the physical size of the overlap stays the same. Clearly, the
order of accuracy is 2. The number of GMRES iterations is nearly independent of the
refinement levels.

For the same 4 subdomain case, we fix the mesh sizes at the refinement level l = 2
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Table 4

With same initial submesh sizes as in Table 3, and two levels of refinement, we vary the overlapping
sizes.

ovlp 1 2 3 4 5 6

n 3216 3444 3680 3924 4176 4436

c = 0.0

Error 1.005D-2 5.729D-3 3.526D-3 2.912D-3 2.080D-3 1.832D-3

GMRES 22 17 14 12 11 10

c = 1.0

Error 9.738D-3 5.558D-3 3.433D-3 2.849D-3 2.042D-3 1.803D-3

GMRES 23 17 14 12 11 10

and vary the overlap sizes. The results are given in Table 4. As one can see, better
accuracy can be obtained by using larger overlap, though this accuracy will not improve
beyond the accuracy of the local discretizations and interpolation maps. The number
of GMRES iterations decreases as we increase the size of overlap.

We remark that it may be noted that when the local grids match, and the standard
interpolation map is used (with zero error), the global discretization is equivalent to
the standard discretization on the global matching grid. Consequently, increasing the
overlap will not improve the global accuracy for matching grids.

We next consider a case when the solution has a much larger gradient in the center
of the domain, i.e., we set the exact solution of the problem to

u(x, y) = 100 sin(2πx) sin(2πy)e−100((x−0.5)2+(y−0.5)2).

Note that a finer mesh is needed in order to resolve the sharp front of the solution in
the center of the domain. We compare the accuracy of the solution with two uniform
meshes of sizes 128 × 128 and 256 × 256, with two non-matching overlapping meshes
with nine subdomains whose mesh sizes are given in Table 5. In the non-matching
grid case, we use a finer mesh in the center of the domain. As shown in Table 5, a
nine subdomain mesh with a total of 3536 mesh points produces a comparably accurate
solution as that of a uniform mesh with 16384 mesh points. A non-matching grid with
13465 points gives a more accurate solution than a uniform mesh with 65536 points.
Both methods have better than 2nd order convergence for this particular test case.

Finally, we test a case that requires a larger mesh ratio. In particular, we consider
the general elliptic equation (1) which has both first and zeroth order terms. We use a
special right-hand side function, and as a result, the exact solution is of the form

u(x, y) = 100 sin(2πx) sin(2πy)
(
e−100((x−0.5)2+(y−0.5)2) + e−300((x−0.9)2+(y−0.1)2)

)
.

The coefficients �b(x) = (b1, b2) and c(x) = c will be given in Table 6. Center differences
are used for the first order terms. To resolve this solution, finer meshes are needed in the
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Table 5

Global error in the maximum norm for the case of 9 = 3 × 3 subdomains and a comparison with
two uniform grid cases. n is the total number of unknows.

uniform uniform 16 × 16 16 × 16 16 × 16 31 × 31 31 × 31 31 × 31
Mesh 128 × 128 256 × 256 16 × 16 32 × 32 16 × 16 31 × 31 63 × 63 31 × 31

mesh mesh 16 × 16 16 × 16 16 × 16 31 × 31 31 × 31 31 × 31

ovlp 1 2

n 16384 65536 3536 13465

c = 0.0

Error 5.841D-2 1.198D-2 6.142D-2 8.659D-3

Order 4.8756 7.0932

GMRES 15 15

c = 1.0

Error 2.019D-2 5.018D-3 6.123D-2 8.653D-3

Order 4.0235 7.0762

GMRES 15 15

neighborhood of points (0.5, 0.5) and (0.9, 0.1). Different mesh sizes are required in the
subdomains containing these two points due to the difference in the smoothness of the
exact solution. In the initial test, we use 9 subdomains with a base mesh size 16×16, a
finer mesh 64× 64 covering the point (0.5, 0.5), and a much finer mesh 96× 96 covering
the point (0.9, 0.1). Two cells of overlap is used for each subdomain. The maximum
norm error and the number of GMRES iterations are given in Table 6. The overlapping
composite mesh is then refined uniformly by a factor of 2. Table 6 shows clearly, the
error is reduced by a factor large than 4. The large mesh ratio, 191/31 ≈ 6, does not
change the order of the accuracy. The number of iterations also stay nearly the same.
We also note that the results for c = 0 and c = 1 are almost identical, with or without
the first order terms in the differential equation.
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Table 6

Global error in the maximum norm for the case of 9 = 3× 3 subdomains, and with relatively large
mesh size ratio. n is the total number of unknows. b1, b2 and c are the coefficients of the first and
zeroth order terms of the elliptic equation (1).

96 × 96 16 × 16 16 × 16 191 × 191 31 × 31 31 × 31
Mesh 16 × 16 64 × 64 16 × 16 31 × 31 127 × 127 31 × 31
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ovlp 2 4
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