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Abstract. Optimization problems constrained by nonlinear partial dif-
ferential equations have been the focus of intense research in scientific
computing lately. Current methods for the parallel numerical solution
of such problems involve sequential quadratic programming (SQP), with
either reduced or full space approaches. In this paper we propose and
investigate a class of parallel full space SQP Lagrange-Newton-Krylov-
Schwarz (LNKSz) algorithms. In LNKSz, a Lagrangian functional is
formed and differentiated to obtain a Karush-Kuhn-Tucker (KKT) sys-
tem of nonlinear equations. Inexact Newton method with line search
is then applied. At each Newton iteration the linearized KKT system is
solved with a Schwarz preconditioned Krylov subspace method. We apply
LNKSz to the parallel numerical solution of some boundary control prob-
lems of two-dimensional incompressible Navier-Stokes equations. Numer-
ical results are reported for different combinations of Reynolds number,
mesh size and number of parallel processors.

1 Introduction

In this paper we describe a general framework for solving optimization problems
in interaction with nonlinear partial differential equations (PDEs). The focus is
on how to adapt state-of-the-art PDE solvers to the requirements of optimization
methods, while allowing for an efficient parallel implementation. Our method
treats the differential equations as equality constraints. In order to demonstrate
its effectiveness, the problem of optimizing fluid flows modeled by incompressible
Navier-Stokes equations on two-dimensional domains is considered. In optimal
control problems one usually searches for the best feasible values of the control
variables, such as boundary values or external forces that minimize or maximize
a certain system behavior, such as turbulence. In this paper, we only consider
boundary control problems, which refer to the control of the system through
boundary conditions.
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Reduced space SQP methods have been the most widely used SQP ap-
proaches for PDE constrained problems until recently since they require much
less memory, even though many sub-iterations are needed to converge the outer-
iterations and the parallel scalability is less ideal. As more powerful computer
systems with lots of memory and many processors become available, full space
methods seem to be more appropriate due to their increased scalability. One
such method, Lagrange-Newton-Krylov-Schur (LNKSr), was introduced in [2,
3], where four block factorization based preconditioners, as well as globalization
techniques and heuristics, are proposed and tested. In this paper we replace
the Schur type preconditioner with an overlapping Schwarz method which has a
better asymptotical convergence rate and is easier to use as a nonlinear precon-
ditioner [6, 7] for highly nonlinear problems.

The rest of the paper is organized as follows. Section 2 discusses the numerical
solution of optimal control problems with equality constraints. Section 3, the
core of this paper, presents the full space SQP Lagrange-Newton-Krylov-Schwarz
(LNKSz) method for the parallel numerical solution of such problems. Section
4 presents a boundary flow control problem, which is then solved in Section 5
with LNKSz. Numerical experiments are performed and analyzed for different
combinations of Reynolds number, mesh size and number of parallel processors.
Final conclusions are given in Section 6.

2 Optimal control with equality constraints

In this paper we focus on optimal control problems with equality constraints:{
min

(s,u)∈S×U
F(s,u)

s.t. C(s,u) = 0 ∈ Y.
(2.1)

Here S and U are called state and control spaces respectively; the state variables
s represent the state of the system being controlled; the control variables u rep-
resent the means one has to control the system; the objective or cost functional
F : S × U → R to be minimized (or maximized) represents the reason why
one wants to control the system; constraints C(s,u) = 0 represent the system
behavior and other constraints imposed to state and control variables.

The Lagrangian functional L : S × U × Y∗ → R associated with (2.1) is
defined by

L(s,u,λ) ≡ F(s,u) + 〈λ,C(s,u)〉Y , ∀ (s,u,λ) ∈ S×U×Y∗, (2.2)

where Y∗ is the adjoint space of Y, 〈·, ·〉Y denotes the duality pairing and
variables λ are called Lagrange multipliers or adjoint variables.

When the constraints are PDEs over a domain Ω, the discretization nec-
essary for the solution of (2.1) can occur at two different points of the logical
development of an algorithm. In the first case one demonstrates that, if (ŝ, û)
is a (local) solution of (2.1) then there exist Lagrange multipliers λ̂ such that



3

(ŝ, û, λ̂) is a critical point of L. So, under sufficient smoothness assumptions,
one obtains, as necessary condition for a solution, a system of equations, called
Karush-Kuhn-Tucker (KKT) or optimality system, which is then discretized,
generating a finite dimensional system of nonlinear equations [14, 15, 18, 24].

In the second case one begins by creating a mesh Ωh of characteristic size
h > 0 and then discretizing problem (2.1), obtaining a finite dimensional equal-
ity constrained optimization problem with S = Rns,h , U = Rnu,h and Y =
Rmh = Y∗. Under sufficient smoothness conditions the KKT system becomes
∇Lh(ŝ, û, λ̂) = 0 ∈ Rns,h+nu,h+mh . The theory for finite dimensional constrained
optimization problems guarantees, under appropriate assumptions, the existence
of such Lagrange multipliers λ̂. It should be pointed out that the discrete KKT
systems from both approaches are not necessarily the same.

From now on, we only work with the second approach. For simplicity, let us
omit the symbols “h” and “ ·̂ ”, and use the notations N ≡ ns + nu + m and
X ≡ (x,λ) ≡ (s,u,λ) ∈ RN . The KKT system becomes

F(X) ≡
(
∇xL
∇λL

)
=

(
∇F + [∇C]T λ

C(s,u)

)
=

 ∇sF + [∇sC]T λ

∇uF + [∇uC]T λ
C(s,u)

 = 0, (2.3)

where F : RN → RN , ∇xL denotes the gradient of L w.r.t. state and control
variables, with similar meaning holding for ∇λL, ∇sF and ∇uF , ∇C denotes
the Jacobian of C and ∇sC and ∇uC denote the Jacobian of C w.r.t. state
and control variables, respectively. In (2.3), we refer to the first equation as
the adjoint equation, the second as the control equation, the third as the state
equation or the forward problem, and ∇sC as the linearized forward operator.

System (2.3) can be solved with an inexact Newton method [12, 13]. Given
an initial guess X(0), at each iteration k = 0, 1, 2, . . . an approximate solution

p(k) ≡
(
p(k)

x ,p(k)
λ

)
≡

(
p(k)

s ,p(k)
u ,p(k)

λ

)
of the linearized KKT system[

K(k)
]

p(k) = − F(k) (2.4)

is computed, where K(k) = ∇F(X(k)) and F(k) = F(X(k)). The KKT matrix
K(k) is the transpose of the Hessian of the Lagrangian L, is symmetric indefinite
under sufficient smoothness assumptions and can be computed by a finite differ-
ence approximation. If ∇C(k) has full rank and ∇xxL(k) is positive definite in
the tangent space of the constraints (i.e., dT [∇xxL(k)]d > 0 for all d 6= 0 such
that [∇C(k)]d = 0), then we can interpret the solution (p(k)

x ,p(k)
λ ) of (2.4) as

being the unique solution and respective Lagrange multipliers of{
min

px∈S×U

1
2p

T
x [∇xxL(k)]px +

(
∇xL(k)

)T
px

s.t. [∇C(k)]px + C(k) = 0 ∈ Y.
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This interpretation justifies the use of terminology sequential quadratic program-
ming (SQP) for methods involving (2.4), [19].

After approximately solving (2.4), one may use a globalization method like
line search or trust region. In this study we focus on a line search approach,
where the next iterate is X(k+1) = X(k) + α(k)p(k) and the step length α(k) is
selected by backtracking until the sufficient decrease condition

φ(X(k) + α(k)p(k)) 6 φ(X(k)) + α(k)c1

(
∇φ(X(k))

)T

p(k) (2.5)

is satisfied. Here φ is a merit function and c1 is a constant satisfying 0 < c1 <
1/2. For constrained optimization, merit functions such as l1 or augmented La-
grangian are most commonly used. In contrast to the standard merit function
‖F(X)‖2

2/2, which is commonly used for systems of nonlinear equations, these
merit functions try to balance the sometimes conflicting goals of reducing the
objective function and satisfying the constraints [19]. We use the augmented
Lagrangian φAL : RN → R in our experiments in this paper. Given a penalty
parameter ρ > 0, it is defined by

φAL(X; ρ) = L(s,u,λ) +
ρ

2
‖C(s,u)‖2

2 ∀ X = (s,u,λ) ∈ S×U×Y.

At iteration k, ρ = ρ(k) must be such that we obtain descent directions p(k), i.e.,

(∇φAL(X(k); ρ(k)))T p(k) = (∇L(k))T p(k) + ρ(k) C(k)T[∇C(k)]p(k)
x < 0. (2.6)

Since C(k)T[∇C(k)]p(k)
x = −‖C(k)‖2

2 for an exact step, it is reasonable to expect

C(k)T[∇C(k)]p(k)
x < 0 (2.7)

for approximate steps, if C(k) 6= 0 and the tolerances for the Krylov subspace
method are small enough and the preconditioner is good enough to guarantee
that the Krylov subspace method does not stop by achieving the maximum
allowed number of iterations. If (2.7) does not hold we can continue the Krylov
iterations, with eventual smaller tolerances, until it does. Once (2.7) holds, we
then use a fairly common strategy where we demand ρ(k) to satisfy

(∇φAL(X(k); ρ(k)))T p(k) 6
ρ(k)

2
C(k)T[∇C(k)]p(k)

x ,

that is,

ρ(k) > ρ(k) = −2
(∇L(k))T p(k)

C(k)T[∇C(k)]p(k)
x

.

We then choose
ρ(k) = max{ρ(k), ρ(k−1)},

where ρ(−1) > 0 is a given positive value.
However, if C(k) = 0 then there is no way to guarantee a descent direction.

This is a fundamental issue with line search methods. Some algorithms handle
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this by modifying the Hessian to make it positive definite on the null space of
∇C(k), but for problems of the size we are considering there is no efficient way
to check positive definiteness.

In all tests described in this paper, (2.7) held for every step generated, as
long as we made the absolute Krylov tolerance small enough that at least one
Krylov iteration was performed. In addition, it is worth noting that, in each run,
the value of ρ(k) became fixed before 60% of the iterations had been made. Thus
the heuristic merit parameter updating strategy described above appeared to
work well for the examples of this paper.

3 Parallel full space SQP Lagrange-Newton-Krylov-
Schwarz

A key element of a successful full space approach is the preconditioning of the
Jacobian of the KKT system, which is indefinite and extremely ill-conditioned.
A good preconditioner has to be able to substantially reduce the condition num-
ber and, at the same time, to provide good scalability, so that the potential of
massively parallel computers can be realized. The Schur complement precondi-
tioner used in LNKSr [2, 3] is an operator-splitting type technique, in which a
sequential block elimination step is needed to form the Schur complement w.r.t.
the control variable. In contrast to operator-splitting, Schwarz type precondi-
tioners are fully coupled in the sense that all variables are treated equally and
the partition is based completely on the physical domain Ω. Because there is no
need to eliminate any variables from the system, there is one less sequential step
in the preconditioning process. Another advantage of LNKSz method is that it
does not demand m = ns. With LNKSz we can, for instance, deal directly with
full [17] boundary control problems, where an equation like (4.3) is explicitly
added to the constraints.

Schwarz preconditioners can be used in one-level or multi-level approaches
and, at each case, with a combination of additive and/or multiplicative algo-
rithms [23]. In this paper we deal with one-level additive algorithms only. Let
Ω ⊂ R2 be a bounded open domain on which the control problem is defined.
We only consider simple box domains with uniform mesh of characteristic size
h here. To obtain the overlapping partition, we first partition the domain into
non-overlapping subdomains Ω0

j , j = 1, · · · , Ns. Then we extend each subdo-
main Ω0

j to a larger subdomain Ωδ
j , i.e., Ω0

j ⊂ Ωδ
j . Here δ > 0 indicates the size

of the overlap. Only simple box decomposition is considered in this paper; i.e.,
all the subdomains Ω0

j and Ωδ
j are rectangular and made up of integral number

of fine mesh cells. For boundary subdomains, we simply cut off the part that is
outside Ω. Let H > 0 denote the characteristic diameter of subdomains Ωj . Let
N , N0

j and N δ
j denote the number of degrees of freedom associated to Ω, Ω0

j

and Ωδ
j , respectively. Let K be a N × N matrix of a linear system that needs

to be solved during the numerical solution process of the differential problem.
For each subdomain Ω0

j , we define R0
j as an N0

j ×N0
j block sub-identity matrix

whose diagonal element, (R0
j )k,k, is either an d × d identity matrix if the mesh
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point xk ∈ Ω0
j or a d×d zero matrix if xk is outside of Ω0

j , where d indicates the
degree of freedom per mesh point. Similarly we introduce a block sub-identity
matrix (Rδ

j)k,k for each Ωδ
j . The multiplication of Rδ

j with a vector will zero out
all of its components outside of Ωδ

j . We denote by Kj the subdomain matrix
given by

Kj = Rδ
j K (Rδ

j)
T .

Let B−1
j be either a subspace inverse of Kj or a preconditioner for Kj . The

classical one-level additive Schwarz preconditioner B−1
asm for K is defined as

B−1
asm =

Ns∑
j=1

Rδ
jBj

−1Rδ
j .

In addition to this standard additive Schwarz method (ASM) described above,
we also consider the newly introduced restricted version (RAS) of the method
[4, 8]. For some applications, the restricted version requires less communication
time since one of the restriction or extension operations does not involve any
overlap. The RAS preconditioner is defined as

B−1
ras =

Ns∑
j=1

Rδ
jBj

−1R0
j .

Some numerical comparisons of the ASM and RAS are presented later in the
paper.

When the Schwarz preconditioner is applied to symmetric positive definite
systems arising from the discretization of elliptical problems in H1

0 (Ω), the con-
dition number κ of the preconditioned system satisfies κ 6 C (1 + H/δ) /H2,
where C is independent of h, H, δ and the shapes of Ω and Ωδ

j [23], that is, a
Schwarz preconditioned Krylov subspace method is expected to have the follow-
ing properties:

The number of iterations grows approximately proportional to 1/H;(3.1)
If δ is maintained proportional to H, the number of iterations is (3.2)
bounded independently of h and H/h (a parameter related to
the number of degrees of freedom of each subproblem);
The convergence gets better as δ is increased. (3.3)

Theoretically, results (3.1)-(3.3) may not be applied immediately to Krylov
subspace methods, e.g. GMRES [22], for the solution of indefinite linearized KKT
systems. Nonetheless, we carefully examine all the properties in our numerical
experiments. In particular, let l be the average number of Schwarz precondi-
tioned GMRES iterations per linearized KKT system. We look for the following
scalability properties:

For fixed h and δ, l increases as H decreases; (3.4)
For fixed H and δ, l is not very sensitive to the mesh refinement; (3.5)
For fixed h and H, l decreases as δ increases. (3.6)
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4 Boundary control of incompressible Navier-Stokes flows

In this section we discuss the boundary control of the two-dimensional steady-
state incompressible Navier-Stokes equations in the velocity-vorticity formula-
tion [21]. The velocity is denoted by v = (v1, v2) and the vorticity by ω. Let Ω
be an open and bounded polygonal domain in the plane, Γ = ∂Ω its boundary
and ν the unit outward normal vector along Γ . Let f be a given external force
defined in Ω. Re is the Reynolds number and curl f = − ∂f1

∂x2
+ ∂f2

∂x1
. A boundary

control problem consists on finding (v1, v2, ω, u1, u2) such that the minimization

min
(s,u)∈S×U

F(s,u) =
1
2

∫
Ω

ω2 dΩ +
c

2

∫
Γu,1

u2
1 dΓ +

c

2

∫
Γu,2

u2
2 dΓ (4.1)

is achieved subject to the constraints

−∆v1 − ∂ω
∂x2

= 0 in Ω,

−∆v2 + ∂ω
∂x1

= 0 in Ω,

−∆ω + Re v1
∂ω
∂x1

+ Re v2
∂ω
∂x2

−Re curl f = 0 in Ω,

vi − vD,i = 0 on ΓD,i, i = 1, 2,
vi − ui = 0 on Γu,i, i = 1, 2,

ω + ∂v1
∂x2

− ∂v2
∂x1

= 0 on Γ,∫
Γ

v · ν dΓ = 0,

(4.2)

where, for i = 1, 2, Γ = ΓD,i ∪ Γu,i, ΓD,i is the part of the boundary where
the vi velocity component is specified through a Dirichlet condition with a pre-
scribed velocity vD,i, and Γu,i is the part of the boundary where the vi velocity
component is specified through a Dirichlet condition with a control velocity ui.
The positive constant parameter c is used to adjust the relative importance of
the control norms on achieving the minimization, so indirectly constraining the
size of those norms. The physical objective behind problem (4.1)-(4.2) is the
minimization of turbulence [16, 17]. The last constraint, given by∫

Γ

v · ν dΓ = 0, (4.3)

is necessary for the consistency with the physical law of mass conservation. So
the control u = (u1, u2) cannot be any control: it must belong to the space of
functions satisfying (4.3). We denote problems like (4.1)− (4.2), where controls
are allowed to assume nonzero normal values at the boundary, as full boundary
control problems (BCPs), [17]. In these kind of problems one has m 6= ns due to
the extra constraint (4.3). This fact also complicates the parallel finite differences
approximation of Jacobian matrices, since one does not have only PDEs (i.e.,
equations with local behavior) anymore. One can also deal with tangential BCPs,
where the control is allowed to be just tangential to the boundary and the
velocity vb = (vb,1, vb,2), defined as, for i = 1, 2,

vb,i =
{

vD,i on ΓD,i,
0 on Γ \ ΓD,i,
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is assumed to satisfy
∫

Γ
vb · ν dΓ = 0, and so, m = ns. Since tangential BCPs

restrict even more the space where the control u = (u1, u2) can exist, one natu-
rally expects better objective function values with full BCPs. In this paper we
only study tangential boundary control problems.

5 Numerical experiments

We consider both a simulation and a tangential BCP over the cavity Ω = (0, 1)×
(0, 1), with

f =
(
−sin2(πx1) cos(πx2) sin2(πx2)
sin2(πx2) cos(πx1) sin2(πx1)

)
.

The simulation problem has slip boundary conditions. In the case of the tangen-
tial BCP, the objective function has c = 10−2 and Γu,1 = Γu,2 = Γ . We run flow
problems for Re = 200 and Re = 250.

To discretize the flow problems, we use a five-point second order finite dif-
ference method on a uniform mesh. All derivative terms of interior PDEs are
discretized with a second order central difference scheme. The boundary condi-
tion ω + ∂v1/∂x2 − ∂v2/∂x1 = 0 on Γ is also discretized with a second order
approximation [20].

In all experiments, the Jacobian matrix is constructed approximately using
a multi-colored central finite difference method with step size 10−5, [9]. For
control problems, central finite differences provide KKT matrices closer to be
symmetric than the ones computed by forward finite differences. To solve the
Jacobian systems we use restarted GMRES with an absolute tolerance equal to
10−6, a relative tolerance equal to 10−4, a restart parameter equal to 90 and
a maximum number of iterations equal to 5000. The GMRES tolerances are
checked over preconditioned residuals. Regarding the one-level additive Schwarz
preconditioner, the number of subdomains is equal to the number of processors
and the extended subdomain problems have zero Dirichlet interior boundary
conditions and are solved with sparse LU. Line search with the merit function
defined in Section 2 is performed with cubic backtracking, with c1 = 10−4 in
(2.5) and a minimum allowed step length α(k) equal to 10−6. For augmented
Lagrangian merit functions we follow the strategy explained in Section 2 with
ρ(−1)=10. For Newton iterations we use an absolute stopping tolerance equal
to 10−6 and a relative tolerance equal to 10−10 times the initial residual. The
maximum allowed number of Newton iterations is 100.

All tests were performed on a cluster of Linux PCs and our parallel software
was developed using the Portable, Extensible Toolkit for Scientific Computing
(PETSc) library [1], from Argonne National Laboratory. Our main concern is
the scalability of the algorithms in terms of the linear and nonlinear iteration
numbers. CPU times are also reported, but they should not be taken as a reliable
measure of the scalability of the algorithms because our network is relatively slow
and is shared with other processes.

Results are grouped into tables according to a unique combination of prob-
lem type (simulation or control), Reynolds number Re, ASM type (standard or
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restricted), overlap δ and merit function (standard or augmented Lagrangian).
Each table presents results for nine situations, related to three different sizes of
meshes (parameter h) and three different numbers of processors (parameter H).
For each case we report:

– the total number of Newton iterations: n,
– the average number of GMRES iterations per Newton iteration: l,
– the total CPU time in seconds spent on all Newton iterations: tn,
– the average CPU time, in seconds, per Newton iteration, spent on solving

for the Newton steps: tl.

For each table we compare the behavior of l against (3.4)-(3.6). Predictions (3.4)
and (3.5) can be checked by observing the values of l in a column (fixed h and
δ) and in a row (fixed H and δ), respectively. Prediction (3.6) can be checked
by observing the values of l at the same situation (fixed problem type, Re, ASM
type, merit function, H and h) in different tables (different δ). We also compare
approximate values of

‖ω‖2
h =

∫
Ωh

ω2 dΩh. (5.1)

Table 1 presents results for the simulation problem with Re = 200. The
preconditioner is ASM with δ = 1/64 and the standard merit function is used in
the line search. The total number of Newton iterations does not change with the
mesh size or the number of processors. The average number of Krylov iterations
per Newton iteration changes as expected in predictions (3.4) and (3.5).

The next three tables present results for the tangential BCP with Re = 200.
An augmented Lagrangian merit function is used in the line search. Several
different overlap values are used in the ASM preconditioner and the results are
summarized as follows: Table 2 for δ = 1/64, Table 3 for δ = 1/32 and Table 4
for δ = 1/16. Changes on the total number of Newton iterations w.r.t. the mesh
size and the number of processors are not pronounced. We observe that l follows
(3.6). With the same δ used on the simulation problem, we can see in Table 2
that the average number of GMRES iterations is now more sensitive to both h
and, especially, H. Table 3 is the one where l best follows both (3.4) and (3.5)
and the CPU times tn and tl for the finest mesh decrease with the increase on the
number of processors. Table 4 shows that if δ gets too big then the consequent
decrease on l might not compensate the increased time taken by sparse LU on
the larger extended subdomains; that is, tl increases. Comparing values of tl in
Tables 2 and 3 with the values in Table 1, we see that the average time spent on
computing p(k) can be more than 10 times bigger in control problems than in
simulation problems on the same mesh, instead of being around 8/3 ≈ 3 times
bigger, in accordance to the ratio between the number of variables per mesh
point on control problems and on simulation problems.

As reported before we use a GMRES relative tolerance of 1.0 × 10−4, a
GMRES absolute tolerance of 1.0 × 10−6 and a Newton absolute tolerance of
1.0× 10−6. Case “(*)” in Table 3, however, gives results for a Newton absolute
tolerance of 1.2×10−6. When a Newton absolute tolerance of 1.0×10−6 is used,
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although full steps are accepted in some iterations, the line search stalls once
||F ||2 ≈ 1.14× 10−6. If we change the GMRES relative tolerance to 1.0× 10−6

and the GMRES absolute tolerance to 1.0 × 10−13 (in order to obtain a more
accurate Newton step) then we achieve ||F ||2 < 1.00×10−6 with n = 6, l ≈ 272,
tn ≈ 9.38 and tl ≈ 1.42. Although we performed our tests with fixed GMRES
tolerances, this experiment suggests that for more demanding Newton tolerances
one might need to use decreasing GMRES tolerances as the outer loop proceeds,
as expected by the theory for superlinear convergence of the inexact Newton
method [10, 19].

In the next two tables, we change the preconditioner to RAS and everything
else stays the same; i.e., these results are for the tangential BCP with Re =
200 and we use an augmented Lagrangian merit function in the line search.
We increase the overlap size in the RAS preconditioner as follows: Table 5 for
δ = 1/32 and Table 6 for δ = 1/16. The average number of GMRES iterations
continues to follow (3.6) but now it better follows (3.4) and (3.5). The computing
times tn and tl for the finest mesh in Table 6 decrease with the increase on the
number of processors. The average number of GMRES iterations is larger in
Table 5 than in Table 3, but the saving in communications of RAS compensates
this increase so that tl does not increase proportionally. By comparing finest
mesh results on Tables 6 and 4 we see that RAS performs better than the
standard ASM in terms of both l and tl, resulting on a smaller tn.

Table 7 presents results for the tangential BCP with Re = 250, restricted
ASM with δ = 1/16 and augmented Lagrangian merit function. We can see that,
with a Reynolds number greater than that in the previous table, both nonlinear
(n) and average linear (l) complexities increase.

Table 1. Results for the cavity flow simulation problem with Re = 200, standard ASM
with overlap δ = 1/64 and standard merit function ‖F‖22/2. n is the total number of
Newton iterations, l is the average number of Krylov iterations per Newton iteration,
tn is the total time in seconds spent on all Newton iterations and tl is the average time
in seconds, per Newton iteration, spent on solving for Newton steps. For the case of
finest mesh, the number of variables is 198, 147 and ‖ω‖2h ≈ 55.4. See (5.1).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 5 tn ≈ 0.83 n = 5 tn ≈ 3.6 n = 5 tn ≈ 18.3

l ≈ 46 tl ≈ 0.13 l ≈ 47 tl ≈ 0.62 l ≈ 47 tl ≈ 3.29

32 n = 5 tn ≈ 0.71 n = 5 tn ≈ 2.7 n = 5 tn ≈ 12.1

l ≈ 60 tl ≈ 0.091 l ≈ 63 tl ≈ 0.46 l ≈ 63 tl ≈ 2.20

64 n = 5 tn ≈ 0.70 n = 5 tn ≈ 1.99 n = 5 tn ≈ 7.50

l ≈ 69 tl ≈ 0.077 l ≈ 80 tl ≈ 0.32 l ≈ 79 tl ≈ 1.35
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Table 2. Results for the cavity tangential boundary flow control problem with Re =
200, standard ASM with overlap δ = 1/64 and augmented Lagrangian merit function.
n is the total number of Newton iterations, l is the average number of Krylov iterations
per Newton iteration, tn is the total time in seconds spent on all Newton iterations and
tl is the average time in seconds, per Newton iteration, spent on solving for Newton
steps. For the case of finest mesh, the number of variables is 528, 392 and ‖ω‖2h ≈ 32.5.
See (5.1).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 9.92 n = 8 tn ≈ 52.1 n = 6 tn ≈ 238

l ≈ 92 tl ≈ 1.21 l ≈ 85 tl ≈ 5.78 l ≈ 100 tl ≈ 36.4

32 n = 7 tn ≈ 10.3 n = 8 tn ≈ 53.3 n = 6 tn ≈ 264

l ≈ 208 tl ≈ 1.34 l ≈ 204 tl ≈ 6.26 l ≈ 272 tl ≈ 42.5

64 n = 7 tn ≈ 5.39 n = 8 tn ≈ 25.6 n = 6 tn ≈ 108

l ≈ 187 tl ≈ 0.67 l ≈ 182 tl ≈ 2.96 l ≈ 216 tl ≈ 17.1

Table 3. Results for the cavity tangential boundary flow control problem with Re =
200, standard ASM with overlap δ = 1/32 and augmented Lagrangian merit function.
For the case of finest mesh, the number of variables is 528, 392 and ‖ω‖2h ≈ 32.5. Case
“(*)” is discussed in Section 5.

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 8.22 n = 8 tn ≈ 49.1 n = 7 tn ≈ 254

l ≈ 58 tl ≈ 0.96 l ≈ 59 tl ≈ 5.38 l ≈ 62 tl ≈ 33.1

32 n = 7 tn ≈ 8.32 n = 8 tn ≈ 46.6 n = 6 tn ≈ 199

l ≈ 119 tl ≈ 1.05 l ≈ 130 tl ≈ 5.41 l ≈ 140 tl ≈ 31.6

64 n = 7 (*) tn ≈ 6.21 n = 8 tn ≈ 27.6 n = 6 tn ≈ 110

l ≈ 155 tl ≈ 0.78 l ≈ 132 tl ≈ 3.18 l ≈ 143 tl ≈ 17.4

Table 4. Results for the cavity tangential boundary flow control problem with Re =
200, standard ASM with overlap δ = 1/16 and augmented Lagrangian merit function.
For the case of finest mesh, the number of variables is 528, 392 and ‖ω‖2h ≈ 32.5.

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 9.65 n = 8 tn ≈ 59.2 n = 7 tn ≈ 744

l ≈ 47 tl ≈ 1.16 l ≈ 44 tl ≈ 6.62 l ≈ 50 tl ≈ 103

32 n = 7 tn ≈ 10.8 n = 8 tn ≈ 75.1 n = 7 tn ≈ 616

l ≈ 100 tl ≈ 1.39 l ≈ 108 tl ≈ 8.96 l ≈ 149 tl ≈ 86.3

64 n = 6 tn ≈ 6.36 n = 8 tn ≈ 56.5 n = 7 tn ≈ 331

l ≈ 104 tl ≈ 0.94 l ≈ 115 tl ≈ 6.79 l ≈ 128 tl ≈ 46.4
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Table 5. Results for the cavity tangential boundary flow control problem with Re =
200, restricted ASM with overlap δ = 1/32 and augmented Lagrangian merit function.
n is the total number of Newton iterations, l is the average number of Krylov iterations
per Newton iteration, tn is the total time in seconds spent on all Newton iterations and
tl is the average time in seconds, per Newton iteration, spent on solving for Newton
steps. For the case of finest mesh, the number of variables is 528, 392 and ‖ω‖2h ≈ 32.5.
See (5.1).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 8.33 n = 9 tn ≈ 53.1 n = 7 tn ≈ 253

l ≈ 59 tl ≈ 0.98 l ≈ 57 tl ≈ 5.15 l ≈ 62 tl ≈ 32.9

32 n = 7 tn ≈ 8.47 n = 8 tn ≈ 46.9 n = 6 tn ≈ 211

l ≈ 131 tl ≈ 1.07 l ≈ 134 tl ≈ 5.45 l ≈ 154 tl ≈ 33.6

64 n = 7 tn ≈ 6.38 n = 8 tn ≈ 30.1 n = 6 tn ≈ 132

l ≈ 175 tl ≈ 0.81 l ≈ 162 tl ≈ 3.50 l ≈ 184 tl ≈ 21.1

Table 6. Results for the cavity tangential boundary flow control problem with Re =
200, restricted ASM with overlap δ = 1/16 and augmented Lagrangian merit function.
For the case of finest mesh, the number of variables is 528, 392 and ‖ω‖2h ≈ 32.5.

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 9.66 n = 8 tn ≈ 60.7 n = 7 tn ≈ 743

l ≈ 47 tl ≈ 1.15 l ≈ 46 tl ≈ 6.80 l ≈ 51 tl ≈ 103

32 n = 7 tn ≈ 9.49 n = 8 tn ≈ 65.5 n = 6 tn ≈ 436

l ≈ 90 tl ≈ 1.21 l ≈ 86 tl ≈ 7.7 l ≈ 98 tl ≈ 71.0

64 n = 7 tn ≈ 7.18 n = 9 tn ≈ 56.9 n = 7 tn ≈ 309

l ≈ 105 tl ≈ 0.91 l ≈ 97 tl ≈ 6.1 l ≈ 114 tl ≈ 43.3

Table 7. Results for the cavity tangential boundary flow control problem with Re =
250, restricted ASM with overlap δ = 1/16 and augmented Lagrangian merit function.
For the case of finest mesh, the number of variables is 528, 392 and ‖ω‖2h ≈ 50.2.

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 11 tn ≈ 15.8 n = 13 tn ≈ 110 n = 10 tn ≈ 1090

l ≈ 51 tl ≈ 1.22 l ≈ 55 tl ≈ 7.67 l ≈ 55 tl ≈ 106

32 n = 11 tn ≈ 17.2 n = 13 tn ≈ 126 n = 9 tn ≈ 726

l ≈ 107 tl ≈ 1.42 l ≈ 112 tl ≈ 9.23 l ≈ 123 tl ≈ 79.0

64 n = 10 tn ≈ 12.6 n = 13 tn ≈ 102 n = 9 tn ≈ 504

l ≈ 135 tl ≈ 1.16 l ≈ 139 tl ≈ 7.62 l ≈ 180 tl ≈ 55.1
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6 Conclusions

We have developed a general LNKSz algorithm for PDE constrained optimization
problems and applied it to some tangential boundary control problems involving
two-dimensional incompressible Navier-Stokes equations. In our numerical ex-
periments the LNKSz algorithm, together with an augmented Lagrangian merit
function, provides a fully parallel and robust solution method. The one-level ad-
ditive Schwarz preconditioned GMRES, with a proper overlap, works well for
the indefinite linearized KKT systems. A proper overlap for a control problem
seems to be greater than a proper overlap for a simulation problem. More pre-
cisely, in our experiments the proper overlaps are two to four times greater in
the control problems. For larger overlaps the restricted version of ASM seems to
perform better than the standard ASM as a preconditioner for linearized KKT
systems. Theoretically, as a full space SQP method, LNKSz does not guarantee
descent directions, and the solution of the KKT system through proper steps
is guaranteed only to be a local minimum. However, in our numerical tests,
the computed steps are always descent directions and ‖ω‖2

h decreases with the
computed boundary control.
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