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A B S T R A C T   

Surgical planning for aortic aneurysm repair is a difficult task. In addition to the morphological features obtained 
from medical imaging, alternative features obtained with computational modeling may provide additional useful 
information. Though numerical studies are noninvasive, they are often time-consuming, especially when we need 
to study and compare multiple repair scenarios, because of the high computational complexity. In this paper, we 
present a highly parallel algorithm for the numerical simulation of unsteady blood flows in the patient-specific 
abdominal aorta before and after the aneurysmic repair. We model the blood flow with the unsteady incom
pressible Navier-Stokes equations with different outlet boundary conditions, and solve the discretized system 
with a highly scalable domain decomposition method. With this approach, a high resolution simulation of a full- 
size adult aorta can be obtained in less than an hour, instead of days with older methods and software. In 
addition, we show that the parallel efficiency of the proposed method is near 70% on a parallel computer with 2, 
880 processor cores.   

1. Introduction 

The abdominal aneurysm is an abnormal bulge or diffused expansion 
of a portion of the abdominal aorta. Surgical intervention is often 
required for the treatment of the aneurysm by introducing a reshaping of 
the aneurysmal region. An accurate pre- and post-operative rupture risk 
assessment of the abdominal aortic aneurysm has significant guiding 
importance for the surgical plannning of an aortic aneurysm repair 
surgery. Clinical studies correlate the risk to the maximum aneurysmatic 
diameter based on medical imaging technologies [23,36]. However, it is 
widely believed that the risk is not necessarily reflected by the maximum 
diameter alone [16,42]. Therefore, additional information is necessary 
for the accurate risk assessment of an aneurysm before and after the 
surgical repair. 

Biomechanical indices [40], hemodynamic factors [8], geometrical 
features [21,32] and pathological factors [19] have been suggested as 
promising predictive quantities for diagnosing and managing the aortic 
aneurysmal diseases. To obtain these quantities, various computational 

methods have been used, such as model order reduction [9], machine 
learning [20] and Bayesian inference [1]. This work focuses on the 
computational fluid dynamics (CFD), which involves a compuational 
analysis of the blood flow by combining a computational method with 
medical imaging, such as the computed tomography. This image-based 
computation enables a quantitative description of the blood flow by 
solving the Navier-Stokes equations. Not only can it noninvasively 
provide, for example, the blood pressure and pulse wave velocity on 
surgically inaccessible blood vessels, but also derive the directly 
immeasurable quantities, such as the wall shear stress (WSS) [35]. 
Earlier numerical studies were restricted to hypothetical aortic geome
tries, including simple axisymmetric [13] and asymmetrical [14] 
structures. More recently, realistic simulations often adopt the 
patient-specific geometries, most of which can be categorized into two 
major classes: the pure fluid modeling known as CFD and the fluid flow 
modeling coupled with a viscoelastic vessel wall known as the 
fluid-structure interaction. We focus on CFD problems in this paper and 
below we provide a brief review of the state of the art approaches for the 
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modeling of blood flows in the abdominal aorta. 
Different numerical methods have been proposed for accurately 

simulating of blood flows in the abdominal aorta. Kumar et al. studied 
the steady and transient blood flows by using ANSYS CFX and reported 
that the detailed branches have significant impact on the resulting flow 
patterns [27,50]. Antón et al. applied a second-order implicit finite 
volume scheme implemented on the commercial package FLUENT to 
analyze the aortic pressure field [2]. More recently, Vergara et al. 
considered a large eddy simulation to study the turbulent effects of 
blood flows, in which a semi-implicit approach and a SUPG stabilized 
P2–P2 finite element method were used for the temporal and spatial 
discretizations, respectively [48]. Arzani used an open source P2–P1 
finite element software to simulate blood flows in the cerebral artery and 
the abdominal aorta with aneurysms [3]. 

For the computational approach to be clinically useful in the surgical 
planning, the overall computational time has to be short to allow com
parisons among multiple surgery choices. Les et al. used a stabilized 

finite element method to model the blood flow in the aneurysmal aorta 
[30]. The calculation took approximately 3–7 days using 96 cores for 
meshes with several million elements and a week using 200 cores for a 
mesh with 31.8 millon elements. Polanczyk and Piechota reported that it 
took them 25 h to simulate the blood flow in the abdominal aorta using 
FLUENT on a mesh with around 600, 000 elements [39]. Using the same 
software, Hardman et al. spent 6 days to obtain the CFD simulation on 
meshes with about 2 millions elements for 200 time steps [18]. By 
running a commercial parallel finite volume solver on 64 cores, Owen 
et al. took 45 min to simulate the blood flow in a small portion of the 
abdominal aorta, where the number of elements is about 1.7 million and 
the number of time steps is 5500 [37]. 

To reduce the computing time and increase the numerical accuracy 
in the modeling of blood flows, most of the latest developments target 
supercomputers with a large number of processor cores [15,33,55]. 
There are several open-source software packages that support parallel 
computing for patient-specific blood flow simulations. The widely used 

Table 1 
List of references with simulation details.  

Publications Geometric models Number of elements Outlet boundary conditions Solution algorithms 
(software package) 

Number of 
processor 
cores 

Computing time 

Kumar et al., 
2017 [27] 

9-outlet full-size normal 
aorta 

1.38 million 
tetrahedral 
elements 

Opening boundary condition 
(static pressure 120 mmHg) 

Finite volume method 
(ANSYS-CFX) 

– – – –  

Vinoth et al., 
2019 [50] 

9-outlet full-size normal & 
aneurysmal aortas 

1.49 million 
tetrahedral 
elements 

Opening boundary condition 
(static pressure 120 mmHg) 

Finite volume method 
(ANSYS-CFX) 

– – – –  

Antón et al., 2015 
[2] 

2-outlet abdominal aortic 
aneurysm 

1.40 million 
tetrahedral 
elements 

Given flow split ratio Finite volume method 
(ANSYS-FLUENT) 

– – – –  

Vergara et al., 
2017 [48] 

2-outlet abdominal aortic 
aneurysm 

0.28 million 
tetrahedral 
elements 

Zero stress SUPG stabilized P2–P2 finite 
element method (LifeV) 

– – – –  

Arzani 2018 [3] 2-outlet cerebral artery & 
abdominal aorta with 
aneurysms 

3.53 & 4.70 million 
tetrahedral 
elements 

Zero traction & resistance 
boundary conditions) 

P1–P1 finite element method 
(Oasis) 

– – – –  

Polanczyk & 
Piechota 2010 
[39] 

2-outlet real & virtual 
abdominal aorta with 
aneurysm 

0.60 & 0.9 million 
tetrahedral 
elements 

Given flow rate Finite volume method 
(ANSYS-CFX) 

– – 25 h  

Hardman et al., 
2013 [18] 

2-outlet abdominal aortic 
aneurysm 

2.16 million 
tetrahedral 
elements 

– – Finite volume method 
(ANSYS-FLUENT) 

– – 6 days  

Owen et al., 2016 
[37] 

2-outlet abdominal aortic 
aneurysm 

1.7 million 
polyhedral elements 

– – Finite volume method (STAR 
CCM +) 

64 45 min  

Les et al., 2010 
[30] 

10-outlet abdominal aorta 
with aneurysm (8 patients) 

9.05 million 
tetrahedral 
elements 

Three–element Windkessel Stabilized finite element 
method (SimVascular) 

96 3–7 days  

Updegrove et al., 
2017 [47] 

Pulmonary arteries & full- 
size aorta & coronary 
artery 

No specific number 
of tetrahedral 
elements 

Resistance & three–element 
Windkessel & lumped 
parameter network 

SUPG & PSPG stabilized 
P1–P1 finite element method 
(SimVascular) 

– – – –  

Zhou et al., 2010 
[56] 

Several–outlet abdominal 
aortic aneurysm 

1.07 billion 
tetrahedral 
elements 

Three–element Windkessel Stabilized finite element 
method (PHASTA) 

163840 – –  

Groen et al., 2013 
[17] 

Intracranial vasculature 44.65 million fluid 
lattice sites 

Given velocity or pressure Lattice Boltzmann method 32768 About 0.1s for 
100 time stpes  

Auricchio et al., 
2018 [4] 

3-outlet thoracic aorta 6.70 million 
tetrahedral 
elements 

Three–element Windkessel Bubble stabilized finite 
element method (LifeV) 

2048 – –  
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SimVascular [28] and CRIMSON [24] provide a complete pipeline from 
the image segmentation to the blood flow simulation and analysis [24, 
30,47]. The software has a nice and easy-to-use interface. Its algebraic 
solver is built on PHASTA [55,56], which is based on a Newton-Krylov 

method and has a major drawback as it doesn’t have any precondi
tioners. As a result, its linear and nonlinear solvers can only handle 
relatively well-conditioned problems or problems with small time steps 
[49]. In the present paper, with a rather powerful overlapping domain 
decomposition preconditioner, our linear and nonlinear solvers are 
more robust and allow large time steps. 

HemeLB [33] is based on the lattice-Boltzmann method (LBM) and it 
scales well to 32768 cores for simulations of intracranial aneurysm he
modynamics with approximately 45 million lattices. LBM is easy to 
implement on Cartesian grid but rather difficult to implement for com
plex boundary conditions defined on irregular boundaries [17,31]. LifeV 
[7] is a finite element library that provides a platform for developing and 
testing numerical methods. In a recent work, it was used to solve a 
hemodynamical problem of 3-outlet thoracic aorta and shown to scale 
with up to 2048 cores for a problem discretized on a mesh with 6.70 
million tetrahedral elements [4]. In Table 1, we provide a quick sum
mary of the recent publications including methods used and computa
tional capabilities for hemodynamic problems. 

In this paper, we study a highly parallel algorithm to solve the un
steady incompressible Navier-Stokes equations with different outlet 
boundary conditions. Comparing with the traction-free outlet boundary 
condition, the resistance outlet boundary condition assumes a linear 
dependence between the pressure and the flow rate at each outlet 
through the integral of the velocity. Although the integral-type bound
ary condition is more accurate to represent the downstream arterial 
networks, it is computationally nontrivial due to the existence of the 
integral, which increases the communication burden between processor 
cores and therefore degrades the parallel performance of the numerical 
solver. The correctness of the proposed numerical method and the mesh- 
independence of the numerical solution are studied before its applica
tion to the blood flow simulation in a full-size adult aneurysmal aorta 
before and after the repair. The proposed approach greatly reduces the 
simulation time so that multiple operation choices can be studied and 
compared during the surgical planning. Clinical investigation of the 
proposed methods is out of the scope of this paper. 

The rest of this paper is organized as follows. In Section 2, abdominal 
aortas and their mesh partition are introduced; then the governing 
equations and numerical methods are presented, including the implicit 
finite element discretization and the Newton-Krylov-Schwarz method. 
In Section 3, we study the influence of different outlet boundary con
ditions and the blood flow of two patient-specific cases acquired before 
and after the aneurysm repair, and analyze the parallel scalability of the 
algorithm. In Section 4, we draw some conclusions. 

2. Problem description and solution methods 

2.1. Image segmentation and mesh partition 

As shown in Fig. 1, a CFD-supported surgical planning is studied in 
the pre-operative aorta with an abdominal aneurysm and the post- 
operative aorta with the aneurysm removed. Both geometries, denoted 
as Ω ∈ R3, have one inlet and 12 outlets. Taking the post-operative aorta 
as an example in Fig. 2, we label the inlet as ΓI, the wall as ΓW, and the 
outlets as ΓOi (i = 1, 2 …, m with m being the total number of outlets) for 
the prescription of different boundary conditions. An unstructured mesh 
Ωh consisting of tetrahedral elements is generated to cover the compu
tational domain Ω and a schematic representation of a 3D coarse aortic 
mesh is shown in Fig. 2 A. To run the simulation on a parallel computer, 
the mesh is partitioned into N non-overlapping submeshes by ParMETIS 
[22], denoted as Ωl

h (l = 1, …, N), where N is the total number of pro
cessor cores. The ParMETIS ensures roughly the same number of ele
ments in each subregion to achieve load balance. All vectors and 
matrices associated with a subdomain are mapped to the same processor 
core of the parallel computer. A sample partition with 4 sub-meshes 
highlighted using different colors is presented in Fig. 2 B. A detailed 

Fig. 1. (A) pre-operative aorta with an abdominal aneurysm and (B) post- 
operative aorta with the aneurysm removed. An inlet and 12 outlet branches 
are labeled. 

Fig. 2. (A) A sample mesh for the post-operative aorta and (B) a partition of the 
global mesh into four subdomains for parallel processing. 

Fig. 3. The pulsatile inflow rate profile for two cardiac cycles.  
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description of the mesh partition can be found in Barker and Cai [6]. 

2.2. Governing equations 

We model the blood as a Newtonian flow and consider the following 
3D unsteady incompressible Navier-Stokes equations, 
⎧
⎪⎪⎨

⎪⎪⎩

ρ
(

∂u
∂t

+ (u⋅∇)u
)

− ∇⋅σ = 0, in Ω × (0, T],

∇⋅u = 0, in Ω × (0, T],

(1)  

where u is the velocity vector, ρ is the blood density, and σ is the Cauchy 
stress tensor defined as 

σ = − pI + 2με(u),

with p being the pressure, I being the 3 × 3 identity tensor, μ being the 
dynamic viscosity and ε(u) being the deformation tensor calculated by 
ε(u) = 1/2(∇u + ∇uT). The initial condition is imposed as 

u|t=0 = u0, in Ω.

Different boundary conditions are applied. Specifically, Dirichlet 
boundary conditions are imposed on the inlet and wall boundaries, 
{

u = vI , on ΓI × (0, T],
u = 0, on ΓW × (0, T],

where vI is a plug flow velocity calculated from the profile of the patient- 
specific pulsatile flow rate measured clinically, as shown in Fig. 3 ρ =
1.06 g/cm3 and μ = 0.035 g/cm ⋅ s are used to characterize the prop
erties of the blood. Let D be the diameter of the inlet, then the Reynolds 
number is Re = ρD|vI|/μ, whose range is (4, 3185) due to the change of 

the velocity. 
We investigate two types of outlet boundary conditions including the 

popularly used traction-free boundary condition and the resistance 
boundary condition to all outlet boundaries [49]. For the traction-free 
boundary condition, the outlet surface is free from the external stress, 
i.e., 

σi⋅ni = 0, on ΓOi × (0, T], i = 1, 2,…m,

where σi is the previously defined Cauchy stress tensor and ni is the 
outward normal of the ith outlet. For the resistance boundary condition, 
the pressure and the flow rate imposed at the ith outlet are related ac
cording to 

pi = RiQi, on ΓOi × (0, T], i = 1, 2,…m,

where Ri and Qi are the resistance and the flow rate at the ith outlet, and 
Qi =

∫

ΓOi
u⋅nids [49]. For each simulation, a total resistance R is chosen 

and Ri is then determined by Ri = R
∑m

i=1Si
3/2/Si

3/2, where Si is the area 
of the ith outlet surface [28]. 

2.3. Stabilized finite element discretization 

Consider the following trial and weight function spaces 

V :=
{

u ∈
[
H1(Ω)

]3
,u = vIonΓIandu = 0onΓw

}
,

V0 :=
{

u ∈
[
H1(Ω)

]3
,u = 0on(Γi ∪ Γw)

}
,

P :=
{

p ∈ L2(Ω)
}

Then the weak form of Eq. (1) is: find u ∈ V and p ∈ P such that ∀ϕ ∈
V0 and ∀ψ ∈ P, 

Fig. 4. The plots of outflow rates from the resistance and traction-free boundary conditions for four branches: the left subclavian artery, the splenic artery, the renal 
artery and the left iliac artery. 
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ℬf ({u, p}, {ϕ,ψ}) = 0,

where 

ℬf ({u, p}, {ϕ,ψ}) =

ρ
∫

Ω

∂u
∂t

⋅ϕdΩ + ρ
∫

Ω
(u⋅∇)u⋅ϕdΩ −

∫

Ω
p(∇⋅ϕ)dΩ + 2μ

∫

Ω
ε(u) : ε(ϕ)dΩ 

+

∫

Ω
(∇⋅u)ψdΩ +

∫

Γo

(σ⋅n)⋅ϕds. (2) 

Unlike the traction-free boundary condition σ ⋅n = 0, which means 
the last term in Eq. (2) can be neglected, the resistance boundary con
dition implies a boundary integral term [51].  

∫

Γo

(σ⋅n)⋅ϕds =

∑m

i=1

∫

Γoi

(

− Ri

∫

Γoi

u⋅nidsI + 2με(u)
)

⋅ni⋅ϕds.

For the spatial discretization of Eq. (2), we use P1–P1 finite elements. 

However, additional stabilization terms are required, since this finite 
element pair does not satisfy the Ladyzhenskaya-Babuška-Breezi (LBB) 
condition. In this work, we adopt the streamline upwind Petrov Galerkin 
method. Denoting the finite element subspaces as Vh, V0

h and Ph corre
sponding to their infinite dimensional spaces, we present the following 
semi-discrete formulation to the above weak form: find uh ∈ Vh and ph ∈

Ph, such that ∀ϕh ∈ V0
h and ∀ψh ∈ Ph,  

where Ωh = {K} is the unstructured tetrahedral mesh. For the definition 

of ū h and the suggested values of stabilization parameters τa, τb and τc, 
we refer to Wu and Cai [52] and Kong et al. [25]. 

After the spatial discretization, we obtain a time-dependent semi- 
discretized nonlinear system 

d𝒳(t)
dt

= 𝒩(𝒳(t)),

where 𝒩(𝒳(t)) is a nonlinear algebraic function of 𝒳 and 𝒳(t) is a time- 
dependent solution vector for the nodal values of both velocity uh and 
pressure ph at time t. We then employ an implicit backward Euler 
method to the time direction and obtain the following fully discretized 
system [52]. 

𝒳n − 𝒳 n− 1 = Δt𝒩(𝒳 n),

ℬ({uh,ph},{ϕh,ψh})=

ℬf ({uh,ph},{ϕh,ψh})+
∑

K∈Ωh (∇⋅u,τa∇⋅ϕ)K +
∑

K∈Ωh

(
∂uh

∂t
+(uh⋅∇)uh +∇ph,τb(uh⋅∇ϕh +∇ψh)

)

K
+
∑

K∈Ωh (u
̄

h⋅∇uh,ϕh)K +
∑

K∈Ωh

(ū h⋅∇uh,τcu
̄

h⋅∇ϕh)K ,

Fig. 5. A comparison of computed pressure values with the resistance and traction-free boundary conditions for four points: (A) P1 in the ascending aorta, (B) P2 in 
the thoracic aorta, (C) P3 in the abdominal aorta and (D) P4 in the common iliac. 
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where Δt is the time-step size and 𝒳n denotes the solution vector at the 
nth time step. The initial guess 𝒳0 is often assumed to be zero. Thus, the 
problem is transferred into solving the following large, sparse and 
nonlinear algebraic system at every time step 

ℱ(𝒳 n) = 0. (3)  

2.4. Newton-Krylov-Schwarz algorithm 

We next describe the Newton-Krylov-Schwarz (NKS) method for 
solving Eq. (3). This method comprises three parts: an inexact Newton 
method to handle the nonlinearity of the system; a Krylov subspace 
method to deal with the linear Jacobian system within each Newton 
step; and a Schwarz preconditioner to accelerate the Jacobian solver. 
The overall computational framework is summarized in Algorithm 1. 

Algorithm 1. Newton-Krylov-Schwarz    

The inexactness of the inexact Newton method is controlled by the 
forcing term ηk. If taking ηk = 0, the inexact Newton method becomes the 
Newton method. For the Newton type methods, one can use an 
approximate or an exact Jacobian matrix. In this work, the analytically 
computed exact Jacobian is used since it offers better computational 
performance than the approximate Jacobian [6,10]. 

Within each Newton step, the Jacobian system is inexactly solved by 
using a Krylov subspace method, the generalized minimal residual 
method (GMRES). To accelerate the GMRES convergence, we apply an 
additive Schwarz preconditioner. For simplicity, we drop the subscript 
and superscript and rewrite the restricted additive Schwarz precondi

tioner (Mk
n)

− 1 as M− 1 and the Jacobian matrix Jk
n as J. To define M− 1, we 

extend the subdomain Ωl
h into an overlapping subdomain Ωl,δ

h such that 

Ωh =
⋃N

l=1
Ωl,δ

h ,

where the integer δ > 0 is the overlapping size of a subdomain with its 
adjacent subdomains. Denote the restriction operator Rδ

l that extracts 
from the global vector to the local vector of unknowns corresponding to 
the overlapping subdomain Ωl,δ

h and the prolongation operator (Rδ
l )

T, 
namely the transpose of the restriction operator, that maps the local 
vector of unknowns to the global domain. Similarly, we denote R0

l and 

(R0
l )

T as the restriction and prolongation operators of the non- 
overlapping subdomain Ωl

h. Thus, we define the restricted additive 
Schwarz preconditioner without the super and subscripts as [26]. 

M− 1 =
∑N

l=1
(R0

l )
T B− 1

l Rδ
l ,

where B− 1
l is the inverse of the overlapping subdomain Jacobian matrix 

given by Bl = Rδ
l J(R

δ
l )

T and the matrix-vector multiplication (B− 1
l v for 

any subdomain vector v) needed in the preconditioning operations can 
be carried out by solving approximately by the incomplete LU factor
ization (ILU) with certain level of fill-ins. The preconditioner is recon
structed at every Newton iteration, and so are the ILU factorizations of 
the subdomain matrices. 

The method described in this section is implemented using the 
Portable Extensible Toolkit for Scientific computing (PETSc) library [5]. 
If not specifically mentioned, the linear solver stops when the relative 
error reaches 10− 3 and the nonlinear solver stops when the absolute or 
relative error reaches 10− 6. Apart from the flow rate, the pressure and 
the velocity, we also focus on the analysis of the WSS and the oscillatory 
shear index (OSI), which are important hemodynamic parameters for 
the clinical investigation of the aortic aneurysm. The WSS is defined by 
the difference between the overall shear stress and its normal projection 
[25], 
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Fig. 6. The distributions of the pressure, velocity and wall shear stress computed with Newton-Krylov-Schwarz (NKS) and SimVascular.  

Table 2 
The comparison of the maximum, minimum and average values of the pressure (mmHg), velocity (cm/s) and wall shear stress (dyn/cm2) computed with Newton- 
Krylov-Schwarz (NKS) method and SimVascular.   

Number of elements Pmax Pmin Pave Vmax Vmin Vave WSSmax WSSmin WSSave 

NKS 130522 100.042 100.017 100.030 17.303 0.000 5.303 1.104 0.001 0.360 
SimVascular 130820 100.045 100.015 100.032 17.138 0.000 5.109 1.156 0.001 0.369  

Table 3 
The surface-averaged pressure (mmHg) and magnitude of the wall shear stress (dyn/cm2), and the space-averaged magnitude of the velocity (cm/s) obtained using 
meshes with different number of elements.  

Number of 
elements 

Pressure t =
1.1s 

Pressure t =
1.2s 

Pressure t =
1.3s 

Velocity t =
1.1s 

Velocity t =
1.2s 

Velocity t =
1.3s 

WSS t =
1.1s 

WSS t =
1.2s 

WSS t =
1.3s 

1.11 × 106 77.83 110.82 71.17 20.51 36.64 27.79 8.62 11.70 7.89 
3.99 × 106 77.19 110.23 71.07 20.51 36.62 27.79 11.89 15.37 10.04 
7.35 × 106 76.99 110.14 71.03 20.55 36.67 27.82 14.61 18.28 11.52 
30.02 × 106 76.79 110.96 70.93 20.34 36.57 27.90 18.53 22.05 13.40  
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WSS = σnp − (σnp⋅np)np,

where np is the normal vector at a point on the wall. The OSI is defined 
by Ref. [11]. 

OSI =
1
2

⎛

⎝1 −

⃒
⃒
⃒

∫ T

0
WSSdt

⃒
⃒
⃒
⃒

∫ T

0
|WSS|dt

⎞

⎠

3. Results and discussions 

3.1. Pulsatile flows in a patient-specific abdominal artery 

As we have already mentioned, two types of boundary conditions for 
the outlets are considered, namely the traction-free and the resistance 
boundary conditions. For the resistance boundary condition, a total 
resistance of R = 500 dyn ⋅ s ⋅ cm− 5 is prescribed to make sure the 
computed maximum pressure matches the systolic blood pressure 
measured for the patient. Fig. 4 compares the computed flow rate from 
the resistance and the traction-free boundary conditions for four 
branches, namely the left subclavian artery, the splenic artery, the renal 
artery and the left iliac artery. Here, the simulation is conducted on the 
post-operative case with a mesh of 8.14 × 105 nodes and 3.99 × 106 

elements. The time-step size is set to be 0.004 s. With the resistance 
boundary condition, the outflow rate profiles agree with the inflow rate 
waveform, which is consistent with the results reported in Reymond 
et al. [43]. However, in the case of the traction-free boundary condition, 
it shows physiologically unreasonable shape alterations. Fig. 5 further 
compares the resulting pressures between the resistance and 
traction-free boundary conditions at positions in different aortic regions: 
(A) P1 in the ascending aorta, (B) P2 in the thoracic aorta, (C) P3 in the 
abdominal aorta and (D) P4 in the common iliac. We see that both 
boundary conditions present a gradual decrease of the peak pressure as 
the blood travels from P1 to P4. Althogh the resistance boundary con
dition gives an unrealistically large pressure amplitude which can be 
rectified by adding a reference pressure, the traction-free boundary 
condition results in more unrealistic patterns with negative pressures, 
incorrect peak values and unreasonable oscillations. These findings 
confirm that the choice of outlet boundary conditions makes a 
remarkable difference on the calculated results; and the resistance 
boundary condition outperforms the traction-free boundary condition in 
achieving more physiologically relevant results [49]. 

For the rest of the paper we focus only on the resistance boundary 
condition. We provide a validation of the proposed method by a com
parison with SimVascular [47]. As shown in Fig. 6, we consider an 
idealized cylindrical vessel with radius 2 cm and length 30 cm connected 
smoothly with a spherical aneurysm of radius 4 cm in the middle. We 
prescribe a constant volumetric inflow rate of 100 cc/s with a parabolic 

Fig. 7. The computed pressure distribution and the pressure distribution at a cross section of pre- and post-operative abdominal aortas at t = 1.1 s, 1.2s and 1.3s 
during the early, mid and late systole. 
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profile at the inlet and a resistance of 1333 dyn ⋅ s ⋅ cm− 5 at the outlet. To 
achieve the steady state, a time-step size 0.03 s is used and the total 
number of steps is 200. For SimVascular, the mesh has 130820 elements, 
the nonlinear solver converges with a tolerance 1 × 10− 2 and the linear 
solver converges with tolerances 5 × 10− 2 for the momentum equation 
and 4 × 10− 1 for the continuity equation. For NKS, the mesh has 130522 
elements and the experiment is carried out using 24 CPU cores. The 
overlapping size between the neighbouring subdomains is 3 and the ILU 
fill-in level is 3. We compare the maximum, minimum and average 
values of the pressure (Pmax, Pmin, Pave), velocity (Vmax, Vmin, Vave) and 
wall shear stress (WSSmax, WSSmin, WSSave), as listed in Table 2. We also 
show the distributions of the pressure, velocity and WSS obtained from 
NKS and SimVascular in Fig. 6. It can be seen that these quantities match 
quite well. 

To ensure the accuracy of the simulation, we consider the mesh- 
dependence of the numerical solution for the post-operative case. Four 
finite element meshes with 1.11 × 106, 3.99 × 106, 7.35 × 106 and 
30.02 × 106 elements are used. As shown in Table 3, an increase in the 
number of elements improves the accuracy of all quantities and a mesh 
with 1.11 × 106 elements can provide mesh-independent pressure and 
velocity, but fails to provide a point-wise converged WSS. With the 
30.02 × 106 element mesh, we are able to capture the distribution 
pattern of the WSS, though the accuracy of the point-wise values can be 
further improved by a finer mesh [56]. Note that for the 30.06 × 106 

element mesh, the mean size of the surface elements is about 0.16 mm, 
which is higher than the resolution of 4D MRI that is around 2.5 mm in 
Ref. [57]. 

Fig. 7 shows the pressure distribution of the pre- and post-operative 

aortas, calculated using the 4.04 × 106 and 3.99 × 106 element meshes 
respectively, at three different times t = 1.1s, 1.2s and 1.3s during the 
early, mid and late systole correspondingly. For both cases, we see that 
the pressure varies both temporally and spatially. Temporally, the 
pressure profile at t = 1.3s is distinct from what appears at t = 1.1 s and 
1.2 s, which may be closely related to the velocity propagation. 
Spatially, the pressure varies in the abdominal section due to the change 
of geometry by the aneurysm repair. In the same figure, we also show 
the abdominal pressure variations in the cross section plane, where 
higher average pressures 67.91, 109.61 and 75.45 mmHg are found at 
the cross section of the pre-operative case comparing to 67.79, 108.83 
and 75.20 mmHg in the post-operative case at t = 1.1s, 1.2s and 1.3s 
respectively. Therefore, we conclude that the pressure is reduced by the 
aneurysm repair, which is consistent with the results reported in 
Ref. [44]. 

Based on the same meshes for the pressure, Fig. 8 presents the 
streamlines of the velocity field and the velocity in a cross section for the 
pre- and post-operative cases at t = 1.1 s, 1.2 s and 1.3 s. For both cases, 
we observe that physiologically reasonable values of velocity magnitude 
are obtained that are similar to the published results in Ref. [38]. 
Moreover, relatively stable streamline patterns can be seen at the early 
and mid systole, but become unstable at the late systole, which is 
consistent with the results reported in Youssefi et al. [53]. Besides, the 
secondary flow motion in the vicinity of the artery wall (the red arrows) 
and the vortex flow along the lesser aortic curvature (the black arrows) 
are observed, especially during the late systole [46]. In the abdominal 
cross-sectional plane, the velocity vector is represented by the size and 
direction of the arrow with a bottom-up view. It shows that the velocity 

Fig. 8. The streamlines of velocity field and the velocity at a cross section of pre- and post-operative abdominal aortas at t = 1.1 s, 1.2 s and 1.3 s, namely during the 
early, mid and late systole respectively. The velocity vector in the cross section is represented by the size and direction of the arrow with a bottom-up view. The black 
and red arrows show the locations of vortex and secondary flows. 
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Fig. 9. The magnitude of the wall shear stress at t = 1.1 s, 1.2 s and 1.3 s of the pre- and post-operative abdominal aortas during the early, mid and late systole. The 
dotted box area of the abdominal aorta is an magnified view to show the distribution of the wall shear stress. 

Fig. 10. The spatial distributions of OSI of the pre- and post-operative abdominal aortas. Zoom-in views in the dotted boxes present the OSI distributions in the area 
of the aneurysm. 
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is unevenly distributed for both the pre- and post-operative cross sec
tions, where lower average velocities 10.39, 24.66 and 28.78 cm/s are 
found at the cross section of the pre-operative case comparing to 27.21, 
52.16 and 40.58 cm/s in the post-operative case at t = 1.1s, 1.2s and 1.3s 
respectively. We also find that the geometric variation has a great in
fluence on the flow field so that the chaotic streamlines in the aneurysm 
become laminar after the surgical repair, especially at the late systole 
[45]. 

Fig. 9 shows the profiles of the magnitude of the WSS computed with 

30.06× 106 and 30.02 × 106 element meshes for the pre- and post- 
operative cases respectively. For both cases, we see that the adopted 
meshes are adequate to capture the complex patterns of the WSS, which 
is unevenly distributed and shows reasonable values comparing to that 
reported in Ref. [12]. Patches with higher values of WSS are observed at 
the inner side rather than the outer side of the aortic arch and its three 
major branches, similar results were reported in Lantz et al. [29]. 
Actually, for a specific time, both cases show the same WSS distribution 
except in the abdominal section, where the geometry is changed. 
Magnified images are presented to show the detailed WSS distributions 
in the dotted box area of the abdominal aorta at three different times. 
For both cases, the instantaneous WSS patterns are significantly 
different in the abdominal section. For the pre-operative case, it shows a 
lower magnitude of WSS comparing to the post-operative case and 
irregular patches of low WSS exist at t = 1.2 s and t = 1.3 s in the 
abdominal aneurysm wall. However, for the post-operative case, the 
abdominal part of the aorta is subjected to high values of WSS and the 
low WSS patches appear only at t = 1.3 s, probably because of the 
geometric bends and bifurcations. Boyd et al. [8] and Zambrano et al. 
[54] showed that the low WSS has been correlated with the thrombus 
deposition and the aneurysmal expansion. Meyrignac et al. corroborated 
these findings and reported its association with the aneurysmal growth 
and rupture [34]. Fortunately, our study shows the aneurysm repair can 
successfully increase the magnitude of the WSS. 

Due to the pusatile nature of the inflow rate, the WSS vector presents 
directional changes during a cardiac cycle with the degree quantified by 
a dimensionaless metric OSI. From its definition, the value of OSI ranges 
from 0.0 in an unidirectional flow to 0.5 in a reversing flow with no 
preferred directions. Fig. 10 shows the spatial distributions of OSI of the 
pre- and post-operative abdominal aortas. Overall, our results show 
expected values of OSI ranging from 0.0 to 0.5 and are coherent with the 
findings that high values of OSI are located at sites where acute geo
metric changes occur, including bifurcations and high curvatures [41]. 
This may explain the fact that the aortic dissections and aneurysms are 

Fig. 11. The temporal changes of the wall shear stress at 4 different points P1, P2, P3 and P4 in Fig. 5 and the surface-averaged wall shear stress W
̄

SS for a 
cardiac cycle. 

Table 4 
The influence of the overlapping size δ = 4, 6, 8, 10 and the subdomain solvers 
with fill-in level l = 1, 2, 3, 4. The simulation is conducted on the post-operative 
case with a mesh consisting of 3.99 × 106 elements for 10 time steps with a step 
size 0.001 s.  

Subsolver δ Newton GMRES Time (s) Memory (M) 

ILU(1) 4 2.10 532.95 37.50 1014.48  
6 2.10 464.24 34.90 1207.18  
8 2.20 354.18 31.16 1544.59  
10 2.20 335.05 33.15 1937.76  

ILU(2) 4 2.10 495.48 42.70 1406.29  
6 2.20 373.41 36.71 1742.80  
8 2.20 179.23 22.48 2170.21  
10 2.20 171.77 24.61 2741.67  

ILU(3) 4 2.10 327.67 37.00 1881.75  
6 2.10 177.38 24.28 2277.50  
8 2.10 125.95 21.65 2863.54  
10 2.10 112.29 23.66 3644.95  

ILU(4) 4 2.10 323.57 45.33 2445.86  
6 2.10 163.90 29.17 2978.56  
8 2.10 97.71 24.87 3791.81  
10 2.10 96.71 30.07 4866.35  
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typically developed at the aortic arch and the abdominal aorta where the 
high osccilation of WSS imposes a tearing effect on the inner endothelial 
cells of the arterial wall. Like the WSS, differences of OSI between the 
two cases are observed in the abdominal section where the geometrical 
changes occur, as shown in the zoom-in views. Boyd et al. [8] showed 
that rupture occurs in or near the patches of high-value OSI where the 
flow recirculates, which are significantly removed after the aneurym 
repair. The lower values of OSI indicates that the reversing flow becomes 
laminar in the abdominal region after the aneurysm repair, as also 
indicated by the streamlines of the velocity in Fig. 8. 

We also plot the temporal variation of the point-wise and the surface- 
averaged WSS based on the post-operative abdominal aorta in Fig. 11. 

Here, to save the computational time, we use a mesh with 3.99 × 106 

elements to show a general trend of the variation of the WSS. For the 
point-wise WSS, four different points P1, P2, P3 and P4 in Fig. 5 are 
monitored. It shows that the WSS presents different profiles at these 

points. For the surface-averaged WSS, it is denoted as W
̄

SS and given by 

W
̄
SS =

1
A

∫

∂Ω
WSSdA,

where A is the total surface area of the computational domain. It can be 

seen that the profile of the W
̄

SS is temporally correlated with the pul
satile inflow rate and its shape maintains a pulsatile form but with a 
relatively gentle downward slope. 

3.2. Scalability and robustness 

Now we study the scalability of the parallel algorithm and its 
robustness with respect to several important parameters for the pre- and 
post-operative aorta. It is noted that these parameters accelerate the 
convergence of the solver without impairing the accuracy. We first 
mention some notations to be used in the tables. “Subsolver” denotes the 
type of solvers for the subdomain problems. “ILU(l)” denotes the ILU 
with l level of fill-ins. “δ” denotes the overlapping size between the 
neighbouring subdomains. “Newton” means the average number of 
Newton iterations for each time step. “GMRES” stands for the average 
number of linear iterations for each Newton step. “Time” is the average 
wall clock time in seconds spent for each time step. “Memory” denotes 
the memory consumption per processor core in megabytes. “np” repre
sents the number of processor cores, which equals to the number of 
subdomains denoted as N in the early sections of the paper. To measure 
the parallel performance of the algorithm when we increase the number 
of processor cores, we will use “speedup” and “parallel efficiency”. For 
comparison, three base numbers of cores are considered with np0 = 120, 
360 and 720. Speedup is defined as the ratio of the compute times using 

Table 5 
Parallel performance using different number of processor cores with δ = 8 and l = 3. Three meshes with 4.04 × 106, 7.55 × 106 and 30.06 × 106 elements for the pre- 
operative case and three meshes with 3.99 × 106, 7.35 × 106 and 30.02 × 106 elements for the post-operative case are tested.  

Case Mesh np Newton GMRES Time (s) Memory (M) Speedup Efficiency 

Pre- 4.04 × 106 120 2.1 128.62 65.81 8416.81 1.00 100%   
240 2.1 125.71 36.94 4907.13 1.78 89%   
480 2.1 120.10 21.87 1781.23 3.01 75%    

7.55 × 106 360 2.1 248.10 78.32 6323.81 1.00 100%   
720 2.1 128.68 44.13 3050.61 1.77 89%   
1440 2.1 172.57 23.94 1776.58 3.27 82%    

30.06 × 106 720 2.1 444.58 232.27 9839.44 1.00 100%   
1440 2.1 414.11 122.70 6055.46 1.89 95%   
2880 2.1 431.53 86.91 2909.31 2.67 67%  

Post- 3.99 × 106 120 2.1 127.52 63.37 7377.61 1.00 100%   
240 2.1 131.24 37.17 4369.27 1.70 85%   
480 2.1 125.95 21.65 2863.54 2.93 73%    

7.35 × 106 360 2.1 244.81 72.16 5102.98 1.00 100%   
720 2.1 198.29 38.66 2978.35 1.87 93%   
1440 2.1 182.62 23.88 1743.44 3.02 76%    

30.02 × 106 720 2.1 431.26 236.53 9816.90 1.00 100%   
1440 2.1 450.47 140.82 5688.60 1.68 84%   
2880 2.1 410.37 86.66 3093.55 2.73 68%  

Fig. 12. The speedup versus the number of processor cores for the pre- and 
post-operative abdominal aortas, where the pre-operative case with 4.04 × 106, 
7.55 × 106 and 30.06 × 106 elements and the post-operative case with 3.99 ×
106, 7.35 × 106 and 30.02 × 106 elements. The overlapping size is δ = 8 and 
subdomain solver is ILU(3). The solid black lines are for the ideal 
linear speedup. 
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the base number of cores and the compute time using np number of 
cores. Parallel efficiency is the speedup multiplied by np0/np. GMRES is 
set to restart at every 500 iterations. 

The impact of overlapping size and subdomain solver. The 
choices of the level of fill-in and the overlapping size make significant 
influences on the parallel performance of the algorithm. Table 4 shows 
the results obtained from the point-block ILU with l = 1, 2, 3, 4, and δ =
4, 6, 8, 10. For this table, the simulation is carried out on the post- 
operative aorta for 10 time steps with a time step size 0.001 s on a 

mesh with 3.99 × 106 elements. 
δ is used to determine the amount of data that exchanges between the 

adjacent subdomains. A larger δ leads to a better perconditioner, which 
means fewer number of linear iterations. However, at the same time, a 
larger δ increases the communication cost. Hence, to minimize the total 
computing time, an appropriate δ should be chosen to balance the 
GMRES iterations and the communication cost. Specific for a fixed level 
of ILU fill-in in Table 4, the increase of δ from 4 to 8 reduces the 
computing time. A further increase of δ to 10 keeps reducing the GMRES 
iterations, but the averaged computing time tends to rise since the time 
saved by the reduction in linear iterations can not compensate for the 
extra communication cost. δ = 8 offers the optimal performance in terms 
of the total computing time and is used in the following tests. It also 
shows that the memory requirement increases as δ becomes larger. 
Similarly, we face a trade-off for the ILU fill-in levels. For a fixed δ in 
Table 4, the memory requirement increases as l goes from 1 to 4. 
However, when l reaches 4, the number GMRES continues to reduce, but 
the computing time doesn’t. Therefore, we set l = 3 for all the following 
experiments. 

The parallel scalability for large number of processor cores. 
Table 5 presents the results of parallel scalability tested on the pre- and 
post-operative cases for large number of processor cores, including the 
pre-operative case with 4.04 × 106, 7.55 × 106 and 30.06 × 106 Fig. 13. The influence of the time-step sizes Δt = 1.00 × 10− 3, 5.00 × 10− 3 and 

1.00 × 10− 2s on the accuracy of the pressure at point P3. 

Table 7 
The impact of the viscosity μ on the solver. The viscosity μ = 0.01, 0.05 and 0.09 g/cm ⋅ s are tested for the pre- and post-operative abdominal aortas with 120 and 360 
cores.  

Case Mesh np Viscosity (g/cm ⋅ s) Newton GMRES Time (s) Memory (M) 

Pre- 4.04 × 106 120 0.01 2.30 206.35 101.89 9159.83    
0.05 2.10 130.43 66.62 8416.81    
0.09 2.10 251.38 109.36 8416.81    

7.55 × 106 360 0.01 2.20 267.82 87.33 6606.50    
0.05 2.10 240.71 77.52 6323.81    
0.09 2.10 187.05 62.96 6323.81  

Post- 3.99 × 106 120 0.01 2.40 195.29 99.04 8344.01    
0.05 2.10 132.19 65.30 7377.61    
0.09 2.10 94.29 31.95 5062.80    

7.35 × 106 360 0.01 2.20 339.82 98.70 5328.00    
0.05 2.10 315.71 88.82 5102.98    
0.09 2.10 175.33 55.95 5102.98  

Table 6 
The impact of time-step size Δt. The time-step sizes 1.00 × 10− 3, 5.00 × 10− 3 and 1.00 × 10− 2 are tested for the pre- and post-operative abdominal aortas with 120 and 
360 cores.  

Case Mesh np Δt (s) Newton GMRES Time (s) Memory (M) 

Pre- 4.04 × 106 120 1.00 × 10− 3 2.10 127.10 49.51 7377.61    
5.00 × 10− 3 3.10 326.87 195.77 12131.95    
1.00 × 10− 2 3.70 308.54 218.11 14361.03    

7.55 × 106 360 1.00 × 10− 3 2.10 172.57 23.94 1776.58    
5.00 × 10− 3 3.10 716.74 288.34 9150.69    
1.00 × 10− 2 3.70 347.78 175.93 10846.81  

Post- 3.99 × 106 120 1.00 × 10− 3 2.10 125.10 63.02 7377.61    
5.00 × 10− 3 3.10 392.32 225.12 10598.93    
1.00 × 10− 2 3.60 231.56 161.19 12209.59    

7.35 × 106 360 1.00 × 10− 3 2.10 263.76 76.42 5102.98    
5.00 × 10− 3 3.20 682.44 262.39 7578.23    
1.00 × 10− 2 3.60 376.19 171.39 8478.33  
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elements and the post-operative case with 3.99 × 106, 7.35 × 106 and 
30.02 × 106 elements. The optimal choice of overlapping size δ = 8 and 
subdomain solver ILU(3) is adopted. It can be seen that the memory 
usage drops by half when doubling the number of processor cores and 
the number of nonlinear iterations stays at a constant value of 2.1 for all 
the test cases. For the pre-operative case, we observe parallel efficiencies 
at 75% with 480 cores, 82% with 1440 cores and 67% with 2880 cores 
for the three meshes (from coarse to fine). For the post-operative case, 
we have 73% with 480 cores, 76% with 1440 cores and 68% with 2880 
cores. To see it more clearly, the speedup versus the number of processor 
cores is plotted in Fig. 12. Close to linear speedup is achieved for both 
cases. 

The impact of time-step size. Table 6 exploits the impact of time- 
step size Δt on the performance of the algorithm. The time-step sizes 
1.00 × 10− 3, 5.00 × 10− 3 and 1.00 × 10− 2s are tested with 120 and 360 
cores for the pre- and post-operative abdominal aortas. Usually, the 
convergence of explicit schemes is strictly restricted by the time-step 
size. However, our algorithm remains stable for a wide range of Δt 
owing to the fully implicit backward Euler method in time; meanwhile, 
the increasing number of Newton iterations suggests the increasing 
difficulty in the algebraic systems when the time-step size becomes 
larger. Moreover, the influence of the time-step sizes on the accuracy of 
the solution has been tested by the temporal variation of the pressure at 
P3, as shown in Fig. 13. A decrease of the time-step size from Δt = 1.00 
× 10− 2 to Δt = 5.00 × 10− 3 improves the accuracy of the solution, but a 
further reduction to 1.00 × 10− 3s doesn’t help much. 

The impact of viscosity. The viscosity is an important physical 
parameter of the blood flow and different patients may have different 
values. Table 7 shows the robust performance of the algorithm for 
different μ = 0.01, 0.05 and 0.09 g/cm ⋅ s in pre- and post-operative 
abdominal aortas. It can be seen that the decrease of the viscosity 
generally leads to the increase of the compute time, the memory storage, 
and more importantly, the number of Newton iterations, all of which 
imply that the problem becomes harder to solve. 

4. Concluding remarks 

In this paper, a highly scalable parallel method is investigated to 
solve the unsteady incompressible Navier-Stokes equations for the 
simulation of blood flows in a full-size abdominal aorta with and 
without aneurysm and 12 outlets. Using the resistance boundary con
dition, the velocity, the pressure and the wall shear stress calculated 
from the pre- and post-operative abdominal aortas are compared. Re
sults show that the aneurysm repair reduces the pressure and increases 
the magnitude of the velocity and the wall shear stress in the abdominal 
section. Temporal variations of the point-wise and the spatial-averaged 
wall shear stress are studied. Moreover, the parallel scalability is studied 
for different preconditioning parameters, including the fill-in level and 
the overlapping size; and the robustness of the algorithm is examined for 
different mesh sizes, time-step sizes and the blood viscosity. A parallel 
efficiency of about 70% is obtained for both pre- and post-operative 
cases on a parallel computer with up to 2880 processor cores. With 
such an approach, a patient-specific flow analysis can be obtained in 
about an hour using 480 processor cores, and the time can be further 
shortened linearly by increasing the number of processor cores. Large 
computing time is one of the obstacles for the applications of CFD in the 
surgical planning. With this highly scalable approach, we are one step 
closer to the goal. A statistical analysis of data from more patients will be 
considered in a future work. 
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