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SUMMARY

We introduce a stabilized finite element method for the 3D non-Newtonian Navier–Stokes equations and a
parallel domain decomposition method for solving the sparse system of nonlinear equations arising from
the discretization. Non-Newtonian flow problems are, generally speaking, more challenging than Newto-
nian flows because the nonlinearities are not only in the convection term but also in the viscosity term,
which depends on the shear rate. Many good iterative methods and preconditioning techniques that work
well for the Newtonian flows do not work well for the non-Newtonian flows. We employ a Galerkin/least
squares finite element method, with stabilization parameters adjusted to count the non-Newtonian effect,
to discretize the equations, and the resulting highly nonlinear system of equations is solved by a Newton–
Krylov–Schwarz algorithm. In this study, we apply the proposed method to some inelastic power-law fluid
flows through the eccentric annuli with inner cylinder rotation and investigate the robustness of the method
with respect to some physical parameters, including the power-law index and the Reynolds number ratios.
We then report the superlinear speedup achieved by the domain decomposition algorithm on a computer
with up to 512 processors. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many fluid flows in industrial and medical applications are non-Newtonian, for example, plastic
polymers and blood flows in small arteries [1–3]. By definition, for non-Newtonian fluids, the rela-
tionship between the shear stress and the rate of deformation is nonlinear. Depending if the flow has
memory, non-Newtonian fluids can be classified into two types [2, 4], time-independent or time-
dependent fluids. In this paper, we focus on the time-independent fluid. The shear rate is determined
only by the current value of shear stress. There are three major classes of time-independent flows.
One of them is the pseudoplastic fluid, which exhibits the shear thinning behavior, that is, its viscos-
ity decreases with increasing shear rate. Almost all polymer solutions and melts belong to this class.
Examples are molten polyethylene, polypropylene, solution of carboxymethylcellulose in water, and
so on. The velocity gradient tends to stretch out the polymer chains so that the fluid particles are able
to move freely. The mathematical model commonly used for this class of fluids is the power-law or
Ostwald Waele model. Opposite to the pseudoplastic fluid is the dilatant fluid, which possesses the
shear-thickening property, that is, its viscosity increases with the increase of the shear rate. Only a
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few polymer solutions are dilatant. The third class is the viscoplastic fluid, which does not move
unless the stress applied exceeds a critical value, such as the Bingham viscoplastic fluid.

In addition to the numerical difficulty arising from the incompressibility condition, the strong
nonlinearities due to the convection term and the shear rate-dependent viscosity term make numer-
ical solution of non-Newtonian flows more challenging than Newtonian flows. There are several
research publications on the modeling and the simulation of non-Newtonian flows; see for examples
[5–8] and their references. Some of the papers are devoted to the development of efficient iterative
methods for non-Newtonian flows. To mention a few, Elias et al. [9, 10] employ a Newton–Krylov
type algorithm to solve a 2D viscoplastic flow problem discretized with a streamline-upwind/Petrov-
Galerkin/pressure-stabilizing/Petrov–Galerkin (SUPG/PSPG) stabilized finite element method.
In the papers, they use Eisenstat and Walker’s adaptive stopping strategy for the forcing term
[11] to avoid over-solving the Jacobian system and to enhance the robustness of inexact Newton
method. Furthermore, in [9], an edge-by-edge block type preconditioner is proposed to acceler-
ate the convergence of a Krylov subspace method in the 3D large-scale computation. In [12], a
power-law non-Newtonian flow problem is considered. In the finite volume discretization, a pseudo-
compressibility term is added to the conservation of mass equation, and the resulting time-dependent
system is solved using a fully implicit time marching scheme together with Newton–Krylov type
algorithm to obtain the steady-state solution. In addition, the performance of several block precon-
ditioners, such as three-diagonal or five-diagonal blocks, where each block is approximated by an
incomplete lower upper (ILU) decomposition is investigated. In [13, 14], the authors investigate
a semi-implicit finite volume discretization of a viscoelastic fluid in the velocity-pressure-stress
formulation. To solve the resulting algebraic system, they decouple the system as two sub-linear sys-
tems, including a generalized Stokes problem corresponding to the velocity and pressure variables,
and a stress equation. To overcome the numerical difficulty due to the zero block in the saddle point
problem, the authors propose to replace it with a scaled discrete Laplacian matrix so that an ILU(0)
preconditioner or a multigrid preconditioner with standard smoothers can be used. In [15], Grinevich
and Olshanskii study a Stokes-type problem with variable viscosity. A special block preconditioner
based on the velocity diffusivity term and the pressure Schur complement for fully coupled sys-
tem is introduced, and an analysis is also provided in the paper. In addition, Gwynllyw and Phillips
[16] consider the time-dependent Stokes problem with the shear-thinning and pressure-thickening
viscosity. The operator-splitting approach is employed to obtain a semi-positive definite linear sys-
tem for the pressure variable and the discrete Helmholtz-type system for the velocity components.
They investigate numerically the performance of two types of preconditioners based on the Schur
complement and the Crank–Nicolson schemes for both the pressure and velocity systems.

In this paper, we introduce a finite element method for non-Newtonian fluids and a par-
allel coupled solver, which does not split the velocity and pressure variables, based on the
Newton–Krylov–Schwarz (NKS) algorithm. The NKS algorithm consists of the following three key
ingredients: (i) an inexact Newton method as a nonlinear solver [17]; (ii) a Krylov subspace type
method, such as generalized minimal residual method (GMRES), as a Jacobian system solver; and
(iii) an overlapping Schwarz-type method [18] as a preconditioner to accelerate the convergence of
the linear solver. NKS has been successfully applied for a variety of applications in computational
sciences and engineering, such as incompressible Newtonian flows, transonic flows, fluid-structure
interaction problems [19–22], and flow control problems [23–25]. The aim of this study is to inves-
tigate the performance of NKS for non-Newtonian flows, in particular, its robustness with respect to
the physical parameters and its parallel scalability.

As a test case, we study numerically some inelastic flows through the eccentric annuli with rota-
tional inner cylinder. Although the geometry and flow condition are relatively simple, the physical
structure of the fluid in the annuli is rather complicated because it consists of the entrance flow, the
fully-developed flow, secondary flow, boundary layer, helical stream, and so on. Other similar prob-
lems have been intensively studied, for example, concentric annuli with or without inner cylinder
rotation. Interested readers are referred to Appendix B in [26] for a comprehensive list of related
works and Chin’s book [27] on this topic. One of the most important applications of annular flows
is the drilling of oil wells. In these operations, the mud is pumped through the hollow drill shaft
to the drill bit, where it enters the wellbore and returns under pressure as a helical flow to the well
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surface. The primary functions of the mud are to carry rock cuttings to the surface, to lubricate the
drill bit, and to control subsurface pressures. To reduce the computational cost, some simplifications
are often used by researchers in this field; for example, if the annuli is long enough and there is no
axial velocity, the 3D model can be reduced to 2D [10]. Another possible simplification is based on
the assumption that the flow is fully developed, then the pressure gradient terms in the momentum
equations can be computed with a small number of grid points in the axial direction [26, 28–31].
However, for more general situations, to fully understand the physics of annular flows, a full 3D
model discretized on a fine 3D mesh is necessary and, hence, parallel computing becomes very
important. The method to be studied in this paper is highly parallel and can be extended to other
types of non-Newtonian flows.

The organization of this paper is as follows. In Section 2, we describe a mathematical model
for 3D non-Newtonian flows, a finite element method to discretize the flow problem, and an NKS
algorithm for solving the discretized problem. Some numerical results are presented in Section 3,
including a grid independence test, a numerical validation of the algorithm using analytical solution,
and a test case involving rotational eccentric annular flows. Parallel performance results are also
given in Section 3. Some concluding remarks and possible future research directions are provided
in Section 4.

2. FLOW MODELS, DISCRETIZATION, AND SOLUTION ALGORITHM

2.1. Problem statement

Consider the 3D steady-state incompressible non-Newtonian Navier–Stokes equations defined in
� 2 R3 8̂̂̂

<
ˆ̂̂:

� .u � ru/ � r � � D 0 in �;

r � u D 0 in �;

u D g on �D;

� �n D 0 on �N ;

(1)

where u D .u1; u2; u3/
T is the velocity field; � is the fluid density, assumed to be a constant; and

� is the Cauchy stress tensor defined as

� D �pI C �;

where p is the pressure, I is the identity tensor, and � is the shear stress tensor. Here, we impose
two types of boundary conditions on @� D �D [ �N . �D is the Dirichlet-type boundary condition
and �N is the Neumann-type boundary condition. In the work, the generalized Newtonian model
is employed, where the viscosity is a function of the second invariant of the deformation rate ten-
sor [3, 32] and, unlike Newtonian flows, the relationship between the sheer stress tensor and the
deformation rate tensor is nonlinear, that is,

� D 2�.I2/D;

where � is the viscosity and I2 D 1
2
tr.D2/ is the second invariant of the deformation tensor. Here,

D D
1

2
Œ.ru/ C .ru/T �, and tr denotes the trace of a second-order tensor. More specifically, the

commonly used power-law is considered,

�.I2/ D

´
�0I

.n�1/=2
2 ; if I2 > �0;

�0�
.n�1/=2
0 ; if I2 6 �0;

(2)

where n is the power-law index. When n < 1, the flow is pseudoplastic. For example, nail polish,
whipped cream, and ketchup are classified as this type of flows; on the other hand, when n > 1, the
flow is called dilatant. Corn starch and sand in water belong to this type of fluids. Note that when
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n D 1, the power-law model reduces to be Newtonian. Other constants are �0, the consistency
index, and �0 > 0, the cutoff value for I2. In the situation that I2 is close to zero, it is replaced by
the cutoff value.

2.2. Galerkin/least squares finite element formulation

To discretize the incompressible generalized Newtonian Navier–Stokes equations (1), we employ
the Galerkin/least squares (GLS) finite element method, which belongs to the class of stabilized
finite element methods, which is popular for solving incompressible flow problems mainly due to
the flexibility in choosing finite element basis functions for each variable (which does not need to
satisfy the Ladyzhenskaya-Babuška-Breezi condition [33]), and more stable and accurate solution
can be obtained for high Reynolds number flows. GLS is formulated as the traditional Galerkin finite
element method plus the element-wise least-squares of the residual term. The associated stabiliza-
tion scheme is originally designed for Newtonian flows and, in this work, we extend it to generalized
Newtonian flows using the power-law model in a straightforward manner. Because stabilized finite
element methods are not commonly used for non-Newtonian flows, we conduct a series of numeri-
cal experiments to validate our method in the numerical result section. We mention that a different
stabilized finite element method based on SUPG/PSPG formulation is available in the literature for
non-Newtonian flows [10].

Let T h D ¹Kº be a conformal, quasi-uniform tetrahedron finite element mesh with the element
diameter, hK . Let Vh and Ph be a pair of piecewise linear continuous finite element spaces for the
velocity and pressure, respectively

Vh D
°
v 2 .C 0.�/ \H 1.�//3 W vjK 2 P1.K/

3; K 2 T h
±

and

Ph D
°
p 2 C 0.�/ \ L2.�/ W pjK 2 P1.K/; K 2 T h

±
:

Here,C 0.�/ is the set of all continuous functions defined on�,L2.�/, andH 1.�/ are the standard
notations with the usual meanings in the finite element literature [32–34]. The weighting and trial
velocity function spaces V 0

h
and V g

h
are

V 0h D ¹v 2 Vh W v D 0 on�Dº

and

V
g

h
D ¹v 2 Vh W v D g on �N º:

Similarly, Ph is used for both the weighting and trial pressure function spaces. The GLS finite
element formulation for the incompressible generalized Newtonian Navier–Stokes equations (1)
takes the following form: Find uh 2 V

g

h
and ph 2 Ph, such that

B.uh; phI v; q/ D 0 8.v; q/ 2 V 0h � Ph (3)

with

B.u; pI v; q/ D ..�ru/ � u; v/C .2�.I2.u//D.u/;D.v// � .r � v; p/ � .r � u; q/

C
X
K2T h

..ru/ � uCrp � 2�.I2.u//r �D.u/; �GLS ..rv/ � vCrq � 2�.I2.v//r �D.v///K

C.r � u; ıGLSr � v/:

We use the stabilization parameters �GLS and ıGLS suggested in [34], with a modification of the
element Reynolds number as
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�GLS .x; ReK.x// D
hK

2ju.x/j2
	.ReK.x//:

ıGLS .x; ReK.x// D 
ju.x/j2hK	.ReK.x//; where 
 > 0:

Here, ReK is an element Reynolds number defined as follows:

ReK.x/ D
ju.x/j2hK

12�.I2.u.x///
;

(For Newtonian flows, i.e., n D 1, � is a constant), and the function 	 is defined as

	.ReK.x// D

²
ReK.x/; 0 6 ReK.x/ < 1;
1; ReK.x/ > 1;

which distinguishes the locally convection-dominated flow asReK.x/ > 1 and the locally diffusion-
dominated flow as 0 6 ReK.x/ < 1. Or, equivalently, the GLS formulation (3) can be written as a
large, sparse, nonlinear algebraic system

F.x/ D 0; (4)

where the vector x corresponds to both the nodal velocity uh and pressure ph. Note that the sources
of nonlinearity are from the convection term and the nonlinear viscosity. These two terms are treated
nonlinearly in this paper. This is different from the so-called semi-linear approach, in which the
nonlinear terms are linearized using the approximate solution obtained from the previous iteration.

2.3. Newton–Krylov–Schwarz algorithm

We employ an NKS algorithm for solving large nonlinear systems of equations (4), which is
described as follows. Let x.0/ be a given initial guess and assume x.k/ is the current approximation
of x. Then a new approximation x.kC1/ can be computed by the following steps:

Step 1: Find a Newton direction s.k/ by solving the following preconditioned Jacobian system
approximately by a Krylov subspace method, such as GMRES [35],

Jks
.k/ D �F

�
x.k/

�
; with s.k/ DM�1k y; (5)

where Jk is Jacobian of F evaluated at x.k/ and M�1
k

is the right additive Schwarz
preconditioner.
Step 2: Obtain the new approximation x.kC1/ D x.k/ C 
.k/s.k/, where 
.k/ 2 .0; 1� is a
damping parameter.

In NKS, the accuracy of the solution to the Jacobian systems (5) is controlled by the parameter,
�k , to force the condition

kF
�
x.k/

�
C F 0

�
x.k/

�
s.k/k2 6 �kkF

�
x.k/

�
k2

to be satisfied. �k is often referred to as the forcing term. If �k is small enough, the algorithm
reduces to the exact Newton algorithm. In our implementation, the Jacobian matrix is constructed
approximately, more precisely speaking, the components corresponding to the pressure gradient;
the diffusive and convective terms in the Galerkin formulation are evaluated analytically. The terms
corresponding to the partial derivatives of the nonlinear viscosity in the diffusive term with respect
to the spatial variables are ignored because they are small relative to the other terms. All other terms
involving the stabilization parameters are computed approximately by using a multicolored first-
order forward finite difference scheme [36, 37]. The step length, 
.k/ 2 Œ
min; 
max� � .0; 1�, in
Step 2 is selected so that

f
�
x.k/ C 
.k/s.k/

�
6 f

�
x.k/

�
C ˛
.k/rf

�
x.k/

�T
s.k/;

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 78:502–520
DOI: 10.1002/fld



PARALLEL DD METHOD FOR FE APPROXIMATION OF 3D NON-NEWTONIAN FLUIDS 507

where the two parameters 
min and 
max act as safeguards, which are required for strong global
convergence; the merit function f is defined as kF.x/k22=2; and the parameter ˛ is used to assure
that the reduction of f is sufficient. Here, a cubic linesearch technique [17] is employed to determine
the step length, 
.k/.

To define a parallel Schwarz preconditioner, we partition the finite element mesh T h introduced
in the previous section. Let ¹�hi ; i D 1; ::::; N º be a non-overlapping subdomain partition whose
union covers the entire domain � and its mesh T h. Figures 1 and 2 show samples of 3D finite
element mesh and its partition into non-overlapping submeshes. We denote T hi as the collection of
mesh points in �hi . To obtain overlapping subdomains, we expand each subdomain �hi to a larger
subdomain �h;ıi with the boundary @�h;ıi . Here, ı is an integer indicating the level of overlap. We
assume that @�h;ıi does not cut any elements of T h. Similarly, we denote T h;ıi as the collection of
mesh points in �h;ıi .

Now, we define the subdomain velocity space as

V ih D

²
vh 2 Vh \

�
H 1

�
�
h;ı
i

��3
W vh D 0 on @�h;ıi

³

and the subdomain pressure space as

P ih D
°
ph 2 Ph \ L

2
�
�
h;ı
i

�
W ph D 0 on @�h;ıi n�D

±
;

On the physical boundaries, we impose Dirichlet conditions according to the original
equations (1). On the artificial subdomain boundaries, we assume both u D 0 and p D 0. Similar
boundary conditions were used in [38].

LetRhi W Vh�Ph ! V i
h
�P i

h
be a restriction operator, which returns all degrees of freedom (both

velocity and pressure) associated with the subspace V i
h
� P i

h
. Rhi is a 4ni � 4n matrix with values

of either 0 or 1, where n and ni are the total number of mesh points in T h and T h;ıi , respectively,
and

PN
iD1 4ni > 4n. Note that for P1 � P1 elements, we have four variables per mesh point, three

Figure 1. A sample 3D tetrahedron mesh.

Figure 2. A sample domain decomposition with 16 subdomains; the elements with the same color belong to
the same subdomain.
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for the velocity and one for the pressure. Then, the extension operator
�
Rhi
�T

can be defined as the
transpose ofRhi . The multiplication ofRhi (and .Rhi /

T ) with a vector does not involve any arithmetic
operation, but does involve communication in a distributed memory parallel implementation. Using
the restriction matrix, we write the additive Schwarz preconditioner in the matrix form as

M�1k D

NX
iD1

�
Rhi

�T
J�1i Rhi ;

where J�1i is subspace inverse of Ji D Rhi J.R
h
i /
T . We remark that the global-to-local restriction

operator Rhi collects the data from neighboring subdomains and the local-to-global prolongation
operator .Rhi /

T sends partial solution to neighboring subdomains. J�1i in M�1
k

often are solved
by a sparse LU decomposition or an incomplete decomposition such as ILU with some levels of
fill-ins [39].

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we first provide a validation of the proposed discretization and solver using a test
problem that has an analytic solution, and then we consider a non-Newtonian rotational eccen-
tric annular flow problem to investigate the robustness and the parallel performance of the NKS
algorithm. In addition, we discuss some interesting behavior of the flow based on the numerical
experiments. In the last subsection, we study the non-Newtonian effect on the entrance length.

3.1. Validation of the proposed discretization method

To validate the proposed stabilized finite element method for non-Newtonian flows, we consider
a simple test case that has an analytical solution. This is a steady-state non-Newtonian power-law
flow passing through a circular tube [40]. Specifically, a 3D cylindrical domain of length L D 5 and
radius R D 0:5 is used. The unit uniform inlet velocity, the outlet stress-free, and the no-slip wall
boundary conditions are imposed. The Reynolds number is defined as Re D �VinR

�
, based on the

inlet velocity, and the radius as the characteristics of the velocity and length, respectively. Here, the
parameters in Equation (2) are used for nonlinear viscosity: the density � D 1 and the consistency
index �0 D 0:01, and the cutoff value �0 D 10�6. The velocity profile near the inlet region is
uniform, and the shape of the velocity profile is varied with respect to the axial axis (the flow is
slower near the wall because of the viscous effect) until it is fully developed to be a parabolic type
velocity. The analytical solution for the axial velocity profile in the cylindrical coordinates at some
particular cross-section within the fully-developed region takes the following form,

V´.r/

Vin
D
3nC 1

nC 1

 
1 �

� r
R

��nC1
n

�!
:

The detailed derivation of the analytical solution can be found in [4]. A sequence of uniform meshes
ranging from about 30,000 elements for the coarsest mesh to 1,800,000 elements. To perform the
mesh convergence analysis, we compute the discrete two-norm errors for different values of n and
Re D 25 with different mesh sizes, where the difference between the analytical and the numerical
solutions is evaluated at the 100 equally spaced grid points along the diameter. As shown in Table I,
quadratic or better convergence is achieved for all values of n.

From the analytical solution, we know that the velocity profile is independent of the values of
Reynolds number, which is confirmed by the numerical results in Figure 3. For a fixed n, all the
velocity profile curves corresponding to different Re coincide. As shown also in the same figure,
the maximum of the outlet velocity profile is located at the center and its value increases as the
power-law index, n, increases.
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Table I. The discrete 2-norm error of the Galerkin/least squares finite element solutions
with respect to the mesh size and their convergence rates for n D 0:5, 1.0, and 1.5.

# of nodes
Meshes hK # of elements kerrornD1:0k2 kerrornD0:5k2 kerrornD1:5k2

Mesh_A 0.1 5797 0.13424 0.26187 0.1939728780

Mesh_B 0.08 10577 0.08820 0.13581 0.1338454211

Mesh_C 0.05 36952 0.03128 0.03998 0.05624198218

Mesh_D 0.02 323394 0.00528 0.00398 0.008111800859

Convergence rate 2.0 2.6 2.0

Figure 3. The velocity profile with different n and Re.

3.2. A rotational eccentric annular flow problem

To further study the numerical performance of the proposed algorithm, we consider a non-
Newtonian rotational eccentric annular flow problem, which is described mathematically in
Equation (1) defined in the computational domain �; see Figure 4 for the geometrical config-
uration of the flow problem and associate boundary conditions. The boundary consists of four
segments:� D �in [�out [�wall_in [�wall_out. We apply a uniform velocity, uin, on �in; a stress-
free boundary condition on �out; a no-slip boundary condition on the walls; a stationary condition,
u D 0, on �wall_out; and a rotational condition, u D urot, on �wall_in. Figure 5 shows the geometric
configuration for the circular cross-section of the eccentric annulus.RI andRO are the radii of these
two cross-sections. The ratio of two radii is given in � D RI=RO , and the eccentricity is defined as
" D e=.RO �RI /. In addition, the non-dimensional flow parameters are defined as follows

Axial Reynolds number: Re´ �
�uinDh

�F
,

Azimuthal Reynolds number: Rer �
�urotDh

�F
,

Reynolds number ratio: rRe �
Re´

Rer
,
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Figure 4. 3D rotational eccentric annulus geometry.

Figure 5. Schematic view of 3D rotational eccentric annulus cross section.

Table II. Parametric settings for four test cases.

uin Re´ urot Rer rRe

0.0 0 1.0 100 0.0
0.1 10 1.0 100 0.1
1.0 100 1.0 100 1.0
2.0 200 1.0 100 2.0

where Dh D 2.RO �RI / is the hydraulic diameter of eccentric annuli and �F is the characteristic

viscosity for the flow, defined as �0
�
urot
Dh

�n�1
.

Robustness and parallel performance of Newton–Krylov–Schwarz. We study the robust-
ness and the efficiency of the NKS algorithm with respect to the power-law index, n, and the
Reynolds number ratio, rRe . Detailed parameter settings for the numerical experiments are listed
in Table II. A zero initial guess is employed, when possible, and a power-law index-based contin-
uation method is used to generate the initial guess for other test cases. We claim the convergence
of the NKS algorithm when the absolute tolerance kF.x.k//k2 < 10�10 or the relative tolerance
kF.x.k//k2 < 10�6kF.x.0//k2 is satisfied. The Jacobian system is solved inexactly by using an
additive Schwarz preconditioned GMRES with forcing term, �k D 10�4. In the parallel implemen-
tation, each subdomain problem is assigned to a core and the subdomain linear system is solved
by a sparse LU decomposition method. The overlapping size for the Schwarz preconditioner is set
to be 1.
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Table III shows the number of Newton iterations, the average number of GMRES iterations, and
the timing results of each case. We summarize some of the observations as follows.

� For fixed rRe , compared with the Newtonian case n D 1, the number of Newton iterations
increases as the power-law index n increases (> n) or decreases (< n), in which the non-
Newtonian effect is more significant. As shown in Figure 6, NKS converges quadratically for
Newtonian flows, while for the cases of non-Newtonian flows, the rate of convergence of NKS
degrades to linear.

Table III. Nonlinear and linear iteration counts and timing results.

n

rRe D 0:0 rRe D 0:1 rRe D 1:0 rRe D 2:0

nNew.nGMRES/ time(sec) nNew.nGMRES/ time(sec) nNew.nGMRES/ time(sec) nNew.nGMRES/ time(sec)

0.5 25(70.1) 6778.5 18(73.3) 4815.5 17(82.4) 4608.8 15(92.9)* 4192.3*
0.6 21(72.1) 6810.9 17(72.2) 4391.6 14(83.3) 3463.1 12(86.7)* 2920.3*
0.75 19(72.4) 4951.2 15(71.9) 3707.3 10(83.0) 2583.1 11(84.2) 2836.5
0.8 17(71.3) 4306.8 15(71.7) 3829.2 9(80.3) 2381.3 10(83.9) 2513.9
1.0 7(63.3) 1595.9 6(67.8) 1313.8 5(81.0) 1332.0 8(78.1) 2101.8
1.2 15(72.3) 3849.4 13(71.2) 3214.3 9(76.8) 2345.5 10(78.3) 2460.8
1.25 15(72.3) 4137.7 13(71.5) 3054.9 10(75.2) 2443.9 10(81.7) 2640.2
1.4 15(71.7) 4512.8 13(70.8) 3256.0 14(67.6) 3407.3 15(76.7) 3856.6
1.5 17(72.8) 4545.9 22(40.9) 5666.5 32(42.8) 7845.4 19(79.9) 4945.1

‘nNew’ denotes the number of Newton iterations and ‘nGMRES’ denotes the average number of generalized minimal
residual method iterations per Newton iteration. The mark ‘*’ indicates that the parameter continuation method is
used, where the converged solution with n D 0:75 is used as an initial guess.

Figure 6. Histories of nonlinear residuals for different rRe . Here, ‘New.’ is for Newtonian flows, ‘Pse.’ is
for n D 0:75 case, and ‘Dil.’ is for n D 1:25 case.
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� For fixed n ranging within [0.75, 1.4], the number of Newton iterations decreases then increases
as rRe increases. At the beginning (rRe D 0:0), the flow is dominated by the nonlinear viscosity
and at the end (rRe D 2:0), the flow is dominated by the nonlinear convection.
� When both the nonlinear viscosity and convection effect are strong (e.g., n is close to 0.5 and
rRe is close to 2.0), NKS fails to converge when zero initial guess is used. Hence, in addition to
the globalization linesearch technique, we use a power-law index based continuation method
to generate the initial guess. More precisely speaking, we first solve the flow problem with
n D 0:75, then its converged solution is used as an initial guess for the cases of n D 0:5

and 0.6.

The parallel performance of 3D rotational eccentric annular flows for cases with different rRe
are shown in Table IV. It is clear that for fixed rRe , our fluid solver is nonlinearly scalable and
the average number of GMRES iterations increases mildly as the number of processors grows. In
terms of the total computing time, our parallel fluid solver achieves a good scalability with up to
512 processors. Generally speaking, the computational cost for the pseudoplastic and dilatant cases
is two to three times more expensive than the Newtonian case mainly because of the fact that more
Newton iterations is needed. This is an indication that non-Newtonian flows are more nonlinear than
Newtonian flows.

Some quantitative analysis of the flows. Figures 7 and 8 show the viscosity distribution and
shear stress distribution for the cases of pseudoplastic (n D 0:5) and dilatant (n D 1:5) flows.
The relationship between viscosity and shear stress is as expected. The shear stress for the pseudo-
plastic case decreases as the viscosity increases, and the shear stress for the dilatant case increases
as the viscosity increases. We also present plots of other physical quantities of the flows, includ-
ing the pressure distribution (Figure 9), the velocity distribution (Figure 10), and the streamlines
(Figure 11). For each case, we compare the effect on the values of different power-law index n under
the same flow boundary conditions. Some observations are made as follows:

� The distributions of the pressure gradient of all cases are similar, and the only significant
difference appears at the inlet near the inner cylinder for the dilatant cases (n D 1:25 and 1.5).

Table IV. Parallel performance of Newton–Krylov–Schwarz.

rRe np

Newtonian pseudoplastic dilatant

nNew.nGMRES/ time(sec) nNew.nGMRES/ time(sec) nNew.nGMRES/ time(sec)

0.0 64 7(63.3) 1595.9 19(72.4) 4951.2 15(72.3) 4137.7
128 7(78.9) 622.0 19(92.2) 2259.9 15(90.5) 1680.3
256 7(105.0) 249.5 19(122.1) 825.4 15(121.1) 626.3
512 7(132.2) 101.2 19(150.9) 316.3 15(150.5) 261.5

0.1 64 6(67.8) 1313.8 15(71.9) 3707.3 13(71.5) 3054.9
128 6(84.1) 617.3 16(89.9) 1855.0 13(89.7) 1445.9
256 6(113.7) 193.5 16(120.1) 620.1 13(119.2) 547.0
512 6(139.5) 96.1 16(149.4) 252.1 13(148.6) 210.9

1.0 64 5(81.0) 1332 10(83.0) 2583.1 10(75.2) 2443.9
128 5(102.4) 448.8 10(103.3) 1045.5 10(95.2) 1021.9
256 5(134.8) 207.5 10(136.7) 402.0 10(122.8) 382.6
512 5(165.6) 81.5 10(168.8) 177.1 10(153.4) 164.4

2.0 64 8(78.1) 2101.8 11(84.2) 2836.5 10(81.7) 2640.2
128 8(99.0) 725.7 11(107.2) 1196.9 10(103.4) 921.0
256 8(129.9) 267.8 11(137.8) 515.8 10(135.8) 434.8
512 8(162.5) 125.1 11(175.1) 199.1 10(167.2) 170.6

‘nNew’ denotes the number of Newton iterations and ‘nGMRES’ denotes the average number of
generalized minimal residual method iterations per Newton iteration.
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Figure 7. A comparison of viscosity (top) and shear stress in the logarithmic scale (bottom) for the case of
pseudoplastic (n D 0:5).

Figure 8. A comparison of viscosity (top) and shear stress in the logarithmic scale (bottom) for the case of
dilatant (n D 1:5).

� For the velocity distribution, as the power-law index decreases, the corresponding flow
becomes slower when fully developed.
� All cases have three similar major patterns in the streamlines: straight streamlines in the top

gap, rotational streamlines near the inner-cylinder, and helical streamlines between the inner
and outer cylinders. However, as the value of n becomes smaller, the helical streamlines near
the sides disappear.
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Figure 9. Pressure distributions for the cases with different values of the power-law index in the order of
n D 0:50; 0:75; 1:0; 1:25, and 1.50.

Non-Newtonian effect on the entrance length. The flow is referred to as fully developed when
the velocity profile remains unchanged at any cross section of the flow domain. As the fluid enters
and flows through the annulus, the viscosity causes the fluid to stick to the walls (the no-slip
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Figure 10. Velocity distributions for the cases with different values of the power-law index in the order of
n D 0:50; 0:75; 1:0; 1:25, and 1.50.
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Figure 11. Streamlines for the cases with different values of the power-law index in the order of n D
0:50; 0:75; 1:0; 1:25, and 1.50.
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boundary condition). Because of the viscous effect, the boundary layer starts to grow, such that the
initial velocity profile changes along the annulus until the fluid reaches certain points where the
velocity profile does not vary with the axial position. The distance from the entrance to that point is
called the entrance length, le=Dh. Here, the distance le is normalized by the hydraulic diameter of
the eccentric annuli Dh. We are interested in finding the relationship between the entrance length
le=Dh [41], the power-law index n, and the Reynolds number ratio rRe for rotational eccentric
annulus flows.

We first consider four different axial velocities or four different Reynolds number ratios as listed
in Table II for the pseudoplastic fluid with n D 0:75 and the dilatant fluid with n D 1:25.
Figures 12–15 show the comparison of velocity contour plots on the y´-plane with different inflow
axial velocities for Newtonian, pseudoplastic, and dilatant fluids. In the case of rRe D 0:0 and
rRe D 0:1, because the rotational force is much stronger than the pressure gradient, the fluid flows
are never fully developed, and on the other hand, in the case of rRe D 1:0 and rRe D 2:0, three
types of fluids are all fully developed at certain points.

Figure 12. rRe D 0:0 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.

Figure 13. rRe D 0:1 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.
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Figure 14. rRe D 1:0 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.

Figure 15. rRe D 2:0 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.

Table V. The entrance length le/Dh.

rRe pseudoplastic Newtonian dilatant

1.0 7.4 6.6 5.8
2.0 8.2 7.8 6.8

The entrance lengths for different kinds of fluids and Reynolds number ratios are summarized in
Table V. For the case of rRe D 1:0 fully developed conditions occur at about ´ D 7:4, ´ D 6:6

and ´ D 5:8 for pseudoplastic fluid, Newtonian fluid and dilatant fluid, respectively. And for the
case of rRe D 2:0 fully developed conditions occur at about ´ D 8:2, ´ D 7:8 and ´ D 6:8 for
pseudoplastic fluid, Newtonian fluid and dilatant fluid, respectively. Therefore, the entrance length
of the dilatant fluid (n > 1) is shorter than that of the Newtonian fluid, and the pseudoplastic fluid
(n < 1) has the shortest entrance length. Moreover, the smaller the Reynolds number ratio is, the
shorter the entrance length is.
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4. CONCLUSIONS

We introduced a stabilized finite element method for 3D non-Newtonian fluids and a corresponding
parallel NKS algorithm for solving the large, sparse, highly nonlinear system of equations arising
from the finite element discretization. The finite element method was carefully validated by compar-
ing its solution with an analytical solution that is available for a special test problem. We observed
that NKS works well in most cases for different power-law index and the Reynolds number ratio;
more precisely, NKS converges quadratically for Newtonian flows, but as the power-law index
moves away from 1.0 (i.e., the non-Newtonian effect increases), the convergence changes toward
linear. When both the nonlinear viscosity and the nonlinear convection are strong, standard NKS
with zero initial guess fails to converge. In such situations, we introduced a power-law index-based
continuation method that generates an initial guess for NKS using the solution of a flow problem
corresponding to a power-law index closer to 1.0. With this technique, we are able to solve prob-
lems with a wide range of power-law index values and Reynolds number ratios. Moreover, using the
computational results, we provided some quantitative analysis of the 3D flows in terms of stream-
lines, pressure distributions, and shear stress distributions. We also demonstrated that the domain
decomposition-based preconditioning algorithm is quite effective for these rather difficult, highly
ill-conditioned systems of algebraic equations. Superlinear speedup is obtained with up to 512 pro-
cessors. In this work, we focused on how the performance of NKS is affected by the physical
parameters, including the Reynolds number and the power-law indices, and so on. The convergence
rate of the linear iterative solver may be further improved by tuning some of the parameters in the
Schwarz preconditioners, some parametric studies for several closely related problems can be found
in [24, 42]. In the future, we plan to continue to work on more complicated non-Newtonian flu-
ids such as Bingham fluid and time-dependent fluids. Finally, our algorithmic framework is quite
general and can be extended to other cases with complex geometry and fluid conditions.
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