
IMPLICIT SPACE-TIME DOMAIN DECOMPOSITION METHODS
FOR STOCHASTIC PARABOLIC PARTIAL DIFFERENTIAL

EQUATIONS∗

CUI CONG† , XIAO-CHUAN CAI‡ , AND KARL GUSTAFSON§

Abstract. We introduce and study parallel space-time domain decomposition methods for solv-
ing deterministic and stochastic parabolic equations. Traditional parallel algorithms solve parabolic
problems time step by time step. The parallelism is restricted to each time step, and the algo-
rithms are purely sequential in time. In this paper, we develop some overlapping Schwarz methods
whose subdomains cover both space and time variables, and we show that the methods work well
for stochastic parabolic equations discretized with an implicit stochastic Galerkin method. One- and
two-level Schwarz preconditioned recycling GMRES methods are carefully investigated such that
many components of the methods are reused when a large number of linear systems are solved.
The key elements of this approach include an ordering algorithm and two grouping algorithms. We
present some experimental results obtained on a parallel computer with more than one thousand
processors.

Key words. Stochastic parabolic equations, implicit space-time domain decomposition meth-
ods, recycling Krylov subspace method, parallel computing

AMS subject classifications. 35R60, 60H15, 60H35, 65C30, 47B80, 65N55, 65M55, 65M60

1. Introduction. In this paper, we develop parallel implicit algorithms for solv-
ing a parabolic partial differential equation (PDE)

∂u

∂t
−∇(a∇u) = f(x) in D × (0, T ]

u(x, 0) = u0(x) in D
u(x, t) = 0 on ∂D × [0, T ],

(1.1)

where x ∈ D ⊂ R2, and f(x) and u0(x) are given. The diffusion coefficient a is either
a standard function a = a(x) or a random function a = a(x, ω). In the latter case, the
parabolic equation is stochastic [33, 41]. Traditional parallel approaches for solving
time dependent problems focus on the parallelization within each time step, and are
purely sequential between time steps. As the number of processors becomes much
larger on recent, and future, supercomputers, a new generation of algorithms is being
introduced that are parallel not only in space, but also in time. This higher degree of
parallelism is desirable especially for the upcoming exascale computers with expected
millions or more processors.

Generally speaking, “time” is a sequential concept, the solution u(x, tk+1) can not
be computed without knowing the solution u(x, tk) at the previous time step. How-
ever, since both u(x, tk+1) and u(x, tk) are computed iteratively, their approximate
solutions do not necessarily have the sequential dependency and can be obtained
simultaneously. Based on this observation, several classes of algorithms have been
developed.

∗This research is supported in part by NSF grants DMS-0913089 and CCF-1216314.
†Department of Mathematics, University of Colorado Boulder, Boulder, CO 80309

(cui.cong@colorado.edu)
‡Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309

(cai@cs.colorado.edu)
§Department of Mathematics, University of Colorado Boulder, Boulder, CO 80309

(karl.gustafson@colorado.edu)

1



2 C. CONG, X.-C. CAI, AND K. GUSTAFSON

Waveform relaxation [27, 40] is one of the time-parallel methods to solve systems
of ordinary differential equations (ODEs) with initial condition. In this method, the
matrix from the discretized system is separated into lower, diagonal and upper com-
ponents. The decoupling of the matrix allows independent solving of each uncoupled
system in parallel. For parabolic PDEs, a semi-discretization is applied to transform
PDEs into ODEs, then the resulting systems can be solved by the waveform relax-
ation method. In order to accelerate the convergence, several variants of waveform
relaxation are developed, for example, multigrid waveform relaxation method [22, 38]
or Schwarz waveform relaxation method [15, 37]. The space-time multigrid method
for parabolic PDEs [20, 21, 39] considers time as an additional dimension beside the
spacial dimensions. It applies the multigrid operators of smoothing, coarsening, re-
striction and prolongation on the whole grid combining both temporal and spacial
domains. The parareal algorithm proposed by Lions, Maday and Turinici in [28] is an
iterative method to solve evolution problems in a time-parallel manner. More applica-
tions of this method are reported in [4, 30, 31] and references therein. The advantage
of this algorithm is that it approximates the solutions later in time before accurately
approximating the solutions at earlier times [17]. This algorithm has received great
attention since it was proposed, and several variants are presented in different frame-
works, for example, PITA (parallel implicit time integrator) [11], space-time multigrid
and multiple shooting method [17].

Inspired by these approaches, we propose an implicit space-time domain decom-
position method for a parabolic PDE. To find the solution u defined at time steps
0 = t0 < t1 < · · · < tn = T , we group equations for s (s ≤ n) steps into a single
system, 

u1
h + ∆t1Lh(u1

h)− u0
h = ∆t1f

1

u2
h + ∆t2Lh(u2

h)− u1
h = ∆t2f

2

...
ush + ∆tsLh(ush)− us−1

h = ∆tsf
s.

(1.2)

Here Lh is a discrete version of the elliptic part of equation (1.1), and ukh is a space-
time approximation of u(x, t). The coupled system becomes more ill-conditioned as
s increases, therefore, we usually select s to be much smaller than n. For the rest of
the paper, s will be referred to as the window size. The algorithm needs to be used
multiple times in order to cover all n time steps.

One of the main emphases of the paper is to develop an overlapping Schwarz
preconditioned recycling Krylov subspace method for solving (1.2). The subproblems
are obtained by a partition of D×[t1, ts]. The classical Schwarz theory [6, 7, 8] doesn’t
work for this coupled space-time problem, but our numerical experiments show that
both the one- and two-level algorithms which we will introduce later work well. The
second focus of the paper is to consider the case when the diffusion coefficient is a
random function. Using a stochastic Galerkin approach [18, 25, 26, 41], we convert
the stochastic parabolic problem into a large number of deterministic equations that
are similar to (1.2). These linear systems have different matrices and right-hand sides.
When designing methods for solving these systems, a key design point is “reuse of
computation”, which is a trivial issue for direct type methods, but a rather difficult
task for methods that are “iterative” since most components are re-computed from
iteration to iteration. Our approach starts with a careful analysis of the sequence
of systems, orders them appropriately, and then puts them into separate groups.
Within each group we construct a single Krylov subspace and a preconditioner that



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 3

are effective for solving all systems in this group. To demonstrate the applicability of
the method and its parallel performance, we implement the method on top of PETSc
[5] and obtain some excellent results for a sequence with more than 9000 systems in
which each system has several millions or even tens of millions degrees of freedom.

We structure the rest of the paper as follows. Section 2 describes some space-time
domain decomposition methods for a deterministic parabolic problem. In Section 3,
we describe the stochastic Galerkin method for a parabolic equation including the
weak formulation, the Karhunen-Loève expansion, and the double orthogonal basis.
Based on the method, we show how to decouple the stochastic parabolic equation
into a sequence of deterministic parabolic equations. In Section 4, a recycling Krylov
subspace method is briefly reviewed. Then an ordering algorithm and two grouping
algorithms are proposed to maximize the benefit of the recycling Krylov subspace.
Finally, experimental results and remarks are reported in Section 5 and 6, respectively.

2. Space-time domain decomposition methods. We consider the numerical
solution of a deterministic parabolic equation

∂u

∂t
+ Lu = f(x) in D × (0, T ]

u(x, 0) = u0(x) in D
u(x, t) = 0 on ∂D × [0, T ],

(2.1)

where D ∈ R2 is a polygonal domain with boundary ∂D, and L is an elliptic operator
of the form

Lu = −∇ · (a(x)∇u).

Let 0 = t0 < t1 < t2 < · · · < tn = T and ∆tk = tk − tk−1. Suppose uk(x) is the
solution at time tk. We use a backward Euler scheme for the time discretization, then
the problem becomes

uk+1 (x)− uk (x)

∆tk+1
+ Luk+1 = fk+1, for k = 0, 1, · · · , n− 1.(2.2)

Let Lh be the discretized operator in the spacial domain, and ukh the nodal solution
at t = tk, then we obtain the finite difference equation

uk+1
h + ∆tk+1Lh

(
uk+1
h

)
− ukh = ∆tk+1f

k+1.(2.3)

We denote L̄h as

L̄h
(
ukh
)

= ukh + ∆tkLh
(
ukh
)

= (I + ∆tkLh)
(
ukh
)
,

and

U =
(
u1
h, u

2
h, · · · , ush

)T
where s(< n) is the window size; i.e., the number of time steps coupled into one
system. Now the equation (2.3) can be rewritten in the matrix form

AsU = B, i.e.



4 C. CONG, X.-C. CAI, AND K. GUSTAFSON

L̄h
−I L̄h

. . .
. . .

−I L̄h
. . .

. . .

−I L̄h





u1
h

u2
h
...
ukh
...
ush


=



u0
h + ∆t1f

1

∆t2f
2

...
∆tkf

k

...
∆tsf

s


.(2.4)

By solving several linear systems of the form (2.4), all the approximations of u(x, t)
at t1, t2, · · · , tn are obtained.

The matrix As has the same block matrix on the diagonal and −I on the subdi-
agonal. Based on this special structure, we have the following theorem that relates
the condition number of As and the window size s.

Theorem 2.1. The condition number of As is nondecreasing as s increases.

Theorem 2.1 may be proved by the Rayleigh-Ritz method similar to the consider-
ations of [1], where a Schur complement argument is employed. One can also obtain
the result directly by using the largest singular vector of As to approximate that of
As+1. We omit the details of the proof in this paper.

According to Theorem 2.1, we realize that the window size cannot be as large as
we wish, especially for certain sensitive systems that can be easily perturbed to be
nearly singular. Because of this, additional technique should be considered to reduce
the condition number, for example, Schwarz preconditioning method which we now
introduce.

In order to formally define the Schwarz preconditioners in the space-time formu-
lation, we begin with a fine mesh Dh on the spacial domain D. We first decompose
D into non-overlapping subregions Dk, k = 1, 2, · · · , N . To obtain an overlapping
decomposition of the domain, we extend each subregion Dk to Dδ

k by including extra
δ mesh layers from adjacent subregions. For the space-time formulation, we define a
fine mesh Dsh by simply combining all the fine meshes in the domain D× [tl+1, tl+s].
Hence, the nonoverlapping and overlapping decomposition of D × [tl+1, tl+s] are de-
fined as Dk × [tl+1, tl+s] and Dδ

k × [tl+1, tl+s], respectively. Suppose we have n fine
mesh points inside D × [tl+1, tl+s] and nk fine mesh points inside Dδ

k × [tl+1, tl+s],
then the elements of a matrix Rδk of size nk × n are defined as follows:

(Rδk)pq =

{
1 if mesh point associated with p, q ∈ Dδ

k × [tl+1, tl+s],
0 otherwise.

The matrix Rδk serves as a restriction operator by getting rid of all the components
that are outside of Dδ

k×[tl+1 tl+s]. If we transpose the restriction matrix, the resulting
matrix (Rδk)T works as an extension operator, which refills the components that do
not belong to Dδ

k × [tl+1 tl+s] by 0. The one-level restricted additive Schwarz (RAS)
preconditioner [9] for the matrix As can be written as

M−1
1 = (R0

1)TA−1
1 Rδ1 + (R0

2)TA−1
2 Rδ2 + · · ·+ (R0

N )TA−1
N RδN .

where Ak, k = 1, 2, · · · , N , are subdomain matrices defined by Ak = RδkAs(R
δ
k)T .

The matrix vector multiplication involving A−1
k is usually computed by LU or ILU

factorization.



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 5

For the two-level additive Schwarz preconditioning, besides the one-level additive
Schwarz preconditioner as a component, we also include a coarse level by defining
a restriction operator IHh from the fine mesh to the coarse mesh, an interpolation
operator IhH from the coarse mesh to the fine mesh and a coarse matrix A0 = IHh AsI

h
H

on the coarse mesh. The two-level additive Schwarz preconditioner is

M−1
2 = IhHA

−1
0 IHh +M−1

1 .

Another widely used multilevel Schwarz method is the two-level hybrid precon-
ditioner, which combines the coarse-level and fine-level in a multiplicative manner.
More clearly, the two-level hybrid preconditioner is implemented according to

z := M−1
1 x,

z := z +M−1
C (x−Asz),

z := z +M−1
1 (x−Asz),

where M−1
C = IhHA

−1
0 IHh is the coarse preconditioner constructed as the first term

of M−1
2 . On each subdomain, zero Dirichlet boundary conditions are used on the

internal subdomain boundary ∂(Dδ
k × [tl+1, tl+s])∩D× [tl+1, tl+s], and the original

boundary conditions are used on the physical boundary. Note that since the subdo-
mains are space-time subdomains, “zero Dirichlet” implies that zero values are used
in both the space and time boundaries of the subdomains. Several inexact additive
Schwarz preconditioners are available. In this paper, we employ the two-level hy-
brid preconditioner with an incomplete factorization for the subdomain matrices in
the implementation. We would like to point out that for the one-level and two-level
algorithms just described, we do not have any computational complexity estimates,
however, for the classical Schwarz methods, the estimates are available in [6, 7].

3. Stochastic Galerkin method for parabolic problems. In this section,
we briefly introduce the main components of stochastic Galerkin method to show how
to discretize a parabolic equation with a stochastic diffusion coefficient. Some related
details are available in [2, 3, 14, 18]. We begin with an introduction of some notations.
Let A be a σ-algebra defined on a given sample set Ω with sample points ω. P is a
probability measure on A. The triple (Ω,A, P ) forms a probability space. We define
a real-valued random function F on the jointly measurable spacial domain D and
sample space Ω

F : D × Ω −→ R

such that for each fixed point x ∈ D, F(x, ·) is a random variable with respect to the
probability space (Ω,A, P ), and for each sample ω ∈ Ω, F(·, ω) is a function on D.
Thus, a random function is a stochastic process with the spatial coordinate x ∈ D
and sample point ω ∈ Ω.

We consider the following stochastic parabolic PDE:
∂u(x, t, ω)

∂t
−∇ · (a(x, ω)∇u(x, t, ω)) = f(x) on D × (0, T ]× Ω

u(x, 0, ω) = u0(x) on D
u(x, t, ω) = 0 on ∂D × [0, T ].

(3.1)

We assume the coefficient a(x, ω) is bounded and strictly positive. The weak form of
the stochastic parabolic PDE is to find u(x, t, ω) ∈ H1

0 (D×Ω)×H1([0, T ]) such that〈∫
D

∂u

∂t
vdx

〉
+

〈∫
D

a(x, ω)∇u(x, ω) · ∇vdx
〉

=

〈∫
D

f(x)vdx

〉
(3.2)



6 C. CONG, X.-C. CAI, AND K. GUSTAFSON

for any v ∈ H1
0 (D×Ω). Here 〈·〉 denotes the mean (or expected value). The mean of

the coefficient function a(x, ω) is defined as

a0(x) := 〈a(x, ω)〉 =

∫
Ω

a(x, ω)dP (ω).

In (3.2), the scalar product is the standard inner product in L2(D), i.e.,∫
D

f(x)vdx = (f(x), v) .

We use the Karhunen-Loève (KL) expansion [29] to represent the stochastic co-
efficient, and assume that the mean and covariance of a(x, ω) are given. According to
the KL expansion, a(x, ω) can be expressed by a series expansion:

a(x, ω) = a0(x) +

∞∑
i=1

√
λiki(x)ξi(ω),(3.3)

where {ξi(ω)}∞i=1, ξi : Ω −→ R, are mutually uncorelated random variables in L2(Ω)
to be determined in the stochastic Galerkin method, λn and kn(x) are eigenpairs of
the covariance function Ca(x1, x2), x1, x2 ∈ D. And positive eigenvalues {λn}∞n=0 are
ordered non-increasingly, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · > 0.

In practice, we use a finite number of terms to approximate the series expansion
of a(x, ω),

aM (x, ω) = a0(x) +

M∑
i=1

√
λiki(x)ξi(ω)

where M depends on the decay of eigenvalues.

Let ρi be the probability density function of the random variable ξi(ω), then the
joint probability density function of the joint random variable ξ = (ξ1, ξ2, · · · , ξM )
can be denoted by ρ = (ρ1, ρ2, · · · , ρM ). Suppose Γi is the image of ξi ∈ R, thus
Γ = (Γ1,Γ2, · · · ,ΓM ) ⊆ RM is the image of ξ, i.e.,

ξ(ω) = (ξ1(ω), ξ2(ω), · · · , ξM (ω)) ∈ Γ = (Γ1,Γ2, · · · ,ΓM ) for all ω ∈ Ω.

Hence, for each ω ∈ Ω, there exists a unique ξ ∈ Γ correspondingly. Then we can
replace aM (x, ω) by the approximation aM (x, ξ)

aM (x, ξ) = a0(x) +

M∑
i=1

√
λiki(x)ξi.(3.4)

Now, the stochastic problem can be converted into a deterministic parabolic PDE
with the solution uM (x, t, ξ) ∈ H1

0 (D)×H1([0, T ])× L2(Γ, ρ), namely,

∂uM (x, t, ξ)

∂t
−∇ · (aM (x, ξ)∇uM (x, t, ξ)) = f(x).(3.5)

A double orthogonal basis [18] is introduced in order to decouple the equation
(3.5) in the ξ−space under the assumption that the random variables {ξi(ω)}Mi=1 are
all independent. The double orthogonal basis is constructed as follows. For some



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 7

positive integer n ∈ Z+, the space of single-variable polynomials of degree at most n
is

Pn := span{1, z, z2, · · · , zn}.

For n= (n1, n2, · · · , nM ) ∈ (Z+)M , we construct the multi-variable polynomial space
Pn by the tensor product of M independent subspaces of single-variable polynomials
Pni

, for i = 1, 2, · · · ,M ,

Pn := Pn1
⊗ Pn2

⊗ · · · ⊗ PnM
∈ L2(Γ, ρ).

On each independent subspace Pnj
, for j = 1, 2, · · · ,M , we define a double or-

thogonal polynomial basis {φk,j(z)}
nj

k=0, j = 1, 2, · · · ,M , by satisfying the following
two conditions:


∫

Γj

φp,j(z)φq,j(z)ρj(z)dz = δp,q p, q = 0, 1, · · ·nj ,∫
Γj

zφp,j(z)φq,j(z)ρj(z)dz = Cp,jδp,q p, q = 0, 1, · · ·nj ,
(3.6)

where {Cp,j}
nj

p=0 are nonzero constants. In each subspace Pnj
, there are nj + 1 basis

functions, which yield totally Nn :=
∏M
j=1(nj+1) basis functions in the approximation

subspace Pn ∈ L2(Γ, ρ). Defining an index for the Nn double orthogonal polynomials

I = {{i1, i2, · · · , iM} | ij ≤ nj , for j = 1, 2, · · · , nM},

the set of all the basis functions of Pn isφi(ξ) | φi(ξ) =

M∏
j=1

φij ,j(ξj), ij ∈ {0, 1, · · · , nj}, i ∈ I

 .(3.7)

We use the double orthogonal basis to denote the solution

uM (x, t, ξ) =
∑
i∈I

uM,i(x, t)φi(ξ)

which satisfies〈∫
D

∂u

∂t
vdx

〉
+

〈∫
D

aM∇u · ∇vdx
〉

=

〈∫
D

f(x)vdx

〉
,(3.8)

for any v = h(x)φj(ξ) ∈ H1
0 (D) × Pn(Γ), j ∈ I. uM,i is the coefficient for the basis

function φi(ξ). The second term of the left-hand side in equation (3.8) can be rewritten
as〈∫

D

aM∇u · ∇vdx
〉

=

〈∫
D

aM∇

(∑
i∈I

uM,i(x, t)φi(ξ)

)
· ∇ (h(x)φj(ξ))

〉

=
∑
i∈I

〈∫
D

aM∇ (uM,i(x, t)φi(ξ)) · ∇(h(x)φj(ξ))

〉
=
∑
i∈I

(a0(x)∇uM,i(x, t),∇h(x))

∫
Γ

φi(ξ)φj(ξ)ρ(ξ)dξ

+
∑
i∈I

M∑
n=1

√
λn (kn(x)∇uM,i(x, t),∇h(x))

∫
Γ

φi(ξ)φj(ξ)ξnρ(ξ)dξ.



8 C. CONG, X.-C. CAI, AND K. GUSTAFSON

Thus the representation in the double orthogonal basis yields〈∫
D

aM∇u · ∇vdx
〉

=

∑
i∈I

[
(a0(x)∇uM,i(x, t),∇h(x)) +

M∑
n=1

√
λn(kn(x)∇uM,i(x, t),∇h(x))Cin,jn

]
δij.

And the first term is〈∫
D

∂u(x, t, ξ)

∂t
v(x, ξ)dx

〉
=

〈∫
D

(∑
i∈I

∂uM,i(x, t)

∂t
φi (ξ)

)
(h (x)φj (ξ)) dx

〉

=
∑
i∈I

〈∫
D

∂uM,i(x, t)

∂t
h (x)φi (ξ)φj (ξ) dx

〉
=
∑
i∈I

∫
D

∂uM,i(x, t)

∂t
h (x) dx

∫
Γ

φi (ξ)φjρ(ξ)dξ

=
∑
i∈I

∫
D

∂uM,i(x, t)

∂t
h (x) dxδij.

The right-hand side of equation (3.8) is〈∫
D

f(x)v(x, ξ)dx

〉
=

∫
D

f(x)h(x)dx 〈φj(ξ)〉

=

∫
D

f(x)h(x)dx

M∏
j=1

∫
Γj

φij ,j(ξj)ρj(ξj)dξj .

We summarize the results in the following theorem.
Theorem 3.1. For any M ∈ Z+, there exists a multi-variable polynomial space

Pn = Pn1 ⊗ Pn2 ⊗ · · · ⊗ PnM
∈ L2(Γ, ρ), on which the stochastic equation (3.8),

whose initial and boundary conditions are the same as (1.1), can be decoupled into

Nn =
∏M
j=1(nj + 1) deterministic equations

∂uM,i(x, t)

∂t
−∇ · (aM,i (x)∇uM,i (x, t)) = fi(x),(3.9)

where 
aM,i(x) := a0 (x) +

∑M
j=1

√
λjkj(x)Cij ,j

fi(x) := f(x) ·
∏M
j=1

∫
Γj
φij ,j(z)ρj(z)dz

i ∈ I = {{i1, i2, · · · , iM} | ij ≤ nj , forj = 1, 2, · · · , nM}.
(3.10)

Taking the sum of (3.9) for all i ∈ I, we obtain the solution to the equation (3.8) (or
(3.5)) is

uM (x, t, ξ) =
∑
i∈I

uM,i (x, t)φi (ξ) .(3.11)



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 9

Table 4.1
Reordering Cij ,j decreasingly by a certain permutation {0, 1, · · · , nj} −→ {lj0, l

j
1, · · · , l

j
nj
}, for

all j, 0 ≤ j ≤M .

λ1: C0,1 C1,1 · · · Cn1,1 −→ Cl1
0
,1 Cl1

1
,1 · · · Cl1n1

,1

λ2: C0,2 C1,2 · · · Cn2,2 −→ Cl2
0
,2 Cl2

1
,2 · · · Cl2n2

,2

...
...

...
...

λM : C0,M C1,M · · · CnM ,M −→ ClM
0

,M ClM
1

,M · · · ClMnM
,M

4. Recycling Krylov subspace method and grouping algorithm. Based
on the above Theorem 3.1, the stochastic parabolic equation is decoupled into a se-
quence of deterministic parabolic equations. These deterministic problems are related
and, with a proper grouping, the change within a group is small from one to the next.
We expect to significantly reduce the number of iterations and the total computing
time by (1) reusing the preconditioner, and (2) recycling selected vectors from the
Krylov subspace generated in the previous linear system in the same group. Follow-
ing the idea of [26], we first propose an ordering algorithm according to the change
of the parameter Cij ,j computed in each subspace of Pn. Based on the ordering algo-
rithm, we introduce a grouping algorithm for the one-level RAS preconditioning, and
a grouping algorithm for the two-level hybrid preconditioning. Finally, we show an
example to demonstrate how to utilize the grouping algorithms.

There are several choices of recycling Krylov subspace algorithms [10, 12, 13,
19, 32, 35, 36]. We choose to use the so-called GCROT version of recycling GMRES
introduced in [34] since both the matrix and the right-hand side change in the sequence
of systems. When solving a single linear system of equations, GCROT is a truncated
minimum residual method which retains a subspace between cycles in a way that
minimizes the loss of orthogonality with respect to the vectors that are not retained.
When solving multiple systems, after the first system in the group is solved, a subspace
spanned by selected harmonic Ritz vectors is retained and used as the initial subspace
for the other systems.

4.1. Ordering algorithm. In order to maximize the benefit of the recycling
strategy, we arrange the systems following a decreasing order of the perturbation.
This is similar to the approach of [26]. In this way, we can determine when to restart
with a new Krylov subspace and new preconditioner when the cumulative pertur-
bation has grown too large using the current Krylov subspace and preconditioner.
Theorem 3.1 shows that the perturbation among the decoupled systems is originated
from the diffusion coefficient aM,i(x), which consists of the mean function, eigen-
values, eigenfunctions and the constants Cij ,j . The mean function and covariance
function are stationary in the KL expansion. The eigenvalues and the corresponding
normalized eigenfunctions are determined by the covariance function and they appear
in all systems. Thus, we see that the constants Cij ,j play the dominant role in the
variability of the systems.

In principle, the decreasing ordering of the perturbation can be realized when

M∑
j=1

√
λjkj(x)Cij ,j(4.1)

is ordered, in some sense, from large to small. However, it is very expensive to
obtain such ordering directly. Consequently, an alternative approach is proposed



10 C. CONG, X.-C. CAI, AND K. GUSTAFSON

here to produce a pseudo-decreasing order of the summation (4.1) by reordering Cij ,j
decreasingly in each subspace of the approximated random space, as shown in Table
4.1. Given n = {n1, n2, · · · , nM}, the sequence of systems is indexed using a multi-
index i = {i1, i2, · · · , iM} ∈ I, 0 ≤ ij ≤ nj , 1 ≤ j ≤ M . We reorder {0, 1, · · · , nj} by
a certain permutation:

{0, 1, · · · , nj} −→ {lj0, l
j
1, · · · , ljnj

},

such that Cij ,j decreases in the subspace corresponding to λj , for all j = 1, 2, · · · ,M .
We call this a “pseudo-decreasing” ordering because (4.1) is not strictly decreasing,
and in fact it is easy to construct a counterexample by choosing appropriate values
for each product component. But our experiments indicate that our ordering algo-
rithm adequately determines a sufficiently decreasing ordering. Based on the above
discussion, we summarize our ordering in the following algorithm:
Ordering Algorithm:

k = 1;
for i1 = l10, l

1
1, · · · , l1n1

for i2 = l20, l
2
1, · · · , l2n2

· · ·
for iM = lM0 , lM1 , · · · , lMnM

label the kth system corresponding to i = {i1, i2, · · · , iM};
k = k + 1;

end all for

4.2. Grouping algorithm for one-level RAS preconditioning. The order-
ing algorithm generates a sequence of systems with the property that the perturbation
is relatively small among systems that are nearby in the sequence. If two systems are
not nearby in the sequence, then the perturbation can be quite large, which means
a Krylov subspace generated by one system can be reused for some nearby systems,
but not for others. In this section, we mainly discuss how to restart the recycling for
the one-level RAS preconditioning.

Although there is no theory to describe how the recycled one-level RAS precon-
ditioner impacts the convergence of the sequence of systems, experiments show that
it is good enough to consider a division corresponding to the constants C0,1, C1,1, · · ·,
Cn1,1 associated with the largest eigenvalue λ1. This gives (n1 + 1) groups, denoted
as G0, G1, · · ·, Gn1

. We recycle a selected Krylov subspace and the preconditioner of
the first linear system in each group.

In most cases, the perturbation within the group is quite minor so that the selected
Krylov subspace and preconditioner can be reused to solve all the other systems.
However, in the last group Gn1

, for some special cases, some of the systems are close
to being singular. In this situation, recycling the Krylov subspace and preconditioner
for all the systems is not a wise strategy any more. Especially for the space-time
method, as shown in Theorem 2.1, the more time steps are coupled into one system,
the worse the condition number. Therefore, it is then more important to remove
the sensitive systems from the group if we want to couple more time steps into one
system. One approach to address this issue is to extract those sensitive systems from
the group, and choose a smaller window size s to make them better conditioned, then
solve them separately. In order to single out the sensitive systems, we set up a cutoff
parameter γ(≥ 0) as a criterion to evaluate the minimum of aM,i(x) on a coarse mesh



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 11

VHC of the spacial domain D, i.e.,

min
x∈VH

C

{aM,i(x)} < γ.(4.2)

When the inequality (4.2) holds, we remove its corresponding system from the group
and label it as nearly singular. All these nearly singular systems are collected together
to form another group, called the “bad” group, Gb.

According to the above analysis, we summarize our grouping algorithm for the
one-level RAS preconditioning as follows: For a given n = (n1, n2, · · · , nM ), there are
(n1 + 1) × (n2 + 1) × · · · × (nM + 1) systems to be solved. Assume the systems are
ordered by the ordering algorithm proposed in the previous section.

Grouping algorithm for one-level RAS preconditioning:
• Divide all the systems evenly into (n1 + 1) groups, i.e., G0, G1, · · · , Gn1 , with

each group containing (n2 + 1)× · · · × (nM + 1) systems.
• Choose an appropriate cutoff parameter γ ≥ 0, extract all the systems in the

last group Gn1
that satisfy the inequality (4.2), and collect them in the bad

group Gb. The modified last group is then denoted as Gn1
= Gn1

\Gb.
• For the regular groups, take a relatively large number of time steps coupled

into one system. In each group, construct a Krylov subspace and a precondi-
tioner from the first system, then recycle them when solving the other systems
within the same group.

• For the bad group Gb, take a relatively smaller number of time steps to
make all the systems in Gb solvable. Construct a Krylov subspace and a
preconditioner from one of the systems, then recycle the Krylov subspace
and the symbolic factorization of the submatrix solver for the other systems
in Gb.

Notice that the choice of the value γ depends on the specific problem. For some
problems with 0 < a1 ≤ a(x, ω) ≤ a2 < ∞, where a1 is relatively far from zero, we
don’t need to set up such a cutoff parameter γ, since there is no sensitive system in
this case.

4.3. Grouping algorithm for two-level hybrid preconditioning. The group-
ing algorithm for one-level RAS doesn’t work well when the two-level hybrid precon-
ditioner is employed. This is because the additional coarse level correction on the
hybrid preconditioner greatly improves the condition numbers of the systems, then
the numbers of iterations are drastically reduced. However, the smaller Krylov sub-
space generated in the reduced iterations yields fewer subsequent systems fitting the
recycled Krylov subspace and preconditioner. Therefore, we need another group-
ing algorithm for the two-level hybrid preconditioning. The algebraic average of the
eigenvalues provides a clue as to how to further divide the groups of systems.

We first evenly divide all the systems into (n1 + 1) groups, denoted as G0, G1,
· · ·, Gn1 , as in the section 4.2. Then we average the M eigenvalues, denoted as λ, as
following

λp > λ =
1

M

M∑
i=1

λi > λp+1, 2 ≤ p ≤M,

where the index p works as a divider. We divide each of the groups G0, G1, · · ·, Gn1−1

uniformly into (n2 +1)× (n3 +1)×· · ·× (np+1) subgroups with (np+1 +1)× (np+2 +
1)× · · · × (nM + 1) systems in each subgroup.



12 C. CONG, X.-C. CAI, AND K. GUSTAFSON

Since the last group Gn1
contains the systems that may be close to being singular,

the systems in this group can be sensitive. So we divide the group Gn1
uniformly into

(n2 + 1)× (n3 + 1)× · · · × (np + 1)× (np+1 + 1) subgroups with (np+2 + 1)× (np+3 +
1) × · · · × (nM + 1) systems in each subgroup. As in the grouping algorithm for
one-level RAS preconditioning, the sensitive systems are contained in the last group
Gn1

, which have to be extracted from some of the subgroups in Gn1
by the cutoff

parameter γ(≥ 0). All the sensitive systems satisfying (4.2) are put in the bad group
Gb.

For the regular subgroups in G0, G1, · · ·, Gn1−1 as well as all the subgroups
in Gn1 after the sensitive systems extracted, we construct a Krylov subspace and a
preconditioner from the first system, then recycle them when solving the other systems
within the same subgroup. For the bad group Gb, we use the same strategy as the
one-level RAS preconditioning.

The grouping algorithm for two-level hybrid preconditioning is thus organized as
follows: All the assumptions are the same as the grouping algorithm for the one-level
RAS preconditioning, and all the decoupled systems are already ordered by the or-
dering algorithm.

Grouping algorithm for two-level hybrid preconditioning:
• Follow the step 1 of the grouping algorithm for the one-level RAS precondi-

tioning, we have (n1 + 1) groups, G0, G1, · · · , Gn1 .
• Average the M eigenvalues to obtain λ, and then compare it with all the

eigenvalues to find the index p, such that λp > λ > λp+1, 2 ≤ p ≤M .
• In groups G0, G1, · · · , Gn1−1, each group is uniformly divided into (n2 + 1)×

(n3 +1)×· · ·×(np+1) subgroups with (np+1 +1)×(np+2 +1)×· · ·×(nM +1)
systems in each subgroup. For the last group Gn1

, we divide it uniformly into
(n2 + 1)× (n3 + 1)× · · · × (np + 1)× (np+1 + 1) subgroups with (np+2 + 1)×
(np+3 + 1)× · · · × (nM + 1) systems in each subgroup.

• Choose an appropriate cutoff parameter γ ≥ 0, extract all the systems from
some of the subgroups in Gn1

that satisfy (4.2), and collect them in the bad
group Gb.

• For the regular subgroups and the subgroups from which sensitive systems
are extracted, we construct a Krylov subspace and a preconditioner from the
first system, then recycle them within the same subgroup.

• Then follow step 4 of the grouping algorithm for the one-level RAS precon-
ditioning.

4.4. A numerical example. We illustrate our grouping algorithms by the fol-
lowing example [26] with the mean and covariance functions:

a0(x) = 3 + sin(πx1) Ca(x, x′) = e−|x−x
′|2 , x ∈ [0, 1]2.(4.3)

The series expansion of a(x, ξ) is truncated at M = 11 by the decay of the eigenvalues.
The selection algorithm proposed in [14] gives the dimensions in each subspaces: n =
(3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1), which means we obtain 9216 linear systems to be solved.
Let the random variable ξj in the KL expansion be uniformly distributed in Γj =
[−
√

3,
√

3]. For the one-level RAS preconditioner, the total 9216 systems are evenly
divided into n1 + 1 = 3 + 1 = 4 groups with 2304 systems in each group.

We calculate the largest eigenvalue λ1 = 0.7480, which plays an important role
in the perturbation of the diffusion coefficient. n1 = 3 means the first subspace as-
sociated with the largest eigenvalue has four important constants C0,1 = 1.49, C1,1 =



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 13

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

0

1

2

3

4

5

6

7

9216 systems

E
x
tr

e
m

a

2304 4608 6912 9216
15

25

35

45

55

 

 

Max SV

2304 4608 6912 9216
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

 

 

Min SV

2304 4608 6912 9216
0

5

10

15
x 10

4

 

 

Condition #

Fig. 4.1. The top left figure shows the maxima and minima of the diffusion coefficients aM,i(x)
for all the 9216 systems. The top right and bottom left figures show the maxima and minima
singular values of all the 9216 systems without any preconditioning. The bottom right figure shows
the condition numbers of all the 9216 systems without any preconditioning.

0.59, C2,1 = −1.49, C3,1 = −0.59. By our ordering algorithm and grouping algo-
rithm for one-level RAS preconditioning, we divide all the systems uniformly into 4
groups: G0, G1, G2, G3, with 2304 systems in each one. The systems in G0, G1, G2, G3

correspond to C0,1, C1,1, C3,1, C2,1 respectively, since Cij ,j are ordered decreasingly.
The top left figure of Fig.4.1 illustrates the maximum and minimum of the diffu-
sion coefficient aM,i(x), 1 ≤ i ≤ 9216. The four groups are plotted in the top
left figure of Fig.4.1 with different colors. For the two-level hybrid precondition-
ing, the average of M eigenvalues is λ3 > λ = 0.0909 > λ4, so we divide groups
G0, G1, G2 uniformly into (n2 + 1) × (n3 + 1) = (2 + 1) × (2 + 1) = 9 subgroups
with 256 systems in every subgroup. For the last group G3, it is divided into
(n2 + 1)× (n3 + 1)× (n4 + 1) = (2 + 1)× (2 + 1)× (1 + 1) = 18 subgroups with 128
systems in each one.

In the top left figure of Fig.4.1, we can easily notice that there are four points at
which the diffusion coefficients curve crosses the x-axis, each of those represents four
systems. We set the cutoff parameter γ = 0 to separate those sensitive systems and
form the bad group. For the bad group, we need to find a proper window size s to make
sure all these sensitive systems are solvable. In our experiments, we couple 2 time
steps for the bad group, and up to 64 time steps for the other regular groups. Since
the extrema of the diffusion coefficients are relatively close for the systems in the bad



14 C. CONG, X.-C. CAI, AND K. GUSTAFSON

2304 4608 6912 9216
15

20

25

30

 

 

Max SV

2304 4608 6912 9216
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

Min SV

2304 4608 6912 9216
60

80

100

120

140

160

180

200

 

 

Condition #

Fig. 4.2. The top two figures show the maxima and minima singular values of all the 9216
systems with the two-level hybrid preconditioner, the bottom figure shows the condition numbers of
all the 9216 systems with the two-level hybrid preconditioner.

group, and the matrix pattern is exactly the same, we construct the Krylov subspace
and the symbolic factorization of subdomain matrices from one of the systems and
recycle them throughout the bad group. We mention that the choice of the window
size s is made experimentally. In practice, the optimal value of s depends on the
problem, as well as the available computing resources.

We also plot the extrema singular values and condition numbers for the 9216
systems without preconditioning in Fig.4.1. All the systems are coupled by 16 time
steps for the regular groups, but only one time step for the bad group. The top right
figure of Fig.4.1 describes the maximum singular values of all the systems without any
preconditioning. Note that the graph is similar, to certain extent, to the maximum
of diffusion coefficients in the top left figure of Fig.4.1. In the bottom two figures of
Fig.4.1, it’s easy to observe that there are again four points with minimum singular
values and condition numbers that are dramatically distinct from the others. These
correspond to the situation identified in the top left figure of Fig.4.1 and constitute
the bad group.

For comparison, we also plot the extrema singular values and condition numbers
for all the systems with the two-level hybrid preconditioner in Fig.4.2. After applying
the preconditioner on the systems, the maximum singular values are decreased by
about 50% and the minimum singular values are increased almost 1000 times. Hence,
the resulting condition numbers are reduced to about one thousandth of the condition



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 15

numbers without any preconditioning. Because of the improved condition numbers,
the systems in the bad group may include more time steps together. In the top two
figures of Fig.4.2, we coupled 2 or 4 time steps for the systems in the bad group, such
that all the maximum singular values in the bad group are larger than the regular
systems and all the minimum singular values in the bad group are smaller than the
regular systems, which can be seen in the figures at the distinctive four bunches of
cusps.

5. Numerical experiments. In this section, we report some numerical experi-
ments to illustrate the performance of the Schwarz preconditioned recycling FGMRES
of [34] used together with our ordering and grouping algorithms. The software is de-
veloped using PETSc [5] and tested on the parallel supercomputer Janus at University
of Colorado Boulder. We consider the stochastic parabolic equation (3.1) on a two-
dimensional domain D = [0, 1]2, f(x) = 1, u0(x) = 0, the mean and covariance
functions are given in equation (4.3), and all other parameters are the same as in
Section 4.4. All the tests use ∆t = 0.001, except the ones in Table 5.7, where we
show the tests with different time step sizes. The stop criteria for FGMRES, i.e., the
relative tolerance and the absolute tolerance, are both 10−6.

5.1. Identifying the dimension of the recycling Krylov subsapce. In
this section, we numerically investigate the suitable dimension of the recycling Krylov
subspace for the one-level and two-level preconditionings respectively.

We firstly test the one-level RAS preconditioning on a 497 × 497 mesh. The
overlap between adjacent subdomains is δ = 8. For the regular groups, we set the
window size to s = 16. For the bad group, we set s = 2, which is the largest window
size such that the algorithm does not stagnate. In this test, the number of processors
is np = 1024. In each group Gi, we solve the first system by the non-recycled and
non-restarted FGMRES method, and record the number of iterations as ki. It is not
feasible to test all possible dimensions for the recycling subspace, we therefore take

km = min
i
ki,(5.1)

then set the dimension kr as a percentage of km as shown in Table 5.1.
In Table 5.1, we report the computing time and the average number of iterations

for various dimensions of the recycling subspaces. We mark the best computing
time in red. When ILU(0) is used as the subdomain solver in the one-level RAS
preconditioner, the best computing time is obtained when the recycling subspace is
kr = 30%km, which is approximately 65. As the fill-in of ILU increases, the percentage
becomes larger in order to reduce the computing time. Since km is relatively large
for the one-level RAS preconditioning, the computing cost of Arnoldi process cannot
be ignored when we calculate the total number of iterations (refer to the last row in
Table 5.1), which means the total number of iterations consists of the actual number
of iterations and the size of the Krylov subspace we kept for recycling. Therefore,
the total number of iterations decreases when a more accurate subdomain solver is
applied. We notice that the computing time also decreases except ILU(3) where the
computing time increases slightly in column 4. This is because the total numbers of
iterations with ILU(2) and ILU(3) are pretty close, but ILU(3) is more expensive.

We also test the restarted FGMRES for the one-level RAS preconditioning in
Table 5.2. As the subdomain solver becomes more accurate, the computing time and
the number of iterations both decrease. But the best result for the restarted FGMRES



16 C. CONG, X.-C. CAI, AND K. GUSTAFSON

Table 5.1
Computing time (second) and average number of iterations (denoted by “aiter”) for the one-

level RAS preconditioned FGMRES without restart, δ = 8, ILU(∗) and LU are subdomain solvers.
km is defined in (5.1). np = 1024, and the number of unknowns of the systems in the regular groups
is 3952144. “best” represents the dimension of the recycling Krylov subspace corresponding to the
minimal computing time in red. “total” represents the total dimension, i.e., the summation of “best”
and “aiter” corresponding to the minimal computing time.

ILU(0) ILU(1) ILU(2) ILU(3) LU
km = 216 km = 134 km = 108 km = 82 km = 40

kr = time aiter time aiter time aiter time aiter time aiter
100%km 90565 3.80 35279 3.97 23829 3.99 15603 4.22 9866 7.17
90%km 73206 4.32 29227 4.49 20079 4.84 13343 4.95 9156 7.15
80%km 60058 4.94 24376 5.09 16805 5.54 11301 6.13 9162 7.64
70%km 45446 5.72 19196 6.18 13646 6.78 10405 10.12 9590 8.86
60%km 35317 7.02 14618 7.45 12767 8.84 10830 15.87 11375 9.35
50%km 26388 8.54 11447 9.51 10164 14.55 11153 21.51 12136 11.44
40%km 18460 11.71 10865 19.96 11907 29.90 14158 31.47 11972 12.93
30%km 13382 16.44 12947 42.66 13983 44.07 15095 41.47 15430 17.45
20%km 17015 58.10 15772 66.81 16334 61.71 20334 55.98 18329 21.31
10%km 30433 125.7 20628 98.92 20536 85.86 20943 67.76 32814 39.01

best 65 54 54 57 36
total 81.44 73.96 68.55 67.12 43.15

Table 5.2
Computing time (second) and average number of iterations (denoted by “aiter”) for the one-

level RAS preconditioned FGMRES with restart (= 50), δ = 8.

ILU(0) ILU(1) ILU(2) ILU(3) LU
kr time aiter time aiter time aiter time aiter time aiter
10 22715 195.19 17870 117.04 19315 93.73 19124 66.28 18554 19.27
20 22671 155.77 16631 91.08 16606 71.49 17245 52.48 11334 11.74
30 23787 120.58 16411 68.41 15020 50.79 14645 36.40 9743 8.51
40 29794 85.13 18380 43.70 18563 39.89 19230 30.09 11367 7.00

is worse than the best one in Table 5.1. Therefore, we conclude that the one-level
RAS preconditioner with LU subdomain solver is the best choice.

Next, we investigate the choice of recycling dimension for the two-level hybrid pre-
conditioning in Table 5.3. The coarse mesh is 32× 32 and the fine mesh is 497× 497.
The computing time increases when a more accurate subdomain solver is employed.
However, the average numbers of iterations oscillate slightly between 4 and 6. There
are two main factors that impact the number of iterations. (1) the dimension of the
recycling Krylov subspace. A larger recycling Krylov subspace usually yields to a
faster convergence. If the recycling Krylov subspace is too small, such as the last
column in Table 5.3, more iterations are necessary. (2) the subdomain solver. A
more accurate subdomain solver implies fewer number of iterations. These two oppo-
site factors working together yield the oscillation of the iterations in Table 5.3. For
the computing time, the subdomain solver is dominant when the numbers of itera-
tions are close. Hence, the expensive subdomain solver yields larger computing time.
Compared with the one-level RAS preconditioner, the two-level hybrid preconditioner
results in a better convergence with ILU(0) and the largest recycling Krylov subspace.

5.2. Comparing several recycling strategies. In this section, we compare
four recycling strategies. The parameters correspond to the optimal combinations
of one- and two-level preconditionings obtained in the last section. The number of



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 17

Table 5.3
Computing time (second) and average number of iterations (denoted by “aiter”) for the two-

level hybrid preconditioned FGMRES without restart. δ = 8, the coarse overlap δc = 0. km is
defined in (5.1).

ILU(0) ILU(1) ILU(2) ILU(3) LU
km = 13 km = 8 km = 7 km = 5 km = 4

time aiter time aiter time aiter time aiter time aiter
kr = km 1278 4.38 2043 5.91 2608 5.39 3563 4.88 14268 5.16
kr = km − 1 1326 4.42 2090 6.01 2576 5.45 3509 4.88 11084 5.18
kr = km − 2 1353 5.04 2374 6.15 2583 5.49 3606 4.92 12564 5.06
kr = km − 3 2083 7.31 2112 6.18 2600 5.56 4889 5.02 11191 5.17

0 2304 4608 6912 9216
0

20

40

60

80

100

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

 

 

Scheme 1
Scheme 2

Fig. 5.1. One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and 2

systems in the regular groups is 9200, the other 16 sensitive systems are contained
in the bad group Gb. The four schemes to be compared are listed below, in which
we mainly make comparisons for the systems in the regular groups. For the systems
in the bad group Gb, we only compare the number of iterations for Scheme 1 and
Scheme 4.

1. Solve all the systems separately without any recycling.
2. Recycle the Krylov subspace and the symbolic factorizations of subdomain

matrices, both constructed from the first system, throughout all the other
9199 systems.

3. Keep the Krylov subspace and the preconditioner, both constructed from the
first system, and then recycle them throughout all the other 9199 systems.

4. Apply the one- and two-level grouping algorithm.

First, we look at the performance of the one-level RAS preconditioning for the
four schemes. A comparison of the four schemes for the regular groups is shown
in Fig.5.1, 5.2 and 5.3. The computing time and average numbers of iterations are
reported in Table 5.4. For the bad group, we only show the numbers of iterations in
Fig.5.4.



18 C. CONG, X.-C. CAI, AND K. GUSTAFSON

0 2,304 4,608 6,912 9,216
0

20

40

60

80

100

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

 

 

Scheme 1
Scheme 3

Fig. 5.2. One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and 3

0 2,304 4,608 6,912 9,216
0

20

40

60

80

100

9200 systems

It
e
ra

ti
o
n
 N

u
m

b
e
rs

 

 

Scheme 1
Scheme 4

Fig. 5.3. One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and 4

Scheme 1 is the most time-consuming approach, since all the 9200 systems are
solved independently without any recycling. For Scheme 2, all the matrices in the
sequence of linear systems share the same nonzero pattern, so we recycle the symbolic
factorization of the subdomain matrices. At the same time, we also recycle the Krylov
subspace constructed from the first system throughout all the other 9199 systems.
For this test, we keep the harmonic Ritz vectors associated with the smallest k = 36
harmonic Ritz values in the first system for recycling. The numbers of iterations of
Scheme 2 shown in Fig.5.1 are reduced drastically by more than 80% compared with
Scheme 1, and the computing time is saved by about 30%.

Scheme 3 recycles both the Krylov subspace and the preconditioner obtained from
the first system throughout the other 9199 systems, which means that we construct
the Krylov subspace and the preconditioner only once. From Table 5.4, we can see
that the numbers of iterations of Scheme 3 are slightly worse than that of Scheme 2
because of the recycled preconditioner, but the computing time is reduced by around
70% due to the time saved from recomputing the preconditioners.



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 19

2 4 6 8 10 12 14 16
0

5

10

15

20

 

 

Scheme 1

Scheme 4

Fig. 5.4. One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1
and 4 in the bad group

0 2304 4608 6912 9216
0

5

10

15

20

25

30

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

 

 

Scheme 1
Scheme 2

Fig. 5.5. Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 2

Scheme 4 takes advantage of both Scheme 2 and Scheme 3. It reconstructs a new
Krylov subspace and preconditioner for recycling before the cumulative perturbation
grows too large, hence the average number of iterations of Scheme 4 is greatly reduced
by the one-level grouping algorithm. Some of the systems require zero iteration, which
means that the recycled Krylov subspace already contains the solutions to these sys-
tems. The computing time is the smallest among the four schemes.

Next, we analyze the performance of the two-level hybrid preconditioning. The
parameters are chosen from the best timing results of the previous section. We present
results of the four schemes in Fig.5.5, 5.6 and 5.7. The computing time and the average
numbers of iterations for the two-level hybrid preconditioning are also recorded in
Table 5.4. Notice that the computing time for Scheme 4 in Table 5.4 is slightly
different from the optimal results in Table 5.1 and 5.3, even though they represent



20 C. CONG, X.-C. CAI, AND K. GUSTAFSON

0 2304 4608 6912 9216
0

5

10

15

20

25

30

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

 

 

Scheme 1

Scheme 3

Fig. 5.6. Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 3

0 2304 4608 6912 9216
0

5

10

15

20

25

30

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

 

 

Scheme 1
Scheme 4

Fig. 5.7. Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 4

different runs of the same tests. This is because the network of the supercomputer is
shared by all the users, which leads to the slight instability for the computing time.
The comparison of four schemes with two-level hybrid preconditioner shows similar
results to that with the one-level RAS preconditioner. Scheme 1 is the most expensive
scheme. Scheme 2 (Fig.5.5) needs fewer number of iterations and smaller computing
time by recycling Krylov subspace through all the systems. Scheme 3 (Fig.5.6) is
worse than Scheme 2, since the cumulative perturbation at some point is too large,
which yields a blow up at one point. Scheme 4 (Fig.5.7) does the recycling in each
subgroup, so it has the best performance in terms of the numbers of iterations and
the computing time. Fig.5.8 shows the numbers of iterations of the systems in the
bad group.

5.3. Scalabilities of the two-level hybrid preconditioning. In this section,
we test the dependency of the numbers of iterations on the mesh size, the number



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 21

2 4 6 8 10 12 14 16
0

5

10

15

20

 

 

Scheme 1

Scheme 4

Fig. 5.8. Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 4 in the bad group

Table 5.4
Computing time (second) and average number of iterations (denoted by “aiter”) of four schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4
preconditioning time aiter time aiter time aiter time aiter
one-level RAS 43733 48.61 30472 8.44 13537 11.90 9371 7.15

two-level hybrid 4817 15.86 3817 8.06 4495 15.50 1257 4.38

of processors, the overlap, the window size and the time step size using the grouping
algorithm for the two-level hybrid preconditioning. The speedup is also presented to
show its parallel scalability.

We first check how the average numbers of iterations behave with respect to
the change of the mesh size, the overlap, and the number of processors. Table 5.5
shows that the average numbers of iterations are quite stable when the overlap is
proportional to the diameter of subdomain, i.e., the condition numbers are nearly
independent of the mesh size and the number of processors.

Next, we check the performance of the algorithm with respect to the change of the
window size. Table 5.6 shows that the computing time per window size is minimized
when s = 8, then increases thereafter. The average numbers of iterations also have
the same tendency as the computing time for each window size.

Table 5.7 shows some results with different ∆t. We notice that the computing
time and the average numbers of iterations do not change too much, even with large
∆t. This shows the robustness of the algorithm.

We next present the speedup results obtained using two meshes in Fig.5.9. One
has a fine mesh-window size 497×497×16 and a coarse mesh-window size 32×32×16,
the other has the mesh-window size 497 × 497 × 32 and a coarse mesh-window size
32 × 32 × 32. From the left figure, we see that, for the smaller system, the speedup
is close to be linear. For the larger system, the speedup is superlinear. We present
the average numbers of iterations of two meshes in the right figure of Fig.5.9, where
the average number of iterations corresponding to the larger mesh is slightly more
than that of the smaller mesh. The average number of iterations corresponding to
the smaller mesh remains between 4 and 5 as the number of processors increases.



22 C. CONG, X.-C. CAI, AND K. GUSTAFSON

Table 5.5
Average number of iterations for the two-level hybrid preconditioning with different mesh size,

overlap size, and number of processors. The coarse mesh is 32× 32.

mesh-window size overlap
number of processors

128 256 512 1024
249× 249× 8 4 4.68 4.72 4.70 4.69
373× 373× 16 6 5.83 5.87 5.90 5.96
497× 497× 32 8 5.62 5.49 5.58 5.54

Table 5.6
Computing time (second) per window size and average number of iterations (denoted by “aiter”)

for the two-level hybrid preconditioning with different window sizes.

497× 497
window size

4 8 16 32 64
aiter 4.44 3.64 4.38 5.54 6.65

time/window size 79 64 80 126 167

Similarly, for the larger case, the average number of iterations increases very slowly
as the number of processors increases up to 1024.

6. Conclusion. In this paper, we introduced and studied some implicit space-
time domain decomposition preconditioned recycling Krylov subspace methods for
stochastic parabolic differential equations. Using a stochastic Galerkin method with
doubly orthogonal basis, we decouple the stochastic parabolic equation into a se-
quence of uncoupled deterministic parabolic equations. In order to accelerate the
convergence of the preconditioned GMRES solver for the sequence of systems, an or-
dering algorithm and two grouping algorithms are proposed to maximize the benefit of
the recycling Krylov subspace and preconditioners. By using the grouping algorithms,
the total computing time can be reduced by almost 80%. Based on the experiments
obtained on a supercomputer with over one thousand processors, we conclude that
the two-level hybrid preconditioning technique with the corresponding grouping algo-
rithm is the best choice in terms of the total computing time. In this paper, we only
considered domain decomposition methods, but multigrid methods [23, 24] may also
work for the space-time discretized problems with the proposed ordering and grouping
algorithms.

Acknowledgments. The authors would like to thank Dr. Chao Jin, Professor
Alireza Doostan, and the referees for many helpful discussions and suggestions.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University, New York, 1994.
[2] I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential equa-

tions, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 4093-4122.
[3] I. Babuska, R. Tempone, and G. Zouraris, Galerkin finite element approximations of

stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp.
800-825.

[4] G. Bal and Y. Maday, A“parareal” time discretization for non-linear PDE’s with application
to the pricing of an American put, Recent developments in domain decomposition methods,
Lect. Notes Comput. Sci. Engrg., Springer, Berlin, Vol. 23, (2001), pp. 189-202.

[5] S. Balay, K. Buschelman, W. D. Gropp, D, Kaushik, M. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, 2012.



SPACE-TIME DOMAIN DECOMPOSITION FOR PARABOLIC PDES 23

Table 5.7
Computing time (second) and average numbers of iterations (denoted by “aiter”) for the two-

level hybrid preconditioning with different ∆t.

∆t 0.0001 0.001 0.01 0.1
time 1307 1278 1556 1499
aiter 5.49 4.38 5.20 5.19

128 256 512 1024
1

2

3

4

5

6

7

8

9

10

Number of processors

S
p
e
e
d
u
p

Speedup of hybrid preconditioner

 

 

Ideal

DOF=3.95 × 10
6

DOF=7.90 × 10
6

128 256 512 1024
1

2

3

4

5

6

7

8

9

10

Number of processors

A
v
e
ra

g
e
 i
te

ra
ti
o
n
 n

u
m

b
e
rs

Average iteration numbers of hybrid preconditioner

 

 

DOF=3.95 × 10
6

DOF=7.90 × 10
6

Fig. 5.9. Speedup and average numbers of iterations of two-level hybrid preconditioner

[6] X.-C. Cai, Additive Schwarz algorithm for parabolic convection-diffusion equations, Numer.
Math., 60 (1990), pp. 41-62.

[7] X.-C. Cai, Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput., 15
(1994), pp. 587-603.

[8] X.-C. Cai, Some Domain Decomposition Algorithms for Nonselfadjoint Elliptic and Parabolic
Partial Differential Equations, Ph.D. Thesis, Courant Institute, 1989.

[9] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792-797.

[10] A. Chapman and Y. Saad, Deflated and argumented Krylov subspace techniques, Numer.
Linear Algebra Appl., 4 (1997), pp. 43-66.

[11] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasi-
bility studies for fluid, structure, and fluid-structure applications, Intern. J. Num. Methods.
Engin., 58 (2003), pp. 1397-1434.

[12] C. Farhat, L. Crivelli, and F. X. Roux, Extending substructure based on iterative solvers
to multiple load and repeated analyses, Comput. Methods Appl. Mech. Engrg., 117 (1994),
pp. 195-209.

[13] P. F. Fischer, Projection techniques for iterative solution of Ax=b with successive right-hand
sides, Comput. Methods Appl. Mech. Engrg., 163 (1998), pp. 193-204.

[14] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with
stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205-228.

[15] M. J. Gander, L. Halpern, and F. Nataf, Optimal convergence for overlapping and non-
overlapping Schwarz waveform relaxation, Eleventh International Conference on Domain
Decomposition Methods, 1999.

[16] M. J. Gander and Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for
linear problems, Paris-Sud Working Group on Modeling and Scientific Computing 2007-
2008 (E. Cances et al., eds.), ESAIM Proc., no. 25, EDP Sci., Les Ulis, 2008, pp. 114-129

[17] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration
method, SIAM J. Sci. Comput., 29 (2007), pp. 556-578

[18] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Revised
Edition, Dover, 2003.

[19] K. Guruprasad, D. E. Keyes, and J. H. Kane, GMRES for sequentially multiple nearby
systems, Technical Report (1995), Old Dominium University.

[20] G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods, 8 (1992), pp.
585-595.



24 C. CONG, X.-C. CAI, AND K. GUSTAFSON

[21] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differ-
ential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848-864.

[22] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity
for solving parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp.
531-541.

[23] H. Elman and D. Furnival, Solving the stochastic steady-state diffusion problem using multi-
grid, IMA J. Number. Anal., 27 (2007), pp. 675-688.

[24] H. Elman, C. Miller, E. Phipps and R. Tuminaro, Assessment of collocation and Galerkin
approaches to linear diffusion equations with random data, Intel. J. Uncertainty Quantifi-
cation, 1 (2011), pp. 19-33.

[25] C. Jin and X.-C. Cai, A preconditioned recycling GMRES solver for stochastic Helmholtz
problems, Commun. Comput. Phys., 6 (2009), pp. 342-353.

[26] C. Jin, X.-C. Cai and C. Li, Parallel domain decomposition methods for stochastic elliptic
equations, SIAM J. Sci. Comput., 29 (2007), pp. 2096-2114.

[27] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The waveform relaxation
method for time-domain analysis of large scale integrated circuits, IEEE Trans. Computer-
Aided Design, 1 (1982), pp. 131-145.

[28] J.-L. Lions, Y. Maday and G. Turinici, Eásolution d’EDP par un schéma en temps
“pararéal”, C. R. Acad. Sci. Paris Sér. I Math. 332, (2001), pp. 661-668.

[29] M. Loève, Probability Theory, Vol. I, II, Springer, New York, 1978.
[30] Y. Maday and G. Turinici, A parareal in time procedure for the control of partial differential

equations, C. R. Acad. Sci. Paris, Sér. I Math., 335 (2002), pp. 387-392.
[31] Y. Maday and G. Turinici, The parareal in time iterative solver: A further direction to par-

allel implementation, Proceedings of the 15th International Domain Decomposition Con-
ference. Lect. Notes Comput. Sci. Engrg., Springer, Berlin, Vol. 40, (2005), pp. 441-448.

[32] R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp. 20-37.
[33] F. Nobile and R. Tempone, Analysis and implementation issues for the numerical approx-

imation of parabolic equations with random coefficients, Intl J. for Numer. Methods in
Engrg., 80 (2009), pp. 979-1006.

[34] M. L. Parks, E. d. Sturler, G. Mackey, D. Johnson, and S. Maiti, Recycling Krylov
subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651-
1674.

[35] V. Simoncini and E. Gallopoulos, An iterative method for nonsysmmetric systems with
multiple right-hand sides, SIAM J. Sci. Comput., 16 (1996), pp. 917-933.

[36] E. de Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67 (1996),
pp. 15-41.

[37] M.-B. Tran, Parallel Schwarz waveform relaxation algorithm for an n-dimensional semilinear
heat equation, arXiv preprint arXiv:1006.1323 (2010).

[38] S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems, B.G. Teub-
ner Verlag, Stuttgart, 1993.

[39] T. Weinzierl and T Koppl, A geometric space-time multigrid algorithm for the heat equation,
Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 110-130.

[40] J. White, A. Sangiovanni-Vincentelli, F. Odeh, and A. Ruehli, Waveform relaxation:
theory and practice, Trans. Soc. Comput. Simul., 2 (1985), pp. 95-133.

[41] D. Xiu and G. E. Karniadakis, A new stochastic approach to transient heat conduction
modeling with uncertainty, Internat. J. Heat Mass Trans., 46 (2003), pp. 4681-4693.


