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Computer modeling of blood flows in the arteries is an important and very challenging problem. In order
to understand, computationally, the sophisticated hemodynamics in the arteries, it is essential to couple
the fluid flow and the elastic wall structure effectively and specify physiologically realistic boundary con-
ditions. The computation is expensive and the parallel scalability of the solution algorithm is a key issue
of the simulation. In this paper, we introduce and study a parallel two-level Newton–Krylov–Schwarz
method for simulating blood flows in compliant branching arteries by using a fully coupled system of lin-
ear elasticity equation and incompressible Navier–Stokes equations with the resistive boundary condi-
tion. We first focus on the accuracy of the resistive boundary condition by comparing it with the
standard pressure type boundary condition. We then show the parallel scalability results of the two-level
approach obtained on a supercomputer with a large number of processors and on problems with millions
of unknowns.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Computer modeling is a useful tool for the study of hemody-
namics of blood flows in human arteries. Accurate modeling is
important in prediction and treatment of, for example, cardiovascu-
lar diseases [8,20,23]. The extensive computational cost of the simu-
lation demands scalable algorithms and large scale supercomputers.
In this paper, we develop and study a parallel fluid–structure
interaction (FSI) algorithm for the simulation of blood flows in
branching arteries by using a fully coupled system of partial differ-
ential equations. Effective coupling of the fluid and the wall defor-
mation is one of the main concerns in FSI. We adopt a monolithic
approach by coupling the fluid, the elastic wall and fluid mesh
movement equations in the arbitrary Lagrangian–Eulerian (ALE)
framework [26], where the coupling conditions are enforced
strongly as part of the system [3–6,16]. In [3,4], a class of parallel
scalable Newton–Krylov–Schwarz (NKS) method was introduced
for the FSI problem by using the one- and two-level Schwarz algo-
rithms. Only the zero-traction outflow boundary condition was
investigated in the papers. In this paper we extend the work of
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[3,4] to the case with a more physiologically realistic resistance
outflow boundary condition. Since this boundary condition is of
integral type, it changes not only the physics of the flow, but also
the behavior of the preconditioning algorithms.

The vascular system is large and it is difficult to simulate the
entire system due to the lack of computing power. In most of the
simulations, numerical models are truncated into the upstream
domain (domain of interest) and downstream domain, and an
appropriate boundary condition is specified to represent the con-
tributions of the downstream vascular network. The accuracy of
the simulation depends on the outflow boundary condition which
is imposed to represent the influence from absent parts of the cir-
culation system. If the zero-pressure or zero-traction boundary
condition is used on the outlets, it has been reported that the blood
pressure is not computed accurately, and in the case of branching
arteries with outlets of different sizes, the flow distribution is com-
puted inconsistently with the clinical measurements [13,25]. Re-
cent studies [14,18] suggest to use a reduced dimensional model
to represent the downstream vessels and provide boundary condi-
tion for the domain of interest. In our application, the resistance
outflow boundary condition is considered, where we assume the
pressure P are constants over the upstream outlets. The relation
P = QR is implicitly prescribed on the outflow boundaries as the
resistance boundary condition, where Q ¼

R
Co

u � nds represents
the flow rate at the outflow boundary and R is the measured resis-
tance [24,25].
r simulating blood flows in branching arteries with the resistive boundary
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The first objective of this paper is to understand the influence of
the resistance boundary condition on the accuracy of the
numerical simulation. The integral nature of the resistance bound-
ary condition plays an interesting role in the convergence and
performance of the Schwarz type preconditioner. In the Newton–
Krylov–Schwarz framework, an inexact Newton method with line
search is used as a nonlinear solver and within a Newton step,
the linear Jacobian system is solved by GMRES preconditioned by
a one-level or two-level Schwarz preconditioner. The subdomain
partition usually respects the fact that the Jacobian matrix is uni-
formly sparse and each variable is related through the function
only to the neighboring variables, such as in the case of traction
boundary condition. However, due to the integral nature of the
resistance boundary condition, the Jacobian matrix has a dense
block corresponding to all variables on the outlet boundaries. The
decomposition of the global domain into subdomains breaks the
integral connection between the variables on the outflow bound-
aries. As far as we know, no one has employed the class of overlap-
ping Schwarz preconditioners to the system with an integral
boundary condition. It is worth for us to discuss the impact of
the decomposition of the integral condition on the convergence
and the scalability of the Schwarz preconditioned Jacobian solver.

We only consider a 2D model in this paper. Although not com-
pletely physically realistic for the blood flow simulations, this sim-
plified 2D problem maintains most of the mathematical aspects of
the fully coupled fluid–structure interaction problem and also the
ability to reproduce the important physical aspects of blood flow in
complaint arteries.

The rest of the paper is organized as follows. In Section 2, we
describe the formulation of the FSI problem, and also the discreti-
zation of the problem, both in space and time. In Section 3, we
present the Newton–Krylov–Schwarz method with a two-level
Schwarz preconditioner. Finally, in Section 4, we demonstrate the
effectiveness of the algorithm by showing some numerical results
using different geometries and problem sizes, and report the paral-
lel performance of the algorithm.
2. Mathematical formulation and discretization

With the emphasize in tight and monolithic coupling of the
fluid and the artery wall, an additional field is necessary to model
the computational mesh in the fluid domain. A popular choice is to
model the displacement of fluid mesh by a harmonic extension of
the moving fluid–structure boundary. That is, the overall model is
described by the coupling of three components, the linear elasticity
equation for the wall structure in the reference Lagrangian frame,
Fig. 1. Xs is the structure domain in the Lagrangian reference configuration; Xf(0) is th
domain at time t. The inlet and outlet boundaries for the fluid domain Ci and Co are fixed
sections, Cw represents the fluid–structure interface in the reference configuration.
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the incompressible Navier–Stokes equations for the fluid in the
ALE framework, and the harmonic equation for the mesh displace-
ment of the fluid domain. See Fig. 1 for a schematic and some
notations.

As a whole, the fully coupled FSI problem is given by

qs
@2xs

@t2 �r � rs � b
@ðDxsÞ
@t

þ cxs ¼ fs in Xs; ð1Þ

xs ¼ 0 on Cs; ð2Þ

@uf

@t

����
Y

þ ½ðuf �xgÞ � r�uf þ
1
qf
rpf ¼ mf Duf þ f f in Xf ðtÞ; ð3Þ

r � uf ¼ 0 in Xf ðtÞ; ð4Þ

uf ¼ g on Ci; ð5Þ

pf ¼ RQ ¼ R
Z

Co

uf � nds on Co; ð6Þ

Dxf ¼ 0 in X0; ð7Þ

xf ¼ 0 on Ci [ Co: ð8Þ

The displacement of the wall xs is described by (1) and (2),
where rs ¼ ksðr � xsÞI þ lsðrxs þrxT

s Þ is the Cauchy stress tensor.
The Lamé parameters ks and ls are defined as ks = msE/
((1 + ms)(1 � 2ms)), ls = E/(2(1 + ms)), where E is the Young’s modu-
lus and ms the Poisson ratio. qs is the density of the wall structure.
b is a visco-elastic damping parameter, and the c term is used to
represent a radially symmetric artery in two dimensions [1].

In order to model the fluid in a moving domain, the fluid mesh
displacement xf is made to satisfy a harmonic extension of the
moving interface as in (7). And a mapping At is defined from the
reference configuration Xf(0) to the moving domain Xf(t):

At : Xf ð0Þ ! Xf ðtÞ; AtðYÞ ¼ Y þ xf ðYÞ; 8Y 2 Xf ð0Þ;

where Y is referred to as the ALE coordinate. The Navier–Stokes
equations defined on the moving domain Xf(t) are written in the
ALE form (3) and (4), where uf = (u,v)T is the fluid velocity, pf is
the fluid pressure, mf is the kinematic viscosity, qf is the fluid den-
sity, xg = @At/@t is the velocity of the moving mesh and Y indicates
that the time derivative is taken with respect to the ALE coordi-
nates. In (5), a given velocity profile g is prescribed on the inlet
boundary Ci, while in (6), the resistance boundary condition is pre-
scribed on the outlet boundary Co.

More importantly, three coupling conditions are strongly
enforced on the fluid–structure interface Cw corresponding to the
structure, fluid and moving mesh equations, respectively
e reference configuration of the fluid domain and Xf(t) represents the moving fluid
and the boundaries Cs to the structure domain are also fixed at the inlets and outlets

r simulating blood flows in branching arteries with the resistive boundary
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rs � ns ¼ �rf � nf ; ð9Þ

uf ¼
@xs

@t
; ð10Þ

xf ¼ xs; ð11Þ

where ns, nf are unit normal vectors for the structure and fluid on
the fluid–structure interface, rs and rf ¼ �pf I þ qf mf ðruf þruT

f Þ
are the Cauchy stress tensors for the structure and fluid,
respectively.

By introducing the structure velocity _xs as an additional
unknown variable, we can rewrite the structure momentum Eq.
(1) to a first order system of equations. We define the variational
space of the structure problem as

X ¼ xs 2 ½H1ðXsÞ�2 : xs ¼ 0 on Cs

n o
:

The weak form of the structure problem is stated as follows: Find
xs 2 X and _xs 2 X such that "/s 2 X and "us 2 X,

Bs xs; _xsf g; /s;usf g;rf
� �

¼ 0;

where

Bsð xs; _xsf g; /s;usf g;rf Þ ¼ qs
@

@t

Z
Xs

_xs � /s dX

þ
Z

Xs

r/s : rs dXþ b
Z

Xs

r/s : _xs dX

þ c
Z

Xs

xs � /s dX�
Z

Cw

/s � rf � ns
� �

ds

þ
Z

Xs

@xs

@t
� _xs

� �
�us dX�

Z
Xs

fs � /s dX:

The structure problem Bs depends on uf and pf by the coupling con-
dition (9). Since this coupling condition is defined on the fluid–
structure interface, the structure problem also depends on the fluid
mesh displacement xf implicitly.

The variational spaces of the fluid subproblem are time-depen-
dent, and the solution of the structure subproblem provides an
essential boundary condition for the fluid subproblem by (10).
We define the trial and weighting function spaces as:

V ¼ uf 2 ½H1ðXf ðtÞÞ�2 : uf ¼ g on Ci;uf ¼
@xs

@t
on Cw

� �
;

V0 ¼ uf 2 ½H1ðXf ðtÞÞ�2 : uf ¼ 0 on Ci [ Cw

n o
;

P ¼ L2ðXf ðtÞÞ:

The weak form of the fluid problem reads: Find uf 2 V and pf 2 P
such that "/f 2 V0 and "wf 2 P,

Bf uf ; pf

	 

; /f ;wf

	 

; xf

� �
¼ 0;

where

Bf ð uf ;pf

	 

; /f ;wf

	 

; xf Þ ¼

Z
Xf ðtÞ

@uf

@t

����
Y

� /f dX�
Z

Xf ðtÞ
f f � /f dX

þ
Z

Xf ðtÞ
ðuf �xgÞ � r
� �

uf � /f dX

þ mf

Z
Xf ðtÞ
ruf : r/f dX

�
Z

Xf ðtÞ
pf ðr � /f ÞdXþ

Z
Xf ðtÞ
ðr � uf Þwf dX

�
Z

Co

tf � /f ds: ð12Þ

The last term in (12), which represents the contribution of the resis-
tance boundary condition on the outlet Co, can be rewritten as
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Z
Co

tf �/f ds¼�
Z

Co

R
Z

Co

uf �nds
� �

/f �ndsþ mf

Z
Co

/f � ðruf Þ �nds

thanks to the relation (6), where the pseudo-stress tensor tf = �pn +
mfruf � n. If the zero-traction boundary condition is considered, the
pseudo-stress tensor tf = 0 on Co, and the last term in (12) can be
omitted. The fluid problem couples the fluid mesh displacement
xf through the term xg and the integration domain, and connects
to the structure velocity _xs by the coupling condition (10).

The weak form of the mesh movement problem reads: Find
xf 2 Z such that "n 2 Z0

Bmðxf ; nÞ ¼ 0;

where

Bmðxf ; nÞ ¼
Z

X0

rn : rxf dX:

And the variational spaces are defined as

Z0 ¼ xf 2 ½H1ðX0Þ�2 : xf ¼ 0 on Ci [ Co [ Cw

n o
;

Z ¼ xf 2 ½H1ðX0Þ�2 : xf ¼ xs on Cw;xf ¼ 0 on Ci [ Co

n o
:

We use unstructured LBB-stable mixed Q2–Q1 elements for the
fluid and Q2 elements for the structure. Denote the finite element
subspaces Xh, Vh, Vh,0, Ph, Zh, Zh,0 as the counterparts of their infinite
dimensional subspaces. We form the finite dimensional fully cou-
pled FSI problem as: Find xs 2 Xh, _xs 2 Xh, uf 2 Vh, pf 2 Ph and xf 2 Zh

such that "/s 2 Xh, "us 2 Xh, "/f 2 Vh,0, "wf 2 Ph, and "n 2 Zh,0,

Bsð xs; _xsf g; /s;usf g;rf Þ þ Bf ð uf ;pf

	 

; /f ;wf

	 

; xf Þ þ Bmðxf ; nÞ ¼ 0:

ð13Þ

The fully coupled system (13) is further discretized in time with
a second-order trapezoidal rule. Since the temporal discretization
scheme is fully implicit, at each time step, we obtain the solution
xn at the nth time step from the previous time step by solving a
sparse, nonlinear algebraic system

FnðxnÞ ¼ 0;

where the vector xn corresponds to the nodal values of the fluid
velocity uf, the fluid pressure pf, the fluid mesh displacement xf,
the structure displacement xs and the structure velocity _xs at the
nth time step. For simplicity, we ignore n for the rest of the paper.
Equivalently, at each time step, we solve the nonlinear system

FðxÞ ¼ 0; ð14Þ

to obtain the solution x.

3. Newton–Krylov–Schwarz methods with a two-level
preconditioner

The fully discretized system (14) is nonlinear. The nonlinearity
comes through the convection term of the Navier–Stokes equations
and the displacement of the fluid domain. In the Newton–Krylov–
Schwarz approach, the nonlinear system is solved via the inexact
Newton method [11,12]. At each Newton step the new solution
x(k+1) is updated by the current solution x(k) and the Newton correc-
tion s(k),

xðkþ1Þ ¼ xðkÞ þ hðkÞsðkÞ;

where the step length parameter h(k) is determined by a cubic line
search technique [10], and x(0) is the solution from the previous
time step. The Newton correction s(k) is approximated by solving a
preconditioned Jacobian system with a Krylov subspace method,
GMRES [21].
r simulating blood flows in branching arteries with the resistive boundary
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JkM�1
k MksðkÞ ¼ �FðxðkÞÞ; ð15Þ

where Jk is the Jacobian matrix evaluated at x(k). The accuracy of
approximation is controlled by the forcing term gk to ensure the
residual of (15) is decreased by some desired tolerance

FðxðkÞÞ þ JkM�1
k MksðkÞ

  6 gk FðxðkÞÞ
 :

Since the parallel efficiency and the parallel scalability are
mostly determined by the preconditioning of the Jacobian system
(15), we next describe the construction of one-level and two-level
Schwarz preconditioners in detail.

To define the additive Schwarz method, we first partition the
finite element mesh Th ¼ Xh

f [Xh
s into non-overlapping subdo-

mains Xh
‘ ; ‘ ¼ 1; . . . ;N, without using the information of the loca-

tion of the interface. Each one is distributed to a processor of the
parallel machine. To insure that this partition with good load bal-
ancing, the package ParMETIS [15] is employed to decompose the
mesh into parts with fairly equal number of unknowns. Then, the
subdomains Xh

‘ are extended to overlapping domains Xh;d
‘ , where

d represents the size of overlap in terms of layers of elements.
The so-called one-level restricted additive Schwarz (RAS) precon-
ditioner [7] is defined by

M�1
one ¼

XN

‘¼1

ðR0
‘ Þ

T J�1
‘ R‘; ð16Þ

where R0
‘ and R‘ are restrictions to the degrees of freedom in the

non-overlapping subdomain Xh
‘ and overlapping subdomain Xh;d

‘ ,
respectively. The subdomain operator J‘ is a restriction of the Jaco-
bian matrix, defined by J‘ ¼ R‘JR

T
‘ . The local problems are solved by

the LU factorization.
The one-level method is most effective when the number of

processors is small. It is necessary to include a global coarse mesh
to provide global information exchange between the subdomains
in order to obtain fast convergence when the number of processors
is large.

To formally define the hybrid two-level Schwarz precondition-
er, we first specify the choice of the coarse mesh and the partition
based on that. In our setting, the fine mesh does not have to be the
refinement of the coarse mesh. The information exchange between
the coarse mesh and the fine mesh is through the coarse-to-fine
interpolation matrix Ih

H . The coarse mesh inherits the partition of
the fine mesh, see Fig. 2 for an example. The construction of the
interpolation matrix Ih

H is based on the finite element interpolation.
For each degree of freedom vi on the fine mesh, it is extrapolated
from the coarse mesh by
Fig. 2. Example partitions of the mesh of a straight tube case by using ParMETIS.
The subdomains are marked with different colors and the structure elements are
shaded. The top figure shows the partition of the fine mesh, and the bottom
represents a corresponding partition of the coarse mesh. Both of the partitions are
based on the elements, and the structure elements and fluid elements can be
grouped into the same subdomain. The elements of a coarse subdomain are
assigned to the corresponding processor that contains the fine mesh elements from
the same subdomain.
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v i � ðIh
HvHÞi ¼

X
j

vH
j /H

j ðxiÞ;

where xi is the coordinates associated with the degree of freedom vi

on the fine mesh, vH is a function on the coarse mesh, and /H
j is the

finite element basis function of the jth degree of freedom on the
coarse mesh. In our simulation, the fluid mesh deforms through
the fluid–structure interaction, the interpolation matrix should be
updated at each time step. Since the calculation of the basis func-
tion is costly, for simplicity, we construct the interpolation matrix
only based on the reference configuration.

We combine the coarse level preconditioner M�1
H and the fine

level preconditioner M�1
h multiplicatively. In other words, the

application of the two-level hybrid Schwarz preconditioner
y ¼ M�1

twox is obtained in the following two steps

y ¼ Ih
HM�1

H ðI
h
HÞ

T x; ð17Þ
M�1

twox ¼ yþM�1
h ðx� JhyÞ; ð18Þ

where Jh is the Jacobian matrix obtained on the fine mesh. We
choose the fine level preconditioner M�1

h as the one-level restricted
additive Schwarz preconditioner given in (16). The coarse level pre-
conditioning by M�1

H requires solving a linear system on the coarse
mesh, which is often computationally costly if the linear system is
solved directly. Therefore, we solve the coarse problem iteratively
by using GMRES with a one-level restricted additive Schwarz pre-
conditioner. Since the coarse solution is approximated by an itera-
tive method, the two-level preconditioner changes in each linear
iteration. In this case, the flexible GMRES (fGMRES) is more appro-
priate than the regular GMRES [22].

To complete this section, we make a remark on the impact of
the decomposition into subdomains on the resistance boundary
condition. The only criterion we use when partition the domain
into subdomains is to minimize the edge cuts; i.e., the outlet
boundary would be cut into different subdomains, see Fig. 2. In
such a situation, the global connection between the variables on
the outlet boundaries, which is established by the resistance
boundary condition (6), is destroyed. In the next section, we will
discuss the convergence and parallel performance of the Schwarz
type preconditioner with the resistive boundary condition.

4. Numerical results

In this section, we report some numerical results of the pro-
posed FSI solver by simulating the blood flows in compliant arter-
ies. At first, we validate our model by studying the impact of
different outflow boundary conditions on the accuracy of the
hemodynamic prediction. We then investigate the numerical
behavior and parallel performance of the two-level hybrid Schwarz
preconditioner with the resistive boundary condition. The software
is developed using the Portable Extensible Toolkit for Scientific
computation (PETSc) library [2]. Mesh generations are carried out
by Cubit [19]. The tests reported in this section are performed on
an IBM BlueGene/L with 4096 compute nodes.

4.1. Impact of different outflow boundary conditions

We first study the application of our method to a two-dimen-
sional model of the artery with a simple geometry. The model con-
sists of a straight tube of 20 cm in length, 2 cm in diameter and the
artery wall is 0.2 cm in thickness. For the inlet, we prescribe a pul-
satile periodic flow wave,1 with a period T of 0.6 s, mapped to
a uniform velocity profile, see Fig. 3. For the outlet, both the
1 The data is provided by Z. Su, K. Hunter, and R. Shandas of University of Colorado,
School of Medicine.
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Fig. 3. The setup of the straight tube problem and the inlet flow rate from clinical data with a polynomial fitting.
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zero-traction and resistance boundary conditions are considered.
In the case of the resistance boundary condition, the resistance
R = 599.85 dyn�s/cm5 is prescribed on the outlet. The elastic artery
wall is characterized with density of 1.2 g/cm3, Young’s modulus of
6.0 � 106 g/(cm s2) and Poisson ratio of 0.48. The blood is modeled
as a Newtonian flow, with a density of 1.0 g/cm3 and kinematic vis-
cosity of 0.035 cm2/s. The Reynolds number is approximately 300
based on the mean inlet velocity and the radius of the artery. It
is important that the simulation starts from a equilibrium state
[13]. Therefore, we obtain the initial condition as follows:

1. The initial velocity of the wall _xs;0 is set to zero.
2. A steady FSI problem is solved, using the same inlet and outlet

boundary conditions as in the time-dependent problem. The
velocity uf,0, the pressure pf,0, the fluid mesh displacement xf,0,
the structure displacement xs,0 are then used as the initial con-
ditions for the unsteady problem.

A mesh with 58,369 elements and 1.01 million degrees of free-
dom is utilized and the solutions are obtained using a time step of
1 ms for a total of 3 cardiac cycle. The simulation proceeds to the
next time step when the residual of the nonlinear system is less
than 10�6. In Fig. 4, we compare the results obtained with two
types of outflow boundary conditions, the resistance and the
zero-traction boundary conditions. For the resistance boundary
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figures represent the results by using the zero-traction outflow boundary condition.
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condition, the wall deformation alters the flow distributions at
the inlet and outlet sections over one cardiac cycle. Because the
compliant vessels store flow during the systole phase and then re-
lease flow during the diastole phase, the outlet flow rate is smaller
compared to the inlet flow rate at the peak systole phase, while the
outlet flow rate is larger at the diastole. It is clear that the wall dis-
placement plot follows the shape of the wall pressure plot, which
shows that the artery walls move in response to the pulse of the
pressure. For the zero-traction boundary condition, both plots are
dramatically different from the resistance case. The outlet flow
shows unrealistic peak and negative amplitude, and the wall pres-
sure and displacement results in unrealistic amplitude and oscilla-
tory pattern.

To further illustrate the influence of the boundary conditions,
we carry out numerical simulations for a model artery bifurcating
to two branches. As shown in Fig. 5, one of the branches stenoses
with a 75% area reduction. We use the same inlet boundary condi-
tion, and the same material properties for the blood and vessel wall
as in the previous test. The finite element mesh consists of 65,920
elements and 1.15 million of unknowns. The simulations are run
for 3 cardiac cycles with a time step size of 1 ms. Fig. 6 depicts
the flow waves as well as the mean flow at outlets during one
cardiac cycle for the two different boundary conditions. With
the resistance boundary condition, the mean flow split between
the two branches nearly half by half, a bit more flow goes to the
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Fig. 5. Geometric details of the bifurcating artery, a 75% area reduction stenosis is
shown on one of the branches.
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normal artery branch than the stenosed one during the systole
phase. For the zero-traction boundary condition, the normal artery
branch receives more flow than the stenosed branch throughout
the cardiac cycle and unrealistic negative flow is observed at the
outlet of the stenosed branch. As a result, the mean flow split in
a unrealistic pattern, nearly 90% of the flow goes to the normal
branch. In fact, it has been verified in clinical experiments that
the flow distributes almost evenly (50–50%) between the normal
branch and the stenosed branch, provided that the stenosis is less
than 85% area reduction [25]. In this sense, the simulation obtained
with the resistance boundary condition shows a better consistency
with the clinical results.

Fig. 7 provides an illustration of the differences in the fluid
velocity and pressure fields between the resistance and zero-trac-
tion outflow boundary conditions at peak systole. Note that the dif-
ferences are not small.

Fig. 8 shows the computed wall shear stress and wall displace-
ment at different locations along the artery wall during one cardiac
cycle by using the resistance outflow boundary condition. We
place the first measurement location P0 at the middle point of
the upstream artery wall. On the wall of the stenosed branch, P1
and P5 are placed a distance of 1.0 cm from the throat of the steno-
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Fig. 6. Outlet flow waves and flow distribution between the normal artery branch and the
by using the resistance and zero-traction outflow boundary condition. Top left plot show
resistance boundary condition, and the top right plot gives the results of the flow distribu
boundary condition. Corresponding results by using the zero-traction boundary conditio

Please cite this article in press as: Wu Y, Cai X-C. A parallel two-level method fo
condition. Comput Fluids (2011), doi:10.1016/j.compfluid.2010.11.015
sis. P3 is located at the throat of the stenosis, and P7 is placed near
the outlet boundary. On the wall of the normal branch, P2, P4, P6,
P8 represent the corresponding locations to those specified loca-
tions on the wall of the stenosed branch. On the wall of the ste-
nosed branch, the highest wall shear stress occurs at the throat
of stenosis (P3). The wall shear stress at P3 increases rapidly in
the systole phase, and decreases in the diastole phase. At location
P1, the wall shear stress shows a little fluctuation during the car-
diac cycle. It increases in the systole phase, and returns to a con-
stant in the diastole phase. At location P5, the wall shear stress
shows a more oscillatory pattern. It increases in the systole phase,
and oscillates in the early diastole phase. Note that, in the stenosis
section, the fluid can accelerate to a high speed and produce a
recirculation zone in the downstream of the stenosis. At location
P7, which is away from the recirculation zone and closer to the
outflow boundary, the wall shear stress pattern is closer to the
one at location P1. On the wall of the normal branch, at the loca-
tions P2, P4, P6, the wall shear stress are almost the same at any
time during the cardiac cycle, increasing in the systole phase and
decreasing in the diastole phase. At location P8, the wall shear
stress behaves a little differently. The peak wall shear stress is
smaller and decreases slower in the diastole phase. As for the wall
displacement, on the stenosed branch, on average, the wall dis-
placement is smaller at the stenosis throat (P3), and is larger at
the location P7, which is located near the outflow boundary. On
average, the wall displacement at P8 is larger than the wall
displacement at other locations on the normal branch. The wall
displacement at P2, P4, and P6 share a similar pattern and
magnitude.

4.2. Performance and parallel scalability

In this subsection, we discuss the performance and parallel sca-
lability of the two-level solver to the fully coupled FSI problem
using the resistance boundary condition. For all the numerical tests
in this subsection, unless otherwise specified, we use the same
geometries, material properties and boundary conditions as
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Fig. 7. Fluid velocity magnitude and pressure at peak systole for resistance and zero-traction outflow boundary conditions. The artery walls are colored by the magnitude of
the structural displacement. For the resistance boundary condition, fluid velocity magnitude and pressure are shown on the left. Corresponding figures using the zero-traction
boundary are shown on the right.
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described before. The stopping criterion for the Newton iteration is
when the norm of the residual of the nonlinear system is less than
10�6. The accuracy of the preconditioned Jacobian system is gov-
erned by the relative tolerance of 10�4. The coarse solver is consid-
ered to have converged if the relative residual is less than 10�3. The
time step size is fixed as Dt = 1 ms, and the simulation is stopped
after 10 time steps. We then report the results, such as the average
compute time, the average number of Newton iterations per time
step, and the average fGMRES iterations per Newton step.

4.2.1. Straight tube case
We consider the benchmark straight tube problem as described

before. We first demonstrate the performance of the hybrid
two-level preconditioner with the resistance boundary condition,
by comparing to the results obtained with the zero-traction bound-
ary condition. In [4], the performance of the preconditioner with
the zero-traction boundary condition was studied. As observed in
Table 1, the two-level hybrid preconditioner handles the resistance
boundary condition well. In terms of the number of iterations and
the average compute time, the preconditioner shows good perfor-
mance with both boundary conditions. As we double the number
of processors, the number of linear iterations keeps close to a con-
stant while the compute time is cut by half in both cases. Although,
in the case of the resistance boundary condition, the subdomain
partition breaks the integral connection between the variables on
the outlet boundary, the two-level hybrid preconditioner still
proves to be an effective choice.

For the one-level additive Schwarz preconditioner, the precon-
ditioned system becomes more ill-conditioned as the number of
subdomains increases. In Table 2, we show the results obtained
with the two-level preconditioner as we increase the number of
subdomains. Comparing to the results of the one-level precondi-
tioner, the performance of the two-level preconditioner is much
better. As we increase the number of subdomains to 1024, the
average number of linear iterations per Newton step stays close
to a constant. Similar results are observed in terms of the average
compute time.
Please cite this article in press as: Wu Y, Cai X-C. A parallel two-level method fo
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In order to understand the parallel scalability of the two-level
preconditioner, we show the parallel speedup over the number
of processors for the two different meshes. As shown in Fig. 9,
for both problems, the two-level preconditioner shows nearly ideal
speedup with up to 1024 processors. We are also interested in the
weak scalability of the algorithms. Ideally, as we increase the num-
ber of processors and the problem size at the same rate, the num-
ber of linear iterations and the compute time should not change
much. In this sense, the two-level preconditioner shows much bet-
ter weak scalability than the one-level preconditioner, especially
when the number of processors is large, as shown in Fig. 10.

There are several important factors that impact the perfor-
mance of the two-level preconditioner, such as the interpolation
operator, the tolerance of the coarse solve. The motivations for
two-level preconditioner is to facilitate the exchange of informa-
tion between subdomains by adding a coarse mesh, thereby
improve the performance of the preconditioning. In practice, a rel-
atively fine coarse mesh would help reduce the total number of
iterations, but the overall compute time may increase. The best
choice of the coarse mesh needs to balance the time of the coarse
solve and the preconditioning effects. In Table 3, we show some re-
sults obtained with different coarse mesh sizes.

4.2.2. Branching artery case
In this subsection, we consider the a branching artery model

problem. One of the branches of the artery stenoses with a 75%
area reduction. In this geometry, the computations is more chal-
lenging because relatively high Reynolds numbers occur at and
near the stenosis. In Table 4, we compare the two-level precondi-
tioner with the one-level preconditioner. Again, the two-level pre-
conditioner is more effective than the one-level preconditioner in
terms of the average number of linear iterations and the average
compute time.

As for the parallel scalability, we show the speedup of the two-
level preconditioner in Fig. 11. The two-level preconditioner shows
nearly ideal speedup with up to 1024 processors. The effects of
coarse mesh size are shown in Table 5. Comparing to the one-level
r simulating blood flows in branching arteries with the resistive boundary
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Fig. 8. Wall shear stress (WSS) and wall displacement at different locations of the artery wall during one cardiac cycle, by using the resistance outflow boundary condition.
Top plot shows the locations of measurement on the artery wall. Middle left plot shows the WSS at the locations (P1, P3, P5, P7) of the stenosed branch during one cardiac
cycle, and middle right plot shows the WSS at the corresponding locations (P2, P4, P6, P8) of the normal branch during one cardiac cycle. Since we use different scale for the
WSS on the two different branches, we include the WSS at the upstream location P0 (the solid line) in both plots for reference. The bottom two plots show the wall
displacement for those locations on the stenosed branch and the normal branch, respectively, from left to right.

Table 1
Comparison of the performance of the two-level hybrid preconditioner with the zero-
traction and resistance outflow boundary conditions. The tests are carried on a
straight tube problem, associated with the fine mesh of 2.01 � 106 degrees of freedom
and the coarse mesh of 1.30 � 105 degrees of freedom. ‘‘np’’ denotes the number of
processors. ‘‘Newton’’ denotes the average Newton iterations per time step. ‘‘fGMRES’’
denotes the average fGMRES iterations per Newton step. ‘‘Time’’ refers the average
compute time, in seconds, per time step.

np Zero-traction Resistance

Newton fGMRES Time (s) Newton fGMRES Time (s)

64 2.0 36.96 210.27 2.0 38.18 214.31
128 2.0 39.59 83.17 2.0 40.46 84.43
256 2.0 46.96 41.32 2.0 48.59 42.76
512 2.0 52.68 22.53 2.0 54.09 23.33

Table 2
Performance of the two different preconditioners with respect to the increasing
number of subdomains for the straight tube test problem. The tests are carried on a
mesh with 2.01 � 106 unknowns, using the resistance outflow boundary condition.
‘‘Newton’’ denotes the average Newton iterations per time step. ‘‘fGMRES’’ denotes
the average fGMRES iterations per Newton step. ‘‘Time’’ denotes the average compute
time, in seconds, per time step.

np One-level Two-level

Newton fGMRES Time (s) Newton fGMRES Time (s)

64 2.0 103.91 236.47 2.0 38.18 214.31
128 2.0 124.09 107.29 2.0 40.46 84.43
256 2.0 218.06 67.07 2.0 48.59 42.76
512 2.0 281.55 44.03 2.0 54.09 23.33

1024 2.0 450.68 36.17 2.0 75.32 17.34
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preconditioner, the two-level preconditioner greatly reduces the
average number of linear iterations as well as the average compute
time.

In the one-level preconditioner, the overlap parameter d is often
used to control the amount of information exchange between the
subdomains. Larger overlaps allow more information to exchange,
but require additional communication time. Therefore the precon-
ditioner improves the condition number of the linear system but
spends more time in communication. For the two-level precondi-
tioner, the exchange of information happens through the interpo-
Please cite this article in press as: Wu Y, Cai X-C. A parallel two-level method fo
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lation from the coarse mesh. In other words, the two-level
approach is less sensitive to the overlap parameter. In practice,
the one-level preconditioner fails to converge for zero overlap,
while the two-level preconditioner performs well. Results with re-
spect to the overlaps are shown in Table 6.
4.3. Robustness to parameters

In the FSI simulation, the elastic artery wall is characterized by
two important parameters, the Young’s modulus and the Poisson
r simulating blood flows in branching arteries with the resistive boundary
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Fig. 9. Speedup versus number of processors for straight tube problem with the resistance outflow boundary condition. Results for the problem with 2.01 millions of
unknowns are on the left, and results for the problem with 3.99 millions of unknowns show on the right.
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Fig. 10. Weak scaling of the algorithm for the straight tube problem using the resistance boundary condition. On the left, the vertical axis shows the average number of linear
iterations per Newton step. On the right, the vertical axis shows the average compute time in seconds per time step. The number of unknowns increases with the number of
processors: 2.01 � 106 for 256 processors, 7.99 � 106 for 1024 processors.

Table 3
The effect of various choices of the preconditioners for the straight tube problem with different problem sizes and number of processors. The heading ’’coarse size’’ represents the
number of unknowns on the coarse mesh as a fraction of the number of unknowns on the fine mesh and ‘‘coarse time’’ is the time spent on the coarse solve as a fraction of total
compute time.

Unknowns np Levels Coarse size Newton fGMRES Time (s) Coarse time

2.01 � 106 256 One 0.0 2.0 218.05 70.14 0.0
2.01 � 106 256 Two 0.02 2.0 86.23 42.08 0.18
2.01 � 106 256 Two 0.03 2.0 73.46 43.03 0.23
2.01 � 106 256 Two 0.06 2.0 48.59 42.76 0.28
2.01 � 106 512 One 0.0 2.0 281.55 44.03 0.0
2.01 � 106 512 Two 0.02 2.0 94.68 23.11 0.33
2.01 � 106 512 Two 0.03 2.0 82.55 23.91 0.38
2.01 � 106 512 Two 0.06 2.0 54.09 23.33 0.42
3.99 � 106 512 One 0.0 2.0 315.91 86.01 0.0
3.99 � 106 512 Two 0.01 2.0 109.82 46.88 0.19
3.99 � 106 512 Two 0.03 2.0 55.32 43.16 0.26
3.99 � 106 512 Two 0.06 2.0 49.05 44.95 0.30
3.99 � 106 512 Two 0.13 2.0 31.86 61.98 0.54
7.99 � 106 1024 One 0.0 2.0 610.22 329.20 0.0
7.99 � 106 1024 Two 0.01 2.0 189.64 76.73 0.29
7.99 � 106 1024 Two 0.03 2.0 121.36 81.63 0.44
7.99 � 106 1024 Two 0.06 2.0 76.86 85.43 0.52

Table 4
Performance of two different precondtioners with increasing number of subdomains
for the branching artery problem. The tests are carried on a mesh with 2.00 � 106

unknowns, using the resistance outflow boundary condition.

np One-level Two-level

Newton fGMRES Time (s) Newton fGMRES Time (s)

128 2.0 124.32 158.40 2.0 56.14 118.59
256 2.0 177.55 69.80 2.0 51.23 45.29
512 2.0 403.14 56.81 2.0 86.73 27.68

1024 2.0 556.71 43.45 2.0 104.86 17.46
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ratio, which characterize the stiffness and the incompressibility of
the elastic wall, respectively. The stiffer and the larger Poisson ratio
the wall are, the more difficulty it is to solve the problem numer-
Please cite this article in press as: Wu Y, Cai X-C. A parallel two-level method fo
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ically. In Table 7, the two-level preconditioner shows robust con-
vergence with respect to the Young’s modulus. In Table 8, the
two-level preconditioner also shows robust performance with re-
spect to the Poisson ratio. Increasing the Poisson ratio has only
moderate effect to the solver. Other important parameters in the
simulations are the fluid density and the wall structure density.
It has been reported in some references that the convergence be-
comes more difficult to achieve if the density of the fluid and the
wall structure are close to each other [9], or if the fluid is much
more heavier than the wall structure [17]. In Table 9, the two-level
solver performs fairly well for a wide range of fluid density and
wall structure density. For the resistance boundary condition, the
value of the resistance is one of the important parameter in the
simulation. In Table 10, the two-level solver shows robust perfor-
mance with respect to the value of resistance.
r simulating blood flows in branching arteries with the resistive boundary
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Fig. 11. Speedup versus number of processors for the branching artery model with the resistance outflow boundary condition. Results for the problem with 2.00 millions of
unknowns is on the left, and results for the problem with 3.88 millions of unknowns show on the right.

Table 5
The effect of various choices of the size of the coarse mesh for the branching artery problem with different problem sizes and number of processors. ‘‘coarse size’’ represents the
number of unknowns on the coarse mesh as a fraction of the number on the fine mesh and ‘‘coarse time’’ is the time spent on the coarse solve as a fraction of total compute time.

Unknowns np Levels Coarse size Newton fGMRES Time (s) Coarse time

9.82 � 105 128 One 0.0 2.0 83.77 40.77 0.0
9.82 � 105 128 Two 0.02 2.0 69.86 36.41 0.15
9.82 � 105 128 Two 0.04 2.0 62.82 36.86 0.27
9.82 � 105 128 Two 0.07 2.0 49.23 37.40 0.21
2.00 � 106 256 One 0.0 2.0 177.55 69.80 0.0
2.00 � 106 256 Two 0.02 2.0 87.14 44.43 0.17
2.00 � 106 256 Two 0.03 2.0 76.82 46.77 0.23
2.00 � 106 256 Two 0.07 2.0 51.23 45.29 0.26
3.88 � 106 512 One 0.0 2.0 219.50 107.15 0.0
3.88 � 106 512 Two 0.01 2.0 124.77 77.70 0.14
3.88 � 106 512 Two 0.03 2.0 164.18 80.94 0.19
3.88 � 106 512 Two 0.06 2.0 95.23 70.67 0.28
3.88 � 106 1024 One 0.0 2.0 381.59 68.18 0.0
3.88 � 106 1024 Two 0.01 2.0 166.41 33.39 0.38
3.88 � 106 1024 Two 0.03 2.0 105.64 27.82 0.36

Table 6
The effect of the overlap parameter for one-level and two-level preconditioners for
the branching case with the resistance outflow boundary condition.

Unknowns np Levels Overlap Newton fGMRES Time (s)

9.82 � 105 128 One 1 2.0 132.05 43.28
9.82 � 105 128 One 2 2.0 83.77 40.77
9.82 � 105 128 One 3 2.0 60.91 43.42
9.82 � 105 128 Two 0 2.0 69.86 36.41
9.82 � 105 128 Two 1 2.0 65.05 42.12
9.82 � 105 128 Two 2 2.0 49.46 41.50
2.00 � 106 256 One 1 2.0 471.09 78.16
2.00 � 106 256 One 2 2.0 317.46 75.94
2.00 � 106 256 One 4 2.0 177.55 69.80
2.00 � 106 256 Two 0 2.0 51.23 45.29
2.00 � 106 256 Two 1 2.0 86.50 61.13
2.00 � 106 256 Two 2 2.0 128.36 89.07
3.88 � 106 512 One 4 2.0 219.50 107.15
3.88 � 106 512 One 6 2.0 149.23 130.29
3.88 � 106 512 Two 0 2.0 114.77 79.87
3.88 � 106 512 Two 1 2.0 120.50 85.72
3.88 � 106 512 Two 2 2.0 95.23 70.67

Table 7
Performance of the two-level method with respect to various values of Young’s
modulus E. The tests are run for the branching case with 2.00 � 106 unknowns,
together with a coarse mesh with 6.60 � 104 unknowns.

np E (g/(cm s2)) Newton fGMRES Time (s)

256 6.0 � 106 2.0 51.23 45.29
256 1.4 � 107 2.0 68.46 55.75
256 6.0 � 107 2.0 119.23 67.13
512 6.0 � 106 2.0 86.73 27.68
512 1.4 � 107 2.0 105.23 33.20
512 6.0 � 107 2.0 186.46 56.11

Table 8
Performance of the two-level method with respect to various values of Poisson ratio.
The tests are run for the branching case with 2.00 � 106 unknowns, together with a
coarse mesh with 6.60 � 104 unknowns.

np Poisson ratio Newton fGMRES Time (s)

256 0.4 2.0 39.09 40.66
256 0.45 2.0 42.59 41.79
256 0.48 2.0 51.23 45.29
512 0.4 2.0 68.32 25.00
512 0.45 2.0 74.41 26.14
512 0.48 2.0 86.73 27.68

Table 9
Performance of the two-level method with respect to different combinations of fluid
density qf and structure density qs. The tests are run for the branching case with a fine
mesh with 2.00 � 106 unknowns and a coarse mesh with 6.60 � 104 unknowns on
512 processors.

qf qs Newton fGMRES Time (s)

0.01 1.0 2.0 304.41 109.51
0.1 1.0 2.4 169.09 57.64
1.0 1.2 2.0 86.73 27.68

10.0 1.0 2.0 115.14 31.14
100.0 1.0 3.0 209.82 65.68

1.0 0.01 2.0 134.73 36.65
1.0 0.1 2.0 122.82 34.67
1.0 10.0 2.0 73.00 25.83
1.0 100.0 2.0 74.00 32.11
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5. Conclusion

In this paper, we studied a parallel domain decomposition algo-
rithm with a two-level preconditioner for simulating blood flows
r simulating blood flows in branching arteries with the resistive boundary
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Table 10
Performance of the two-level method with respect to various values of the resistance.
The tests are run for the branching case with 2.00 � 106 unknowns, together with a
coarse mesh with 6.60 � 104 unknowns.

np Resistance (dyn�s/cm5) Newton fGMRES Time (s)

256 599.85 2.0 51.23 45.29
256 1000.0 2.0 55.96 46.83
256 2000.0 2.0 53.32 45.70
256 3000.0 2.0 52.68 45.35
512 599.85 2.0 86.73 27.68
512 1000.0 2.0 86.82 27.71
512 2000.0 2.0 93.36 28.61
512 3000.0 2.0 91.96 28.48
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in the complaint arteries with the resistive outflow boundary con-
dition. We demonstrated that the resistive boundary condition is
an improvement over the zero-traction outflow boundary condi-
tion. We applied the resistive outflow boundary condition on two
different artery models and we discussed the performance of a
two-level preconditioner with the integral type resistive boundary
condition. Based on a large number of numerical experiments, we
are convinced that the two-level approach is effective and scalable
with over one thousand processors.
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