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Additive Schwarz Methods for Hyperbolic Equations
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�� Introduction

In recent years� there has been gratifying progress in the development of domain
decomposition algorithms for symmetric and nonsymmetric elliptic problems and
even some inde�nite problems� Many methods possess the attractive property
that the convergence rate is optimal� i�e�� independent of the size of the discrete
problem and of the number of subdomains� or within a polylog factor of optimal�
There is� in comparison� relatively little in the domain decomposition literature on
hyperbolic problems� Quarteroni ��� �� used nonoverlapping domain decomposition
methods based on the spectral collocation approximation on systems of conservation
laws� Gastaldi and Gastaldi ��� �� set up a nonoverlapping domain decomposition
scheme based on the �nite element approximation for the transport equation� These
contributions establish the boundary operators that lead to well�posed decoupled
problems� which can then be discretized and solved by standard means�

Our interests in this paper are rather di�erent� We examine overlapping domain
decomposition preconditioners� and leave the original global discretization fully in
tact� Rather than deriving interface conditions that lead to decomposed solutions
that are mathematically equivalent �to within some speci�ed discretization toler�
ance� to the solutions of the undecomposed problem� we derive an approximate
inverse that can be applied in a concurrent manner� subdomain�by�subdomain� and
that e�ectively preconditions the original undecomposed operator� whose action is
already trivial to apply in the same concurrent manner� There seem to have been to
date no such additive or multiplicative Schwarz preconditioners leading to optimal
convergence rates for hyperbolic equations�

Based on the standard Galerkin method ��� an ASM algorithm is formulated�
The preconditioned problems are solved by the GMRES method� The convergence
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rate is shown to be asymptotically independent of the time and space mesh param�
eters and the number of subdomains� provided that the time step is �ne enough�
namely of such a size as would be typical for temporal stability reasons in an ex�
plicit discretization� As these limits are exceeded� numerical experiments based on a
Galerkin discretization show a rapid deterioration in convergence rate� �Upwinded
discretizations permit explicit stability limits to be exceeded� in the sense that
the resulting preconditioned iterations on each time step can converge su	ciently
rapidly to be cost�e�ective in comparison with explicit methods� as discussed in a
forthcoming sequel�� Convergence rate is experimentally observed to be relatively
independent of overlap�

Just as in the parabolic case� but in contrast to the elliptic case� no coarse�level
mesh is required in forming an optimal preconditioner� Good speedups are available
on a distributed�memory machine� as would be expected of a problem with a purely
local preconditioner�

�� Model problem

We consider for convenience the constant�coe	cient linear scalar hyperbolic
equation
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together with proper boundary and initial conditions� where  is a bounded domain
in R� with boundary � and I � ��� T � is a time interval�

All results in this paper extend without di	culty to the more general linear
hyperbolic problem
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where  is a bounded domain in Rd �d � � or ��� the coe	cients b � �b�� � � � � bd�
and c depend smoothly on �x� t�� and �

�divb� c � c� � � in � I� for stability�
By implicit temporal �nite di�erencing� we obtain the following problem
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where �k is the kth time step� K is the number of steps�
PK
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is the in�ow boundary de�ned by
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where n�x� y� is the outward unit normal to � at the point �x� y� � �� and � �
���k���k�� Any implicit multistep time�integration method leads to a system like
���� in which f more generally contains a linear combination of the solution at
earlier time steps�

The following notation will be used throughout this chapter
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	� Standard Galerkin method

Let us consider the standard Galerkin method for the problem ���� which can
be given the following variational formulation
 Find u � H���� such that

�u� � u� v�� � u� v �
�

� �f� v�� � g� v �
�

� �v � H�������

where we omit the subscript k� and where u� � ����u
�x

� �u
�y
�� By Green�s formula�

it is easy to show that
�u�� v� �� u� v � ��u� v���

The stability of ��� is a consequence of the following property of the bilinear form
B��u� v� � �u� � u� v�� � u� v �

�
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The symmetric part of B��u� v� is
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and the skew�symmetric part is

S��u� v� �
�
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� u� v � ��u� v���

De�ne the ��norm as k � k� �
p
B���� ���

We choose V h � H��� as a �nite element space of continuous piecewise poly�
nomial functions of degree one or higher on a mesh of quasi�uniform element size
h� We discretize equation ��� in space by the Galerkin �nite element method and
have the approximation
 Find uh � V h at each time step k� such that

B��u
h� vh� � �f� vh�� � g� vh �

�

� �vh � V h����

We require the following assumption for the theoretical analysis


Assumption �� The relation between � and h is

� � Ch�	s�

where s � ��

In the case of velocity magnitudes di�erent from unity in ���� Assumption �
becomes a CFL condition� and the allowable time step must be reduced in inverse
proportion to the global maximum of the velocity�

We have some lemmas pertaining to B� � A� � and S� as follows�

Lemma �� There exist positive constants c� and c�� independent of � � such
that

jB��u� v�j � c�kuk� � kvk�� �u� v � V h���
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Lemma �� There exist positive constants c� and c�� independent of � � such
that
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Lemma �� There exists a constant c� � �� independent of � � such that
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An additive Schwarz algorithm for ��� is formulated following ���� Let i� i �
�� � � � � N � be nonoverlapping subregions of  with quasi�uniform diameters H � such
that

S �i � �� The vertices of any i not on � coincide with the �ne�grid

mesh vertices� We de�ne an overlapping decomposition of � denoted by f
�

i� i �

�� � � � � Ng� by extending each i to a larger region 
�

i� which is cut o� at the physical
boundary of � The overlap is generous in the sense that there exists a constant
� � � such that dist��

�

i

T
� �

�

i

T
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Corresponding to the domain decomposition� we decompose the �nite element
space V h at each time step k in the customary manner ���� i�e�� V h � V h

� � � � ��V h
N �

where V h
k is a discrete space whose support is con�ned to the extended subdomain

i�
The basic building blocks of the algorithm� projection operators Qi 
 V

h 	
V h
i � i � �� � � � � N � are de�ned by

B��Qiu
h� vh� � B��u

h� vh�� �vh � V h
i ����

The subproblems have homogeneous Dirichlet boundary conditions for the inte�
rior boundary� We can introduce the operator T � Q� � � � � � QN and form the
transformed linear system

Tuh � b����

where the right�hand side is de�ned by b � Tuh �
PN

i��Qiu
h� which can be

computed without the knowledge of uh by solving the subproblems ����
If T is invertible� we show below that equation ��� has the same� unique solution

as ���� The operator T is inconvenient to obtain explicitly� but the action of T on a
function in V h is straightforward to compute� consisting of independent problems in
subdomains� Thus the preconditioned form ��� can be solved by a Krylov iterative
method� such as GMRES ��
��

With Assumption � and the inverse inequalities
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�assuming that h � ��� On the other hand� we obtain�
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which leads to


Lemma �� The ��norm is equivalent to the L� norm�

Therefore� following ���� we come to the conclusion that
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Lemma �� There exists a constant C� � �� independent of h and H such that�

for all uh � V h� there exist uhi � V h
i with uh �

PN

i�� u
h
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i�� ku
h
i k

�
� �

C�
�ku

hk��� C� generally depends upon the subdomain overlap ��

We give an estimate in the following lemma for the skew�symmetric part S���� ���
which shows that the skew�symmetric part is a lower order term compared with
the symmetric part� and can therefore be controlled�

Lemma �� There exists a constant �� � � � � �� independent of � � h� and H�
such that

jS��u
h� Tuh�j � �B��u

h� Tuh���uh � V h�

Proof� We use the inequalities ��� and ��� throughout the proof�
By the de�nition of Qi� i � �� � � � � N� we have
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Following Lemma �� Lemma �� and Assumption �� we can show
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Using Lemma �� Lemma �� and the Cauchy�Schwarz inequality� we have
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and hence we obtain
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h� Tuh��

which �nally leads to the conclusion�

We can summarize the following main result


Theorem �� �a� There exist constants c � � and C � �� independent of � � h
and H� such that

Ckuhk� � kTuhk� � ckuhk�� �uh � V h�

�b� There exists a constant C��� � �� such that �uh � V h

A��u
h� Tuh� � C���kuhk�� �

Since the symmetric part of the preconditioned linear system is positive de�nite�
GMRES will converge at a rate that is asymptotically independent of h� H � and � �
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Table �� Convergence rate dependence on time�step exponent s

s It� Time
��� ��� �����s
��� ��� �����s
��� ���� �����s
���� ���� ������s

�� Numerical Results

The preceding theorems are useful in motivating e�ective algorithms but leave
unanswered quantitative questions about the magnitudes of constants in part �a� of
Theorem � about the extent of dependence of C��� on the size of the overlap in parts
�b� of the same theorems� and about the sensitivity of results to inexact solutions
in the subdomains� The latter is important since inexactness is usually a practical
requirement� For these reasons� we include some numerical experiments� whose
purpose is to quantify the dependence of the convergence rate on potentially �bad�
parameters� including time step exponent� subdomain overlap� inexactness� overall
problem size� and number of subdomains into which the problem is decomposed�

We �rst vary s between the very conservative s � �
� � down to the Courant

limit of s � �� and a little beyond into negative values� We solve model problem
��� with backward Euler time�stepping on a uniform grid with central�di�erencing�
We hold the problem size �xed at h�� � ���� implying approximately one�quarter
of a million degrees of freedom overall� and the the number of subdomains at p �
��� arranged in a � � � decomposition� with ��� � ��� grid cells owned by each
subdomain� The overlap between subdomains is one mesh cell� We demand a
reduction of ���� in relative residual norm at each time step� accomplished by
linear subiterations of GMRES with a subdomain preconditioner of ILU����

In Table �� we tabulate the number of linear iterations per time step� averaged
over �� consecutive steps� and also the execution time for these ten time steps� as
measured on the Intel Paragon� with one processor per subdomain� It is evident
that the theoretical restriction on the time step to the Courant limit is necessary
for reasonable conditioning of the linear iterations�

In Table � we vary the subdomain overlap in the preceding example� using
two di�erent subdomain preconditioners� exact solvers �indicated by �LU��� and
inexact solvers of zero��ll incomplete LU�type ��ILU��� For ILU� three di�erent
values of s are tried� hovering around the Courant limit� Convergence criteria and
iteration counts are as before� The overlap is tabulated in terms of the thickness of
the overlap region in number of cells all around each subdomain� except where cut
o� at the boundary� We observe that increasing overlap has a slightly bene�cial
e�ect when it alone is the bottleneck to better convergence� as in the LU situation�
In the practical ILU case� overlap beyond a minimum of one has little to no e�ect
on the convergence rate� provided reasonable values of s are employed� In the
case of negative s� increasing the overlap actually causes the convergence rate to
deteriorate�

Comparing the �rst and third result columns� we see that inexactness has a
price of approximately a factor of two in convergence rate� In practice� this does not
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Table �� Convergence rate dependence on subdomain overlap

overlap LU�s � � ILU�s � ��� ILU�s � � ILU�s � ����
� ��� ��� ���� ����
� ��� ��� ���� ����
� ��� ��� ���� ����

Table �� Convergence rate dependence on number of subdomains�
and �xed�size parallel scalability

p per node It� Time Time�It� Rel� Sp� Rel� Sp��It�
� ���� ��� ���� ������s �����s
�� ���� ��� ���� �����s �����s ���� ����
�� ��� �� ���� �����s �����s ����� �����

translate into any advantage for exact solvers since the convergence criterion at each
time step would usually be commensurate with the temporal truncation error� and
looser than that employed here� and the cost for computing an exact factorization
of a coe	cient matrix on each time step cannot be amortized in practical time�
dependent problems �though it could be in �����

For Table �� we �x s � �� the overlap at �� and the subdomain preconditioner
as ILU���� We perform a problem�size��xed scaling analysis at h�� � ��� by
employing successively more subdomains� in going from � to �� to �� processors�
Note that the problem size on each processor decreases by a factor of � in each of
the x and y directions in this scaling� As before we tabulate the average number of
iterations per time step averaged over �� steps� and the execution time for �rst ten
time steps� The execution time is also presented per iteration� and the speedups
�relative to four processors� are presented for both overall time and for time per
iteration� This allows for separate measurement of �numerical scalability� of the
algorithm and �implementation scalability� of the software�hardware system� with
any deterioration of convergence rate at highly granular decompositions factored
out�

Our main observations are the virtual independence of convergence rate on the
number of subdomains p� for s at the Courant limit� as predicted by the theory�
and the better than linear parallel scalability� The latter phenomenon is due to the
increasingly good reuse of data in the working set required by the subdomain solvers
as the problem�per�processor shrinks� This is a well�known e�ect in memory�limited
machines� Because of the insensitivity of the convergence rate to decomposition�
the two speedup measurements are nearly identical�

Table � is similar to Table �� in fact� the last line of each tabulates the same
execution� and both run over the same number of processors� except that Table �
runs a problem small enough to �t on one processor� which grows in size as the
number of processors grows� This is known as a Gustafson scaling analysis� It is a
practical scaling for large�scale applications and it has the advantage of keeping the
workingset per node constant over a range of problem size and processor number�
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Table �� Convergence rate dependence on number of subdomains�
and Gustafson parallel scalability

p h�� It� Time Time�It� Rel� E�� Rel� E���It�
� �� ��� ����s �����s
� ��� ���� ����s �����s ���� ����
�� ��� ���� �����s �����s ���� ����
�� ��� ���� �����s �����s ���� ����

The one�subdomain case is special �and would have converged in one iteration
had we employed an LU solver�� In tabulating e	ciency� we take the ratio of the
execution times on the successively scaled problems� The e	ciency can be viewed
as the incremental e	ciency of the last processor added� when loaded with the
same work per processor� Presenting the relative e	ciency per iteration is more
important in this case� since the iteration count does degrade in going from one to
many subdomains�

Our main observation is that the e	ciency remains very high� almost explicit�
like� There is no coarse grid to bottleneck this method� On the other hand the
frequent global inner products are minor bottlenecks�

We employed the Portable Extensible Toolkit for Scienti�c Computing �PETSc�
��� from Argonne National Laboratory for the numerical studies�

�� Conclusions

We have used the standard Galerkin method and to formulate an optimal ad�
ditive Schwarz method for general scalar linear hyperbolic equations� The same
techniques leading to optimal convergence rates for the parabolic and elliptic cases
have been are used here� after identi�cation of the proper norm� The method of
proof does not permit evaluation of the key constants in the theory�

The theoretical techniques employed here may be applicable to other equations�
e�g�� linearized Euler equations and hyperbolic systems of conservation laws� after
transformation to canonical form and operator splitting� We are currently pursuing
such extensions�

Because of Assumption � limiting the size of � � the implicit method described
herein might not appear to o�er any advantage relative to the correspondingly
spatially discretized temporally explicit method� which has equally good or better
parallelization properties� and would not require iteration on each time step to
solve a linear system� On the other hand� temporal truncation accuracy limits
the algebraic accuracy required in the solution of the implicit system to just a
few matrix�vector products� and the implicit form may be thought of as a defect�
correction solver� Two practical applications of the results of this paper may be to

��� problems with multiple scales� with some scales �ner than the explicit stability
limit� all of which could be treated implicitly with this method� and ��� problems
with embedded hyperbolic regions� for which a uniform Schwarz preconditioned
framework is desired� We mention �	� as an example�
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