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Summary. We introduce a family of parallel Newton-Krylov-Schwarz methods
for solving complementarity problems. The methods are based on a smoothed
grid sequencing method, a semismooth inexact Newton method, and a two-
grid restricted overlapping Schwarz preconditioner. We show numerically that
such an approach is highly scalable in the sense that the number of Newton
iterations and the number of linear iterations are both nearly independent
of the grid size and the number of processors. In addition, the method is not
sensitive to the sharp discontinuity that is often associated with obstacle prob-
lems. We present numerical results for some large scale calculations obtained
on machines with hundreds of processors.

1 Introduction

Complementarity problems have many important applications (Cottle et al.
[1992], Ferris and Pang [1997], Harker and Pang [1990]), and there are grow-
ing interests in developing efficient algorithms for solving these semismooth
problems on large scale supercomputers. One popular approach is the class
of semismooth methods which solves the problem by first reformulating it as
a semismooth system of equations and then applying a generalized Newton
method to solve this system. There are extensive theoretical and numerical
results associated with this approach, see, e.g., (Luca et al. [1996], Fischer
[1992], Kanzow [2004]). However, all existing approaches seem to have scala-
bility problems in the sense that when the degree of freedoms in the problem
increases the number of nonlinear or linear iterations increases drastically.

In this paper, we introduce a class of general purpose two-grid Newton-
Krylov-Schwarz (NKS) algorithms for complementarity problems associated
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with partial differential equations. The methods are based on an inexact semis-
mooth Newton method, a smoothed grid sequencing method and a two-level
cascade restricted overlapping Schwarz preconditioning technique. It turns
out, with an appropriate grid sequencing, the convergence rate of the semis-
mooth Newton method can be made nearly independent of the number of
unknowns of the system using either the Fischer-Burmeister function or the
minimum function. Using the two-level restricted Schwarz preconditioner with
sufficient overlap, the number of linear iterations also becomes nearly inde-
pendent of the number of unknowns of the system. More importantly, both
the linear and nonlinear iterations are nearly independent of the number of
processors in our experiments on machines with hundreds of processors.

2 Semismooth function approaches for complementarity

problems

Let Ω ∈ R2 be a bounded open domain on which a linear or nonlinear differ-
ential operator L(u) is defined. Many problems can be described as finding a
function u(x) defined in certain space such that







Lu(x) ≥ 0, x ∈ Ω
u(x) ≥ Φ, x ∈ Ω
(u(x) − Φ)Lu(x) = 0, x ∈ Ω

(1)

with some boundary conditions assumed for u(x), x ∈ ∂Ω. Here Φ is given and
often called an obstacle. Consider the following complementarity problem:

find uh ∈ Rn,
such that uh ≥ φ, F (uh) ≥ 0, (uh − φ)TF (uh) = 0,

(2)

where F (uh) = (F1(uh), · · · , Fn(uh))
T : Rn → Rn denotes a continuously dif-

ferentiable function from the discretized version of L(u), and φ ∈ Rn denotes
the obstacle from the discretization of Φ.

2.1 Semismooth Newton methods

Let ai = (uh − φ)i and bi = Fi(uh), the reformulations of the complementar-
ity problem based on the Fischer-Burmeister function Fischer [1992] and the
minimum function Kanzow [2004] are as follows:

FFB(a, b) := a+ b−
√
a2 + b2 = 0, (3)

FMIN (a, b) := min{a, b} = 0. (4)

In fact, the Fischer-Burmeister function is differentiable everywhere except at
the point (a, b) = (0, 0), while the minimum function is piecewise smooth with
its non-differentiable points forming the line {(a, b)T ∈ R2 : a = b}.
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If we apply a Newton-type method to (3) and (4), respectively, then it
leads to the class of inexact semismooth Newton methods, in which we need
to solve a right-preconditioned Jacobian system

‖F(uk
h) + JkM

−1

k (Mksk)‖ ≤ max{ηr‖F(uk
h)‖, ηa},

where Jk is a generalized Jacobian of F(uk
h) to be introduced below, ηr ∈ [0, 1)

is a relative tolerance, ηa ∈ [0, 1) is an absolute tolerance, and M−1

k is an
overlapping Schwarz preconditioner (Smith et al. [1996], Toselli and Widlund
[2005]).

For both the Fischer-Burmeister function and the minimum function, the
generalized Jacobian matrix Jk is of the form

Jk = Dk
a +Dk

bF
′

(uk
h) (5)

with diagonal matrices (depending on the iteration index k)

Dk
a = diag(da1

, . . . , dan
), Dk

b = diag(db1 , . . . , dbn). (6)

The values of Dk
a and Dk

b in (6) corresponding to the Fischer-Burmeister
function take the form

dai
:=

{

1− ai/
√

a2i + b2i , if a2i + b2i 6= 0,
1, if a2i + b2i = 0,

and

dbi :=

{

1− bi/
√

a2i + b2i , if a2i + b2i 6= 0,
1, if a2i + b2i = 0.

Similarly, when using the minimum function, the values of Dk
a and Dk

b in (6)
assume the form

dai
:=

{

1, ai < bi,
0, ai ≥ bi,

and

dbi :=

{

0, ai < bi,
1, ai ≥ bi.

When using a Newton type method to solve complementarity problems,
one of the major problems is the deterioration of the convergence rate when
the mesh is refined. We here propose a smoothed grid sequencing technique:
First, compute the solution u∗

H of the nonlinear system FH(uH) = 0 on a
coarse grid. Second, interpolate the coarse solution to obtain ũ0

h = IhHu∗

H ,
which is then smoothed by replacing its value at each grid point with the
following weighed average of its neighboring values:
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The smoothed vector is then used as the initial guess for the fine grid New-
ton iteration. In Fig. 1, we show the surface plots of the nonlinear system
Fh(I

h
Hu∗

H) on a fine grid without smoothing (left figure), and Fh(u
0

H) with
one sweep of smoothing (right figure) for an obstacle problem. More details
of this problem will be discussed in the numerical experiments section.
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Fig. 1. The effect of smoothing of the interpolated coarse grid solution on the fine

grid.

2.2 Schwarz preconditioner

Let J be the Jacobian matrix on the fine grid and Rδ
i and R0

i , the restriction
operator from Ω to its overlapping and non-overlapping subdomains, respec-
tively. Then the one-level restricted additive Schwarz (RAS) preconditioner
Cai and Sarkis [1999] is

M−1

RAS =
Ns
∑

i=1

(R0

i )
TJ−1

i Rδ
i . (7)

with Ji = Rδ
i J (Rδ

i )
T and Ns is the number of subdomains, which is the same

as the number of processors.
Let Jc be the Jacobian matrix on the coarse grid and IHh a restriction

operator from the fine grid to the coarse grid. Then the two-level restricted
Schwarz preconditioner is
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M−1 = M−1

c +M−1

RAS −M−1

RASJM
−1

c

with M−1
c = (IHh )T J−1

c IHh . We refer to Smith et al. [1996], Toselli and Wid-
lund [2005] for further analysis and examples of Schwarz preconditioning tech-
niques.

3 Numerical experiments

We report some results of our numerical experiments. Our solver is imple-
mented using PETSc (Balay et al. [2009]). We consider an obstacle problem:
find u(x) such that















−∆u(x) + C ≥ 0, x ∈ Ω,
u(x) ≥ −d(x, ∂Ω), x ∈ Ω,
(u(x) + d(x, ∂Ω))(−∆u(x) + C) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(8)

where the d(x, ∂Ω)-operator measures the distance from a point x to the
domain boundary ∂Ω, and the parameter C = 5.

For the discretization we use the standard second-order five-point finite
difference method on a uniform grid. The initial guess u0

h for the global Newton
iteration is the obstacle from the discretization of −d(x, ∂Ω) in (8). We stop
the fine grid Newton iteration if

‖F(uk
h)‖ ≤ max{10−6‖F(u0

h)‖, 10−10}.
The fine grid Jacobian system is solved with GMRES(30), and the iteration
is stopped if the tolerance

‖F(uk
h) + Jksk‖ ≤ max{10−4‖F(uk

h)‖, 10−10}
is satisfied. The subdomain problems are solved with LU factorization. Through-
out this section,“np” stands for the number of processors which is the same as
the number of subdomains, “INB’ the number of inexact Newton iterations,
“RAS” the number of RAS preconditioned GMRES iterations, and “Time”
the total compute time in seconds.

3.1 One-level results

We first study the one-level method with overlap δ = 3. As shown in Table
1, on a fixed grid, the number of Newton iterations is independent of the
number of processors, but the number of GMRES iterations increases as the
number of processors increases for both the Fischer-Burmeister function and
the minimum function. The major problem with the one-level method shows
up, if we look at the scalability for a fixed number of processors. For each
row in the table, every time we refine the grid by a factor of 2, the number of
Newton iterations doubles. This problem prohibits the use of the method for
high resolution applications.
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Table 1. Results for the one-level method with overlap δ = 3.

Mesh 256 × 256 512× 512 1024 × 1024 2048× 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

64 82 11.4 3.3 162 14.7 32.5 320 19.1 384.1 639 24.4 4781.1

128 82 13.6 2.1 162 17.5 17.4 320 22.2 180.4 639 30.8 2236.3

256 82 14.4 1.5 162 18.9 10.2 320 24.3 95.9 639 34.1 1110.0

512 82 17.2 1.1 162 22.6 7.5 320 32.3 62.3 639 38.5 568.9

The minimum function

64 80 11.7 2.9 159 15.3 29.5 319 19.9 361.9 637 26.4 4673.0

128 80 14.0 1.9 159 18.3 16.1 319 23.7 173.5 637 33.7 2201.8

256 80 14.9 1.4 159 19.7 9.7 319 26.1 94.4 637 36.5 1104.8

512 80 17.7 1.3 159 23.8 7.3 319 34.5 62.0 637 41.1 567.5

3.2 Two-level results

In this subsection, we present the numerical results using the two-level ap-
proach in which a coarse grid is used in the nonlinear solver for generating
a better initial guess and also in the linear solver for generating part of the
Schwarz preconditioner. In the test, the initial guess for the global Newton
iteration on the coarse grid is the obstacle φ in (2), and the tolerance condi-
tions on the fine grid are the same as in the one-level method. We stop the
coarse grid Newton iteration if

‖FH(uk
H)‖ ≤ max{10−4‖FH(u0

H)‖, 10−10}.

In the test, the Jacobian system on the coarse grid is solved with a one-level
RAS preconditioned GMRES(30) with the following stopping condition

‖FH(uk
H) + Jk

HM−1

H,RAS(MH,RASsk)‖ ≤ max{10−4‖FH(uk
H)‖, 10−10},

where M−1

H,RAS is defined similar to (7) on the coarse grid. The subdomain
problems are solved with LU factorization.

Using δ = 6 and δc = 3, we solve the test problem on several different fine
grids with the two-level method and the results are summarized in Table 2, for
both the Fischer-Burmeister function and the minimum function. The main
concern is the size of the coarse grid H , which is taken as h/2, h/4 and h/8,
where h is the size of the fine grid. In terms of the total number of Newton
iterations, H = h/2 is certainly the best, but H = h/8 offers the best results
in terms of the total compute time. Note that some cases, marked as “∗”,
for the fine grid 256× 256 are not available because the corresponding coarse
grids are too coarse and the coarse Newton may not converge. The compute
time includes the coarse grid calculation of the initial guess, the smoothing
of the coarse solution, and the solving of the fine grid problem. Note that
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Table 2. Results with different fine and coarse grids. The overlapping sizes of the

coarse grid and the fine grid are δc = 3 and δ = 6, respectively. The preconditioner

is the two-level RAS. h and H are the fine and coarse grid sizes, respectively.

Mesh 256× 256 512× 512 1024× 1024 2048× 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

H = h/2

64 6 10.8 2.4 5 15.8 11.5 4 21.8 76.0 4 26.3 848.5

128 6 13.0 2.2 5 18.8 8.5 4 26.3 49.0 4 35.8 536.1

256 6 13.8 1.8 5 20.8 6.0 4 30.0 33.6 4 37.8 291.9

512 6 19.3 2.8 5 24.4 5.9 4 34.6 32.9 4 43.0 206.5

H = h/4

64 ∗ 7 15.3 6.2 7 19.0 33.9 6 25.8 201.7

128 ∗ 7 18.4 4.8 7 22.6 21.9 6 32.7 120.8

256 ∗ 7 20.3 3.6 7 25.4 25.4 6 38.7 71.6

512 ∗ 7 23.9 4.3 7 33.9 12.1 6 43.7 56.6

H = h/8

64 ∗ 9 15.7 5.9 9 19.7 31.0 8 26.4 169.9

128 ∗ 9 19.1 4.6 9 23.7 18.8 8 33.9 99.2

256 ∗ 9 21.0 3.5 9 26.6 10.7 9 36.6 54.3

512 ∗ ∗ 9 34.3 10.8 8 45.3 34.4

The minimum function

H = h/2

64 2 14.0 1.3 3 14.3 8.3 3 17.7 60.4 2 31.5 777.7

128 2 16.5 1.2 3 16.7 6.0 3 21.7 40.6 2 39.0 446.3

256 2 17.5 1.0 3 18.3 4.3 3 26.3 26.3 2 49.5 260.6

512 2 25.0 1.5 3 20.0 3.9 3 29.7 22.2 2 57.0 178.5

H = h/4

64 ∗ 4 15.5 3.9 4 18.8 21.1 5 19.6 160.3

128 ∗ 4 18.8 2.9 4 24.8 14.6 5 23.2 93.1

256 ∗ 4 20.3 2.3 4 28.0 9.2 5 24.4 50.8

512 ∗ 4 24.5 2.8 4 33.0 7.7 5 30.6 39.7

H = h/8

64 ∗ 7 15.6 4.6 6 21.3 21.7 6 25.7 126.9

128 ∗ 7 18.6 3.5 6 24.8 13.1 6 33.3 74.2

256 ∗ 7 20.7 2.7 6 26.7 7.3 6 37.0 37.0

512 ∗ ∗ 6 34.8 7.4 6 42.5 25.4

the minimum function approach is always faster than the Fischer-Burmeister
function approach in terms of all measures.

We should mention that the use of smoothed grid sequencing plays an
important role in the two-level methods. In Fig. 1, the surface plots of the
residual function before and after the smoothing are shown and they are quite
different. The cost of the smoothing step is very small and fewer number of
Newton iterations is needed as a result of the smoothing.
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4 Some final remarks

We have developed a family of highly scalable, two-grid algorithms for solving
general complementarity problems. In addition to the fine grid, on which the
PDE is discretized and the complementarity problem is solved, a coarse grid
is introduced to accelerate the nonlinear convergence, and to precondition the
linear Jacobian solver in a semismooth Newton iteration. With the help of a
smoothed grid sequencing, a semismooth Newton method and a two-level re-
stricted Schwarz preconditioner, we have showed numerically that the family
of two-grid Newton-Krylov-Schwarz algorithms has a fast and robust conver-
gence and that the rate of convergence is nearly independent of the number
of unknowns of the problem and the number of processors. Surprisingly good
results were obtained for solving some rather difficult obstacle problems with
millions of unknowns and on machines with up to 512 processors.
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