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Turbulence and large computational domains make urban wind flow simulation a computationally 
challenging problem. To reduce the total simulation time and efficiently use today’s new generation of 
supercomputers with massive processors, scalable parallel solvers are needed. In this work, we present a 
scalable domain decomposition method based 3D incompressible Navier-Stokes solver for the simulation 
of unsteady, complex wind flows around urban communities. A large eddy simulation with Smagorinsky 
modeling is employed for the simulation of the turbulent wind flows. On a fine unstructured grid, we 
discretize the spatial and temporal dimensions using a stabilized P1 − P1 finite element method and 
an implicit backward Euler finite difference method, respectively. The resulting large-scale nonlinear 
algebraic system at each timestep is solved by a Newton-Krylov-Schwarz algorithm in parallel. The solver 
is first validated by a benchmark case where the numerical results are compared with measured data 
from a wind tunnel. Then, the wind flow field of a realistic actual-scale urban community with a group of 
buildings in the downtown area of Shenzhen, China, is studied. The numerical results show that the flow 
field matches with the experimental data for the benchmark problem, and some reasonable, detailed, 
and complex flow structures are obtained for the urban community simulation case. The scalability of 
the solver is studied on the TianHe-2A and Sunway TaihuLight supercomputers, and the solver scales 
up to 16,384 processor cores for a grid with over 20 million elements, which implies that the solver 
has the potential to perform fast and high-fidelity simulations of large-scale wind flows in complicated 
computational domains.

© 2021 Published by Elsevier B.V.
1. Introduction

Urban wind flow analysis is related to many architectural and 
environmental applications. Conventionally, the main motivation 
for researching the wind flow around urban areas is to understand 
the urban wind dynamics to estimate wind loads on structures [1]. 
In addition to wind vulnerability, wind flow also impacts air pol-
lutant concentrations and floating object movements, and knowl-
edge of the flow field is the basis of understanding and modeling 
the dispersion of pollutants [2,3]. Moreover, in recent years, wind 
flow simulation has been widely used in supporting the sustain-
able design considerations of cities and buildings, such as natural 
ventilation design and pedestrian comfort [4,5].
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Numerical methods with computational fluid dynamics (CFD) 
have become vital tools in urban wind flow analysis [6,7]. Nu-
merical investigations on urban flow are challenging due to the 
large, complex computational domain and the nature of turbu-
lent wind. Thus, geometric simplification and various approximate 
turbulence models are usually applied in wind flow simulation 
studies. With respect to the computational geometry, the spatially 
inhomogeneous geometry is ignored, and the urban architectures 
are generally considered as simplified rough surfaces, porous me-
dia, or standard shapes [8–11]. However, the geometrical details 
of the buildings have been proven to significantly affect the flow 
motion around them, which pushed some researchers to use realis-
tic real-scale building models [12]. With respect to the turbulence 
model, researchers have developed several approaches, such as 
Reynolds-averaged Navier-Stokes (RANS) [13], unsteady Reynolds-
averaged Navier-Stokes (URANS) [14,15], large eddy simulation 
(LES) [16–18], and hybrid URANS/LES (also termed the detached 
eddy simulation (DES)) [19,20], to capture the features of the wind 
flow based on different methods for modeling small eddies. The 
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LES model generally exhibits superior performance compared with 
RANS and URANS because a large part of the unsteady turbulent 
flow is actually resolved [21].

Wind flow simulation is computationally expensive, especially 
for LES. Correspondingly, powerful hardware resources and parallel 
scalable solvers are essential because of the enormous computa-
tional requirements. During the last few years, supercomputers 
with massive processors have significantly improved the compu-
tational capabilities. Parallel scalable solvers are useful because 
they not only enable the solution of large-scale urban wind flow 
problems but also lead to dramatic compression of the solution 
time. However, most of the urban flow simulations use commercial 
codes [22] which can only scale up to hundreds of cores [23,24].

There are some large-scale urban flow simulations, for exam-
ple, based on the finite difference method and equidistant hor-
izontal Cartesian grid, PALM (the parallelized large-eddy simula-
tion model) [25] scales up to 20, 000 processor cores, and it has 
been widely used for large scale atmospheric and urban flow 
simulations [26–28]. Onodera et al. [29] simulated the flow in 
a 10 km × 10 km area of Tokyo utilizing 4032 GPU cards on a 
10, 080 × 10, 240 × 512 mesh based on the lattice Boltzmann 
method (LBM). Ahmad et al. [30] use 900 GPU cards to simulate 
the intensity of wind in a 19.2 km × 4.8 km × 1.0 km built-up ar-
eas at the pedestrian level. Lenz et al. [31] simulated the wind 
flow in a 500 m × 500 m × 152 m urban canopy of Basel on a GPU 
card with 3584 CUDA cores. All of these simulations are based on 
the structured grid which has advantages such as less memory us-
age, easy to implement, and better parallel performance, but the 
disadvantage is that it can not be used to do simulations with 
complicated geometries [32].

The aim of the present study is to introduce a scalable paral-
lel solver for solving the incompressible Navier-Stokes equations 
on unstructured grids, and apply it to perform urban wind flow 
simulations with a LES turbulence model. Several strong and weak 
scaling tests are studied on the top two supercomputers in China, 
which shows that the proposed solver scales up to thousands of 
processor cores with an acceptable parallel efficiency. The layout 
of the paper is as follows. First, in Section 2, numerical methods 
are introduced in terms of governing equations and parallel al-
gorithms. Second, Section 3 describes two numerical experiments, 
including a benchmark problem and the wind flow over a real-
istic full-scale urban community, and the parallel performance of 
this solver is presented and discussed, corresponding to the objec-
tives of the present study. Finally, some conclusions and remarks 
are provided in Section 4.

2. Mathematical model and solution algorithm

2.1. Governing equations

In this paper, we employ a LES approach with the Smagorinsky 
model [33] to simulate the 3D transient flow. The Navier-Stokes 
equations for incompressible flow with the LES model can be de-
scribed as

∂ū

∂t
+ ū · ∇ū = − 1

ρ
∇ p̄ + ∇ · (2νS̄) − ∇ · τ in �,

∇ · ū = 0 in �,

(1)

where ū is the filtered velocity, ρ is the fluid density, ν is the vis-
cosity, p̄ denotes the filtered pressure, and � ⊂ R3 is the bounded 
computational domain. The bar lines indicate the grid-scale filter-
ing operator, and S̄ is the filtered strain rate tensor defined as

S̄ = 1
(∇ū + (∇ū)T ).
2

2

τ = uu − ūū is the subgrid scale (SGS) stress tensor, which ac-
counts for the effect of unresolved small-scale eddies on the dy-
namics at large scales. To close the system, we need to introduce a 
method to model the SGS stress τ . In this paper, τ is modeled by 
introducing an eddy-viscosity concept such that

τ d ≡ τ −
(

1

3
tr(τ )

)
I = −2νt S̄. (2)

Here, τ d is the deviatoric part of the SGS stress, and νt is the 
Smagorinsky eddy viscosity, which is defined as

νt = (Cs�̄)2|S̄|,
and Cs is the Smagorinsky constant, with values varying from 0.1
to 0.2. �̄ is the filter width, which is fundamentally based on the 
cube root of the cell volume. |S̄| is the characteristic filtered strain 
rate, also known as the strain magnitude, which is defined as |S̄| =√

2S̄ : S̄ =
√

2 S̄ i j S̄ i j . By substituting Eq. (2) into Eq. (1) and defining 
P̄ as the modified filtered pressure

P̄ = p̄

ρ
+ 1

3
tr(τ ),

the governing equations can be rewritten as

∂ū

∂t
+ ū · ∇ū = −∇ P̄ + ∇ · (2νS̄) + ∇ · (2νt S̄) in �,

∇ · ū = 0 in �.
(3)

For the boundary conditions, the no-slip boundary condition 
is applied on the walls �wall (including the top of the computa-
tional domain, the ground, and the surfaces of building). A Dirich-
let boundary condition is placed on the inlet �inlet , that is,

ū = g on �inlet .

The stress-free boundary condition is set on the outlet �outlet , 
which reads as

σ · n = 0 on �outlet,

where σ = − P̄ I + 2(ν + νt)S̄ is the Cauchy stress tensor.
For the initial condition, a divergence-free velocity field is spec-

ified over the domain at t = 0 s

ū(x,0) = u0(x) in � at t = 0.

2.2. Spatial and temporal discretization

We apply a P1 − P1 finite element method for the spatial dis-
cretization of the governing equations Eq. (3). The trial and weight-
ing function spaces are defined as:

U = {u(·, t) | u(·, t) ∈ [H1(�)]3, u(·, t) = g on �inlet,

u(·, t) = 0 on �wall},
P = {p(·, t) | p(·, t) ∈ L2(�)},
U0 = {u(·, t) | u(·, t) ∈ [H1(�)]3, u(·, t) = 0 on �inlet ∪ �wall}.
Then, the Galerkin weak form of the LES equations (3) takes the 
form: find ū ∈ U and P̄ ∈P such that:

BG(ū, P̄ ;ω,q) = 0, ∀ (ω,q) ∈ U0 ×P, (4)

with
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BG(ū, P̄ ;ω,q) =
(

∂ū

∂t
,ω

)
�

+ (ū · ∇ū,ω)� − (
P̄ ,∇ · ω̄)

�

+ (
2(ν + νt)S̄,∇ω

)
�

+ (∇ · ū,q)� .

Here, (f,ω)� represents the standard scalar inner product 
∫
�

f ·

ωd� in L2(�).
An unstructured tetrahedral mesh T h = {K } is used to delineate 

the complex geometry of the computational domain, and after dis-
cretization the finite dimensional trial and weighting spaces can be 
established as

Uh = {uh | uh ∈ [C0(�) ∩ H1(�)]3, uh | K∈T h ∈ P1(K )3,

uh = g on �inlet,

uh = 0 on �wall},
Ph = {ph | ph ∈ C0(�) ∩ L2(�), ph | K∈T h ∈ P1(K )},
Uh

0 = {uh | uh ∈ [C0(�) ∩ H1(�)]3, uh | K∈T h ∈ P1(K )3,

uh = 0 on �inlet ∪ �wall},
where C0(�) is the set of all continuous functions defined on �
and P1(K )3 is the space of piecewise linear functions.

We introduce a stabilization term [34] since the P1 − P1 finite 
element method does not satisfy the Ladyzenskaja-Babuska-Brezzi 
(LBB) condition. Finally, the semi-discrete finite element system, as 
shown in Eq. (4), can be expressed as follows: find ūh ∈ Uh and 
P̄ h ∈Ph , such that:

B(ūh, P̄ h;ωh,qh) = 0, ∀
(
ωh,qh

)
∈ Uh

0 ×Ph

with

B(ūh, P̄ h;ωh,qh)

= BG(ūh, P̄ h;ωh,qh) +
∑

K∈T h

(
∇ · ūh, τc∇ · ωh

)
K

+
∑

K∈T h

(
∂ūh

∂t
+ (ūh · ∇)ūh + ∇ P̄ h

− 2(ν + νt)∇ · S̄, τm(ūh · ∇ωh + ∇qh)

)
K
,

where τc and τm are the stabilization parameters defined as

τc = 1

8τmtr(G)
,

τm =
⎛
⎝

√
4

(�t)2
+ (ū · G · ū) + 36

(
μ

ρ

)2

G : G

⎞
⎠

−1

,

where G = {
Gij

} =
{

3∑
k=1

∂ξk

∂xi

∂ξk

∂x j

}
is the covariant metric tensor, 

∂ξ

∂x
denotes the inverse Jacobian of the mapping between the ref-

erence and the physical element, and �t is the timestep size to be 
introduced in the temporal discretization.

For temporal discretization, we choose the fully implicit back-
ward Euler finite difference formula, as shown in Eq. (5), which 
offers some advantages; for example, one can use a large timestep 
size (because of its unconditioned numerical stability) to save the 
overall simulation time in large-scale numerical computing.

xn − xn−1

= S(xn), (5)
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ere S(xn) is the semidiscretized system of the Navier-Stokes 

ations (3) except the first term 
∂ū

∂t
after the spatial discretiza-

n and xn = (un, pn) represents the velocity and pressure at the 
timestep. In the fully implicit method, a large, sparse, and 
linear system must be solved at each timestep to obtain the 

ution at the next timestep, which is simply denoted as:

xn) = 0. (6)

. Domain decomposition method-based parallel solver

In this section, a domain decomposition method (DDM)-based 
wton-Krylov-Schwarz (NKS) [35] method is applied to solve the 

e algebraic system (6) in parallel. DDM is conducive to paral-
computing due to the characteristics of the divide and conquer. 
cific to this study, an inexact Newton method [36] is applied 

solve the nonlinear equations, a preconditioned Krylov subspace 
thod (restarted GMRES) [37] is used to obtain the Newton cor-
tions, and the restricted additive Schwarz (RAS) method [38] is 
roduced as the preconditioner in the preconditioned Krylov sub-
ce method to accelerate the solver.
In the NKS method, the most expansive step is the RAS pre-
ditioner to be introduced shortly. The RAS method is a kind 

overlapping DDM, and it begins with partitioning the compu-
ional domain � into np nonoverlapping subdomains �i , i =
, · · · , np , where np is usually equal to the number of proces-

s; then, we obtain the overlapping subdomains �δ
i by extending 

yers of mesh elements from the adjacent subdomains. Each �δ
i

 define its own local Jacobian matrix Ji in a similar way as the 
thod to construct the global Jacobian matrix. To define the RAS 
thod, we need to define the global-to-local restriction operator 
 which is defined to return all of the degrees of freedom (DOF) 
onging to �δ

i from the global vector of unknowns, and a similar 
triction operator R0

i , which corresponds to the nonoverlapping 
domain �i [38]; then, the RAS preconditioner is defined as the 
mation of the local preconditioner B−1

i of Ji in the way

A S =
np∑

i=1

(R0
i )

T B−1
i Rδ

i .

 the subdomain preconditioner B−1
i , to save computation time, 

 use a point-block incomplete LU (ILU) factorization [39] of Ji
h some levels of fill-ins instead of the LU factorization method, 
ich is too computationally expensive. As a comparison, we show 
 parallel performance of the LU and ILU methods as the subdo-
in solver in the numerical experiments section.
The framework of the parallel Newton-Krylov-Schwarz algo-
m for solving the nonlinear system (6) can be summarized as:

p (a): Let xn
0 be the initial guess, which is usually the previous 

timestep solution xn−1. At each Newton step, the new approximate 
solution xn

k+1 is updated by the following equation:

xn
k+1 = xn

k + λn
k sn

k ,

where λn
k is the step length obtained in Step (b) and sn

k is the search 
direction calculated in Step (c).

p (b): Calculate the step length λn
k by a cubic backtracking line search 

method [40].
p (c): Construct the Jacobian matrix Jn

k of Fn at xn
k and solve the fol-

lowing preconditioned Jacobian system:

Jn
k(Mn

k)
−1yn

k = −Fn(xn
k), (7)

and then solve



Z. Yan, R. Chen and X.-C. Cai Computer Physics Communications 270 (2022) 108170

Fig. 1. Model of the benchmark problem (left) and the measured and interpolated inflow boundary condition (right).
Mn
k sn

k = yn
k ,

where (Mn
k)

−1 is the RAS preconditioner mentioned above. Since we 
employ the inexact Newton method in this paper, the linear system 
(7) is solved inexactly by a restarted GMRES method in the sense of

‖Fn (
xn

k

) + Jn
k(Mn

k)
−1Mn

k sn
k‖ ≤ ηk‖Fn (

xn
k

)‖,
where ηk is a parameter to control the accuracy of the solution of the 
linear system, which is also the stopping condition for the GMRES 
method.

Step (d): Check the stopping condition. If it is satisfied, then stop and 
obtain the solution; otherwise, go to Step (a), update the initial guess 
xn

0 with xn
k+1 and let k = k + 1.

In this study, our parallel solver is implemented on the top of 
the open source package PETSc [41] from Argonne National Lab, 
and the unstructured meshes are generated with ANSYS ICEM CFD 
[42] and partitioned with ParMETIS [43] from the University of 
Minnesota. ParaView [44] is used to visualize the simulated flow 
fields. For more details of this solver, we refer to our previous pa-
per [45,46] and the references cited therein. All the computations 
are performed on the top two supercomputers of China, TianHe-2A 
and Sunway TaihuLight, at Guangzhou and Wuxi, China, respec-
tively. An AMAX high-performance computing platform, which has 
a dual 8-core Intel E52687@3.1 GHz processor and 128 GB mem-
ory, is used for preprocessing and postprocessing.

3. Numerical experiments

In this section, we present two numerical studies, a bench-
mark problem and a realistic full-scale urban community test case, 
to show the accuracy and parallel performance of the proposed 
solver. Unless otherwise specified, all parameters of the NKS al-
gorithm in this section are set as follows: the overlapping size 
δ = 2 and the level of ILU fill-ins  = 2. The relative tolerances 
of the linear (GMRES) and nonlinear (Newton) solvers are set to 
ηL = 1.0 × 10−4 and ηN = 1.0 × 10−6, respectively. In the restart 
GMRES(k) algorithm, the restarted iteration k = 100. The zero ini-
tial condition is used in all the test cases.

3.1. Simulation of the flow around a single square prism

To verify our solver, a benchmark problem derived from the 
working group of the architectural institute of Japan (AIJ) [47] is 
solved, and the numerical results are compared with wind tunnel 
data. The working group of AIJ conducted numerous wind tunnel 
experiments, field measurements and computations using differ-
ent CFD codes to investigate the influences of various kinds of 
computational parameters for various flow fields. In this bench-
mark problem, a 2 : 1 : 1 (height: width: depth) square prism is 
4

placed as a building in the wind tunnel, and the height and width 
of the model building are h = 0.16 m and b = 0.08 m, respec-
tively. As shown in Fig. 1, the size of the computational domain 
is 31b × 21b × 12h, the lateral boundaries are symmetrically dis-
tributed on both sides of the building model, and the distance 
between the inlet boundary and the building is 10b.

The measured inlet velocity of the wind tunnel experiment and 
the interpolated curve used as the inlet boundary condition for the 
numerical simulation are shown in Fig. 1. The wind is along the x-
axis, and the vertical velocity profile on the inlet surface is given 
by a power function of the vertical value with a power exponent 
of 0.27. More detailed settings can be found in [48].

We obtain the flow field on two different grids, and the num-
bers of tetrahedron cells are approximately 4.45 × 106 (D O F =
3.15 × 106) and 1.25 × 107 (D O F = 8.67 × 106), respectively. The 
cell sizes on the square prism walls are approximately 2 mm and 
1 mm, and the averaged values of y+ are 3.74 and 1.43, respec-
tively. The maximum values of y+ are near the frontal corners of 
the square prism. Fig. 2 shows an example of a computational 
mesh, where the meshes near the prism are relatively finer to 
resolve the complex flow structures around the prism. The lit-
erature provided the density of air at 25 ◦C ρ = 1.185 kg/m3, 
the viscosity μ = 3.548 × 10−5 kg/m s, and the Reynolds num-
ber Re = 2.4 × 104. The Smagorinsky constant Cs is set to 0.1. In 
the numerical test, we set the inlet flow velocity linearly increase 
from zero to that in the experiment shown in Fig. 1 within 0.1 s. 
The timestep size is set to �t = 0.001 s. The results at t = 1.0 s
are used to compare with the experimental data. The simulation 
is executed on the TianHe-2A supercomputer with 720 processor 
cores.

Fig. 3 shows the locations of monitoring points in the wind tun-
nel experiment. 66 measuring points are set on the cross-section 
y = 0 m (at the center of the building) to obtain the distributions 
of the x and z components of wind velocity.

As shown in Fig. 4 and Fig. 5, we calculated the x compo-
nent U and z component W of the wind velocity u at the mea-
suring points on the vertical cross-section y = 0 m for compar-
ison with the measured wind tunnel data. In these two figures, 
the measuring points are located at the longitudinal dotted lines, 
and the values of the x and z components of the wind velocity, 
U and W at the measuring points, are represented as the dis-
tances from the original positions. Positive values are plotted on 
the right side of the measuring line, with negative values on the 
left side.

Despite the observed differences in terms of U values between 
the simulation and the wind tunnel, our solver provided a simi-
lar qualitative wind flow pattern: the calculated values agree fairly 
well with the experimental data. Indeed, differences are found be-
tween the simulated values and experimental values, especially at 
the points near the ground and the top surface of the square prism. 
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Fig. 2. Schematic view of the computational mesh in 3D (left) and a zoom-in view of the mesh near the prism (right).
Fig. 3. Distribution of measuring points in the wind tunnel experiment [48].

At points 15, 19 and 23 near the roof surface, the simulated values 
of U are slightly larger than the experimental values, and the pos-
sible reason is that our fluid model does not consider the effects of 
a rough wall. However, we found opposite results at points 37, 47, 
and 57 near the ground, where the simulated values are slightly 
smaller than the experimental values, and the reason for this can 
also be attributed to the friction of the ground and the fact that the 
flow is reversed near these points. Similar conclusions were men-
tioned in previous literature [48], which also compared the CFD 
numerical results and the wind tunnel experimental data. The cal-
culated results based on the two different grids are very close. The 
mean square percentage error (MSPE) of U at all the measuring 
points between the coarse grid and wind tunnel is 5.15%, where 
the MSPE of U is 4.99% between the fine grid and the wind tun-
nel. Compared with the comparison of U , the simulated vertical 
wind velocities W are closer to the experimental data, except for 
some individual points, such as points 1 and 11. The MSPEs of W
based on the coarse and fine grids are 2.30% and 2.23%, respec-
tively.

3.2. Flow simulation in a realistic full-scale urban community

In this case, we take an approximately 1 km2 urban community, 
which is located in downtown Shenzhen, China, as an example of 
a typical downtown area of China’s top-tier cities. As shown in 
5

Fig. 6, the arterial road, Shennan Avenue, passes through this area. 
It includes several landmarks, such as Shun Hing Square (384.0 
m in height) and the KK100 mansion (441.8 m in height). The 
geometrical details of buildings have been proven to significantly 
affect the flow patterns around them, and a more detailed model 
could provide more information regarding the wind flow condi-
tions of the case study area. Therefore, in this test case, the most 
realistic full-scale building models are used, as shown in Fig. 7. 
The model contains 35 high-rise buildings, and the locations of 
all reconstructed buildings strictly correspond to the actual loca-
tions.

The size of the computational domain is � = 4.0 km×4.0 km×
0.8 km, as shown in Fig. 8. Three different meshes, named M1, 
M2 and M3, are tested, and the numbers of tetrahedral cells are 
approximately M1 : 7.39 ×106 (D O F = 5.03 ×106), M2 : 1.27 ×107

(D O F = 9.02 × 106) and M3 : 2.15 × 107 (D O F = 1.49 × 107). The 
maximum mesh sizes on the buildings’ walls are 4.0 m, 2.5 m and 
2.0 m for M1, M2 and M3, respectively. Fig. 9 is a schematic view 
of the computational mesh.

In parallel computing, the computational domain needs to be 
partitioned before calculation. Fig. 10 shows an example in which 
the computational mesh is divided into 8 subdomains, correspond-
ing to 8 CPU processors. It should be noted that this is just a 
schematic of the partition (the buildings and ground are intuitively 
partitioned in this example), and the actual partition should be the 
fluid domain. Each subdomain has a fairly equal number of ele-
ments to ensure load balancing in parallel computing. For parallel 
computing, the closer the number of elements in each subdomain 
and the fewer cut-off edges between subdomains, the better the 
parallel performance of the algorithm in general.

In this simulation, the physical parameters are set as follows: 
the air density ρ = 1.185 kg/m3, the air viscosity μ = 1.831 ×10−5

kg/ms, and the Smagorinsky constant Cs = 0.17. The total sim-
ulation time and the timestep size are set to T = 1800 s and 
�t = 0.2 s, respectively.

A time-dependent parabolic velocity vin , which increases from 
zero and reaches the maximum value when t = 1800 s, is set as 
the inlet boundary condition,

vin = − vmax

18002
t2 + (2

vmax

1800
t), (8)

where vmax = 10.0 m/s, and the wind direction is along the pos-
itive y-axis. Taking a typical building height Hb = 50.0 m as the 
characteristic length and vmax as the characteristic velocity, the 
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Fig. 4. Comparison of U in vertical section y = 0 m.

Fig. 5. Comparison of W in vertical section y = 0 m.
Reynolds number for this case is approximately 3.2 × 107. We as-
sume that the air is at rest initially.

The simulations are carried out on the TianHe-2A supercom-
puter with 1024 CPU processors. The numerical results at t = 1800
s on different grids are used for showing the flow fields and com-
parison. Two cut planes, C1 along Shennan Avenue and C2 along 
the wind direction and tangent to the KK100 mansion, are created 
to show the details of the fluid motion, and a quantitative compar-
ison of the velocity on the two lines (L1 and L2) on these two cut 
planes is also shown. The locations of the cut planes and lines are 
shown in Fig. 11.

Fig. 12a exhibits the velocity distribution curves on line L1, 
which is along Shennan Avenue, parallel to the ground, and ap-
proximately 20 m above the ground. Due to the channeling and 
obstruction effects of buildings, the distribution of wind speed 
along the street is uneven; the maximum wind speed reaches 
9.0 m/s, while the minimum wind speed is as low as 1.0 m/s. 
The velocity distribution curves on line L2, which are perpendic-
ular to the ground and behind the KK100 mansion, are shown in 
6

Fig. 12b. we can see that when the height does not exceed 441.8 m
(the height of the KK100 mansion), the wind speed curves remain 
lower than those in Fig. 12a because of the obstruction of build-
ings. However, when the height reaches 441.8 m and with increas-
ing height, the wind speed first exhibits a slight downward trend 
and then increases sharply, reaching a maximum value of 14.0 m/s 
at a height of approximately 460 m. This phenomenon can also be 
observed in the streamline distribution in Fig. 14, where the wind-
ward and leeward sides of the building are inclined planes, and 
a vortex is formed leeward of the highest point of the building, 
thus causing a velocity drop. At a slightly higher position over the 
building, with parallel winds and incoming flow from the wind-
ward side of the building, the speed reaches the maximum value. 
Both figures show that the results, based on the two sets of denser 
local grids, M1 and M3 are closer.

Streamlines in Fig. 13 and Fig. 14 show the flow structures on 
the two cross-sections, C1 and C2. Taking the results under the 
finest grid M3 as the reference, although rather similar spatial dis-
tributions of vortices are obtained on M1 (refine the mesh near 
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Fig. 6. Plane view of the geographic location of the tested community at Shenzhen, 
China.

Fig. 7. Geometry of the building Shun Hing Square that was used in the simulation.

the buildings and ground) and M2 (refine the mesh on the build-
ing surfaces and ground), more flow details are captured on M3, 
in which the meshes both on and near the buildings’ surfaces and 
ground are refined. Especially in certain regions, such as zone A 
(the leeward area of the residential quarters) of the cross-section 
C1 and zone B (the leeward area of the KK100 mansion) of the 
cross-section C2, more small vortexes are detected. The global dis-
tribution of the vortexes under M2 exhibits the roughest results 
because only the meshes on the buildings’ surfaces and ground are 
refined, and the size of the spatial grid is too large to capture the 
small eddies. From the comparison, we can obtain the impression 
that a finer grid can provide more detailed flow field information 
in general, although this usually means an increase in the amount 
of calculation.
7

Fig. 8. Computational domain of the actual scale community model. The unit is m.

Fig. 15 and Fig. 16 show the wind pressure distribution around 
the building surfaces and on the ground. High and low pressures 
are observed on the windward and leeward sides of the building, 
respectively. The obstruction of buildings causes higher wind pres-
sure on the windward ground. If the wind pressure is too high, 
such as in the case of typhoons in coastal areas, buildings, espe-
cially high-rise buildings, may experience significant damage to a 
particular area of the building surface, for example, glass panels. 
Due to the sheltering effect, low wind pressure often appears on 
the leeward side of buildings and forms regions of high suction. 
These negative pressure areas will adversely impact the spread of 
air pollution and form a buildup of pollutants.

Although the total number of elements of M2 is larger than 
that of M1, the local meshes near the buildings in M2 are rela-
tively coarser than M1 because of the local mesh refinement in 
M1. From the streamlines and pressures comparison in Fig. 13, 
Fig. 14 and Fig. 15, we can remark that the local grid density near 
the buildings affects the overall numerical results. The wake vor-
tex structures illustrated by the Q-criterion in Fig. 17 confirm that 
local finer meshes can provide more detailed flow structures, such 
as the small vortexes, especially at the leeward side.

Fig. 18 depicts the velocity contours at a cross-section z = 30 m
(30 m above the ground) base on M3. Strong wind areas, in which 
the maximum wind speed exceeds 10.0 m/s, often appear be-
tween high-rise buildings because of the channeling effect. Wind 
flows will be sped up when they pass by these regions and cause 
damage to buildings or pedestrians. Low wind speed areas appear 
between dense low-rise buildings, which is also not conducive to 
the cleanup of air pollutants.

Due to the variety of building heights and the complexity 
of building shapes, the flows are very complicated, as shown in 
Fig. 19 and Fig. 20. The dynamics of how wind and structures in-
teract with each other are more complex in a metropolitan center 
where groups of buildings are located in close proximity to one 
another. Various complex interference mechanisms, such as shel-
tering, channeling, and wake effects, can be observed from the 
distribution of streamlines. The details of wind motion can provide 
a technical foundation to better understand the nature of wind and 
structure interactions.

3.3. Parallel performance studies

In this section, we study the parallel performance of the pro-
posed solver on two high-end supercomputers, TianHe-2A and 
Sunway TaihuLight. Three different size of grids are tested for 
each problem: G1 : D O F = 2.28 × 106, G2 : D O F = 4.85 × 106 and 
G3 : D O F = 1.02 × 107 for the benchmark problem; M1 : D O F =
5.03 × 106, M2 : D O F = 9.02 × 106 and M3 : D O F = 1.49 × 107 for 
the urban wind flow simulation case.
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Fig. 9. Schematic view of the computational meshes. From left to right: M1, M2 and M3.
Fig. 10. Schematic view of the domain decomposition for parallel computing. Each 
color refers one subdomain. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

The parallel performance was first studied on TianHe-2A in 
both strong and weak senses. In what follows, we set the timestep 
size for the benchmark problem and urban wind flow simulation to 
be 0.001 s and 2.0 s, respectively. The relative tolerances of linear 
(GMRES) and nonlinear (Newton) solvers are set to ηL = 1.0 ×10−8

and ηN = 1.0 × 10−12, respectively. In all tables and figures, “np ” 
denotes the number of processors, and “NI” and “LI” are the aver-
age number of nonlinear iterations per timestep and the average 
number of GMRES iterations per Newton step, respectively. “Time” 
is the average total computation time in seconds per timestep, 
“Ideal” is the ideal speedup, and “Eff.” is the parallel efficiency. 
To save the computing cost and remove the impact of the ini-
tial timestep, the results are analyzed based on the second 20
timesteps.

The strong scalability results for the benchmark problem are 
presented in Table 1 and Fig. 21. Compared with the result of 
np = 256, the proposed solver achieves over 50% parallel efficiency 
when the number of processors is up to 4, 096. The parallel ef-
ficiency of G3 is higher than that of G1 and G2 with the same 
number of processors. This is true because the computation time 
includes not only the subdomain solution time but also the com-
munication time among processors which is not parallel scalable. 
8

Table 1
Strong scalability of the proposed solver for the benchmark case carried out on 
Tianhe-2A. Here, the subdomain solver is the ILU factorization method with 2 levels 
of fill-in.

np 256 512 1024 2048 4096

G1 : D O F = 2.28 × 106

Time (s) 20.6 11.7 7.0 4.9 3.4
NI 2.7 2.7 2.7 2.8 2.8
LI 47.5 49.3 51.1 55.8 60.8
Eff. 100.0% 88.5% 74.1% 52.6% 37.6%

G2 : D O F = 4.85 × 106

Time (s) 45.5 24.1 14.1 8.9 5.9
NI 2.8 2.6 2.5 2.5 2.5
LI 59.0 60.7 66.2 70.1 75.5
Eff. 100.0% 94.5% 80.7% 63.7% 48.3%

G3 : D O F = 1.02 × 107

Time (s) 98.1 56.7 32.0 19.1 12.8
NI 2.8 3.0 3.0 3.0 3.0
LI 69.2 74.4 79.2 84.4 90.7
Eff. 100.0% 87.2% 78.0% 64.1% 50.2%

Table 2
Strong scalability of the proposed solver for the urban wind flow simulation carried 
out on Tianhe-2A. Here, the subdomain solver is the ILU factorization method with 
2 levels of fill-in.

np 1024 2048 4096 8192

M1 : D O F = 5.03 × 106

Time (s) 26.1 16.0 11.1 9.5
NI 3.6 3.6 3.6 3.6
LI 145.5 152.6 167.0 209.8
Eff. 100.0% 82.0% 59.0% 34.7%

M2 : D O F = 9.02 × 106

Time (s) 53.8 33.6 23.6 20.2
NI 4.0 4.0 4.0 4.0
LI 164.7 166.9 175.4 200.9
Eff. 100.0% 80.2% 57.1% 33.3%

M3 : D O F = 1.49 × 107

Time (s) 98.8 60.0 37.5 28.9
NI 3.1 3.1 3.1 3.1
LI 318.4 332.0 339.1 380.1
Eff. 100.0% 82.8% 65.9% 42.7%

The size of the subdomain problem of G3 is larger than that of G1
and G2, which means that there is a smaller proportion of commu-
nication time among the total computation time, and it therefore 
displays a higher parallel efficiency.

Table 2 and Fig. 22 present the strong scaling results for the ur-
ban wind flow simulation. Similar to the benchmark problem, the 
efficiency of the solver increases with the increase of DOF and it 
achieves 42.7% for the finest mesh M3 with up to 8, 192 proces-
sors. Besides the execution time, the number of Newton iterations 
and the average number of GMRES iterations with respect to the 
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Fig. 11. The locations of monitoring points, cut planes and lines.

Fig. 12. Velocity magnitude on lines L1 and L2 under different grids at t = 1800 s.

Fig. 13. Computational meshes (top) and streamlines (bottom) on cross-section C1 under different grids at t = 1800 s. From left to right: M1, M2 and M3.
number of processors and the problem sizes are also summarized 
in Table 1 and Table 2. We observed that the number of GMRES 
iterations increase slowly as np increases. The number of Newton 
iterations is always kept at a low level with the increase of np

while the size of the overall mesh is fixed, which indicates that 
the solver is nonlinearly scalable.

Base on the results on different grids listed in Table 1 and 
Table 2, we plot the weak scalability of the solver for the bench-
mark problem and the wind flow simulation in Fig. 23. Since the 
D O F s of the grids in each comparison group are not strictly pro-
portional, the weak scaling efficiency E w on grid k is defined as: 
9

Ek
w = (T ref × D O F k × np

k)/(T k × D O F ref × np
ref ), where T ref , 

D O F ref and np
ref are the compute time, D O F and np of the ref-

erence grid (the coarsest grid) in each group, and T k , D O F k and 
np

k are those on grid k. From Fig. 23 we observed that the weak 
scaling efficiency of the proposed solver achieves 63.7% for the 
benchmark problem with up to 4,096 processors and 40.9% for the 
urban wind flow case with up to 8,192 processors.

We also tested the solver’s parallel performance on the Sun-
way TaihuLight supercomputer using the urban wind flow case. 
As we mentioned in subsection 2.3, the NKS method contains 
many parameters that may affect the solver’s parallel performance. 
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Fig. 14. Computational meshes (top) and streamlines (bottom) on cross-section C2 under different grids at t = 1800 s. From left to right: M1, M2 and M3.

Fig. 15. Pressure contours on cross-section C1 under different grids at t = 1800 s. From left to right: M1, M2 and M3.

Fig. 16. The wind pressure distribution on building surfaces and ground obtained on M3.

Fig. 17. Vortex structures around the buildings illustrated by the Q-criterion at t = 1800 s. Colored by the velocity (Q = 0.02). From left to right: M1, M2 and M3.
10
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Fig. 18. Velocity magnitude contours at cross-section z = 30 m, obtained on M3.

Fig. 19. Surface streamlines at cross-section z = 30 m obtained on the mesh M3.

Fig. 20. The 3D streamlines distribution around the buildings obtained on the mesh M3.
Here, we show how different subdomain solvers, LU and ILU fac-
torization, impact the computation time and the parallel perfor-
mance.

Table 3 shows the scalability of the solver on the Sunway Tai-
huLight supercomputer. An restricted additive Schwarz precondi-
tioned GMRES with LU as a subdomain solver is more scalable than 
that with ILU. Although LU factorization can achieve a superlinear 
11
parallel speedup, the computing cost is significantly high, espe-
cially when the number of processors is less than 4,096. Fig. 24
presents a more intuitive view of the solver’s performance in the 
form of computation time and speedup. When np reaches 8,192, 
the LU-based efficiency is 40.8%, which is slightly lower than that 
on TianHe-2A. When further increasing np up to 16, 384, the solver 
only performs with an efficiency of 27.4%. The reason for the fast 
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Fig. 21. The average total computation time per timestep (left) and the speedup (right) for the benchmark problem carried out on Tianhe-2A.

Fig. 22. The average total computation time per timestep (left) and the speedup (right) for the urban wind flow simulation carried out on Tianhe-2A.

Fig. 23. Weak scalability for the benchmark problem (left) and the wind flow simulation (right), carried out on Tianhe-2A. Results are color coded according to group they 
belong. The percentages are the corresponding weak scaling efficiencies.

Table 3
Impact of the subdomain solvers on the parallel performance of the proposed solver. Here the tested grid is 
M3 : D O F = 1.49 × 107 and the simulation is carried out on Sunway TaihuLight.

np
LU ILU

Time (s) Speedup Ideal Eff. Time (s) Speedup Ideal Eff.

1024 1051.7 1 1 100.0% 139.5 1 1 100.0%
2048 351.2 3.00 2 149.7% 93.2 1.50 2 74.8%
4096 117.3 8.97 4 224.2% 66.1 2.11 4 52.8%
8192 60.1 17.50 8 218.7% 42.7 3.27 8 40.8%
16384 31.8 27.97 16 174.8% 31.8 4.39 16 27.4%
12
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Fig. 24. The average total computation time per timestep and the speedup (carried out on Sunway TaihuLight, based on M3 : D O F = 1.49 × 107).
drop in efficiency may be related to the features of the master-
slave multithread heterogeneous architecture of the supercom-
puter. In Sunway TaihuLight, each processor has four computing 
groups, each of which has one management processing element 
(master core) and a 8 × 8 array of computing processing elements 
(slave cores), resulting in a total of 260 cores. We only utilized the 
master cores in this computing; thus, the overall performance was 
greatly affected, and the solver should be further optimized for this 
architecture to improve the parallel performance.

4. Conclusions

Large urban areas, high resolution, and realistic building models 
as well as high Reynolds number, make the large eddy simulation 
of the urban wind flow a challenging problem. A primary concern 
with solvers is the parallel scalability, which indicates the ability to 
deliver more computational power when the amount of resources 
is increased. Based on a parallel Newton-Krylov-Schwarz method, 
this paper studies the large eddy simulation of the flows around 
a benchmark problem, as well as a realistic and full-scale urban 
community. Although there are some deviations from the wind 
tunnel data, our numerical results match the flow field well for 
the benchmark case. The application of urban community wind 
simulation shows that typical complex flow phenomena, such as 
building sheltering, channeling, and wake effects, can be effec-
tively caught. The solver presents 42.7% parallel efficiency when 
the number of processors is up to 8, 192 on the TianHe-2A su-
percomputer, along with good scalability. The solver scales up to 
16, 384 processors on the Sunway TaihuLight supercomputer with 
27.4% parallel efficiency. These results show that the proposed 
solver has the potential to perform fast and high-fidelity simula-
tions of large-scale wind flows in complicated computational do-
mains.

The current version of the solver can only simulate the flow in 
a small urban community with thousands of processors because of 
the scalability issue. To perform a city-wide simulation with tens 
of thousands of processors, more advanced solvers are needed. In 
the future, we plan to study some multilevel Schwarz methods 
that may improve the scalability when the number of processors 
is large.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

We acknowledge the National Supercomputer Center in Guang-
zhou and Wuxi, China for the valuable comments that helped 
13
to implement algorithms on the TianHe-2A and Sunway Taihu-
Light supercomputers. This work was partially supported by the 
National Key R & D Program [No. 2017YFB0202103]; the NSF of 
China [No. 11901559, 12071461]; and the Shenzhen grants [No. 
ZDSYS201703031711426 and JCYJ20180507182506416].

References

[1] A. Dagnew, G.T. Bitsuamlak, Wind Struct. 16 (6) (2013) 629–660.
[2] C. Gromke, B. Ruck, Bound.-Layer Meteorol. 144 (1) (2012) 41–64.
[3] Z. Mo, C.-H. Liu, Build. Environ. 132 (2018) 357–366.
[4] B. Blocken, W. Janssen, T. van Hooff, Environ. Model. Softw. 30 (2012) 15–34.
[5] Y. Toparlar, B. Blocken, B. Maiheu, G. Van Heijst, Renew. Sustain. Energy Rev. 80 

(2017) 1613–1640.
[6] T. van Hooff, B. Blocken, Y. Tominaga, Build. Environ. 114 (2017) 148–165.
[7] B. Blocken, T. Stathopoulos, J. Van Beeck, Build. Environ. 100 (2016) 50–81.
[8] M. Roth, Q. J. R. Meteorol. Soc. 126 (564) (2000) 941–990.
[9] M. Cao, Z. Lin, J. Appl. Math. 2014 (2014).

[10] Z. Peng, J. Sun, Bound.-Layer Meteorol. 153 (3) (2014) 569–580.
[11] R.D. Crago, W. Okello, M.F. Jasinski, Bound.-Layer Meteorol. 145 (3) (2012) 

423–437.
[12] H. Montazeri, B. Blocken, Build. Environ. 60 (2013) 137–149.
[13] Y. Tominaga, T. Stathopoulos, Atmos. Environ. 43 (20) (2009) 3200–3210.
[14] B. Blocken, T. Stathopoulos, J. Carmeliet, J. Hensen, in: Eleventh International 

IBPSA Conference, vol. 4, 2009, pp. 157–184.
[15] Y. Tominaga, T. Stathopoulos, Atmos. Environ. 79 (2013) 716–730.
[16] Z. Ai, C. Mak, Comput. Fluids 118 (2015) 89–100.
[17] P. Gousseau, B. Blocken, T. Stathopoulos, G.F. van Heijst, Comput. Fluids 114 

(2015) 151–162.
[18] J. Liu, M. Heidarinejad, G. Pitchurov, L. Zhang, J. Srebric, Sustain. Cities Soc. 40 

(2018) 28–43.
[19] P.R. Spalart, in: Proceedings of First AFOSR International Conference on 

DNS/LES, Greyden Press, 1997.
[20] J. Liu, J. Niu, Build. Environ. 96 (2016) 91–106.
[21] K. Nakajima, R. Ooka, H. Kikumoto, J. Wind Eng. Ind. Aerodyn. 175 (2018) 

213–228.
[22] F. Toja-Silva, T. Kono, C. Peralta, O. Lopez-Garcia, J. Chen, J. Wind Eng. Ind. Aero-

dyn. 180 (2018) 66–87.
[23] S. Liu, W. Pan, X. Zhao, H. Zhang, X. Cheng, Z. Long, Q. Chen, Build. Environ. 

140 (2018) 1–10.
[24] I.C. Tolias, N. Koutsourakis, D. Hertwig, G.C. Efthimiou, A.G. Venetsanos, J.G. 

Bartzis, J. Wind Eng. Ind. Aerodyn. 177 (2018) 101–116.
[25] B. Maronga, M. Gryschka, R. Heinze, F. Hoffmann, F. Kanani-Sühring, M. Keck, 

K. Ketelsen, M.O. Letzel, M. Sühring, S. Raasch, Geosci. Model Dev. 8 (8) (2015) 
2515–2551.

[26] M.O. Letzel, C. Helmke, E. Ng, X. An, A. Lai, S. Raasch, Meteorol. Z. 21 (6) (2012) 
575–589.

[27] M. Kurppa, A. Hellsten, M. Auvinen, S. Raasch, T. Vesala, L. Järvi, Atmosphere 
9 (2) (2018) 65.

[28] M. Auvinen, S. Boi, A. Hellsten, T. Tanhuanpää, L. Järvi, Atmosphere 11 (2) 
(2020) 201.

[29] N. Onodera, T. Aoki, T. Shimokawabe, H. Kobayashi, J. Glob. Sci. Inf. Comput. 
Cent. 9 (2013) 1–8.

[30] N.H. Ahmad, A. Inagaki, M. Kanda, N. Onodera, T. Aoki, Bound.-Layer Meteorol. 
163 (3) (2017) 447–467.

[31] S. Lenz, M. Schünherr, M. Geier, M. Krafczyk, A. Pasquali, A. Christen, M. 
Giometto, J. Wind Eng. Ind. Aerodyn. 189 (2019) 151–162.

[32] J.R. Sack, J. Urrutia, Handbook of Computational Geometry, Elsevier, 1999.
[33] J. Smagorinsky, Mon. Weather Rev. 91 (3) (1963) 99–164.

http://refhub.elsevier.com/S0010-4655(21)00282-4/bib730492D4024D9096DF718D43CA989FC7s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibA45E464E155B199FF612C53AEB478685s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib2C670AF480093EA7ECAB5F447A4C2FDEs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibC96A9BA6BE17AE55FA4BE968FFC1D4DEs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib7570D725EE1BF443DB5DEF9D22346FCBs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib7570D725EE1BF443DB5DEF9D22346FCBs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibB51F6B665786031C18C90E1CDB728640s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibD4242C99FD920765F10A7BA7905DAA09s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibF4F82509AF8B0679509D852C243AD1F9s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib091BC315EA057CC321B14DE50BC209F6s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib848E348DCB41403963E6DD6986A7CBF0s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibC5E9AAD4978C7B23C698D109BB3FC8A1s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibC5E9AAD4978C7B23C698D109BB3FC8A1s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib693B49B754AFC3DD22DB53311D601B80s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib51A853D315730FCCF4219BD2D8449990s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib2629E495E3145466B867322079D017A3s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib2629E495E3145466B867322079D017A3s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibC7F5DF0197E0249337F71864B843186Cs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib72DDDCEC49202959B571E3A510A0EAAEs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib8ADCA7D20EC10FB7CF8E17D8D4BE30F9s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib8ADCA7D20EC10FB7CF8E17D8D4BE30F9s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib4AE7FE38EE46A1FC7B55FCF32B572981s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib4AE7FE38EE46A1FC7B55FCF32B572981s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib83BB5EBB0E991089B04362ABAC7D350Cs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib83BB5EBB0E991089B04362ABAC7D350Cs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib76C271A881158411B5078CCD9ABC4A79s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibF80E9F9593F5CB84388DE09B2BC8D5A8s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibF80E9F9593F5CB84388DE09B2BC8D5A8s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib3B84C771BF30D8D09A798BD4904078ECs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib3B84C771BF30D8D09A798BD4904078ECs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib26CB31AD5732D005DF3A1CF31D9BB2C0s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib26CB31AD5732D005DF3A1CF31D9BB2C0s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib5CAB1390925A2EEAC80019616E0B00E4s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib5CAB1390925A2EEAC80019616E0B00E4s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib00CB6A82D06BBC28F014BF40D6ABAE1Fs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib00CB6A82D06BBC28F014BF40D6ABAE1Fs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib00CB6A82D06BBC28F014BF40D6ABAE1Fs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibC8FA044C4A9ABFE44DFB89EA15D86764s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibC8FA044C4A9ABFE44DFB89EA15D86764s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib47BD5DB4BA3FC9D2A53E8BCC23DEEFB2s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib47BD5DB4BA3FC9D2A53E8BCC23DEEFB2s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib2CD1234C54C25D658EDD108B1B289502s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib2CD1234C54C25D658EDD108B1B289502s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib89BE08EE0ABAD1D31D742FC2AD56EB3As1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib89BE08EE0ABAD1D31D742FC2AD56EB3As1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib98BF92161E3A7D05DB0CE1DDBF8610E5s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib98BF92161E3A7D05DB0CE1DDBF8610E5s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib7C810186E2D534188674A451C4AFD77Fs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib7C810186E2D534188674A451C4AFD77Fs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib99A41A79AA5A7DD9BD72303F7E6285DCs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibFD84024AB6EB6A47FF992505374DC6DCs1


Z. Yan, R. Chen and X.-C. Cai Computer Physics Communications 270 (2022) 108170
[34] L.P. Franca, S.L. Frey, Comput. Methods Appl. Mech. Eng. 99 (2–3) (1992) 
209–233.

[35] X.-C. Cai, W.D. Gropp, D.E. Keyes, M.D. Tidriri, in: Numerical Methods for the 
Navier-Stokes Equations, Springer, 1994, pp. 17–30.

[36] S.C. Eisenstat, H.F. Walker, SIAM J. Optim. 4 (2) (1994) 393–422.
[37] Y. Saad, M.H. Schultz, SIAM J. Sci. Stat. Comput. 7 (3) (1986) 856–869.
[38] X.-C. Cai, M. Sarkis, SIAM J. Sci. Comput. 21 (2) (1999) 792–797.
[39] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[40] S.C. Eisenstat, H.F. Walker, SIAM J. Sci. Comput. 17 (1) (1996) 16–32.
[41] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-

cin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, 
D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. 
Zampini, H. Zhang, H. Zhang, PETSc Web page, https://petsc .org, 2021.

[42] ANSYS Inc., ICEM CFD User’s manual, release 19.2, 2018.
[43] G. Karypis, V. Kumar, ParMETIS–parallel graph partitioning and fill-reducing 

matrix ordering, version 4, http://www.cs .umn .edu /~metis, 2014.
[44] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, 

Inc., Clifton Park, NY, USA, 2015.
[45] Z. Liao, R. Chen, Z. Yan, X.-C. Cai, Int. J. Numer. Methods Fluids 89 (2019) 

343–361.
[46] R. Chen, B. Wu, Z. Cheng, W. Shiu, J. Liu, L. liu, Y. Wang, X. Wang, X.-C. Cai, Int. 

J. Numer. Methods Biomed. Eng. 36 (2020) e33392.
[47] A. Mochida, Y. Tominaga, S. Murakami, R. Yoshie, T. Ishihara, R. Ooka, Wind 

Struct. 5 (2–4) (2002) 227–244.
[48] R. Yoshie, A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, T. Shira-

sawa, J. Wind Eng. Ind. Aerodyn. 95 (9–11) (2007) 1551–1578.
14

http://refhub.elsevier.com/S0010-4655(21)00282-4/bibFBD029752908E12905D4B0236FEDDEE1s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibFBD029752908E12905D4B0236FEDDEE1s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibB1EF3E5F46A10BB0BD4CA41F3D9D37FFs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibB1EF3E5F46A10BB0BD4CA41F3D9D37FFs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibDF082B2AF7B812560B4BE0B9BF87185Fs1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib785E6D0DCEBCAD2EFE0167DC75015868s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib6105C7F8961F61F3470DF04A4B27832As1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibBBEC19A3DE3C07F5D249066C866FEA95s1
https://petsc.org
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib48A5AA8F88E0A5F4ADA42F6987A7A033s1
http://www.cs.umn.edu/~metis
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibD81E15FF91D902B618DEE803458A1AA6s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibD81E15FF91D902B618DEE803458A1AA6s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibF4CC8DB8404F6776B1E00BCDD4A968A6s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibF4CC8DB8404F6776B1E00BCDD4A968A6s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibFA2980CFF1576162C089630BE1AB3F35s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bibFA2980CFF1576162C089630BE1AB3F35s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib366694019F3C1ED23E809B747D69A128s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib366694019F3C1ED23E809B747D69A128s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib66399DDBB7A7D74B16F715BF4E94E911s1
http://refhub.elsevier.com/S0010-4655(21)00282-4/bib66399DDBB7A7D74B16F715BF4E94E911s1

	Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm
	1 Introduction
	2 Mathematical model and solution algorithm
	2.1 Governing equations
	2.2 Spatial and temporal discretization
	2.3 Domain decomposition method-based parallel solver

	3 Numerical experiments
	3.1 Simulation of the flow around a single square prism
	3.2 Flow simulation in a realistic full-scale urban community
	3.3 Parallel performance studies

	4 Conclusions
	Declaration of competing interest
	Acknowledgements
	References


