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SUMMARY

We develop a parallel fully implicit domain decompositioly@ithm for solving optimization problems
constrained by time dependent nonlinear partial difféa¢eguations. In particular, we study the boundary
control of unsteady incompressible Navier-Stokes eqoatiéfter an implicit discretization in time, a fully
coupled sparse nonlinear optimization problem needs toobeed at each time step. The class of full
space Lagrange-Newton-Krylov-Schwarz (LNKSz) algorigisused to solve the sequence of optimization
problems. Among optimization algorithms, the fully impti€ull space approach is considered to be the
easiest to formulate and the hardest to solve. We show th&3zN\Nwith a one-level restricted additive
Schwarz preconditioner, is an efficient class of methodséiving these hard problems. To demonstrate
the scalability and robustness of the algorithm, we comsideeral problems with a wide range of Reynolds
numbers and time step sizes, and we present numericalgésularge scale calculations involving several
millions unknowns obtained on machines with more than onagand processors. Copyright0000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow control and optimization has many important applicasi in science and engineering].

Finding the right control is computationally expensivegexsally when the flow is unsteady, and it
often requires the use of large scale parallel computerthisrpaper we investigate a parallel fully
implicit domain decomposition method for the boundary colrdf unsteady incompressible Navier-
Stokes flows. The most important issues under consideratiifl) whether the algorithm scales
well when the number of processors is large; (2) whetherlgegisthm is stable and converges well
with relatively large time steps; and (3) if the algorithnrabust with respect to some of physical
parameters, such as the Reynolds number. Many constramatiedization problems can be written

as
{ min  F(x)
xEW (1)
st. C(x)=0¢€YY,

whereW andY are normed space¥ is the space of optimization variables,: W — R is
the objective functional an@ : W — Y represents the constraints. When the constraint§)in (
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2 H. YANG, E. PRUDENCIO, AND X.-C. CAI

are partial differential equations (PDE), there are twoili@s of approaches for their numerical
solution, generally speaking: optimize-then-discre{@D) and discretize-then-optimize (DTO).
As far as we know, no approach has a clear advantage overhibe[@1]. We choose to use the
DTO approach in this paper. We focus on the class of onedexglange-Newton-Krylov-Schwarz
(LNKSz) algorithms, introduced ir3[)], which aims for the robust, efficient and scalable parallel
numerical solution of PDE-constrained optimization pesbs. Its application to some probleni3 (
with steady-state constraints has been already studie®,i3(, 31].

In this paper we extend the LNKSz approach to problems wheeecbnstraints are initial
boundary value problems defined fo€ [ty, ¢ ;] over a bounded Lipschitz domah for givent; >
to > 0. The discretization in time results ify. > 1 successive time stepst(*) = ¢(k+1) — (k) >
0, k=0,1,..., kmax— 1, With t(0) = ¢, andt(*ma) = ¢, and the discretization in space results in
a meshﬂﬁf) of characteristic mesh size> 0. For simplicity, we assume that bofhand; do
not change over time. There are two basic alternatives tsiden In the first alternative one aims
for the solution of the entire problem at once for the whateetintervalfto, ¢ 7], solving the finite
dimensional optimization problem

{ W st @

St Crmach(X) =0 € Yiman,

whereW, .. = Rkmacxnn gandyy, - = Rkmacimn — Y. ..n This approach, however, can be
too expensive computationally, even for the most modernsively parallel computers currently
available. In the second alternative, one replaggdy a sequence ofax Similar subproblems,
each having an objective function similar to the objecti/the full formulation @), except thatitis
now defined on the shorter time interyal?), t(*+ 1] k& = 0,1, ..., kmax — 1. Each subproblem can
be written as
min 7Y (x)
xGW;F) (3)
S.t. Cgf) (x)=0¢ Y,(L’“).

whereW®) = R andY(¥) = Rm» = Y(M” gnoring the sub- and super-scripts, we write the
associated Lagrangian functiomat W x Y* — R as

Lx,A\)=F(x)+ (A Cx))y, V(xA)eWxY", 4)

whereY* is the adjoint space oY, (-, ), denotes the duality pairing and variablesire called
Lagrange multipliers or adjoint variables. In many casés piossible to prove that, # is a (local)
solution of (1) then there exist Lagrange multipliedssuch that(x, ) is a critical point ofL.
So, under sufficient smoothness assumptions, one provea #@ution has to necessarily solve
a system of equations, called Karush-Kuhn-Tucker (KKT)ditbon or optimality system. Each
subproblem§) becomes then similar in size to a steady-state optimizatioblem, although time
derivative terms will change the KKT Jacobian pattern wsteady-state Jacobian. In the context of
control problems, this approach is often referred to asubegtimal approachy] 5, 27].

We briefly mention a few related publications that partiafigtivated our current work. A class
of Lagrange-Newton-Krylov-Schur algorithms (LNKSr) igrioduced in 6, 7] in which four block
factorization based preconditioners, as well as some @hatimn techniques and heuristics, are
proposed and tested. LNKSr attempts to transform the pmobfdinding a good preconditioner for
the KKT problem to the problem of finding a good preconditidiee the linearized forward operator
[30]. In [30, 31] the Schur type preconditioner is replaced by an overlapfichwarz method which
has a better asymptotic convergence rate. Note that thesegpdo not deal with time dependent
control problems. In], 3] active feedback controls are used to enhance the staibilitD channel
flow. Although the technique is very effective, the contreldbtained by ‘experience’, not by
computation. In other words, the control is not optimal. 33][ Ravindran proposes a sequential
guadratic programming method (SQP) and time domain decsitigofor time-dependent optimal
control problems. At each time step the semi-implicit lingaadratic subproblem arising during the
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LNKSZ FOR BOUNDARY CONTROL OF UNSTEADY INCOMPRESSIBLE FLO®/ 3

SQP iteration is solved by using the corresponding firstronéeessary condition of the optimality
condition, and some block iterative methods, such as thekhlacobi method and the successive
over-relaxation method. Because of the limitations of¢Heamar solvers, these methods can not be
used for large scale parallel computation. Since the meithedmi-implicit, it does not allow the
use of large time steps. 119, 20], Gunzburger and Manservisi present a gradient methochfor t
time-dependent optimal control problem associated wightthcking of the velocity of a Navier-
Stokes flow in a bounded two-dimensional domain through tiesément of a distributed control.
The authors focused on the mathematical analysis and shivaethere are some time step size
restrictions in the gradient method.

In this paper, we propose and investigate a class of pafallsbace SQP LNKSz algorithms for
the time-dependent boundary control of two-dimensionabmpressible Navier-Stokes equations.
The approach is a one-shot fully implicit method and is umitionally stable with large time
steps. In LNKSz, a Lagrangian functional is first formed gsthe objective function and all
the constraints, and then differentiated to obtain a calplET system of nonlinear equations
consisting of all the state variables, the controls vadatdnd the multipliers. These nonlinear
systems are large, sparse and extremely difficult to solexact Newton method with line
search is then applied to solve these large nonlinear sgsté&ineach Newton iteration the
linearized KKT system is solved with a one-level restricteditive Schwarz preconditioned Krylov
subspace method. The critically important component of S¥Ks the restricted additive Schwarz
preconditioner which was first introduced for scalar eitiproblems and is extended to the coupled
systems in this paper. We show numerically that the resttietdditive Schwarz preconditioner
performs quite well for the fully coupled problem and on platanachines with more than 1000
processors.

The rest of the paper is organized as follows. In Sectiome present the unsteady flow control
problem and a fully implicit discretization scheme. Sewti®d describes the LNKSz algorithm.
Section4 is devoted to numerical experiments and the parallel pedoce of LNKSz. Final
conclusions are given in Sectién

2. FULLY IMPLICIT DISCRETIZATION OF THE UNSTEADY BOUNDARY GONTROL
PROBLEM

Let Q c R? be a bounded domain in the plane representing a region whém@megeneous
incompressible Newtonian fluid is passing through durirgttime intervalty, ¢]. LetT' = 02 be
the boundary of2, v the outward unit vector oR, ¢ € [to, t¢] the time variable(x, y) € Q indicate
a position in the domain; (¢, z, y) = (v1(t, z,y), v2(t, 2, y)) the fluid velocityw the fluid vorticity
andf = (f1, f2) a given external force. Assume an initial velocity fielgl= (vo 1, vo2) is given at
t = 0, the corresponding initial vorticity field is then defined as

81}0_, 1 (9’00_2
oy ox

The velocity-vorticity formulation of the incompressibidavier-Stokes equations consists of the
following equations 32

wo = curlvg = —

0 .
_Ml_a_w = 0 infto,tf] x Q,
y .
0 .
_A“2+a_w = 0 infto,tf] x Q,
. .
Ow 1 Ow .
— - —A — —curlf = 0 infty,t Q
o " ReTY T T lbo, £4] > £2, .
vV—VpD = 0 onft,ts] xT, ()
Bvl 8’1}2
-_— - = = 0 onlty,tf] xT,
oy Ox 1fo. ]
v(to,z,y) — vo = 0 inQ,
U1 (%) L=
w(thxay)—i__(tfhxay)_—I(t07x7y) = 0 1In Q7
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4 H. YANG, E. PRUDENCIO, AND X.-C. CAI

whereRe is the Reynolds number, cufl= —0f, /9y + 0f2/0x. The velocity profilev given on
T is assumed to satisfy the principle of mass conservatien; i.

/vD(t)-udF:O forall ¢ e [to,ty].
r

We assumé = 0 for simplicity. In optimal control problems, the objectigéinterest is represented
as a cost functional to be minimized. We first describe thamagltcontrol problem, followed by the
suboptimal control case. We refer tbg] 18, 19, 20, 23, 24] and references therein for details about
the function spaces and the existence of an optimal solofitine optimal control problem.

Let us denote the state space By= {(v1,v2,w)}, the state variable by = (s1,s2,s3) =
(v1,v2,w), the control space by = {(u1,us2)}, and the control variable i&a = (u1,u2). The
control is applied over the time intervé), ¢s], either to track a desired flow field or to reduce
the size of wake spread in the flow domain. It is also desirtide the least possible amount of
control is applied. Given an initial velocity profile, the tapization problem consists on finding
(v1,v2,w,u1, us) such that the minimization

ty ty
; 0 2
min _F = O(s) dt + = dr dt. 6
omin Faw = [Cowared [T g ©)
is achieved subject to the constraints
0 .
—Avy — 8_“’ = 0 infto,tf] x Q,
Y
0 .
_Av2+8_w = 0 infto,ty] x Q,
O 1§+ 4 0 in[to, tf] x Q
- — AW v v =
ot Re ) 2 dy 05717 25
v—u = 0 onfty,ts] x Ty,
vV—Vp = 0 onfty,ts] x T, 7)
81)1 81)2
- = onltg,tr r
ay O 0 _[07 f] X1,
v(to,z,y) — vo = 0 inQ,
0 0 -
w(tf)axay)—i_%(tf)axay)_g(t07x7y) =0 in Qa
/ v-vdl = 0 infto,ts],
r,

whered(s) is a given application specific function of the state vagalil = T", UT . is the boundary
wherel', is part of the boundary on which the control is applied &nds part of the boundary
on which the control is not applied, and> 0 is a constant parameter used to adjust the relative
importance of the control norms in achieving the minimiaatithus indirectly constraining their
magnitudes. We remark that the last constraint@nig¢ necessary for the consistency with the
physical law of mass conservation. In other words, the obnite= (u;, uz) can not be any control,

it must belong to the space of functions satisfying the fpleche mass conservation. Similarly to
[30, 31], in this paper we study tangential boundary control protdeln other words, the control
u is allowed to be just tangential to , i.e1, v = 0 onT',,, and the velocity is assumed to satisfy
frc v - v dI' = 0. The optimal control problems we consider can be describedgeneral manner:
seek the boundary contraland state paifv, w) such that the cost functionlis minimized subject
to the constraints where the flow field satisfies the Naviek&t equationsr over(to, ¢ f].

For the description of a suboptimal control problem, we wiilize a second order backward
differentiation formula for time discretizatio@$]. As described in the Introduction, the sequence of
subproblems’ objectives should be the same as the objedthed with the optimal control problem
(6)-(7). Fork = 0,1, ..., kmax— 1, let us denote the state space$§) = {(v\*, (¥ w®)}, the
state variables by®) = (v\"), (¥ w®), the control space by*) = {u®} and the control
variables byu® = (u{* u{"). Let At(¥) = ((++1) _ () Following [33] (not with respect to
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LNKSZ FOR BOUNDARY CONTROL OF UNSTEADY INCOMPRESSIBLE FLO®/ 5

time discretization, though), a suboptimal control probl®r the optimization problem is to find
(WD D ) g BT Dy Hor k= 0,1, .., kmax — 1, Such that
]_—(k+1)(s(k+1)’u(k+1)) _ At(k)o(s(kJrl))

(stk+1) ulk+1))eS(k+1) x U(k+1)

+ 28 [ atogar @)

u

is achieved subject to the constraints

k1)

—Avikﬂ) - = 0 inQ,
Y
Hwk+1) .
A = 0 inQ,
1 5 ox )
NI §w(k+1) P ONMERRCEY
1 Auw(k+1) O k1) _
_EAMUHU + v§k+1) wax ’Uék+1) way = 0 inQ, 9)
V(k+1) _ u(k+1) ‘ 0 onrl,,
v(ED VE:])CH) 0 onT,,
av(kﬂ) av(k-i-l)
(k+1) 1 ~9u — 0 onT
v + Jy ox )
/ vt Ly dr = 0,
r,
where, just fork = 0, the third constraint in9) is replaced by the following equation
1 1 9 (k+1) kD)
(k+1) _  (K)y _ = A,,(k+1) (k+1) (k+1) _
At(k) (w W) Re Aw + v O Uy 2y

It should be noted that tangential control problems autarally satisfy the last constraint ird)|
making the number of constraint equations equal to the nuwib&tate variables. For simplicity,
we rewrite the suboptimal control proble®){(9) as
min f(k+1)(s(k+1),u(k+l))
(stkH1) uk+1))es(k+1) x Uk+1) (10)
{ st G+ (gD y(t)) = g ¢ YR+

for the time interval[t®) ¢t(*+D] k =0,1,..., knax— 1. We discretize the objective function and
the constrains with a standard second-order five-poingefitifference method on a uniform mesh
in space. In order to simplify notations, we continue to adg), u*+t1) F+1) and c*++1

to denote variables and values at nodes (ordered in sommridsithe Lagrangian functional

LEFD g1 s (D) y(R+1)" _, R associated with the discrete version af is defined

by
LD (k+1) (k1) A\(kt1)) — FRt1) 4 </\(k+1)’ C(k+1)> (11)

fork=0,1,..., knax— 1. HereA(*+1) is a vector of Lagrange multipliers, arid-) represents the
standard scalar product.

Let ng,ny,ny denote the number of unknowns with respect to the state blagathe
control variables and the Lagrange multipliers, respebtivN = n, + n, + n, and X*#+1) =
(x(FFD AEHD)) = (kD) D) A4y c RN Then, for k=0,1,...,knax— 1, the KKT
system obtained by differentiatingl) becomes

k+1
GUED) (X (k1)) — (Vd( ) <V_7:(k+l) 1 v+ A1) )

vﬁg\kﬂ) = C(k+1)
V]_—S(k+1) + V,Ckt+1) \(k+1) (12)
= (V]:l(lkﬂ) 1+ V,CE+D) \(k+1) ) =0,
C(k+1)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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6 H. YANG, E. PRUDENCIO, AND X.-C. CAI

whereG*++1) . RN — RN, vETY denotes the gradient af*+1) w.r.t the state and the control
variables, V£ VEFY and VESTY are defined in a similar wayy C*+1 denotes the
Jacobian ofC?’”l), andV,C*+tD v, C+1) denote the Jacobian @t w.r.t the state and
the control variables, respectively. Moreover, Jgu1) be the discretization ofru |ul|2 dr, then
(12) can be rewritten as

At(k)vse(kﬂ) + Vsc(kJrl)/\(kJrl)
GUAHD (X (1)) = %At““)vu¢<k+1>+vuc<’€+1u<k+1> —0,
C(k+1)

whereV,»*+1) denotes the gradient gf(u*+1)) w.r.t the control variabler*+). The Jacobian
matrix of G(*+1) is the transpose of the Hessian of the Lagrangléit?), and has the following
structure

AR 9RO+ \(k+1) 0 V., Ck+D)
0 gAt(k)vuu(p(k-ﬁ-l) Vv, Ck+1)
vsc(kJrl) Vuc(k+1) 0

which is symmetric indefinite under sufficient smoothnessuamptions and can be computed
by a finite difference approximation. The zero block on thagdnal is problematic for our
preconditioning algorithm and to make our approach workaeteally switch the first and the third
rows without switching the first and the third columns in thee matrix B0]. This switch destroys
the symmetry but allows good convergence of a preconditideeative method for non-symmetric
systems. The preconditioning algorithm will be furthercdissed later in the paper.

In optimal control problems one tries to obtain the conttdbr the entire time intervalt, ¢ f]
and thus needs to solve a systemMof kmax NONlinear equations. Suboptimal approaches, on the
other hand, solve a sequencekgfy problems similar to the original problem, but each problem
seeks a control only for the time intervial®) t*+D], k= 0,1, ..., kmax— 1. Each problem0)
then becomes similar in size to a steady-state optimizgioblem, although the time derivative
term changes the KKT Jacobian pattern at each Newton erdt [33], Ravindran introduced a
SQP method and time domain decomposition for time-depdraggimal control problems, using
a first order time discretization based on a backward diffigaé&on formula. The approach is semi-
implicit and does not allow large time steps. As discussetieean this section, our method is a
fully implicit second-order backward differentiation foula and we will show numerically that it
allows large time steps. The main issue with fully impliciétihods is that a large nonlinear system
has to be solved at each time step. Next we discuss a clash gfpdice one-level LNKSz methods
for solving the discretized optimization problems.

3. FULL SPACE LAGRANGE-NEWTON-KRYLOV-SCHWARZ METHODS

There are two major families of Newton techniques for theisoh of discretized KKT systems.
The family of reduced space method$[17, 25, 26, 36], which usually involves three basic steps:
(1) the reformulation of the global problem into a much seralet of equations (the so-called
reduced system) defined only on the interface; (2) solvedtiaaed problem iteratively; (3) solve
the global problem using the solution of the interface peahlWithin each step, there is parallelism
that can be explored, but the three steps have to be cardesgquentially. The family of full space
methods §, 7, 30, 31], in which all equations are solved simultaneously. As cates become
more powerful in processing speed and memory capacity,sfudice methods seem to become
more attractive due to their increased degree of paratiedisd better scalability. There are many
challenges, though, some of them related to the KKT Jacoltias usually ill-conditioned and
indefinite, a property known to slow down Krylov solvers, atsdorder is more than twice bigger
than the size of the forward problem. Therefore, a key elémta successful parallel full space
approach is the preconditioner for the linearized KKT systé has to be able to substantially
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LNKSZ FOR BOUNDARY CONTROL OF UNSTEADY INCOMPRESSIBLE FLO®/ 7

reduce the condition number of the KKT Jacobian and, at threedame, provide the scalability for
massively parallel computing.

LNKSz was introduced ind0, 31] for steady state problems. When the number of processors is
small (such as 64) the one-level method works fine. A rathempticated two-level method, with a
problem dependent pollution removing coarse solver, iss&ary when the number of processors is
slightly larger (such as 128). In this paper, we target wtgroblems, as it turns out the time step
parameteAt¢ plays a very important role in the performance of LNKSz. Ewéth relatively large
time step sizes, the one-level method scales quite wellaMitinge number of processors. More will
be discussed in the Numerical Experiments section.

In the following we describe the one-level LNKSz. For edch: 0,1, ..., knax— 1, from the
Lagrangian functionall(l) we obtain a KKT system1@), which can be solved with an inexact
Newton method13, 14]. Let the initial guess’(é’”l) be the solution of the previous time step, and

X ¥ the current approximate solution, we find the next solufigfi’") as

XUAY = XD 4 oD gD = 0,1, . (13)

wherea!™ is the steplength ang{*™") is the search direction obtained by solving the Jacobian

system approximately using a Krylov subspace method swath th

||G(k+1)(X7(Ik+1))+J7(Lk+1)(M7(Lk+l))_1(M7(Lk+1)87(1k+1))” <
max{n, | G*D (XS 0},

where(JV[,Sk+1))—1 is an overlapping Schwarz preconditiongs,[37] and the KKT matrix/{" ) =

J,(f“)(X,S’““)) is computed by a finite difference approximation. The acoyaf the Jacobian
solver is determined by the two linear toleranggs;, > 0. The steplength%k“) is determined by
a backtracking linesearch procedure (see, e.g., sectdom §12]). The stopping condition for the
nonlinear iterationX3) is

kil k+1
[GEED (XA < max{e, ||GHHD () | 20},

wheree,., e, > 0 are nonlinear tolerances.

In order to define the one-level Schwarz preconditioner, @egio obtain an overlapping partition
of Q € R2. We first dividef into non-overlapping subdomaifs, i = 1,..., N,, and then expand
eachQ; to 2, i.e.,, ; C Q¢ C Q. The overlaps > 0 is defined as the distance betwe#n’ and
09, in the interior of(). For boundary subdomains we simply cut off the part out$idé/lore
precisely, we assumd,, x H, is the size o2, H, x H, is the size of;, andh,, (or hy) is the
me,sh size in the-direction (ory-direction). Then the overlapis defined a$H,, — H,)/(2h.) (or
(Hy - Hu)/(2hu))

Recall thatN is the total number of unknowns associated withLet N; be the number of
unknowns associated wit. Let.J be theN x N sparse matrix of the Jacobian system

JS =—G. (14)

We define theV; x N matrix R? as follows: its elementR?);, ;, is eitherl if the integer indices
1<1l; < N;andl <y, < N are related to unknowns defined at the same grid point andjtitis
point belongs ta2? or 0 otherwise. The multiplication of2? with a N x 1 vector generates a
shorterN; x 1 vector by discarding all components corresponding to goitts outside2?. The
N; x N matrix RY is similarly defined, with the difference that its applicatio a/V x 1 vector also
zeroes all those components corresponding to grid poinfong;. We denote by/; the N; x N;
subdomain matrix given by

Ji =R J(R)T.
We remark that the matri¥; contains all variables associated with the subdorfidimcluding all
three field variables, the state variables, the controbizes and the Lagrange multipliers. There is
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8 H. YANG, E. PRUDENCIO, AND X.-C. CAI

no further splitting of the fields within the precondition&his is quite different from most of the
approaches in the literatur&q] in which different sub-preconditioners are employed fiffedent
field variables.

We assum¢’; is nonsingular and denote I@;l either the inverse of or a preconditioner fft
The one-level restricted additive Schwarz (RAS) precaonér for.J is defined as](]

N,

Mpas =3 (R)"B'R]. (15)

=1
Various inexact additive Schwarz preconditioners can hestrocted by replacing the matrices
B; with convenient and inexpensive to compute matrices, sadha@se obtained with incomplete
factorizations. In this paper we employ the& factorization. Note that in15) R! is a restriction to
the non-overlapping subdomain. The performance of theesalijorithm depends critically on the
condition numberz(JM]gj‘S), which depends on the mesh size, the number of subdomairbe
overlap size), the time step sizét¢, the Reynolds number, amongst others. Some theoreticél wor
for the additive Schwarz method for linear unsteady proklean be found ing].

It should be noted that the convergence behavior of Newtm@thod for unsteady problems
is quite different than the behavior for steady state prolleFor unsteady problems, the initial
guesses are usually much closer to the desired solutiorttirateady case, and the Jacobian solvers
require lower accuracy. That is, when compared to one tisgeatunsteady problems, steady state
problems require more linear iterations as well as more Newtéerations to converge.

4. NUMERICAL EXPERIMENTS

We implement the algorithms described in the previous eestusing the Portable, Extensible
Toolkit for Scientific computing (PETSc) library of Argonniational Laboratory ). The
numerical tests are carried out on an IBM BlueGene/L using 1924 computing nodes. Each node
has512MB of memory. In our numerical experiments we deal with twmensional rectangular
domains2 = (0, L) x (0, La), Ly < L. All notations related to the geometry of the computation
domain is depicted in Figure We consider two problems: a cavity flow problem and a backiwar
facing step flow problem.

Yy
(0,L) (L1,L2)
C4 FS 03
oIy Q Ty
01 Fl C’2
(0,0) i (L1,0) z

Figure 1. Rectangular domaih = (0, L1) x (0, L2) involved in our numerical experiments.

4.1. Details of numerical approaches
For the time discretization we apply the second order badkdiferentiation formula as described
in Section2. For the spatial discretization we use a five-point secoddrdinite difference method
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LNKSZ FOR BOUNDARY CONTROL OF UNSTEADY INCOMPRESSIBLE FLO®/ 9

on a uniform nonstaggered mesh. Similarly &,[31], all derivative terms in the constraints are
discretized with a second order scheme, includingttwundary condition.

In order to form the algebraic system of nonlinear discestizquations, we need to order the
unknowns and the corresponding functions. The unknownsraiered mesh point by mesh point,
in contrast to physical variable by physical variable asallguequired by other methods. The mesh
points are ordered subdomain by subdomain, for the purpiogarallel processing. The ordering
of the subdomains is not important since we use additive oustivhose performance has nothing
to do with the subdomain ordering. In order to avoid pivotituging the sparse LU method (used in
our experiments), at each mesh point, the correspondirgifuns are ordered a8

(Va, L,V L,V LV LV L,V 0, L,V 0, L,V L) (16)
while the corresponding unknowns are ordered as
(Ula’U2awaulau27)\laA2aA3)- (17)

Because the orderings for the unknowns and for the functomponents are different, the Jacobian
matrix is nonsymmetric and so we use a nonsymmetric iteratigthod GMRES34].

The Jacobian matrix is constructed approximately using itefidifference method1fl]. To
solve the Jacobian systems we use restarted GMRES with afuth&elative) tolerance equal to
10712 (1079), a restart parameter equal to 90 and a maximum number afidas equal to 5,000.
Regarding the one-level additive Schwarz preconditichernumber of subdomains is equal to the
number of processors, and the extended subdomain probkrmshbro Dirichlet interior boundary
conditions and are solved with a sparse direct method. Altlemaing?; and? are rectangular
and made up of integral number of mesh cells. Line searchrfsrpged with cubic backtracking.
For Newton iterations, the maximum allowed number is 300 thedabsolute (relative) stopping
tolerance is10~'° (10~%). Simulation problems are solved with the one-level Newkoylov-
Schwarz algorithm (NKS)J]. We do not use Reynolds continuation in any of the algorghm

Throughout this section,N,” stands for the number of processors which is the same as the
number of subdomains, “IN” is the average number of inexasivtén iterations per time step,
“RAS” is the average number of RAS preconditioned GMRESaiiens per Newton iteration, and
“Run” is the total computing time in seconds.

4.2. A cavity flow problem

In this subsection we consider a tangential boundary flowrrobproblem whose objective is to
make the flow velocity field- on Q2 x [to, /] to get as close as possible to a target velocity profile
Vs given onQ x [to, ] as well B3]. The tangential contral is applied everywhere an x [to, ¢ /]

in order to drivev. More specifically, we want to finfb; , vo, w, u1, us) such that the minimization

g2 [t s [
min  F(s,u) = — v(t,x,y) — Vss]” dQdt + = ul|5 dIl" dt 18
w0 FEw =5 | | () = vl 3 /) B (18)

is achieved subject to the constrainty\ith a square domaift = (0,1) x (0,1),¢y = 0,t; = 0.5,
initial conditionv, = 0 and target velocity

2sin(2mx)sin(my + wt)sin(my)

Vas(t, ,y) = ( sin(2my + wt)(cos(2mx) — 1) )

As discussed in the Introduction, we numerically solve tbeasponding sub-optimal control
problems rather than the full optimal one. B3] the parameters in the cost functionaB) were
taken as3 = 10® and~ = 1, and only very coarse meshes were considered. Here w&=ix 03
and test LNKSz with different values of objective functioarametery, Reynolds numbeRe,
constanttime stepAt, characteristic mesh sizeand RAS overlap sizé. As will be shown by our
experiments, the problem indeed becomes much harder te aslthe mesh gets larger, i.e.,/as
decreases.
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10 H. YANG, E. PRUDENCIO, AND X.-C. CAI

First, we investigate the influence gfon the efficiency of the sub-optimal control. For different
values ofy and fixedRe = 20, 32 x 32 grid, ty = 0.5, At = 0.1 (i.e., there are 5 time steps), and
0 = 6, Figure2 shows the error

1/2
|v—vss|h—</ (v—vss)2d9h> ,
Qp

while Figure3 shows the two-norm of the boundary control velocity. One s in Figure that,

for lower values ofy, the error||v — v||5 IS smaller. This happens because smaller values of
~ diminishes the contribution of the control norm to the okbjexfunction, thus allowing bigger
controls to be applied, as shown by Figueln other words, the control is more efficient as
decreases. Similar results were obtained in refererie$§).

1.3 T
——vy=1
L VS|
1.2 —a—y=10
1.1 —=—y=100|
. -
= 1r
(&)
u—
pt 0.9~
e O
S
o
=
I 0.8
=
0.7
0.6
05 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time

Figure 2. Cavity flow control problemlB)-(7): k-norm of the difference between the controlled flow and
the target flow for different values of the parameteaind fixedRe = 20, 32 x 32 grid, t; = 0.5, At = 0.1
(i.e, there are 5 time steps) and overdag 6. The casey = 1 is also reported in Figurets.

Figures4 and5 present the velocity field of the controlled and target flotvseveral different
times, fory = 1 and all the other parameters having the values reporteceitatit paragraph. As
shown in the figures, the controlled flow is qualitative cl@@sence of two vortices) to the optimal
flow pattern att = 0.3, and such closeness improvestat 0.4 andt = 0.5. We remark that the
evolution of the controlled and target flow fields in this page similar to that of33].

From now on, in this subsection, we investigate how diffepamameters impact the performance
of LNKSz. Tablel presents some results with different stopping conditionstfe Jacobian solver.
It is clear that the absolute convergence tolerapcand the relative convergence tolerangcdave
to be small enough to keep LNKSz converge. In the followirgigave choose, = 10~1° and
7, = 1076,

Tablell shows the effect of on the performance of LNKSz, for fixede = 200, 512 x 512 grid,
ty = 0.5, At = 0.05 (i.e., there are 10 time steps), afie- 8. The number of Newton iterations in
the first time step is 23, 16, 3 and 2 for the respective valfies-05, 10, 50, 100. We can see that,
asy increases, the average numbers of Newton and GMRES itesdiecome smaller and the total
computing time decreases. In other words, the control pralis more difficult to solve for smaller
~ values. On the other hand, a largealso decreases the accuracy between the controhfland
the target flowv,,, which is more important for the control problem. So, in mafyhe following
tests we choose a relatively smalE 5.
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Figure 3. Cavity flow control problemlg)-(7): two-norm of the tangential boundary control velocity for
different values of the objective function paramefeand fixedRe = 20, 32 x 32 grid, t = 0.5, At = 0.1
(i.e, there are 5 time steps) and overéag 6.

Table I. Cavity flow control probleml1®)-(7): effect of different stopping conditions of the linearragon

on the performance of LNKSz, for fixelle = 200, 512 x 512 grid, ty = 0.5, At = 0.05, and overlag = 6.

“N," is the number of processors, “IN” is the average number ekatt Newton iterations per time step,

“RAS” is the (rounded) average number of RAS preconditioGMRES iterations per Newton iteration,

and “Run” is the (rounded) total computing time in secongsis the absolute convergence tolerance and
7 is the relative convergence tolerance of the linear itemati « ” means divergence of GMRES.

Grid size N, Ma 7y IN RAS Run
256 10719 107% | 5.4 207 1419
256 1079 1079 |54 155 1179
512 x 512 256 1071 10=* |55 119 1049
256 107% 10~¢ *
256 10=* 1072 *

Table Il. Cavity flow control problem1@)-(7): effect of the parametey on the performance of LNKSz, for

fixed Re = 200, 512 x 512 grid, ¢y = 0.5, At = 0.05, and overlap = 8. “N," is the number of processors,

“IN” is the average number of inexact Newton iterations paretstep, “RAS” is the (rounded) average

number of RAS preconditioned GMRES iterations per Newteraiion, and “Run” is the (rounded) total
computing time in seconds.

vy 5 10 50 100

Np IN RAS Run | IN RAS Run | IN RAS Run | IN RAS Run
64 | 54 93 5076] 43 78 383921 72 1828 20 71 1747
128 [ 54 118 2749 43 108 2108 21 87 936|20 85 904
256 | 54 133 1353] 43 123 1035 2.1 106 47020 105 446
512 | 54 201 991|433 178 /31|21 142 313]20 138 293
1024 54 209 582|433 187 43221 149 18220 142 170

Table Il shows the effect ob on the performance of LNKSz, for fixeq = 5, Re = 200,
512 x 512 grid, t; = 0.5 and At = 0.05 (i.e., there are 10 time steps). From the numbers of
Newton and GMRES iterations, we see that in general theithgoconverges better as the overlap
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12 H. YANG, E. PRUDENCIO, AND X.-C. CAI

increases. However, a larger overlap also increases tkepricessor communication and the
overall computing time. The moderate overlaps 4 and6 provide a good compromise among
computing time, Newton iterations and GMRES iterations @lgorithm performs quite well for up
at least 1024 processors. We have chasent for all subsequent tests reported in this subsection.

Table IlI. Cavity flow control problem1(8)-(7): effect of overlap sizé on the performance of LNKSz, for

fixed Re = 200, 512 x 512 grid, andt; = 0.5, At = 0.05. “N," is the number of processors, “IN” is the

average number of inexact Newton iterations per time sAS” is the (rounded) average number of RAS

preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds.

0 2 4 6 8
Np IN RAS Run | IN RAS Run | IN RAS Run | IN RAS Run
64 | 54 206 4641 54 135 4427| 54 110 4505/ 5.4 93 5076
128 | 5.4 271 2621] 5.4 192 2519| 54 134 2508| 5.4 118 2749
256 | 5.4 294 1132| 5.4 213 1140| 5.4 155 1179] 54 133 1353
512 | 54 443 79254 284 746| 54 223 82954 201 991
10241 54 470 374| 54 332 423|54 242 47754 209 582

TablelV shows the effect ofA¢ on the performance of fully implicit LNKSz, for fixed = 5,
Re = 200,512 x 512 grid,t; = 0.5, andd = 6. Every tested time step was kept constant throughout
the algorithm run. LNKSz converges for all time steps andnisamditionally stable. We also see
that the time step impacts the convergence rate of LNKSAtadecreases, the average number of
Newton iterations and GMRES iterations become smalledethe total computing time increases.
This behavior is somehow expected since smaller valuediotause the velocity field of the
previous time step to become a better initial guess for thetble method at a current time step.
Once the time step becomes too small, however, such iniiedgcontribution to the convergence
of Newton iterates “stalls” and the “intrinsic” nonlineggrdf the problem is revealed. The algorithm
allows large time steps if short computing time is the target

Table IV. Cavity flow control probleml@)-(7): effect of the time steps on the performance of LNKSz, for

fixedy = 5, Re = 200, 512 x 512 grid, ty = 0.5, andd = 6. “N," is the number of processors, “IN” is the

average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS

preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds.

At 0.1 0.05 0.025 0.0125

Np IN RAS Run | IN RAS Run | IN RAS Run IN RAS Run

64 | 8.6 138 3909 54 110 4505/ 44 102 6995 40 106 12970
128 [ 8.6 165 2215/ 54 134 2508 44 126 3924| 4.0 128 7233
256 | 8.6 214 1142| 54 155 1179] 44 141 1798] 40 142 3302
512 | 86 266 743|54 223 829] 4.4 202 1249 40 203 2291
1024|186 306 451|54 242 477]44 215 702|4.0 217 1291

Table V summarizes the effect of the mesh size on the performanceN&Sz, for fixed
v =25, Re =200, ty = 0.5, At = 0.05 (i.e., there are 10 time steps), afie= 6. When the mesh
is1024 x 1024 andN,, = 64, 128, 256, the test is not carried out because of the lack of memory on
the particular supercomputers used. On the nonlinear, lavislclear that the number of Newton
iterations per time step is independent of the number ofgessars, while it increases as the mesh is
refined. For the Jacobian solver, however, the number of G8IREations grows ad/, increases.
This is expected with any one-level methods. The total cdinguime decreases at a reasonably
good rate when we increadg, from 64 to 1024, and the rate improves for larger meshes.

In order to study the impact of the Reynolds number on theop@idince of LNKSz, we increase
itto Re = 400 and keep all other values as before. Results are summanizedbieVVl. Comparing
it to TableV, we can see that the average number of Newton iterationgrimestightly larger,
while the average number of GMRES iterations and the totalptdging time became smaller. On
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Table V. Cavity flow control probleml)-(7): effect of the mesh size on the performance of LNKSz, for
fixed v = 5, Re = 200, ty = 0.5, At = 0.05, and§ = 6. “Np" is the number of processors, “IN”" is the
average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds. The biggest control problem hé®4 x 1024 x 8 = 8,388, 608 degrees of freedom.

Mesh 128 x 128 256 x 256 512 x 512 1024 x 1024
N, |IN RAS Run|IN RAS Run| IN RAS Run | IN RAS Run
64 [ 36 40 112]45 63 641] 54 110 4505 = * *
128 |36 59 80 |45 87 39554 134 2508 « * *
256 |36 62 50 |45 98 212[54 155 1179 « * *
512 |36 67 39|45 162 18554 223 829[95 479 9791
1024136 69 29 |45 182 127[ 54 242 47795 522 4985

the whole, LNKSz for the cavity flow control problem is not séive to Re in the tested range of
Reynolds numbers.

Table VI. Cavity flow control problemi@)-(7): effect of the mesh size on the performance of LNKSz,
for fixed v = 5, Re = 400, ty = 0.5, At = 0.05, andé = 6. “Np" is the number of processors, “IN” is the
average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds. The biggest control problem hé®4 x 1024 x 8 = 8,388, 608 degrees of freedom.

Mesh 128 x 128 256 x 256 512 x 512 1024 x 1024
N, |IN RAS Run|IN RAS Run| IN RAS Run | IN RAS Run
64 [ 36 39 111]45 60 629] 56 104 4543 « * *
128 |36 56 79 |45 72 365| 56 129 2554 « * *
256 |36 58 48 |45 90 203] 56 145 1176] =« * *
512 |36 61 37 |45 134 164/ 56 201 797]9.8 399 8827
1024136 63 28 |45 144 108] 56 215 453| 9.8 465 4687

Next we change = 1 and investigate again the effect of mesh size Badn the performance
of LNKSz. TablesVIl andVIIl summarizes results fakRe = 200 and 400 respectively, for fixed
ty = 0.5, At = 0.05 (i.e., there are 10 time steps), ahie- 6. Similarly to TablesV and VI, tests
are not carried out witlé4, 128 and256 processors antlo24 x 1024 mesh because of the lack of
memory. By decreasingfrom 5 to 1, the average number of Newton iterations becoargst, and
the increase of the number of GMRES iterations is moderdi&3z converges and the computing
time scalability is good for large meshes.

Table VII. Cavity flow control problem18)-(7): effect of the mesh size on the performance of LNKSz,
for fixed v = 1, Re = 200, ty = 0.5, At = 0.05, andé = 6. “N)" is the number of processors, “IN” is the
average number of inexact Newton iterations per time s®pS" is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds. The biggest control problem hag4 x 1024 x 8 = 8, 388, 608 degrees of freedom.

Mesh 128 x 128 256 x 256 512 x 512 1024 x 1024
Np, | IN RAS Run| IN RAS Run IN RAS Run IN RAS Run
64 |45 45 144165 69 957|21.3 140 19960 = * *
128 [ 45 66 106 6.5 100 610 21.3 157 10654 =« * *

256 |45 69 66 | 6,5 115 335/ 21.3 220 5765| =« * *
512 |45 75 51 [ 6.5 193 302 21.3 275 3793| 64.4 644 83622
1024 1 45 80 39 | 6.5 233 219 21.3 338 2417] 644 625 39249

Finally, Figure6 shows the speedup and the total computing time for 64, 128,22 and 1024
processors, and fixegd= 1, Re = 200, 512 x 512 grid, t; = 0.5, At = 0.05 (i.e., there are 10 time
steps), and = 6. WhenN,, increases from 64 to 1024, the total computing time decseasa
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Table VIII. Cavity flow control problem 18)-(7): effect of the mesh size on the performance of LNKSz,
for fixed v = 1, Re = 400, ty = 0.5, At = 0.05, andd = 6. “Np" is the number of processors, “IN” is the
average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds. The biggest control problem hé®4 x 1024 x 8 = 8,388, 608 degrees of freedom.

Mesh 128 x 128 256 x 256 512 x 512 1024 x 1024
N, | IN RAS Run| IN RAS Run IN RAS Run IN RAS Run
64 |48 45 154[69 66 1003] 22.4 137 20455 « * *
128 [ 48 64 111|69 93 626 224 155 11187 =« * s

256 |48 67 70 6.9 113 353|224 197 5650| = * *
512 |48 68 52 [6.9 160 282|224 243 3633| 66.8 529 76517
1024 1 48 72 39 | 6.9 193 202|224 302 2322 66.8 548 36509

reasonably good rate, which indicates that LNKSz has a gpeddup at least for this range of
numbers of processors.

4.3. A backward-facing step flow problem

In this subsection, we present computational results fac&ward-facing step channel flow defined
on a computational domaif2 = (0,6) x (0,1); i.e., Ly =6 and Ly = 1. Let 'y , = {(z,y) €

M :0<z< Lo}, Tipy=T1\T1a Taa={(z,y) €ETy: 22 <y <Ly} andly, =Ty \Ty0. We
definev;, = 8(La — y)(y — £ )cos(t) andv,u, = y(La — y)cos(t), then the backward-facing step
simulation problem consists of the following equations

0 .
—Awy — 6_Z = 0 inftot;]xQ,
0 .
—Avg + 8—;} = 0 In [to,tf] x €,
i N L — 0 inftet]xQ
Ot Re Yor T oy N 0, *f ’
U1 =0 on [to,tf] x [,
U1 = Uin on [thtf] X F4,a7
’lél = Vout ON [to,tf] X FQ, 19
% =0 on [to,tf] X Fl,aa ( )
1(2)2 = 0 on [to,tf] X (F\l—‘4 b),
% = 0 on [to,tf] X F4,b,
81)1 (9’02
+8—y_% = 0 on[to,tf]xf,
V(t07x7y) — Vo = 0 in ﬁ,
W(to,il?,y)—F%—vyl(to,I,y)—%(to,iﬂ,y) =0 in ﬁa

where Ty = {C1} UT;, UT3UTy,, v is the unit outward normal vector along. And the
backward-facing step control problem consists of findifg,ve,w,u1,us) such that the
minimization

ty ty
min ﬂ&mzﬁ/‘/wﬂm+1/ /|M@Mﬁ (20)
(s,u)€SXU 2 Ji, Ja 2 Jt Jr.
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is achieved subject to the constraints

P .
—Avy — 3_w =0 " [t07tf] o
Yy
5 .
A+ =0 in[to,ty] x Q,
ox

Ow 1, 0w D 0 infto,ts] xQ
— — — Aw+v1— + v = '
5 e 18 Qay 0, Uf )
v = 0 on[to, tf] x T'y,
. - 0 onfto,t¢] x I'u,
o = 0 onfty,ty] x (T, UT3), (21)
U1 = Uin on [tOv tf] x F47a,
" = Vout ON [to, tf] x T'a,
o = 0  onftyts] x (['\T),

Ovy  Ovy

Ovi vy = 0 onfte,ty] x I’
“T oy T oa ot
v(to, ,y) — Vo = 0 in%

) 0 Q

w(to,x,y)—i—ai;(to,x,y)—%(to,%y) =0 n Q’

wherel', =Ty, U{C1} UT,.
In all cases of this subsection, for the backward-facing simulation problem and the backward-
facing step control problem we use the following initial aeity:

Ly . Ly

To |f0< g 5

167 LD
vo1(w,y) =y(L2 —y) + . .

2 . 2
2Ly —y) if 22 <y < Lo,
L2~y T <y<l
and
UO,Q(«T,y) =0.

The flow domain i2 = (0,6) x (0,1),i.e.,L; = 6 andL, = 1. The time domain i§, 1]. Similarly
to [33], the parameters in the cost functional) are3 = 10 and~y = 1, respectively. NKS is used to
solve the corresponding simulation problem and LNKSz iglusesolve the corresponding control
problem.

First, we present results for the backward-facing step kitiwn. TablelX shows the effect of\¢
on the performance of fully implicit one-level NKS, for fixdgle = 200, 768 x 128 grid, t; = 1,
andé = 8. The number of time steps are 5, 10, 20 and 40, respectivelyth® nonlinear level,
the number of Newton iterations decreases as the time stefssreduced (as expected), and is
independent of the number of processors. The total congptitine increases as the time step
size is reduced. For the linear solver, the number of GMREtibns increases as the number
of processors increases (again, as expected from the gemecer theory of one-level domain
decomposition method85, 37)).

Next, we solve the backward-facing step flow simulation peobon several different meshes
and fixedt; =1, At = 0.1 (i.e., there are 10 time steps) afid= 8. The results are summarized
in TablesX andXI for Re = 200 and Re = 400, respectively. We see that the number of nonlinear
iterations per time step does not change much with respéut tmesh size and is independent of the
number of processors. For the linear solver, the numbenedliiterations grows with the number of
processors, as expected from the convergence theory déwaledomain decomposition methods.
As the Reynolds number increases, both the number of Newgations and the total computing
time increase, although GMRES iterations decrease. Iir @tbeds, NKS for the backward-facing
step flow simulation problem is a little sensitive to the Ralgis number.

In the following, we switch to the control problem. Tab¥dl shows the effect ob on the
performance of LNKSz, for fixe@ke = 200, 768 x 128 grid, ¢y = 1, andAt = 0.1 (i.e., there are 10
time steps). From the number of Newton and GMRES iteratiwasee that in general the algorithm
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Table IX. Backward-facing step simulation problef®); effect of the time steps on the performance of

NKS, with fixed Re = 200, 768 x 128 grid, t; = 1, andé = 8. “Np" is the number of processors, “IN” is

the average number of inexact Newton iterations per timg, S$RAS” is the (rounded) average number of

RAS preconditioned GMRES iterations per Newton iteratamd “Run” is the (rounded) total computing
time in seconds.

At 0.2 0.1 0.05 0.025

Ny, | IN RAS Run|IN RAS Run|[IN RAS Run|IN RAS Run
64 | 3.0 47 4723 48 72|21 49 132|20 45 246
128 {30 56 28 |23 59 43|21 58 78 |20 54 146
256 |30 59 15|23 62 2421 63 4420 60 83
512 |30 8 13|23 8 20 [21 84 36 [20 83 69
1024 3.0 91 9 |23 92 13|21 9 2420 87 45

Table X. Backward-facing step simulation problef®) effect of the mesh size on the performance of
NKS, for fixed Re = 200, ty =1, At = 0.1, andé = 8. “Np" is the number of processors, “IN” is the
average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds. The biggest control problem ha36 x 256 x 3 = 1,179, 648 degrees of freedom.

Mesh 384 x 64 768 x 128 1536 x 256
Np IN RAS Run|[IN RAS Run|IN RAS Run
64 |24 33 1823 48 72123 67 379
128 [ 24 42 13123 59 43123 89 207
256 | 24 45 8 |23 62 24123 97 104
512 | 24 49 7 123 85 20 | 23 157 82
1024 | 24 51 6 [23 92 1323 168 48

Table XI. Backward-facing step simulation problefB) effect of the mesh size on the performance of
NKS, for fixed Re = 400, ty =1, At = 0.1, andé = 8. “N," is the number of processors, “IN” is the
average number of inexact Newton iterations per time s®pS" is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, ‘@wh” is the (rounded) total computing time in
seconds. The biggest control problem ha36 x 256 x 3 = 1,179, 648 degrees of freedom.

Mesh 384 x 64 768 x 128 1536 x 256
Np IN RAS Run|[IN RAS Run|IN RAS Run
64 | 27 30 2025 44 76124 65 391
128 | 2.7 39 14125 57 46 | 24 88 215
256 | 2.7 42 9 [ 25 60 26|24 93 106
512 | 2.7 47 8 [25 81 21124 146 81
1024 | 2.7 46 6 |25 88 14124 161 49

converges better as the overlap increases. On the otherdkamger overlap also increases the inter-
processor communication and the overall computing time.odlenate overlapj = 8, provides the
best results in terms of combined robustness (convergdsfavedll values of N,,) and run time.
When the overlap is too smalf & 4, 6), the tests withV,, = 512, 1024 are not convergent.

TableXIll shows the effect ofAt on the performance of LNKSz, for fixelle = 200, 768 x 128
grid, ¢y = 1, andd = 8. On the nonlinear level, the number of Newton iterationge@ses ast is
reduced, and is independent of the number of processorsevtmnthe computing time increases
whenAt is reduced. For the linear solver, the number of GMRES imnatincreases as the number
of processors increases.

Next, we solve the backward-facing step flow control probtamseveral meshes as well. Table
XIV summarizes the effect of the mesh size on the performanc@& &Sz, for fixed Re = 200,
tr=1, At=0.1 (i.e., there are 10 time steps), and= 8. When the mesh i8536 x 256 and
N, = 64, the test is not carried out because of the lack of memory. t€hts with the mesh
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Table XlI. Backward-facing step control probler20j-(21): effect of overlap sizé on the performance of

LNKSz, for fixed Re = 200, 768 x 128 grid, t; = 1, andAt = 0.1. “N," is the number of processors, “IN”

is the average number of inexact Newton iterations per tiree, SRAS” is the (rounded) average number

of RAS preconditioned GMRES iterations per Newton itematend “Run” is the (rounded) total computing
time in seconds.

0 4 6 8 10

N, | IN RAS Run|[IN RAS Run| IN RAS Run| IN RAS Run
64 [ 31 155 877/ 31 116 879/ 3.1 80 92431 67 1054
128 [ 3.1 264 57v6[ 3.1 181 593| 3.1 131 638 3.1 126 874
256 | 3.1 342 353| 3.1 232 362| 3.1 147 354] 3.1 123 440
512 | =« * * * * « [ 3.1 269 392] 31 166 374
1024 | =« * * * * « |31 293 244] 31 262 318

Table XIII. Backward-facing step control problerQj-(21): effect of the time steps on the performance of

LNKSz, for fixed Re = 200, 768 x 128 grid, t; = 1, andd = 8. “N," is the number of processors, “IN” is

the average number of inexact Newton iterations per timg, $RAS” is the (rounded) average number of

RAS preconditioned GMRES iterations per Newton iteratemg “Run” is the (rounded) total computing
time in seconds.

At 0.2 0.1 0.05 0.025

Ny, [ IN RAS Run|IN RAS Run| IN RAS Run | IN RAS Run
64 | 3.0 93 470/ 3.1 80 924] 22 83 1323]21 81 2533
128 | 3.0 146 327] 3.1 131 638] 22 150 974| 2.1 146 1850
256 | 3.0 157 178| 3.1 147 354] 2.2 163 536 2.1 156 1007
512 [ 3.0 283 197| 3.1 269 392| 2.2 314 62221 279 1104
1024 3.0 306 122| 3.1 293 244| 22 344 393| 21 333 740

1536 x 256 and N,, = 512,1024 are not convergent faf = 8. So we choosé = 10 in these two
cases.

Table XIV. Backward-facing step control proble@0§-(21): effect of the mesh size on the performance of
LNKSz, for fixed Re = 200, t; = 1, At = 0.1, andd = 8. “Np" is the number of processors, “IN” is the
average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, &Rdn” is the (rounded) total computing time
in seconds. The biggest control problem h&36 x 256 x 8 = 3,145, 728 degrees of freedom. Cases “(*)”
denote that the tests with the meigt36 x 256 and N, = 512, 1024 are not convergent far = 8. Sod = 10

in these two cases.

Mesh 384 x 64 768 x 128 1536 x 256
Np IN RAS Run|[ IN RAS Run| IN RAS Run
64 [ 32 53 22631 80 924 * * *
128 [ 3.2 65 188 3.1 131 638] 3.0 275 3532
256 [ 3.2 70 105] 3.1 147 354] 3.0 347 1997
512 | 3.2 84 92 131 269 392] (x)3.0 809 3035
1024 | 3.2 95 66 | 3.1 293 244] (x)3.0 819 1664

We then increase the Reynolds numbeRio= 400 and show the results in Tab¥/. The time
step size isAt = 0.1 and the number of time steps is 10. Overlap) is 8. When the mesh is
1536 x 256 andN,, = 64, the test is not carried out because the lack of memory. Tdis téth the
mesh1536 x 256 andN,, = 512, 1024 are not convergent. So we increase the overlap=t010 in
the case ofV, = 512, and tod = 12 in the case ofV, = 1024. With a larger Reynolds number,
the number of Newton iterations and the total computing tame both larger, but the number
of GMRES iterations is smaller. Compared with the cavity flowntrol problem, LNKSz for the
backward-facing step flow control problem is more sensitivine Reynolds number.
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Table XV. Backward-facing step control proble20f-(21): effect of the mesh size on the performance of

LNKSz, for fixed Re = 400, t; = 1, At = 0.1, andd = 8. “Np" is the number of processors, “IN” is the

average number of inexact Newton iterations per time sRpS” is the (rounded) average number of RAS

preconditioned GMRES iterations per Newton iteration, &Rdn” is the (rounded) total computing time

in seconds. The biggest control problem h&36 x 256 x 8 = 3,145, 728 degrees of freedom. Cases “(*)”

denote that the tests with the meEIB6 x 256 and N, = 512, 1024 are not convergent. Sb= 10 in the
case ofN, = 512, andé = 12 in the case oV, = 1024.

Mesh 384 x 64 768 x 128 1536 x 256
Np IN RAS Run| IN RAS Run IN RAS Run
64 [ 34 56 24333 87 1018] =« * *
128 |34 67 201|333 126 664| 3.1 279 3686
256 |34 72 113133 155 390 3.1 354 2095
512 [ 34 90 101]| 3.3 280 428]| (x)3.1 782 3045
1024 | 3.4 95 70 33 300 266] (¥)3.1 699 1925

In Figure 7 we show the two norm of the vorticity history for the backwdading step flow
control problem and the simulation problem, for fix&d = 200, 64 x 32 grid, t; = 1, At = 0.2
(i.e., there are 5 time steps), ahe: 6. The norm of the vorticity with the control is always lessriha
that without the control.

The experiments in this subsection show that control probleare computationally more
demanding, in terms of the total number of nonlinear iteratj the average number of the linear
iterations per Newton iteration and the total computingetinihhan the corresponding simulations
problems. From TableXlIl, XIV andXV, we understand that, in order to make LNKSz converge,
it is necessary to use relatively large overlaps. Intenghti we see that the number of Newton
iterations decreases as the mesh is refined.

5. CONCLUSIONS

Boundary control of unsteady incompressible flows is a engihg and very expensive
computational problem. In this paper, we introduced andemigally studied a family of domain
decomposition based, fully parallel, fully implicit, ors&ot approach for the sub-optimal control
of unsteady Navier-Stokes flows in two-dimensional physsgace. The main workhorse of this
approach is a Lagrange-Newton-Krylov-Schwarz method wiggroven to be quite robust in the
sense that it converges rapidly for a wide range of flow andhnpesameters. The fully implicit
time discretization is unconditionally stable and allowsgke time steps. The scalability of the
method was demonstrated by running the software succhssfutomputers with more than 1000
processors and for problems with millions of degrees ofdome. Our future research includes the
extension of the methods to two or more levels so that evdrehigesolution problems can be solved
efficiently on computers with a larger number of processors.
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andt = 0.3, respectively. A quantitative analysis of the differenavizen the two flows is reported in

Figure 4. Cavity flow control problemlg)-(7): the velocity field of the controlled (left column) and tatg
(i.e, there are 5 time steps) and overdap 6. The first, second and third rows correspond £00.1, t = 0.2

(right column) flows at several different times, for fixed= 1, Re = 20, 32 x 32 grid, t;
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respectively. A quantitative analysis of the differencea@en the two flows is reported in Figuze

Figure 5. Cavity flow control problenlg)-(7): the velocity field of the controlled (left column) and tatg
(i.e, there are 5 time steps) and overdag 6. The first and second rows correspond te 0.4 andt = 0.5,

(right column) flows at several different times, for fixed= 1, Re = 20, 32 x 32 grid, t;
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Figure 6. Cavity flow control probleni)-(7): the speedup and the total computing time for 64, 128, 256,
512 and 1024 processors, and fixeet 1, Re = 200, 512 x 512 grid, t; = 0.5, At = 0.05 (i.e., there are 10
time steps), and = 6.
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Figure 7. Two-norm of vorticity history for the backwardzfag step control problem2()-(21) and the
simulation problem 19), for fixed Re = 200, 64 x 32 grid, t; = 1, At = 0.2 (i.e., there are 5 time steps),
andé = 6.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
Prepared usingimeauth.cls DOI: 10.1002/nme



	1 Introduction
	2 Fully implicit discretization of the unsteady boundary control problem
	3 Full space Lagrange-Newton-Krylov-Schwarz methods
	4 Numerical experiments
	4.1 Details of numerical approaches
	4.2 A cavity flow problem
	4.3 A backward-facing step flow problem

	5 Conclusions

