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SUMMARY

We develop a parallel fully implicit domain decomposition algorithm for solving optimization problems
constrained by time dependent nonlinear partial differential equations. In particular, we study the boundary
control of unsteady incompressible Navier-Stokes equations. After an implicit discretization in time, a fully
coupled sparse nonlinear optimization problem needs to be solved at each time step. The class of full
space Lagrange-Newton-Krylov-Schwarz (LNKSz) algorithms is used to solve the sequence of optimization
problems. Among optimization algorithms, the fully implicit full space approach is considered to be the
easiest to formulate and the hardest to solve. We show that LNKSz, with a one-level restricted additive
Schwarz preconditioner, is an efficient class of methods forsolving these hard problems. To demonstrate
the scalability and robustness of the algorithm, we consider several problems with a wide range of Reynolds
numbers and time step sizes, and we present numerical results for large scale calculations involving several
millions unknowns obtained on machines with more than one thousand processors. Copyrightc© 0000 John
Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Schwarz preconditioner; parallel computing; nonlinear constrained optimization; inexact
Newton; flow control; unsteady incompressible Navier-Stokes equations

1. INTRODUCTION

Flow control and optimization has many important applications in science and engineering [21].
Finding the right control is computationally expensive, especially when the flow is unsteady, and it
often requires the use of large scale parallel computers. Inthis paper we investigate a parallel fully
implicit domain decomposition method for the boundary control of unsteady incompressible Navier-
Stokes flows. The most important issues under considerationare (1) whether the algorithm scales
well when the number of processors is large; (2) whether the algorithm is stable and converges well
with relatively large time steps; and (3) if the algorithm isrobust with respect to some of physical
parameters, such as the Reynolds number. Many constrained optimization problems can be written
as

{

min
x∈W

F(x)

s.t. C(x) = 0 ∈ Y,
(1)

whereW and Y are normed spaces,W is the space of optimization variables,F : W → R is
the objective functional andC : W → Y represents the constraints. When the constraints in (1)
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2 H. YANG, E. PRUDENCIO, AND X.-C. CAI

are partial differential equations (PDE), there are two families of approaches for their numerical
solution, generally speaking: optimize-then-discretize(OTD) and discretize-then-optimize (DTO).
As far as we know, no approach has a clear advantage over the other [21]. We choose to use the
DTO approach in this paper. We focus on the class of one-levelLagrange-Newton-Krylov-Schwarz
(LNKSz) algorithms, introduced in [30], which aims for the robust, efficient and scalable parallel
numerical solution of PDE-constrained optimization problems. Its application to some problems (1)
with steady-state constraints has been already studied in [29, 30, 31].

In this paper we extend the LNKSz approach to problems where the constraints are initial
boundary value problems defined fort ∈ [t0, tf ] over a bounded Lipschitz domainΩ, for giventf >
t0 > 0. The discretization in time results inkmax > 1 successive time steps∆t(k) ≡ t(k+1) − t(k) >
0, k = 0, 1, . . . , kmax− 1, with t(0) = t0 andt(kmax) = tf , and the discretization in space results in
a meshΩ(k)

h of characteristic mesh sizeh > 0. For simplicity, we assume that bothΩ andΩh do
not change over time. There are two basic alternatives to consider. In the first alternative one aims
for the solution of the entire problem at once for the whole time interval[t0, tf ], solving the finite
dimensional optimization problem

{

min
x∈Wkmax,h

Fkmax,h(x)

s.t. Ckmax,h(x) = 0 ∈ Ykmax,h,
(2)

whereWkmax,h = R
kmax×nh andYkmax,h = R

kmax×mh = Y
∗

kmax,h
. This approach, however, can be

too expensive computationally, even for the most modern massively parallel computers currently
available. In the second alternative, one replaces (2) by a sequence ofkmax similar subproblems,
each having an objective function similar to the objective of the full formulation (2), except that it is
now defined on the shorter time interval[t(k), t(k+1)], k = 0, 1, . . . , kmax− 1. Each subproblem can
be written as







min
x∈W

(k)
h

F
(k)
h (x)

s.t. C
(k)
h (x) = 0 ∈ Y

(k)
h .

(3)

whereW
(k)
h = R

nh andY
(k)
h = R

mh = Y
(k)
h

∗

. Ignoring the sub- and super-scripts, we write the
associated Lagrangian functionalL : W × Y

∗ → R as

L(x, λ) ≡ F(x) + 〈λ,C(x)〉
Y

, ∀ (x, λ) ∈ W × Y
∗, (4)

whereY
∗ is the adjoint space ofY, 〈·, ·〉

Y
denotes the duality pairing and variablesλ are called

Lagrange multipliers or adjoint variables. In many cases itis possible to prove that, if̂x is a (local)
solution of (1) then there exist Lagrange multiplierŝλ such that(x̂, λ̂) is a critical point ofL.
So, under sufficient smoothness assumptions, one proves that a solution has to necessarily solve
a system of equations, called Karush-Kuhn-Tucker (KKT) condition or optimality system. Each
subproblem (3) becomes then similar in size to a steady-state optimization problem, although time
derivative terms will change the KKT Jacobian pattern w.r.t. steady-state Jacobian. In the context of
control problems, this approach is often referred to as the suboptimal approach [4, 5, 27].

We briefly mention a few related publications that partiallymotivated our current work. A class
of Lagrange-Newton-Krylov-Schur algorithms (LNKSr) is introduced in [6, 7] in which four block
factorization based preconditioners, as well as some globalization techniques and heuristics, are
proposed and tested. LNKSr attempts to transform the problem of finding a good preconditioner for
the KKT problem to the problem of finding a good preconditioner for the linearized forward operator
[30]. In [30, 31] the Schur type preconditioner is replaced by an overlapping Schwarz method which
has a better asymptotic convergence rate. Note that these papers do not deal with time dependent
control problems. In [1, 3] active feedback controls are used to enhance the stabilityin a 2D channel
flow. Although the technique is very effective, the control is obtained by ‘experience’, not by
computation. In other words, the control is not optimal. In [33], Ravindran proposes a sequential
quadratic programming method (SQP) and time domain decomposition for time-dependent optimal
control problems. At each time step the semi-implicit linear quadratic subproblem arising during the
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SQP iteration is solved by using the corresponding first order necessary condition of the optimality
condition, and some block iterative methods, such as the block Jacobi method and the successive
over-relaxation method. Because of the limitations of these linear solvers, these methods can not be
used for large scale parallel computation. Since the methodis semi-implicit, it does not allow the
use of large time steps. In [19, 20], Gunzburger and Manservisi present a gradient method for the
time-dependent optimal control problem associated with the tracking of the velocity of a Navier-
Stokes flow in a bounded two-dimensional domain through the adjustment of a distributed control.
The authors focused on the mathematical analysis and showedthat there are some time step size
restrictions in the gradient method.

In this paper, we propose and investigate a class of parallelfull space SQP LNKSz algorithms for
the time-dependent boundary control of two-dimensional incompressible Navier-Stokes equations.
The approach is a one-shot fully implicit method and is unconditionally stable with large time
steps. In LNKSz, a Lagrangian functional is first formed using the objective function and all
the constraints, and then differentiated to obtain a coupled KKT system of nonlinear equations
consisting of all the state variables, the controls variables and the multipliers. These nonlinear
systems are large, sparse and extremely difficult to solve. Inexact Newton method with line
search is then applied to solve these large nonlinear systems. At each Newton iteration the
linearized KKT system is solved with a one-level restrictedadditive Schwarz preconditioned Krylov
subspace method. The critically important component of LNKSz is the restricted additive Schwarz
preconditioner which was first introduced for scalar elliptic problems and is extended to the coupled
systems in this paper. We show numerically that the restricted additive Schwarz preconditioner
performs quite well for the fully coupled problem and on parallel machines with more than 1000
processors.

The rest of the paper is organized as follows. In Section2, we present the unsteady flow control
problem and a fully implicit discretization scheme. Section 3 describes the LNKSz algorithm.
Section4 is devoted to numerical experiments and the parallel performance of LNKSz. Final
conclusions are given in Section5.

2. FULLY IMPLICIT DISCRETIZATION OF THE UNSTEADY BOUNDARY CONTROL
PROBLEM

Let Ω ⊂ R
2 be a bounded domain in the plane representing a region where ahomogeneous

incompressible Newtonian fluid is passing through during the time interval[t0, tf ]. Let Γ = ∂Ω be
the boundary ofΩ, ν the outward unit vector onΓ, t ∈ [t0, tf ] the time variable,(x, y) ∈ Ω indicate
a position in the domain,v(t, x, y) = (v1(t, x, y), v2(t, x, y)) the fluid velocity,ω the fluid vorticity
andf = (f1, f2) a given external force. Assume an initial velocity fieldv0 = (v0,1, v0,2) is given at
t = 0, the corresponding initial vorticity field is then defined as

ω0 = curl v0 = −
∂v0,1

∂y
+

∂v0,2

∂x
.

The velocity-vorticity formulation of the incompressibleNavier-Stokes equations consists of the
following equations [32]







































































−∆v1 −
∂ω

∂y
= 0 in [t0, tf ] × Ω,

−∆v2 +
∂ω

∂x
= 0 in [t0, tf ] × Ω,

∂ω

∂t
−

1

Re
∆ω + v1

∂ω

∂x
+ v2

∂ω

∂y
− curl f = 0 in [t0, tf ] × Ω,

v − vD = 0 on [t0, tf ] × Γ,

ω +
∂v1

∂y
−

∂v2

∂x
= 0 on [t0, tf ] × Γ,

v(t0, x, y) − v0 = 0 in Ω,

ω(t0, x, y) +
∂v1

∂y
(t0, x, y) −

∂v2

∂x
(t0, x, y) = 0 in Ω,

(5)
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whereRe is the Reynolds number, curlf = −∂f1/∂y + ∂f2/∂x. The velocity profilevD given on
Γ is assumed to satisfy the principle of mass conservation; i.e.,

∫

Γ

vD(t) · ν dΓ = 0 for all t ∈ [t0, tf ].

We assumef = 0 for simplicity. In optimal control problems, the objectiveof interest is represented
as a cost functional to be minimized. We first describe the optimal control problem, followed by the
suboptimal control case. We refer to [15, 18, 19, 20, 23, 24] and references therein for details about
the function spaces and the existence of an optimal solutionof the optimal control problem.

Let us denote the state space byS = {(v1, v2, ω)}, the state variable bys = (s1, s2, s3) =
(v1, v2, ω), the control space byU = {(u1, u2)}, and the control variable isu = (u1, u2). The
control is applied over the time interval[t0, tf ], either to track a desired flow field or to reduce
the size of wake spread in the flow domain. It is also desirablethat the least possible amount of
control is applied. Given an initial velocity profile, the optimization problem consists on finding
(v1, v2, ω, u1, u2) such that the minimization

min
(s,u)∈S×U

F(s,u) =

∫ tf

t0

θ(s) dt +
γ

2

∫ tf

t0

∫

Γu

‖u‖2
2 dΓ dt. (6)

is achieved subject to the constraints






























































































−∆v1 −
∂ω

∂y
= 0 in [t0, tf ] × Ω,

−∆v2 +
∂ω

∂x
= 0 in [t0, tf ] × Ω,

∂ω

∂t
−

1

Re
∆ω + v1

∂ω

∂x
+ v2

∂ω

∂y
= 0 in [t0, tf ] × Ω,

v − u = 0 on [t0, tf ] × Γu,
v − vD = 0 on [t0, tf ] × Γc,

ω +
∂v1

∂y
−

∂v2

∂x
= 0 on [t0, tf ] × Γ,

v(t0, x, y) − v0 = 0 in Ω,

ω(t0, x, y) +
∂v1

∂y
(t0, x, y) −

∂v2

∂x
(t0, x, y) = 0 in Ω,

∫

Γu

v · ν dΓ = 0 in [t0, tf ],

(7)

whereθ(s) is a given application specific function of the state variables,Γ = Γu ∪ Γc is the boundary
whereΓu is part of the boundary on which the control is applied andΓc is part of the boundary
on which the control is not applied, andγ > 0 is a constant parameter used to adjust the relative
importance of the control norms in achieving the minimization, thus indirectly constraining their
magnitudes. We remark that the last constraint in (7) is necessary for the consistency with the
physical law of mass conservation. In other words, the control u = (u1, u2) can not be any control,
it must belong to the space of functions satisfying the principle the mass conservation. Similarly to
[30, 31], in this paper we study tangential boundary control problems. In other words, the control
u is allowed to be just tangential to , i.e.,u · ν = 0 on Γu, and the velocityv is assumed to satisfy
∫

Γc
v · ν dΓ = 0. The optimal control problems we consider can be described in a general manner:

seek the boundary controlu and state pair(v, ω) such that the cost functionalF is minimized subject
to the constraints where the flow field satisfies the Navier-Stokes equations (7) over[t0, tf ].

For the description of a suboptimal control problem, we willutilize a second order backward
differentiation formula for time discretization [22]. As described in the Introduction, the sequence of
subproblems’ objectives should be the same as the objectiveaimed with the optimal control problem
(6)-(7). For k = 0, 1, . . . , kmax− 1, let us denote the state space byS

(k) = {(v
(k)
1 , v

(k)
2 , ω(k))}, the

state variables bys(k) = (v
(k)
1 , v

(k)
2 , ω(k)), the control space byU(k) = {u(k)} and the control

variables byu(k) = (u
(k)
1 , u

(k)
2 ). Let ∆t(k) ≡ t(k+1) − t(k). Following [33] (not with respect to
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time discretization, though), a suboptimal control problem for the optimization problem is to find
(v

(k+1)
1 , v

(k+1)
2 , ω(k+1), u

(k+1)
1 , u

(k+1)
2 ), for k = 0, 1, . . . , kmax− 1, such that

min
(s(k+1),u(k+1))∈S(k+1)×U(k+1)

F (k+1)(s(k+1),u(k+1)) = ∆t(k)θ(s(k+1))

+
γ

2
∆t(k)

∫

Γu

‖u(k+1)‖2
2dΓ (8)

is achieved subject to the constraints






























































































−∆v
(k+1)
1 −

∂ω(k+1)

∂y
= 0 in Ω,

−∆v
(k+1)
2 +

∂ω(k+1)

∂x
= 0 in Ω,

1

∆t(k)

[

3

2
ω(k+1) − 2ω(k) +

1

2
ω(k−1)

]

−
1

Re
∆ω(k+1) + v

(k+1)
1

∂ω(k+1)

∂x
+ v

(k+1)
2

∂ω(k+1)

∂y
= 0 in Ω,

v
(k+1) − u

(k+1) = 0 onΓu,

v
(k+1) − v

(k+1)
D = 0 onΓc,

ω(k+1) +
∂v

(k+1)
1

∂y
−

∂v
(k+1)
2

∂x
= 0 onΓ,

∫

Γu

v
(k+1) · ν dΓ = 0,

(9)

where, just fork = 0, the third constraint in (9) is replaced by the following equation

1

∆t(k)
(ω(k+1) − ω(k)) −

1

Re
∆ω(k+1) + v

(k+1)
1

∂ω(k+1)

∂x
+ v

(k+1)
2

∂ω(k+1)

∂y
= 0.

It should be noted that tangential control problems automatically satisfy the last constraint in (9),
making the number of constraint equations equal to the number of state variables. For simplicity,
we rewrite the suboptimal control problem (8)-(9) as

{

min
(s(k+1),u(k+1))∈S(k+1)×U(k+1)

F (k+1)(s(k+1),u(k+1))

s.t. C
(k+1)(s(k+1),u(k+1)) = 0 ∈ Y

(k+1)
(10)

for the time interval[t(k), t(k+1)], k = 0, 1, . . . , kmax− 1. We discretize the objective function and
the constrains with a standard second-order five-point finite difference method on a uniform mesh
in space. In order to simplify notations, we continue to uses

(k+1),u(k+1),F (k+1) and C
(k+1)

to denote variables and values at nodes (ordered in some fashion). The Lagrangian functional
L(k+1) : s(k+1) × u

(k+1) × Y
(k+1)∗ → R associated with the discrete version of (10) is defined

by
L(k+1)(s(k+1),u(k+1), λ(k+1)) = F (k+1) +

〈

λ(k+1),C(k+1)
〉

(11)

for k = 0, 1, . . . , kmax− 1. Hereλ(k+1) is a vector of Lagrange multipliers, and〈·, ·〉 represents the
standard scalar product.

Let ns, nu, nλ denote the number of unknowns with respect to the state variables, the
control variables and the Lagrange multipliers, respectively, N ≡ ns + nu + nλ and X(k+1) ≡
(x(k+1), λ(k+1)) ≡ (s(k+1),u(k+1), λ(k+1)) ∈ R

N . Then, for k = 0, 1, . . . , kmax− 1, the KKT
system obtained by differentiating (11) becomes

G(k+1)(X(k+1)) =

(

∇L
(k+1)
x

∇L
(k+1)
λ

)

=

(

∇F (k+1) + ∇C
(k+1)λ(k+1)

C
(k+1)

)

=

(∇F
(k+1)
s + ∇sC

(k+1)λ(k+1)

∇F
(k+1)
u + ∇uC

(k+1)λ(k+1)

C
(k+1)

)

= 0,

(12)
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whereG(k+1) : R
N → R

N , ∇L
(k+1)
x denotes the gradient ofL(k+1) w.r.t the state and the control

variables,∇L
(k+1)
λ ,∇F

(k+1)
s and ∇F

(k+1)
u are defined in a similar way,∇C

(k+1) denotes the
Jacobian ofC(k+1), and∇sC

(k+1),∇uC
(k+1) denote the Jacobian ofC(k+1) w.r.t the state and

the control variables, respectively. Moreover, letϕ(u) be the discretization of
∫

Γu
‖u‖2

2 dΓ, then
(12) can be rewritten as

G(k+1)(X(k+1)) =







∆t(k)∇sθ
(k+1) + ∇sC

(k+1)λ(k+1)

γ

2
∆t(k)∇uϕ(k+1)+∇uC

(k+1)λ(k+1)

C
(k+1)






= 0,

where∇uϕ(k+1) denotes the gradient ofϕ(u(k+1)) w.r.t the control variableu(k+1). The Jacobian
matrix of G(k+1) is the transpose of the Hessian of the LagrangianL(k+1), and has the following
structure







∆t(k)∇ssθ
(k+1) + ∇ssC

(k+1)λ(k+1) 0 ∇sC
(k+1)

0
γ

2
∆t(k)∇uuϕ(k+1) ∇uC

(k+1)

∇sC
(k+1) ∇uC

(k+1) 0






,

which is symmetric indefinite under sufficient smoothness assumptions and can be computed
by a finite difference approximation. The zero block on the diagonal is problematic for our
preconditioning algorithm and to make our approach work, weactually switch the first and the third
rows without switching the first and the third columns in the above matrix [30]. This switch destroys
the symmetry but allows good convergence of a preconditioned iterative method for non-symmetric
systems. The preconditioning algorithm will be further discussed later in the paper.

In optimal control problems one tries to obtain the controlu for the entire time interval[t0, tf ]
and thus needs to solve a system ofN × kmax nonlinear equations. Suboptimal approaches, on the
other hand, solve a sequence ofkmax problems similar to the original problem, but each problem
seeks a control only for the time interval[t(k), t(k+1)], k = 0, 1, . . . , kmax− 1. Each problem (10)
then becomes similar in size to a steady-state optimizationproblem, although the time derivative
term changes the KKT Jacobian pattern at each Newton iteration. In [33], Ravindran introduced a
SQP method and time domain decomposition for time-dependent optimal control problems, using
a first order time discretization based on a backward differentiation formula. The approach is semi-
implicit and does not allow large time steps. As discussed earlier in this section, our method is a
fully implicit second-order backward differentiation formula and we will show numerically that it
allows large time steps. The main issue with fully implicit methods is that a large nonlinear system
has to be solved at each time step. Next we discuss a class of full space one-level LNKSz methods
for solving the discretized optimization problems.

3. FULL SPACE LAGRANGE-NEWTON-KRYLOV-SCHWARZ METHODS

There are two major families of Newton techniques for the solution of discretized KKT systems.
The family of reduced space methods [16, 17, 25, 26, 36], which usually involves three basic steps:
(1) the reformulation of the global problem into a much smaller set of equations (the so-called
reduced system) defined only on the interface; (2) solve the reduced problem iteratively; (3) solve
the global problem using the solution of the interface problem. Within each step, there is parallelism
that can be explored, but the three steps have to be carried out sequentially. The family of full space
methods [6, 7, 30, 31], in which all equations are solved simultaneously. As computers become
more powerful in processing speed and memory capacity, fullspace methods seem to become
more attractive due to their increased degree of parallelism and better scalability. There are many
challenges, though, some of them related to the KKT Jacobian: it is usually ill-conditioned and
indefinite, a property known to slow down Krylov solvers, andits order is more than twice bigger
than the size of the forward problem. Therefore, a key element of a successful parallel full space
approach is the preconditioner for the linearized KKT system: it has to be able to substantially
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reduce the condition number of the KKT Jacobian and, at the same time, provide the scalability for
massively parallel computing.

LNKSz was introduced in [30, 31] for steady state problems. When the number of processors is
small (such as 64) the one-level method works fine. A rather complicated two-level method, with a
problem dependent pollution removing coarse solver, is necessary when the number of processors is
slightly larger (such as 128). In this paper, we target unsteady problems, as it turns out the time step
parameter∆t plays a very important role in the performance of LNKSz. Evenwith relatively large
time step sizes, the one-level method scales quite well witha large number of processors. More will
be discussed in the Numerical Experiments section.

In the following we describe the one-level LNKSz. For eachk = 0, 1, . . . , kmax− 1, from the
Lagrangian functional (11) we obtain a KKT system (12), which can be solved with an inexact
Newton method [13, 14]. Let the initial guessX(k+1)

0 be the solution of the previous time step, and
X

(k+1)
n the current approximate solution, we find the next solutionX

(k+1)
n+1 as

X
(k+1)
n+1 = X(k+1)

n + α(k+1)
n S(k+1)

n , n = 0, 1, ... (13)

whereα
(k+1)
n is the steplength andS(k+1)

n is the search direction obtained by solving the Jacobian
system approximately using a Krylov subspace method such that

‖G(k+1)(X
(k+1)
n ) + J

(k+1)
n (M

(k+1)
n )−1(M

(k+1)
n S

(k+1)
n )‖ ≤

max{ηr‖G
(k+1)(X

(k+1)
n )‖, ηa},

where(M
(k+1)
n )−1 is an overlapping Schwarz preconditioner [35, 37] and the KKT matrixJ (k+1)

n =

J
(k+1)
n (X

(k+1)
n ) is computed by a finite difference approximation. The accuracy of the Jacobian

solver is determined by the two linear tolerancesηr, ηa ≥ 0. The steplengthα(k+1)
n is determined by

a backtracking linesearch procedure (see, e.g., section 6.3 in [12]). The stopping condition for the
nonlinear iteration (13) is

||G(k+1)(X
(k+1)
n+1 )|| ≤ max{εr||G

(k+1)(X
(k+1)
0 )||, εa},

whereεr, εa ≥ 0 are nonlinear tolerances.
In order to define the one-level Schwarz preconditioner, we need to obtain an overlapping partition

of Ω ∈ R
2. We first divideΩ into non-overlapping subdomainsΩi, i = 1, . . . , Ns, and then expand

eachΩi to Ωδ
i , i.e., Ωi ⊂ Ωδ

i ⊂ Ω. The overlapδ > 0 is defined as the distance between∂Ωδ
i and

∂Ωi, in the interior ofΩ. For boundary subdomains we simply cut off the part outsideΩ. More
precisely, we assumeH

′

x × H
′

y is the size ofΩδ
i , Hx × Hy is the size ofΩi, andhx (or hy) is the

mesh size in thex-direction (ory-direction). Then the overlapδ is defined as(H
′

x − Hx)/(2hx) (or
(H

′

y − Hy)/(2hy)).
Recall thatN is the total number of unknowns associated withΩ. Let Ni be the number of

unknowns associated withΩδ
i . Let J be theN × N sparse matrix of the Jacobian system

JS = −G. (14)

We define theNi × N matrix Rδ
i as follows: its element(Rδ

i )l1,l2 is either1 if the integer indices
1 ≤ l1 ≤ Ni and1 ≤ l2 ≤ N are related to unknowns defined at the same grid point and thisgrid
point belongs toΩδ

i or 0 otherwise. The multiplication ofRδ
i with a N × 1 vector generates a

shorterNi × 1 vector by discarding all components corresponding to grid points outsideΩδ
i . The

Ni × N matrixR0
i is similarly defined, with the difference that its application to aN × 1 vector also

zeroes all those components corresponding to grid points onΩδ
i \ Ωi. We denote byJi theNi × Ni

subdomain matrix given by
Ji = Rδ

i J (Rδ
i )

T .

We remark that the matrixJi contains all variables associated with the subdomainΩδ
i including all

three field variables, the state variables, the control variables and the Lagrange multipliers. There is
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no further splitting of the fields within the preconditioner. This is quite different from most of the
approaches in the literature [16] in which different sub-preconditioners are employed for different
field variables.

We assumeJi is nonsingular and denote byB−1
i either the inverse of or a preconditioner forJi.

The one-level restricted additive Schwarz (RAS) preconditioner forJ is defined as [10]

M−1
RAS =

Ns
∑

i=1

(R0
i )

T B−1
i Rδ

i . (15)

Various inexact additive Schwarz preconditioners can be constructed by replacing the matrices
Bi with convenient and inexpensive to compute matrices, such as those obtained with incomplete
factorizations. In this paper we employ theLU factorization. Note that in (15) R0

i is a restriction to
the non-overlapping subdomain. The performance of the entire algorithm depends critically on the
condition numberκ(JM−1

RAS), which depends on the mesh size, the number of subdomainsNs, the
overlap sizeδ, the time step size∆t, the Reynolds number, amongst others. Some theoretical work
for the additive Schwarz method for linear unsteady problems can be found in [8].

It should be noted that the convergence behavior of Newton’smethod for unsteady problems
is quite different than the behavior for steady state problems. For unsteady problems, the initial
guesses are usually much closer to the desired solution thanthe steady case, and the Jacobian solvers
require lower accuracy. That is, when compared to one time step of unsteady problems, steady state
problems require more linear iterations as well as more Newton iterations to converge.

4. NUMERICAL EXPERIMENTS

We implement the algorithms described in the previous sections using the Portable, Extensible
Toolkit for Scientific computing (PETSc) library of ArgonneNational Laboratory [2]. The
numerical tests are carried out on an IBM BlueGene/L using upto 1024 computing nodes. Each node
has512MB of memory. In our numerical experiments we deal with two-dimensional rectangular
domainsΩ = (0, L1) × (0, L2), L2 ≤ L1. All notations related to the geometry of the computation
domain is depicted in Figure1. We consider two problems: a cavity flow problem and a backward-
facing step flow problem.

s

s

s s

ss

C1 C2

C3C4

(0,0) (L1,0)

(L1,L2)(0,L2)

-

6

x

y

Γ1

Γ2

Γ3

Γ4 Ω

Figure 1. Rectangular domainΩ = (0, L1) × (0, L2) involved in our numerical experiments.

4.1. Details of numerical approaches

For the time discretization we apply the second order backward differentiation formula as described
in Section2. For the spatial discretization we use a five-point second order finite difference method
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on a uniform nonstaggered mesh. Similarly to [30, 31], all derivative terms in the constraints are
discretized with a second order scheme, including theω boundary condition.

In order to form the algebraic system of nonlinear discretized equations, we need to order the
unknowns and the corresponding functions. The unknowns areordered mesh point by mesh point,
in contrast to physical variable by physical variable as usually required by other methods. The mesh
points are ordered subdomain by subdomain, for the purpose of parallel processing. The ordering
of the subdomains is not important since we use additive methods whose performance has nothing
to do with the subdomain ordering. In order to avoid pivotingduring the sparse LU method (used in
our experiments), at each mesh point, the corresponding functions are ordered as [30]

(∇λ1L,∇λ2L,∇λ3L,∇u1L,∇u2L,∇v1L,∇v2L,∇ωL) (16)

while the corresponding unknowns are ordered as

(v1, v2, ω, u1, u2, λ1, λ2, λ3). (17)

Because the orderings for the unknowns and for the function components are different, the Jacobian
matrix is nonsymmetric and so we use a nonsymmetric iterative method GMRES [34].

The Jacobian matrix is constructed approximately using a finite difference method [11]. To
solve the Jacobian systems we use restarted GMRES with an absolute (relative) tolerance equal to
10−10 (10−6), a restart parameter equal to 90 and a maximum number of iterations equal to 5,000.
Regarding the one-level additive Schwarz preconditioner,the number of subdomains is equal to the
number of processors, and the extended subdomain problems have zero Dirichlet interior boundary
conditions and are solved with a sparse direct method. All subdomainsΩi andΩδ

i are rectangular
and made up of integral number of mesh cells. Line search is performed with cubic backtracking.
For Newton iterations, the maximum allowed number is 300 andthe absolute (relative) stopping
tolerance is10−10 (10−6). Simulation problems are solved with the one-level Newton-Krylov-
Schwarz algorithm (NKS) [9]. We do not use Reynolds continuation in any of the algorithms.

Throughout this section, “Np” stands for the number of processors which is the same as the
number of subdomains, “IN” is the average number of inexact Newton iterations per time step,
“RAS” is the average number of RAS preconditioned GMRES iterations per Newton iteration, and
“Run” is the total computing time in seconds.

4.2. A cavity flow problem

In this subsection we consider a tangential boundary flow control problem whose objective is to
make the flow velocity fieldv on Ω × [t0, tf ] to get as close as possible to a target velocity profile
vss given onΩ × [t0, tf ] as well [33]. The tangential controlu is applied everywhere onΓ × [t0, tf ]
in order to drivev. More specifically, we want to find(v1, v2, ω, u1, u2) such that the minimization

min
(s,u)∈S×U

F(s,u) =
β

2

∫ tf

t0

∫

Ω

[v(t, x, y) − vss]
2

dΩ dt +
γ

2

∫ tf

t0

∫

Γ

‖u‖2
2 dΓ dt (18)

is achieved subject to the constraints (7) with a square domainΩ = (0, 1) × (0, 1), t0 = 0, tf = 0.5,
initial conditionv0 = 0 and target velocity

vss(t, x, y) =

(

sin(2πy + πt)(cos(2πx) − 1)
2sin(2πx)sin(πy + πt)sin(πy)

)

.

As discussed in the Introduction, we numerically solve the corresponding sub-optimal control
problems rather than the full optimal one. In [33] the parameters in the cost functional (18) were
taken asβ = 103 andγ = 1, and only very coarse meshes were considered. Here we fixβ = 103

and test LNKSz with different values of objective function parameterγ, Reynolds numberRe,
constanttime step∆t, characteristic mesh sizeh and RAS overlap sizeδ. As will be shown by our
experiments, the problem indeed becomes much harder to solve as the mesh gets larger, i.e., ash
decreases.
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First, we investigate the influence ofγ on the efficiency of the sub-optimal control. For different
values ofγ and fixedRe = 20, 32 × 32 grid, tf = 0.5, ∆t = 0.1 (i.e., there are 5 time steps), and
δ = 6, Figure2 shows the error

‖v − vss‖h =

(∫

Ωh

(v − vss)
2 dΩh

)1/2

,

while Figure3 shows the two-norm of the boundary control velocity. One cansee in Figure2 that,
for lower values ofγ, the error‖v − vss‖h is smaller. This happens because smaller values of
γ diminishes the contribution of the control norm to the objective function, thus allowing bigger
controls to be applied, as shown by Figure3. In other words, the control is more efficient asγ
decreases. Similar results were obtained in references [20, 33].

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Figure 2. Cavity flow control problem (18)-(7): h-norm of the difference between the controlled flow and
the target flow for different values of the parameterγ and fixedRe = 20, 32 × 32 grid, tf = 0.5, ∆t = 0.1

(i.e, there are 5 time steps) and overlapδ = 6. The caseγ = 1 is also reported in Figures4-5.

Figures4 and5 present the velocity field of the controlled and target flows at several different
times, forγ = 1 and all the other parameters having the values reported in the last paragraph. As
shown in the figures, the controlled flow is qualitative close(presence of two vortices) to the optimal
flow pattern att = 0.3, and such closeness improves att = 0.4 and t = 0.5. We remark that the
evolution of the controlled and target flow fields in this paper are similar to that of [33].

From now on, in this subsection, we investigate how different parameters impact the performance
of LNKSz. TableI presents some results with different stopping conditions for the Jacobian solver.
It is clear that the absolute convergence toleranceηa and the relative convergence toleranceηr have
to be small enough to keep LNKSz converge. In the following tests we chooseηa = 10−10 and
ηr = 10−6.

TableII shows the effect ofγ on the performance of LNKSz, for fixedRe = 200, 512 × 512 grid,
tf = 0.5, ∆t = 0.05 (i.e., there are 10 time steps), andδ = 8. The number of Newton iterations in
the first time step is 23, 16, 3 and 2 for the respective values of γ = 5, 10, 50, 100. We can see that,
asγ increases, the average numbers of Newton and GMRES iterations become smaller and the total
computing time decreases. In other words, the control problem is more difficult to solve for smaller
γ values. On the other hand, a largerγ also decreases the accuracy between the control flowv and
the target flowvss, which is more important for the control problem. So, in manyof the following
tests we choose a relatively smallγ = 5.
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Figure 3. Cavity flow control problem (18)-(7): two-norm of the tangential boundary control velocity for
different values of the objective function parameterγ and fixedRe = 20, 32 × 32 grid, tf = 0.5, ∆t = 0.1

(i.e, there are 5 time steps) and overlapδ = 6.

Table I. Cavity flow control problem (18)-(7): effect of different stopping conditions of the linear iteration
on the performance of LNKSz, for fixedRe = 200, 512 × 512 grid, tf = 0.5, ∆t = 0.05, and overlapδ = 6.
“Np” is the number of processors, “IN” is the average number of inexact Newton iterations per time step,
“RAS” is the (rounded) average number of RAS preconditionedGMRES iterations per Newton iteration,
and “Run” is the (rounded) total computing time in seconds.ηa is the absolute convergence tolerance and

ηr is the relative convergence tolerance of the linear iteration.“ ∗ ” means divergence of GMRES.

Grid size Np ηa ηr IN RAS Run
256 10−10 10−8 5.4 207 1419
256 10−10 10−6 5.4 155 1179

512 × 512 256 10−10 10−4 5.5 119 1049
256 10−6 10−4 ∗
256 10−4 10−2 ∗

Table II. Cavity flow control problem (18)-(7): effect of the parameterγ on the performance of LNKSz, for
fixedRe = 200, 512 × 512 grid, tf = 0.5, ∆t = 0.05, and overlapδ = 8. “Np” is the number of processors,
“IN” is the average number of inexact Newton iterations per time step, “RAS” is the (rounded) average
number of RAS preconditioned GMRES iterations per Newton iteration, and “Run” is the (rounded) total

computing time in seconds.

γ 5 10 50 100
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 5.4 93 5076 4.3 78 3839 2.1 72 1828 2.0 71 1747
128 5.4 118 2749 4.3 108 2108 2.1 87 936 2.0 85 904
256 5.4 133 1353 4.3 123 1035 2.1 106 470 2.0 105 446
512 5.4 201 991 4.3 178 731 2.1 142 313 2.0 138 293
1024 5.4 209 582 4.3 187 432 2.1 149 182 2.0 142 170

Table III shows the effect ofδ on the performance of LNKSz, for fixedγ = 5, Re = 200,
512 × 512 grid, tf = 0.5 and ∆t = 0.05 (i.e., there are 10 time steps). From the numbers of
Newton and GMRES iterations, we see that in general the algorithm converges better as the overlap
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increases. However, a larger overlap also increases the inter-processor communication and the
overall computing time. The moderate overlapsδ = 4 and6 provide a good compromise among
computing time, Newton iterations and GMRES iterations. The algorithm performs quite well for up
at least 1024 processors. We have chosenδ = 6 for all subsequent tests reported in this subsection.

Table III. Cavity flow control problem (18)-(7): effect of overlap sizeδ on the performance of LNKSz, for
fixed Re = 200, 512 × 512 grid, andtf = 0.5, ∆t = 0.05. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds.

δ 2 4 6 8
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 5.4 206 4641 5.4 135 4427 5.4 110 4505 5.4 93 5076
128 5.4 271 2621 5.4 192 2519 5.4 134 2508 5.4 118 2749
256 5.4 294 1132 5.4 213 1140 5.4 155 1179 5.4 133 1353
512 5.4 443 792 5.4 284 746 5.4 223 829 5.4 201 991
1024 5.4 470 374 5.4 332 423 5.4 242 477 5.4 209 582

TableIV shows the effect of∆t on the performance of fully implicit LNKSz, for fixedγ = 5,
Re = 200, 512 × 512 grid, tf = 0.5, andδ = 6. Every tested time step was kept constant throughout
the algorithm run. LNKSz converges for all time steps and is unconditionally stable. We also see
that the time step impacts the convergence rate of LNKSz: as∆t decreases, the average number of
Newton iterations and GMRES iterations become smaller, while the total computing time increases.
This behavior is somehow expected since smaller values of∆t cause the velocity field of the
previous time step to become a better initial guess for the Newton method at a current time step.
Once the time step becomes too small, however, such initial guess contribution to the convergence
of Newton iterates “stalls” and the “intrinsic” nonlinearity of the problem is revealed. The algorithm
allows large time steps if short computing time is the target.

Table IV. Cavity flow control problem (18)-(7): effect of the time steps on the performance of LNKSz, for
fixed γ = 5, Re = 200, 512 × 512 grid, tf = 0.5, andδ = 6. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds.

∆t 0.1 0.05 0.025 0.0125
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 8.6 138 3909 5.4 110 4505 4.4 102 6995 4.0 106 12970
128 8.6 165 2215 5.4 134 2508 4.4 126 3924 4.0 128 7233
256 8.6 214 1142 5.4 155 1179 4.4 141 1798 4.0 142 3302
512 8.6 266 743 5.4 223 829 4.4 202 1249 4.0 203 2291
1024 8.6 306 451 5.4 242 477 4.4 215 702 4.0 217 1291

Table V summarizes the effect of the mesh size on the performance of LNKSz, for fixed
γ = 5, Re = 200, tf = 0.5, ∆t = 0.05 (i.e., there are 10 time steps), andδ = 6. When the mesh
is 1024 × 1024 andNp = 64, 128, 256, the test is not carried out because of the lack of memory on
the particular supercomputers used. On the nonlinear level, it is clear that the number of Newton
iterations per time step is independent of the number of processors, while it increases as the mesh is
refined. For the Jacobian solver, however, the number of GMRES iterations grows asNp increases.
This is expected with any one-level methods. The total computing time decreases at a reasonably
good rate when we increaseNp from 64 to 1024, and the rate improves for larger meshes.

In order to study the impact of the Reynolds number on the performance of LNKSz, we increase
it to Re = 400 and keep all other values as before. Results are summarized in TableVI . Comparing
it to Table V, we can see that the average number of Newton iterations became slightly larger,
while the average number of GMRES iterations and the total computing time became smaller. On
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Table V. Cavity flow control problem (18)-(7): effect of the mesh size on the performance of LNKSz, for
fixed γ = 5, Re = 200, tf = 0.5, ∆t = 0.05, and δ = 6. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds. The biggest control problem has1024 × 1024 × 8 = 8, 388, 608 degrees of freedom.

Mesh 128 × 128 256 × 256 512 × 512 1024 × 1024
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 3.6 40 112 4.5 63 641 5.4 110 4505 ∗ ∗ ∗
128 3.6 59 80 4.5 87 395 5.4 134 2508 ∗ ∗ ∗
256 3.6 62 50 4.5 98 212 5.4 155 1179 ∗ ∗ ∗
512 3.6 67 39 4.5 162 185 5.4 223 829 9.5 479 9791
1024 3.6 69 29 4.5 182 127 5.4 242 477 9.5 522 4985

the whole, LNKSz for the cavity flow control problem is not sensitive toRe in the tested range of
Reynolds numbers.

Table VI. Cavity flow control problem (18)-(7): effect of the mesh size on the performance of LNKSz,
for fixed γ = 5, Re = 400, tf = 0.5, ∆t = 0.05, andδ = 6. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds. The biggest control problem has1024 × 1024 × 8 = 8, 388, 608 degrees of freedom.

Mesh 128 × 128 256 × 256 512 × 512 1024 × 1024
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 3.6 39 111 4.5 60 629 5.6 104 4543 ∗ ∗ ∗
128 3.6 56 79 4.5 72 365 5.6 129 2554 ∗ ∗ ∗
256 3.6 58 48 4.5 90 203 5.6 145 1176 ∗ ∗ ∗
512 3.6 61 37 4.5 134 164 5.6 201 797 9.8 399 8827
1024 3.6 63 28 4.5 144 108 5.6 215 453 9.8 465 4687

Next we changeγ = 1 and investigate again the effect of mesh size andRe on the performance
of LNKSz. TablesVII andVIII summarizes results forRe = 200 and400 respectively, for fixed
tf = 0.5, ∆t = 0.05 (i.e., there are 10 time steps), andδ = 6. Similarly to TablesV andVI, tests
are not carried out with64, 128 and256 processors and1024× 1024 mesh because of the lack of
memory. By decreasingγ from 5 to 1, the average number of Newton iterations becomes larger, and
the increase of the number of GMRES iterations is moderate. LNKSz converges and the computing
time scalability is good for large meshes.

Table VII. Cavity flow control problem (18)-(7): effect of the mesh size on the performance of LNKSz,
for fixed γ = 1, Re = 200, tf = 0.5, ∆t = 0.05, andδ = 6. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds. The biggest control problem has1024 × 1024 × 8 = 8, 388, 608 degrees of freedom.

Mesh 128 × 128 256 × 256 512 × 512 1024 × 1024
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 4.5 45 144 6.5 69 957 21.3 140 19960 ∗ ∗ ∗
128 4.5 66 106 6.5 100 610 21.3 157 10654 ∗ ∗ ∗
256 4.5 69 66 6.5 115 335 21.3 220 5765 ∗ ∗ ∗
512 4.5 75 51 6.5 193 302 21.3 275 3793 64.4 644 83622
1024 4.5 80 39 6.5 233 219 21.3 338 2417 64.4 625 39249

Finally, Figure6 shows the speedup and the total computing time for 64, 128, 256, 512 and 1024
processors, and fixedγ = 1, Re = 200, 512 × 512 grid, tf = 0.5, ∆t = 0.05 (i.e., there are 10 time
steps), andδ = 6. WhenNp increases from 64 to 1024, the total computing time decreases at a
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Table VIII. Cavity flow control problem (18)-(7): effect of the mesh size on the performance of LNKSz,
for fixed γ = 1, Re = 400, tf = 0.5, ∆t = 0.05, andδ = 6. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds. The biggest control problem has1024 × 1024 × 8 = 8, 388, 608 degrees of freedom.

Mesh 128 × 128 256 × 256 512 × 512 1024 × 1024
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 4.8 45 154 6.9 66 1003 22.4 137 20455 ∗ ∗ ∗
128 4.8 64 111 6.9 93 626 22.4 155 11187 ∗ ∗ ∗
256 4.8 67 70 6.9 113 353 22.4 197 5650 ∗ ∗ ∗
512 4.8 68 52 6.9 160 282 22.4 243 3633 66.8 529 76517
1024 4.8 72 39 6.9 193 202 22.4 302 2322 66.8 548 36509

reasonably good rate, which indicates that LNKSz has a good speedup at least for this range of
numbers of processors.

4.3. A backward-facing step flow problem

In this subsection, we present computational results for a backward-facing step channel flow defined
on a computational domainΩ = (0, 6) × (0, 1); i.e., L1 = 6 and L2 = 1. Let Γ1,a = {(x, y) ∈
Γ1 : 0 < x ≤ L2}, Γ1,b = Γ1 \ Γ1,a, Γ4,a = {(x, y) ∈ Γ4 : L2

2 ≤ y < L2} andΓ4,b = Γ4 \ Γ4,a. We
definevin = 8(L2 − y)(y − L2

2 )cos(t) andvout = y(L2 − y)cos(t), then the backward-facing step
simulation problem consists of the following equations



























































































































−∆v1 −
∂ω

∂y
= 0 in [t0, tf ] × Ω,

−∆v2 +
∂ω

∂x
= 0 in [t0, tf ] × Ω,

∂ω

∂t
−

1

Re
∆ω + v1

∂ω

∂x
+ v2

∂ω

∂y
= 0 in [t0, tf ] × Ω,

v1 = 0 on [t0, tf ] × Γs,
v1 = vin on [t0, tf ] × Γ4,a,
v1 = vout on [t0, tf ] × Γ2,
∂v1

∂ν
= 0 on [t0, tf ] × Γ1,a,

v2 = 0 on [t0, tf ] × (Γ \ Γ4,b),
∂v2

∂ν
= 0 on [t0, tf ] × Γ4,b,

ω +
∂v1

∂y
−

∂v2

∂x
= 0 on [t0, tf ] × Γ,

v(t0, x, y) − v0 = 0 in Ω,

ω(t0, x, y) +
∂v1

∂y
(t0, x, y) −

∂v2

∂x
(t0, x, y) = 0 in Ω,

(19)

where Γs = {C1} ∪ Γ1,b ∪ Γ3 ∪ Γ4,b, ν is the unit outward normal vector alongΓ. And the
backward-facing step control problem consists of finding(v1, v2, ω, u1, u2) such that the
minimization

min
(s,u)∈S×U

F(s,u) =
β

2

∫ tf

t0

∫

Ω

ω2 dΩ +
γ

2

∫ tf

t0

∫

Γu

‖u‖2
2 dΓ dt (20)
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is achieved subject to the constraints














































































































−∆v1 −
∂ω

∂y
= 0 in [t0, tf ] × Ω,

−∆v2 +
∂ω

∂x
= 0 in [t0, tf ] × Ω,

∂ω

∂t
−

1

Re
∆ω + v1

∂ω

∂x
+ v2

∂ω

∂y
= 0 in [t0, tf ] × Ω,

v − u = 0 on [t0, tf ] × Γu,
u · ν = 0 on [t0, tf ] × Γu,
v1 = 0 on [t0, tf ] × (Γ1,b ∪ Γ3),
v1 = vin on [t0, tf ] × Γ4,a,
v1 = vout on [t0, tf ] × Γ2,
v2 = 0 on [t0, tf ] × (Γ \ Γu),

ω +
∂v1

∂y
−

∂v2

∂x
= 0 on [t0, tf ] × Γ,

v(t0, x, y) − v0 = 0 in Ω,

ω(t0, x, y) +
∂v1

∂y
(t0, x, y) −

∂v2

∂x
(t0, x, y) = 0 in Ω,

(21)

whereΓu = Γ4,b ∪ {C1} ∪ Γ1,a.
In all cases of this subsection, for the backward-facing step simulation problem and the backward-

facing step control problem we use the following initial velocity:

v0,1(x, y) = y(L2 − y) +















L2

16
y if 0 6 y 6

L2

2
,

L2

16
(L2 − y) if

L2

2
6 y 6 L2,

and
v0,2(x, y) = 0.

The flow domain isΩ = (0, 6) × (0, 1), i.e.,L1 = 6 andL2 = 1. The time domain is[0, 1]. Similarly
to [33], the parameters in the cost functional (20) areβ = 10 andγ = 1, respectively. NKS is used to
solve the corresponding simulation problem and LNKSz is used to solve the corresponding control
problem.

First, we present results for the backward-facing step simulation. TableIX shows the effect of∆t
on the performance of fully implicit one-level NKS, for fixedRe = 200, 768 × 128 grid, tf = 1,
andδ = 8. The number of time steps are 5, 10, 20 and 40, respectively. On the nonlinear level,
the number of Newton iterations decreases as the time step size is reduced (as expected), and is
independent of the number of processors. The total computing time increases as the time step
size is reduced. For the linear solver, the number of GMRES iterations increases as the number
of processors increases (again, as expected from the convergence theory of one-level domain
decomposition methods [35, 37]).

Next, we solve the backward-facing step flow simulation problem on several different meshes
and fixedtf = 1, ∆t = 0.1 (i.e., there are 10 time steps) andδ = 8. The results are summarized
in TablesX andXI for Re = 200 andRe = 400, respectively. We see that the number of nonlinear
iterations per time step does not change much with respect tothe mesh size and is independent of the
number of processors. For the linear solver, the number of linear iterations grows with the number of
processors, as expected from the convergence theory of one-level domain decomposition methods.
As the Reynolds number increases, both the number of Newton iterations and the total computing
time increase, although GMRES iterations decrease. In other words, NKS for the backward-facing
step flow simulation problem is a little sensitive to the Reynolds number.

In the following, we switch to the control problem. TableXII shows the effect ofδ on the
performance of LNKSz, for fixedRe = 200, 768 × 128 grid, tf = 1, and∆t = 0.1 (i.e., there are 10
time steps). From the number of Newton and GMRES iterations,we see that in general the algorithm
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Table IX. Backward-facing step simulation problem (19): effect of the time steps on the performance of
NKS, with fixedRe = 200, 768 × 128 grid, tf = 1, andδ = 8. “Np” is the number of processors, “IN” is
the average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of
RAS preconditioned GMRES iterations per Newton iteration,and “Run” is the (rounded) total computing

time in seconds.

∆t 0.2 0.1 0.05 0.025
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 3.0 47 47 2.3 48 72 2.1 49 132 2.0 45 246
128 3.0 56 28 2.3 59 43 2.1 58 78 2.0 54 146
256 3.0 59 15 2.3 62 24 2.1 63 44 2.0 60 83
512 3.0 86 13 2.3 85 20 2.1 84 36 2.0 83 69
1024 3.0 91 9 2.3 92 13 2.1 90 24 2.0 87 45

Table X. Backward-facing step simulation problem (19): effect of the mesh size on the performance of
NKS, for fixed Re = 200, tf = 1, ∆t = 0.1, and δ = 8. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds. The biggest control problem has1536 × 256 × 3 = 1, 179, 648 degrees of freedom.

Mesh 384 × 64 768 × 128 1536 × 256
Np IN RAS Run IN RAS Run IN RAS Run
64 2.4 33 18 2.3 48 72 2.3 67 379
128 2.4 42 13 2.3 59 43 2.3 89 207
256 2.4 45 8 2.3 62 24 2.3 97 104
512 2.4 49 7 2.3 85 20 2.3 157 82
1024 2.4 51 6 2.3 92 13 2.3 168 48

Table XI. Backward-facing step simulation problem (19): effect of the mesh size on the performance of
NKS, for fixed Re = 400, tf = 1, ∆t = 0.1, and δ = 8. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time in

seconds. The biggest control problem has1536 × 256 × 3 = 1, 179, 648 degrees of freedom.

Mesh 384 × 64 768 × 128 1536 × 256
Np IN RAS Run IN RAS Run IN RAS Run
64 2.7 30 20 2.5 44 76 2.4 65 391
128 2.7 39 14 2.5 57 46 2.4 88 215
256 2.7 42 9 2.5 60 26 2.4 93 106
512 2.7 47 8 2.5 81 21 2.4 146 81
1024 2.7 46 6 2.5 88 14 2.4 161 49

converges better as the overlap increases. On the other hand, a larger overlap also increases the inter-
processor communication and the overall computing time. A moderate overlap,δ = 8, provides the
best results in terms of combined robustness (converges well for all values ofNp) and run time.
When the overlap is too small (δ = 4, 6), the tests withNp = 512, 1024 are not convergent.

TableXIII shows the effect of∆t on the performance of LNKSz, for fixedRe = 200, 768 × 128
grid, tf = 1, andδ = 8. On the nonlinear level, the number of Newton iterations decreases as∆t is
reduced, and is independent of the number of processors. However, the computing time increases
when∆t is reduced. For the linear solver, the number of GMRES iterations increases as the number
of processors increases.

Next, we solve the backward-facing step flow control problemon several meshes as well. Table
XIV summarizes the effect of the mesh size on the performance of LNKSz, for fixedRe = 200,
tf = 1, ∆t = 0.1 (i.e., there are 10 time steps), andδ = 8. When the mesh is1536 × 256 and
Np = 64, the test is not carried out because of the lack of memory. Thetests with the mesh
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Table XII. Backward-facing step control problem (20)-(21): effect of overlap sizeδ on the performance of
LNKSz, for fixedRe = 200, 768 × 128 grid, tf = 1, and∆t = 0.1. “Np” is the number of processors, “IN”
is the average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number
of RAS preconditioned GMRES iterations per Newton iteration, and “Run” is the (rounded) total computing

time in seconds.

δ 4 6 8 10
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 3.1 155 877 3.1 116 879 3.1 80 924 3.1 67 1054
128 3.1 264 576 3.1 181 593 3.1 131 638 3.1 126 874
256 3.1 342 353 3.1 232 362 3.1 147 354 3.1 123 440
512 ∗ ∗ ∗ ∗ ∗ ∗ 3.1 269 392 3.1 166 374
1024 ∗ ∗ ∗ ∗ ∗ ∗ 3.1 293 244 3.1 262 318

Table XIII. Backward-facing step control problem (20)-(21): effect of the time steps on the performance of
LNKSz, for fixedRe = 200, 768 × 128 grid, tf = 1, andδ = 8. “Np” is the number of processors, “IN” is
the average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of
RAS preconditioned GMRES iterations per Newton iteration,and “Run” is the (rounded) total computing

time in seconds.

∆t 0.2 0.1 0.05 0.025
Np IN RAS Run IN RAS Run IN RAS Run IN RAS Run
64 3.0 93 470 3.1 80 924 2.2 83 1323 2.1 81 2533
128 3.0 146 327 3.1 131 638 2.2 150 974 2.1 146 1850
256 3.0 157 178 3.1 147 354 2.2 163 536 2.1 156 1007
512 3.0 283 197 3.1 269 392 2.2 314 622 2.1 279 1104
1024 3.0 306 122 3.1 293 244 2.2 344 393 2.1 333 740

1536× 256 andNp = 512, 1024 are not convergent forδ = 8. So we chooseδ = 10 in these two
cases.

Table XIV. Backward-facing step control problem (20)-(21): effect of the mesh size on the performance of
LNKSz, for fixedRe = 200, tf = 1, ∆t = 0.1, andδ = 8. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time
in seconds. The biggest control problem has1536 × 256 × 8 = 3, 145, 728 degrees of freedom. Cases “(*)”
denote that the tests with the mesh1536 × 256 andNp = 512, 1024 are not convergent forδ = 8. Soδ = 10

in these two cases.

Mesh 384 × 64 768 × 128 1536 × 256
Np IN RAS Run IN RAS Run IN RAS Run
64 3.2 53 226 3.1 80 924 ∗ ∗ ∗
128 3.2 65 188 3.1 131 638 3.0 275 3532
256 3.2 70 105 3.1 147 354 3.0 347 1997
512 3.2 84 92 3.1 269 392 (∗)3.0 809 3035
1024 3.2 95 66 3.1 293 244 (∗)3.0 819 1664

We then increase the Reynolds number toRe = 400 and show the results in TableXV. The time
step size is∆t = 0.1 and the number of time steps is 10. Overlap isδ = 8. When the mesh is
1536× 256 andNp = 64, the test is not carried out because the lack of memory. The tests with the
mesh1536× 256 andNp = 512, 1024 are not convergent. So we increase the overlap toδ = 10 in
the case ofNp = 512, and toδ = 12 in the case ofNp = 1024. With a larger Reynolds number,
the number of Newton iterations and the total computing timeare both larger, but the number
of GMRES iterations is smaller. Compared with the cavity flowcontrol problem, LNKSz for the
backward-facing step flow control problem is more sensitiveto the Reynolds number.
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Table XV. Backward-facing step control problem (20)-(21): effect of the mesh size on the performance of
LNKSz, for fixedRe = 400, tf = 1, ∆t = 0.1, andδ = 8. “Np” is the number of processors, “IN” is the
average number of inexact Newton iterations per time step, “RAS” is the (rounded) average number of RAS
preconditioned GMRES iterations per Newton iteration, and“Run” is the (rounded) total computing time
in seconds. The biggest control problem has1536 × 256 × 8 = 3, 145, 728 degrees of freedom. Cases “(*)”
denote that the tests with the mesh1536 × 256 andNp = 512, 1024 are not convergent. Soδ = 10 in the

case ofNp = 512, andδ = 12 in the case ofNp = 1024.

Mesh 384 × 64 768 × 128 1536 × 256
Np IN RAS Run IN RAS Run IN RAS Run
64 3.4 56 243 3.3 87 1018 ∗ ∗ ∗
128 3.4 67 201 3.3 126 664 3.1 279 3686
256 3.4 72 113 3.3 155 390 3.1 354 2095
512 3.4 90 101 3.3 280 428 (∗)3.1 782 3045
1024 3.4 95 70 3.3 300 266 (∗)3.1 699 1925

In Figure7 we show the two norm of the vorticity history for the backward-facing step flow
control problem and the simulation problem, for fixedRe = 200, 64 × 32 grid, tf = 1, ∆t = 0.2
(i.e., there are 5 time steps), andδ = 6. The norm of the vorticity with the control is always less than
that without the control.

The experiments in this subsection show that control problems are computationally more
demanding, in terms of the total number of nonlinear iterations, the average number of the linear
iterations per Newton iteration and the total computing time, than the corresponding simulations
problems. From TablesXII , XIV andXV, we understand that, in order to make LNKSz converge,
it is necessary to use relatively large overlaps. Interestingly, we see that the number of Newton
iterations decreases as the mesh is refined.

5. CONCLUSIONS

Boundary control of unsteady incompressible flows is a challenging and very expensive
computational problem. In this paper, we introduced and numerically studied a family of domain
decomposition based, fully parallel, fully implicit, one-shot approach for the sub-optimal control
of unsteady Navier-Stokes flows in two-dimensional physical space. The main workhorse of this
approach is a Lagrange-Newton-Krylov-Schwarz method which is proven to be quite robust in the
sense that it converges rapidly for a wide range of flow and mesh parameters. The fully implicit
time discretization is unconditionally stable and allows large time steps. The scalability of the
method was demonstrated by running the software successfully on computers with more than 1000
processors and for problems with millions of degrees of freedom. Our future research includes the
extension of the methods to two or more levels so that even higher resolution problems can be solved
efficiently on computers with a larger number of processors.
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3. Balogh A, Liu W-J, Krstić M. Stabililty enhancement by boundary control in 2-D channel flow.IEEE Transactions
on Automatic Control2001;46:1696–1711.

4. Bewley TR. Flow control: new challenges for a new renaissance.Progress in Aerospace Sciences2001;37:21–58.
5. Bewley TR, Temam R, Ziane M. A general framework for robustcontrol in fluid mechanics.Physica D2000;

138:360–392.
6. Biros G, Ghattas O. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, part I: The

Krylov-Schur solver.SIAM Journal on Scientific Computing2005;27:687–713.
7. Biros G, Ghattas O. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, part II: The

Lagrange-Newton solver and its application to optimal control of steady viscous flows.SIAM Journal on Scientific
Computing2005;27:714–739.

8. Cai X-C. Additive Schwarz algorithms for parabolic convection-diffusion equations.Numerische Mathematik1990;
60:41–62.

9. Cai X-C, Gropp W.D, Keyes D.E, Melvin R.G, Young DP. Parallel Newton-Krylov-Schwarz algorithms for the
transonic full potential equation.SIAM Journal on Scientific Computing1998;19:246–265.

10. Cai X-C, Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems.SIAM Journal on
Scientific Computing1999;21:92–797.
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Figure 4. Cavity flow control problem (18)-(7): the velocity field of the controlled (left column) and target
(right column) flows at several different times, for fixedγ = 1, Re = 20, 32 × 32 grid, tf = 0.5, ∆t = 0.1
(i.e, there are 5 time steps) and overlapδ = 6. The first, second and third rows correspond tot = 0.1, t = 0.2
and t = 0.3, respectively. A quantitative analysis of the difference between the two flows is reported in

Figure2.
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Figure 5. Cavity flow control problem (18)-(7): the velocity field of the controlled (left column) and target
(right column) flows at several different times, for fixedγ = 1, Re = 20, 32 × 32 grid, tf = 0.5, ∆t = 0.1
(i.e, there are 5 time steps) and overlapδ = 6. The first and second rows correspond tot = 0.4 andt = 0.5,

respectively. A quantitative analysis of the difference between the two flows is reported in Figure2.
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Figure 6. Cavity flow control problem (18)-(7): the speedup and the total computing time for 64, 128, 256,
512 and 1024 processors, and fixedγ = 1, Re = 200, 512 × 512 grid, tf = 0.5, ∆t = 0.05 (i.e., there are 10

time steps), andδ = 6.
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Figure 7. Two-norm of vorticity history for the backward-facing step control problem (20)-(21) and the
simulation problem (19), for fixed Re = 200, 64 × 32 grid, tf = 1, ∆t = 0.2 (i.e., there are 5 time steps),

andδ = 6.
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