
Finite Difference Methods for
1D Elliptic PDEs

1

MATH 3014

Monday & Thursday 14:30-15:45

Instructor: Dr. Luo Li

https://www.fst.um.edu.mo/personal/liluo/math3014/

Department of Mathematics

Faculty of Science and Technology

https://www.fst.um.edu.mo/personal/math3014/

A Simple Example of a Finite Difference Method

1. Generate a grid.

Discretize the domain [0, 1] by a uniform grid with spacing ℎ =
1

𝑛
.

The parameter 𝑛 can be chosen according to accuracy requirement.

2. Represent the derivative by some finite difference formula

2

𝑥1 𝑥𝑛−1𝑥𝑛−2𝑥𝑗 = 𝑗ℎ0 1

In the finite difference method, we replace the differential equation at each grid point 𝑥𝑖 by

where the error is called the local truncation error.

We define the finite difference (FD) solution (an approximation) for 𝑢 𝑥 at all 𝑥𝑖
as the solution 𝑈𝑖

The set of 𝑥𝑖−1, 𝑥𝑖, and 𝑥𝑖+1 is called the finite difference stencil.
3

3. Solve the system of algebraic equations. The system of algebraic equations

can be written in the matrix and vector form

The tridiagonal system of linear equations above can be solved efficiently in

𝑂 𝐶𝑛 operations by the Crout or Cholesky algorithm.

4

5. Error analysis. Algorithmic consistency and stability implies convergence

of the finite difference method.

4. Implement and debug the computer code. Run the program to get the output.

Analyze and visualize the results (tables, plots, etc.).

x(1) x(2) x(n-1)

U(1) U(2) U(n-1) ua=0 ub=-1

a=0 b=1

Example

5

𝑢’’ 𝑥 = 𝑓 𝑥 , 0 < 𝑥 < 1,
𝑓 𝑥 = −𝜋2 cos 𝜋𝑥 , 𝑢 0 = 1, 𝑢 1 = −1.

function [x,U] = two_point(a,b,ua,ub,f,n)

h = (b-a)/n; h1=h*h;
A = sparse(n-1,n-1);
F = zeros(n-1,1);

for i=1:n-2,
A(i,i) = -2/h1;
A(i+1,i) = 1/h1;
A(i,i+1)= 1/h1;

end
A(n-1,n-1) = -2/h1;

for i=1:n-1,
x(i) = a+i*h;
F(i) = feval(f,x(i));

end

F(1) = F(1) - ua/h1;
F(n-1) = F(n-1) - ub/h1;

U = A\F;

return

A Matlab Code for the Model Problem

Form the matrix

Form the

RHS

6

7

• How do we know whether a finite difference method works or not?

If it works, how accurate is it? Specifically, what is the error of the computed

solution?

• How do we deal with boundary conditions other than Dirichlet conditions

(involving only function values) as above, notably Neumann conditions

(involving derivatives) or mixed boundary conditions?

• Do we need different finite difference methods for different problems? If so,

are the procedures similar?

• How do we know that we are using the most efficient method? What are the

criteria, in order to implement finite difference methods efficiently?

Questions About This Example:

8

Forward, Backward, and Central Finite Difference Formulas for 𝑢′ 𝑥 at a point ҧ𝑥 ∶

Fundamentals of Finite Difference Methods

The Taylor expansion is the most important tool in the analysis of FDM:

where

9

“Close to but usually not exactly”

ℎ: step size

The slope of the secant line that connects the two points and

where 0 < 𝜉 < ℎ

𝑝-th order accurate:

The error estimate:

10

Central finite difference

Backward finite difference Forward finite difference

11

From the Taylor expansion

Second-order

accurate

Relation with the forward, backward FD

Central Finite Difference Formula

12

How do we know that our code is bug-free and our analysis is correct?

Verification of the Method

• For a first-order method, the error should decrease by a

factor of two

• For a second-order method the error should be decrease by

a factor of four

------ Grid Refinement Analysis

ℎ

ℎ/2

ℎ/4

13

Forward (FW): (sin(1 + ℎ) − sin(1))/ℎ − cos(1);
Backward (BW): (sin(1) − sin(1 − ℎ))/ℎ − cos(1);
Central (CT): sin(1 + ℎ) − sin(1 − ℎ))/(2ℎ) − cos(1);

Example Consider the function 𝑢 𝑥 = sin 𝑥 at 𝑥 = 1, where the exact

derivative is of course cos 1.

clear; close all
h = 0.1;
for i=1:5,

a(i,1) = h;
a(i,2) = (sin(1+h)-sin(1))/h - cos(1);
a(i,3) = (sin(1) - sin(1-h))/h - cos(1);
a(i,4) = (sin(1+h)-sin(1-h))/(2*h)- cos(1);
h = h/2;

end

a = abs(a);
h1 = a(:,1);
e1 = a(:,2); e2 = a(:,3); e3 = a(:,4);
loglog(h1,e1,h1,e2,h1,e3)
axis('equal'); axis('square’)
axis([1e-6 1e1 1e-6 1e1])
gtext('Slope of FW and BW = 1')
gtext('Slope of CD =2’)

14

15

• As ℎ gets smaller, round-off errors become evident and eventually

dominant.

• The best ℎ can be estimated by balancing the formula error and the

round-off errors.

16

Deriving FD Formulas Using the Method of
Undetermined Coefficients

Goal: To approximate a first derivative to second-order accuracy

Tool: Taylor expansion

“one-sided” finite difference

17

Another one-sided finite difference formula?

18

2.3.1 FD Formulas for Second-order Derivatives

19

Finite difference operators can be used to derive approximations for

partial derivatives

20

Here we use the 𝑥 subscript on 𝛿𝑥 to denote the central finite

difference operator in the 𝑥 direction, and so on.

Consistency, Stability, Convergence

Global Error : the approximate solution

If , the finite difference method has 𝑝-th order accurate.

Definition 2.1. A finite difference method is called convergent if

A smallest upper bound for the error vector:

• The maximum or infinity norm

• The 1-norm

• The 2-norm

analogous to

analogous to

: the exact solution

21

Local truncation errors refer to the differences between the original

differential equation and its finite difference approximations at grid points.

Local truncation error of the finite difference scheme at 𝑥𝑖 is

Two steps to obtain local truncation error:

1. Move the right-hand side to the left-hand side

2. Substituting the true solution 𝑢 𝑥𝑖 for 𝑈𝑖.
22

The original differential

equation:

Finite difference

approximation:

Definition 2.2. A finite difference scheme is called consistent if

How to check whether or not a finite difference scheme is consistent?

------ Perform Taylor expansion for all the terms in the local truncation error at a

master grid point 𝑥𝑖.

To obtain , we let

The difference scheme is consistent and the discretization is second-

order accurate.

However, consistency can not guarantee the convergence of a scheme, and we

need to satisfy another condition, namely, its stability.
23

takes the boundary condition into account.

Definition of Stability

Local truncation error

Error of the solution

If is nonsingular, then

24

Theorem 2.4. A consistent and stable finite difference method is convergent.

“convergent = consistent + stable”

Recall that we already have , which means

We want , then we need

Definition of a “stable” scheme

25

26

Local truncation error: 𝑇𝑖 = LHS-RHS with 𝑈𝑖 substituted by 𝑢 𝑥𝑖 at 𝑥𝑖

Order of the discretization of

the scheme:
𝑇𝑖 = 𝑂 ℎ𝑝 for all 𝑥𝑖, or 𝑇(𝑥) = 𝑂 ℎ𝑝

Order of the finite difference

method:
||𝐄|| < 𝐶ℎ𝑝

Consistence: when ℎ → 0,

error of the scheme → 0
lim
ℎ→0

𝑇𝑖 = 0 lim
ℎ→0

𝑇(𝑥) = 0 lim
ℎ→0

||𝐓|| = 0or or

Stability: ||𝐀−1|| < 𝐶

Convergence: when ℎ → 0,

error of the solution → 0
lim
ℎ→0

||𝐄|| = 0

for

Usually it is easy to prove consistency but more difficult to prove stability.

To prove the convergence of the central finite difference scheme

We examine the condition

where

27

28

Theorem 2.6. The central finite difference method for 𝑢′′(𝑥) = 𝑓 (𝑥) and a

Dirichlet boundary condition is convergent.

29

We can proof this theorem by the following three steps:

1. If 𝜆𝑗 is the 𝑗-th eigenvalue of 𝐴, show that the eigenvalue of 𝐴−1 is
1

𝜆𝑗
.

𝐴𝑥 = 𝜆𝑗𝑥 ⇒ 𝐴−1𝐴𝑥 = 𝜆𝑗 𝐴
−1𝑥 ⇒

𝑥

𝜆𝑗
= 𝐴−1𝑥 ⇒ the eigenvalue of 𝐴−1 is

1

𝜆𝑗
.

2. If A is symmetric, show that 𝐴−1 is also symmetric.

Since 𝐴−1 𝑇 = 𝐴𝑇 −1and 𝐴𝑇 = 𝐴, so 𝐴−1 𝑇 = 𝐴−1.

3. Show that ||𝐴−1||2 =
1

min 𝜆𝑗
.

Since ||𝐴||2= 𝜆𝑚𝑎𝑥(𝐴
𝑇𝐴) and 𝐴𝑇 = 𝐴, we have ||𝐴||2= max 𝜆𝑗 ,

so ||𝐴−1||2= max
1

|𝜆𝑗|
=

1

min 𝜆𝑗
.

1D Sturm–Liouville problem

Step 1: Generate a grid.

Steps to develop finite difference method

31

Step 2: Substitute derivatives with finite difference formulas at each grid point.

Using the central finite difference formula at a typical grid point 𝑥𝑖 with

half grid size

Applying the central finite difference scheme for the first-order derivative at

𝑥𝑖+1/2 and 𝑥𝑖−1/2

①

②

32

The consequent finite difference solution 𝑈𝑖 ≈ 𝑢 𝑥𝑖 is then defined as the

solution of the linear system of equations

33

• Symmetric

• Negative definite

• Weakly diagonally dominant

34

2.7 The Ghost Point Method for Boundary Conditions
Involving Derivatives

Neumann and mixed (Robin) boundary conditions

where the solution at 𝑥 = 𝑎 is unknown.

35

Interior grid points

An additional equation at 𝑥 = 𝑎 Known value,

no need of equation

36

Slightly different here! Not −
2

ℎ2
Unknown

Contribution from Dirichlet

boundary condition

Note: only First-order due to the boundary

condition at 𝑥 = 𝑎

37

The Ghost Point Method

A ghost grid point Interior grid points

Insert into

38

First-order Method

39

Send-order Method (Ghost Point Method)

40

The exact solution is

Comparison of the two finite difference methods

0 0.5

41

42

function [x,U] = two_point(a,b,ua,ub,f,n)

h = (b-a)/n; h1=h*h;
A = sparse(n-1,n-1);
F = zeros(n-1,1);

for i=1:n-2,
A(i,i) = -2/h1;
A(i+1,i) = 1/h1;
A(i,i+1)= 1/h1;

end
A(n-1,n-1) = -2/h1;

for i=1:n-1,
x(i) = a+i*h;
F(i) = feval(f,x(i));

end

F(1) = F(1) - ua/h1;
F(n-1) = F(n-1) - ub/h1;

U = A\F;

return

Form the matrix

Form the

RHS

Dirichlet on both ends

43

function [x,U] = ghost_at_b(a,b,ua,uxb,f,n)

h = (b-a)/n; h1=h*h;
A = sparse(n,n);
F = zeros(n,1);

for i=1:n-1,
A(i,i) = -2/h1;
A(i+1,i) = 1/h1;
A(i,i+1)= 1/h1;

end
A(n,n) = -2/h1;
A(n,n-1) = 2/h1;

for i=1:n,
x(i) = a+i*h;
F(i) = feval(f,x(i));

end

F(1) = F(1) - ua/h1;
F(n) = F(n) - 2*uxb/h;

U = A\F;

return

Form the matrix

Form the

RHS

Dirichlet and Neumann on different sides

44

2.8 An example of a Nonlinear BVP

Using the central finite difference scheme

Discretizing a nonlinear differential equation generally produces a nonlinear

algebraic system.

45

Given an initial guess , we proceed

Involving a two-point BVP at each iteration.

Unknown Known value: treated as a

coefficient

k=k+1

Simple substitution method

46

Newton’s method

A nonlinear system of equations is obtained if we discretize （2.46）

where

47

Given an initial guess , the Newton iteration is

where is the Jacobian matrix defined as

48

Initial guess: Mesh size: Tolerance:

49

• It is not always easy to find 𝐽(𝑈) and it can be computationally expensive.

• Newton’s method is quadratically convergent locally.

• Well-known software packages are available (MINPACK, PETSc (for parallel
computing))

Remarks on Newton method:

50

2.9 The Grid Refinement Analysis Technique

To validate and confirm the analysis (consistency, stability, order of convergence,
etc) numerically:

• Analyse the output to see whether they agree with the ODE or PDE

• Compare the numerical solutions with experiential data

• Perform a grid refinement analysis

51

When there is an exact solution:

Assume a method is 𝑝-th order accurate, such that ,

if we divide h by half to get , then

• For a first-order method (𝑝 = 1), the ratio → 2
• For a second-order method (𝑝 = 2), the ratio → 4
• If 1 < 𝑝 < 2, the method is called superlinear convergent

52

When there is no exact solution

To compare a numerical solution with one obtained from a finer mesh.

Suppose the numerical solution converges and satisfies

53

54

Not 2, but goes to 2

Not 4, but goes to 4

55

