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A Simple Example of a Finite Difference Method
u"(x)=f(x), 0<x<l, u(0)=us u(l)=up,

1. Generate a grid.

Discretize the domain [0, 1] by a uniform grid with spacing h = %

The parameter n can be chosen according to accuracy requirement.
® O O O=======- O-=-=====- O O
0 X1 xj =jh Xp_ Xn-1

2. Represent the derivative by some finite difference formula

(]ﬁf!(x) _ gxm_m ‘i’(x B ﬂ‘x) — (zi(x);)z + ‘?-5(): T ‘ﬂx)

u(x; —h) — 2u(x;) + u(x; + h)
H2

H” (Ij) —~



In the finite difference method, we replace the differential equation at each grid point x; by
u(x; — h) — 2u(x;) + u(x; + h)
j2
where the error Is called the

=f(x;) + error.

We define the finite difference (FD) solution (an approximation) for u(x) at all x;
as the solution U;

ug, — 207 + Us
h2 :.f(xl)

U_1-2U; 4+ U,
i—1 hz! _I_ i+1 =f(xf)

Up—» —2U,_1+u
n—2 hzﬂl bzf(xn_l)

The set of x;_4, x;, and x;,4 1s called the finite difference stencil.




3. Solve the system of algebraic equations. The system of algebraic equations
can be written in the matrix and vector form

i 7 1[0 [760)-ua/®
RO U f(x2)
5 — 5 B Us f(x3)
= _ (2.1)
e —% Up—2 S (xXn-2)
I Lo =21 [Un1]  [fGene1) — /R

The tridiagonal system of linear equations above can be solved efficiently in
0 (Cn) operations by the Crout or Cholesky algorithm.



4. Implement and debug the computer code. Run the program to get the output.
Analyze and visualize the results (tables, plots, etc.).

5. Error analysis. Algorithmic consistency and stability implies convergence
of the finite difference method.

Example
u’(x) = f(x), 0<x<l1,
f(x) = —m? cos(mx), u(0) =1, u(1l) = —1.

ua=0 Uu(1) U(2) U(n-1) ub=—1

a=0 x (1) x(2) x (n—1) b=1



A Matlab Code for the Model Problem

function [x,U] = two_point(a,b,ua,ub,f,n)

h = (b-a)/n; hl1=h*h; fori=1:n-1,
A = sparse(n-1,n-1); X(i) = a+i*h;
F =zeros(n-1,1); F(i) = feval(f,x(i));
end
fori=1:n-2,
A(i,i) =-2/h1; F(1) = F(1) - ua/h1;

A(i+1,i) = 1/h1;
A(i,i+1)= 1/h1;
end
A(n-1,n-1) =-2/h1;

F(n-1) = F(n-1) - ub/h1;

U = A\F;

return
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Figure 2.1. (a) A plot of the computed solution (little ‘o’s) with » =40, and
the exact solution (solid line). (b) The plot of the error.



Questions About This Example:

« How do we know whether a finite difference method works or not?

If it works, how IS 1t? Specifically, what iIs the error of the computed
solution?
« How do we deal with other than Dirichlet conditions

(involving only function values) as above, notably Neumann conditions
(involving derivatives) or mixed boundary conditions?

* Do we need different finite difference methods for problems? If so,
are the procedures similar?

« How do we know that we are using the most efficient method? What are the
criteria, in order to implement finite difference methods efficiently?



Fundamentals of Finite Difference Methods
The IS the most important tool in the analysis of FDM:
h? h*
u(x +h) = u(x) + hd (x) + " (x) + -+ 0 (€)
where x<&<x+h

, and Formulas for u’(x) at a point x :

u(x + h) — u(x)

Forward FD: Aju(x)= A ~u (X), (2.4)
Backward FD: A _u(x) = “) = :(i =" i), (2.5)

u(x+h) —u(x — h)

- ~ i (%). (2.6)

Central FD:  du(x) =



y iy X+ ) —u(x)
(x) = ,&—m h “Close to but usually not exactly”

{mu( %) = “("‘”}I — ”("“}aﬁ(x) h: step size

The slope of the secant line that connects the two points (X, u(X)) and (x + A, u(x + h))

To determine how closely A u(Xx) represents /'(x)

(X -+ B) = u(®) + 1 () + 5 ' (€) I, where 0 <§ <

u(x+h)—u() f—_lﬂ .
: 1 (%) = Su'()h=O(h)

The error estimate:  Er(h) =

p-th order accurate: E(h) = CH, p>0

10



Forward finite difference

u(x + h) — u(x)
h

A+H(J?) =

Backward finite difference

Central finite difference

u(x +h) —u(x — h)

ou(x) = T

—
——

11




Central Finite Difference Formula

From the Taylor expansion

! 1 I 1
u@+hy=m@+wuuy+?4@m%+6
u(x —h) = u(x) — h'(x) + %a&.:”(x)h!2 — éu

Second-order E,(h) = u(x +h) —u(x —h)

accurate 2h

Relation with the forward, backward FD

ou(x) = T

"
—U

u(x+h)—ulx—-h) 1

)+ —u® (x)nt + -

"X+ —u® (x)nt + - -

5 ( Ay + ﬂx_) u(Xx)
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Verification of the Method

How do we know that our code is bug-free and our analysis is correct?

o o h
. . . h/2
° ° ° ° ° h/4

 For a first-order method, the error should decrease by a
factor of

 For a second-order method the error should be decrease by

a factor of

O(h)

O(h?)



Example Consider the function u(x) = sinx at x = 1, where the exact

derivative Is of course cos 1.

Forward (FW): (sin(1 4+ h) —sin(1))/h — cos(1);
Backward (BW): (sin(1) — sin(1 —h))/h — cos(1);
Central (CT): sin(1+ h) —sin(1 — h))/(2h) — cos(1);
clear; close all a = abs(a);
h=0.1; hl=a(:1);
for i=1:5, el =a(:;,2); e2=2a(:,3); e3 =a(:,4);
a(i,1) = h; loglog(h1,el,h1,e2,h1,e3)

a(i,3) = (sin(1) - sin(1-h))/h - cos(1);
a(i,4) = (sin(1+h)-sin(1-h))/(2*h)- cos(1);

a(i,2) = (sin(1+h)-sin(1))/h - cos(1); i
end i

axis('equal’); axis('square’)
axis([1e-6 1el 1le-6 1el])
gtext('Slope of FW and BW =1')
gtext('Slope of CD =2’)




Error

Gnd refinement analysis and comparison
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% h forward backward central

% 1.0000e-01 -4.2939%e-02 4.1138e-02 -9.0005e-04
% 5.0000e-02 -2.1257e-02 2.0807e-02 -2.2510e-04
% 2.5000e-02 -1.0574e-02 1.0462e-02 -5.6280e-05
% 1.2500e-02 -5.2732e-03 5.2451e-03 -1.4070e-05
% 6.2500e-03 -2.6331e-03 2.6261e-03 -3.5176e-06

* As h gets smaller, round-off errors become evident and eventually
dominant.

« The best h can be estimated by balancing the formula error and the
round-off errors.



Deriving FD Formulas Using the Method of
Undetermined Coefficients

. To approximate a first derivative to second-order accuracy
u (X) ~u(X) + v2u(x — h) + y3u(x — 2h)
Tool: Taylor expansion

Y1u(x) + y2u(X — h) + y3u(x — 2h)

—nas) + 72 ((5) — ul(3) + ' 3) — e

17



rNnt+r+y=0

3 2 1
 —hyy —2hy3 =1 ™= M=o M=7 BT
“ W2yy + 4l = 0 L |
3 2 1
N S b 2
u(x)—zhu(x) hu(x h)+2hu(x 2h) + O(h”).

Another one-sided finite difference formula?

18



2.3.1 FD Formulas for Derivatives

We can apply finite difference operators twice to get finite difference formulas to
approximate the second-order derivative u”(x), e.g., the central finite difference
formula

A A u(x) = A, u(x) — :(J_C —h)

1 fu(x+h)—ulx) ulx)—ulx—nh
h ( h B h )
_ u(x —h) — 2u(x) + u(x + h)
h2
=[A_A_ Ju(x) (%) (2.18)

approximates " (x) to O(h?).

19



Finite difference operators can be used to derive approximations for

OxOyu(X,y)
u(x+hy+h)+ux—hy—h)—uXx+hy—h)—uXx—hy+h)
B 4h?

0*u

~ ey ) (2.20)

Here we use the x subscript on §, to denote the central finite
difference operator in the x direction, and so on.

20



Consistency, Stability, Convergence

Global Error U=[U;, U,,...,U,]T : the approximate solution
E=U-u

u=[u(xy),u(x2),...,u(x,)] : the exact solution

A smallest upper bound for the error vector:

« The maximum or infinity norm ||E||o, = max;{|e;|}
* The 1-norm  [|[E||; =", Ailei] analogousto [ |e(x)|dx
+The 2-norm  ||E|[a = (3, hilei|?)!/?  analogousto ([ |e(x)|* dx)!/?

Definition 2.1. A finite difference method is called if Ain}] |E|| =0
_:y.

If || E|| <CH, p>0, the finite difference method has p-th order accurate.



refer to the differences between the original
differential equation and its finite difference approximations at grid points.

The original differential " _ _ —
equation: — U (x) —f(x), 0<x<1, “(0)—“-::1: ”(1)—”51

Finite difference U1-2Ui+ U

approximation: 72 = f(xi)

Local truncation error of the finite difference scheme at x; Is

u(x; — h) — 2u(x;) + u(x; + h) ,
T; = ( ) 152) ( — f(xi), i=1,2,...,n—1.

to obtain local truncation error:
1. Move the right-hand side to the left-hand side
2. Substituting the true solution u(x; ) for U;.

22



Definition 2.2. A finite difference scheme is called consistent if ;lxm% T(x)= 0.
_}.

How to check whether or not a finite difference scheme is consistent?

------ Perform Taylor expansion for all the terms in the local truncation error at a
master grid point x;.

X — — LUl X (X 2
T(x) = “X =1 Zk(ZH ( +h)—u”'(x)=f—2u(4)(x)+---=0(h2)

To obtain |7(x)| < Ch? , we let C=maxp< <1 |$5u? (x)|

mm) The difference scheme is consistent and the discretization is second-
order accurate.

However, consistency can not guarantee the convergence of a scheme, and we
need to satisfy another condition, namely, its stability.

23



Definition of Stability

Error of the solution

Au=F+T, AU=F =  A(u-U) —E—\AZ.M)

E=U —u, F takes the boundary condition into account. Local truncation error

If A isnonsingular, then ||E|| = ||[4A7'T|| < ||l47Y|||T||.

Definition 2.3. A finite difference method for the BVPs is stable if 4 1s invertible
and

|A7Y|<C, forall 0<h<hy, (2.25)

where C and A are two constants that are independent of A.

24



Theorem 2.4. A consistent and stable finite difference method is convergent.

“convergent = consistent + stable”

IE[| =[|4~'T| < |4~ |||
Recall that we already have |T(x)| < Ch? , which means %1_1;% IT||=0

We want lim ||[E|| = 0 . then we need
h—0

|47 <C, forall 0<h<h

<

Definition of a “stable” scheme

25



Local truncation error: T; = LHS-RHS with U; substituted by u(x;) at x;

Order of the discretization of
_— p , — 1
the scheme: T; = 0(hP) forall x;, or T(x) = O(hP)

Order of the finite difference I|E|| < ChP

method:

Consistence: when h — 0, imT; =0 or limT(x)=0 or lim|[T||=0
error of the scheme — 0 h=0 h—0 =0

Stability: IJA7Y|| < C

Convergence: when h — 0,

) lim |[E|]| =0
error of the solution - 0 h—0

26




Usually it Is easy to prove consistency but more difficult to prove stability.

To prove the convergence of the central finite difference scheme

U, —2U; + U,
e =) for () = £ (x)

We examine the condition ||47!|< C, forall 0<h<hy

-_A L —
2
1 _2 1
2Ol
1l 2 1
where A = B

27



Lemma 2.5. Consider a symmetric tridiagonal matrix A € R"" whose main
diagonals and off-diagonals are two constants, d and o, respectively. Then the
eigenvalues of A are

X\ =d + 2acos (H’fl), ji=1,2,....n, (2.26)

and the corresponding eigenvectors are

. wkj
x’k—s1n(n+l), k=12, ... n. (2.27)

28



Theorem 2.6. The central finite difference method for u''(x) = f (x) and a
Dirichlet boundary condition is convergent.

Proof From the finite difference method, we know that the finite difference
coefficient matrix A4 € R—D*(®=1) and it is tridiagonal with|d= —2/k% and
[a: =1 /hz} so the eigenvalues of A4 are

2 2 j 2 _
Aj = 7 + 13 COS (—) =1 (COS(?T]h) — 1) :

n

Noting that the eigenvalues of 4! are 1/);and A~ is also symmetric, we have?

1
A7 =
| 2 min |\j|

C
n K2 \
~ 2(1— cos(rh))  4sin? TP

29



We can proof this theorem by the following three steps:

1. If A; Is the j-th eigenvalue of A, show that the eigenvalue of A7lis %
J

Ax = Aix = A Ax =4 A7 'x = % = A~ 1x = the eigenvalue of A7 is ai

J J

2. If A is symmetric, show that A1 is also symmetric.
Since (A DT = A" tand AT = 4,50 (4™ HT =471,

— 1
3. Show that ||A72|], = ——TwL

Since [|A]|2= v/ Amax(ATA) and AT = A, we have ||4||,= max|1],

1 1
s0 ||A7Y||,= max— = ——.
147711 [4j1  min|A;]




1D Sturm-Liouville problem

(p(x)u (x))" — q(x)u(x) =f(x), a<x<b, (2.32)
u(a)=uy, u(b)=uy, orother BC. (2.33)

Theorem 2.8. If p(x) € C'(a,b), q(x) € C(a,b), f(x) € C%a,b), q(x) >0 and
there is a positive constant such that p(x) > po > 0, then there is unique solution
u(x) € C*(a, b).

. Generate a grid.

b—a
xi=a+ih, h= s i=0,1,...,n

31



. Substitute derivatives with finite difference formulas at each grid point.

Define x,, 1 =x;+h/2, so x, .1 —x,_1=h.

1 1 _1
I+3 73 =3

@ Using the central finite difference formula at a typical grid point x; with

half grid size
Ch?

P;—}—lu(x )_P;'_
h

@ Applying the central finite difference scheme for the first-order derivative at
Xit1/2 and X;_q /7

1 u"(x!._ l)
s — qulx) =/ (%) +E}

Chz

w(Xip1)—u(xi) u(x;)—u(xi—1)

Piy1 h i—1 h
2 2 — qu(xi))=f(x;) + E} +[E2

32



The consequent finite difference solution U; = u(x;) is then defined as the
solution of the linear system of equations

Piv1 Uipl — (P;;# +P;_1) Ui+p,_1 Ui
2 2 - 2 2 —CI:‘U{:fz‘

fori=1,2,...,n—1.



AU=F

* Symmetric
* Negative definite
* \Weakly diagonally dominant

P1y2+P3 )2 P32
— 2 — q1 H2
) &YP) P3/2tDps/
h? R o

- P1/2Ua
Ui - fx) - ;1
U, f(x2)
Us f(x3)
, F=
Up—2 f(xn—2)
Pn—1/2Up
L Un-t S ) =
Pn—3/2  Pn—3/2FtPn—1/2
hli _ / h2 / - qﬂ—l _

34



2.7 The Ghost Point Method for Boundary Conditions
Involving Derivatives

Neumann and mixed (Robin) boundary conditions
W' (x)=f(x), a<x<b,

d(@)=a,  u(b)=up.

where the solution at x = a 1S unknown.

>0 =



Interior grid points

Uiy —2U;i + Uy
I hzi = (xi)

An additional equation at x = a Known value

no need of equation

Ul—Um_ﬂIf or -Up+ Uy
ho 2

=R

36



" : 2
Slightly different here! Not -

hz
1l 2 1
h? h? k2
1l _2
h? h?

h2

1l 2

h? h?
1
h2

Unknown

Note: only First-order due to the boundary

conditionat x = a

E; () u(x + h) — u(x)

h

—u (%)

1

1
= —U

2

_ - i i~ ]
Uy 7
Ui f(x1)
U, f(x2)
= (2.40)
Uy—2 f(xp—2)
| Un—1 S (xn-1) @
Contribution from Dirichlet
boundary condition
(§)h=O(h)

37



The Ghost Point Method

U_i Uy Ui Ui Un—1
o————-0 @ O Q-=-==-==-=- Q-------- O Q©
X_1 a Xi=a-+ih
J \ /
|
A ghost grid point Interior grid points
X_1=x0—h=a—h U_—-2U;+ U;
1 (J} 1 h? =1 (xi)
U, — U_ Insertinto U_i; —2Uy+ U Uy + Uy
1 1 —a ] 1 0 1 —f, _

38
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Comparison of the two finite difference methods

- (x) =f(x)

1 f(x)=—m?cosmx,

L u(0)=1,u/(0.5) = —|

The exact solution is u(x) = cos mx.

. «.
- o om om o oo o o o o om om o

o—— ——-o

0.5
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(a) Grid refinement analysis and comparison (b) x 10~ Error from the ghost point method

10"}
The first-ordér method: slope = 1
10721
: i
o) —
1073 |
The ghost ppint method: slope = 2
10741
1074 1073 1072 107! 10° 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
The step size A X

Figure 2.4. (a) A grid refinement analysis of the ghost point method and
the first-order method. The slopes of the curves are the order of convergence.
(b) The error plot of the computed solution from the ghost point method.
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Dirichlet on both ends

function [x,U] = two_point(a,b,u,f,n)

h = (b-a)/n; hl1=h*h;
A = sparse(n-1,n-1);
F = zeros(n-1,1);

for izl@

A(i,i) =-2/h1;
A(i+1,i) = 1/h1;
A(i,i+1)= 1/h1;
end
A(n-1,n-1) =-2/h1;

fori=1:n-1,

x(i) = a+i*h;

F(i) = feval(f,x(i));
end

F(1) = F(1) - ua/h1;
F(n-1) = F(n-1)

U = A\F;

return
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Dirichlet and Neumann on different sides

function [x,U] = ghost_at_b(a,b,ua,n)

h = (b-a)/n; h1=h*h;
A = sparse ;
F = zeros(n,1);

for izl@

A(i,i) =-2/h1;
A(i+1,i) = 1/h1;
A(i,i+1)= 1/h1;
end
n,n) =-2/h1;

\A(n,n-1) = 2/h1;

for i=1:n,

x(i) = a+i*h;

F(i) = feval(f,x(i));
end

F(1) = F(1) - ua/hd,;
F(n) = F(n) € 2*uxb/h;

U = A\F;

return

44




2.8 An example of a Nonlinear BVP

d*u
@@:f(x)’ O<x<m, (2.46)
u(0) =0, u(m)=0.

Using the central finite difference scheme

Uf— o ZU.! + Uf -
| h? = _@:f(x")’ i=1,2,...,n—1. (2.47)

Discretizing a nonlinear differential equation generally produces a nonlinear
algebraic system.



Simple substitution method

Given an initial guess U(% (x) , we proceed

Unknown Known value: treated as a
! coefficient
A+ _ @ 4
LS (U =1 (), k=0,1,.
k=k+1 |

Involving a two-point BVP at each iteration.

7

(2.48)
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Newton’s method

A nonlinear system of equations F(U) =0 is obtained if we discretize (2.46)

rFl(Ul:U2:'*':Um)

0
F(U, Uy, ..., Uy) =0,
& (2.49)

?

kFI’H(Ul'.r Uzﬂ'*".r UI’H)ZO?

where

Ui —2U: + U, |
E(Ul:UZE'“:UFH): : h2 = _Uig_f(xf):' 321121*“:}1_1'




Given an initial guess J(0) , the Newton iteration is

( J(U(k))Au(k) — _F(U(J‘f))1

8

Uuk+h =y 4 AUW |

k=01

-? 1 " B B

where J(U) is the Jacobian matrix defined as

" OF)

OF;

oU
oF,

U,

0F;

oU;

OF,,

oU,

OF,,

oU,

ou,

OF;
OUp
OF,
OUn

OF,,

ouU,,

2 — 2K 1
1 —2 - 2KhU, 1

1 —2—-2h*U,_,

48



Initial guess: U9 =x;(m — X;)  Meshsize: n=40 Tolerance: tol= 108

(a) (b)

Initial and consecutive approximations 20 * 10

-5
The error
T

25 ¢

E=1.854¢—4

L5}
10 ¢

0.5 F

0 0.5 1 1.5 2 2.5 3
X X

Figure 2.5. (a) Plot of the initial and consecutive approximations to the

nonlinear system of equations and (b) the error plot.
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* It is not always easy to find J(U) and it can be computationally expensive.

* Newton’s method 1s quadratically convergent locally.

* Well-known software packages are available (MINPACK, PETSc (for parallel
computing))



2.9 The Grid Refinement Analysis Technique

To validate and confirm the analysis (consistency, stability, order of convergence,
etc) numerically:

 Analyse the output to see whether they agree with the ODE or PDE
« Compare the numerical solutions with experiential data
* Perform a



Assume a method is p-th order accurate, such that || Ep|| ~ Ch?
if we divide h by half to get || E}, /5| , then

\Eall _CH
|Enpa|  C(h/2)P

tog (IE/IErjall) log (ratio)
log2 ~ log2

ratio = 27,

 For a first-order method (p = 1), the ratio - 2
« For asecond-order method (p = 2), the ratio — 4
« If1 < p < 2,the method is called superlinear convergent

(2.52)

(2.53)
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When there 1s no exact solution

Suppose the numerical solution converges and satisfies
up=u, + Ch’ + - -- (2.54)

where uy, 1s the numerical solution and u, 1s the true solution, and let u;,_be the
solution obtained from the finest mesh

up,, =ue + Chl +---. (2.55)

Thus we have
up —up, ~ C(h — h/?), (2.56)
upja — up, = C((h/2)" — hP). (2.57)

53



From the estimates above, we obtain the ratio

up — Up, hP — h,?P B 27 (1 — (he/h)P)
Upp — Up, - (h/2)F — h? 1 (2h. /R

(2.58)

from which we can estimate the order of accuracy p. For example, on doubling

the number of grid points successively we have

then the ratio in (2.58) 1s
u(h)
u(3)

a(h*) 20 (1—27%)
(h*) 1 —20(=k) ~

b=
—~ 1

(2.59)

(2.60)

o4



first-order method (p = 1)} this becomes

(" . )

In particular, for a

a(h) —a(h*) 2(1-27%)  2k—1
ﬁ(%)—ﬁ(h*)_ 1] — 21—k  9k—1_71°
If we take k=2, 3, ..., then the ratios above are
7 15 31
3, 3 ~2.333, - = 2.1429, 5= 2.067,

Similarly, for a[second—order method (p = Zj, (2.60) becomes
(h) —a(h*) 4(1—47K) 4k

=

— a(h*) 1 =41-k  gk-1_71°

=t &2
—

o=
—

and the ratios are

63 255 1023
=42 40476, S ~40118,

when k=2,3, ...

S,
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