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A Simple Example of a Finite Difference Method 

1. Generate a grid. 

Discretize the domain [0, 1] by a uniform grid with spacing ℎ =
1

𝑛
.

The parameter 𝑛 can be chosen according to accuracy requirement. 

2. Represent the derivative by some finite difference formula 
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𝑥1 𝑥𝑛−1𝑥𝑛−2𝑥𝑗 = 𝑗ℎ0 1



In the finite difference method, we replace the differential equation at each grid point 𝑥𝑖 by 

where the error is called the local truncation error. 

We define the finite difference (FD) solution (an approximation) for 𝑢 𝑥 at all 𝑥𝑖
as the solution 𝑈𝑖

The set of 𝑥𝑖−1, 𝑥𝑖, and 𝑥𝑖+1 is called the finite difference stencil. 
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3. Solve the system of algebraic equations. The system of algebraic equations 

can be written in the matrix and vector form 

The tridiagonal system of linear equations above can be solved efficiently in 

𝑂 𝐶𝑛 operations by the Crout or Cholesky algorithm.
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5. Error analysis. Algorithmic consistency and stability implies convergence 

of the finite difference method. 

4. Implement and debug the computer code. Run the program to get the output. 

Analyze and visualize the results (tables, plots, etc.). 

x(1) x(2) x(n-1) 

U(1) U(2) U(n-1) ua=0 ub=-1 

a=0 b=1

Example
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𝑢’’ 𝑥 = 𝑓 𝑥 , 0 < 𝑥 < 1,
𝑓 𝑥 = −𝜋2 cos 𝜋𝑥 , 𝑢 0 = 1, 𝑢 1 = −1.



function [x,U] = two_point(a,b,ua,ub,f,n) 

h = (b-a)/n; h1=h*h; 
A = sparse(n-1,n-1); 
F = zeros(n-1,1); 

for i=1:n-2, 
A(i,i) = -2/h1; 
A(i+1,i) = 1/h1; 
A(i,i+1)= 1/h1; 

end 
A(n-1,n-1) = -2/h1; 

for i=1:n-1, 
x(i) = a+i*h; 
F(i) = feval(f,x(i)); 

end 

F(1) = F(1) - ua/h1; 
F(n-1) = F(n-1) - ub/h1; 

U = A\F;

return 

A Matlab Code for the Model Problem 

Form the matrix

Form the 

RHS
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• How do we know whether a finite difference method works or not? 

If it works, how accurate is it? Specifically, what is the error of the computed 

solution? 

• How do we deal with boundary conditions other than Dirichlet conditions 

(involving only function values) as above, notably Neumann conditions 

(involving derivatives) or mixed boundary conditions? 

• Do we need different finite difference methods for different problems? If so,  

are the procedures similar? 

• How do we know that we are using the most efficient method? What are the 

criteria, in order to implement finite difference methods efficiently? 

Questions About This Example: 
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Forward, Backward, and Central Finite Difference Formulas for 𝑢′ 𝑥 at a point ҧ𝑥 ∶

Fundamentals of Finite Difference Methods 

The Taylor expansion is the most important tool in the analysis of FDM:

where 
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“Close to but usually not exactly”

ℎ: step size 

The slope of the secant line that connects the two points                 and 

where 0 < 𝜉 < ℎ

𝑝-th order accurate: 

The error estimate: 
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Central finite difference

Backward finite difference Forward finite difference 
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From the Taylor expansion 

Second-order 

accurate 

Relation with the forward, backward FD

Central Finite Difference Formula
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How do we know that our code is bug-free and our analysis is correct? 

Verification of the Method

• For a first-order method, the error should decrease by a 

factor of two

• For a second-order method the error should be decrease by 

a factor of four 

------ Grid Refinement Analysis 

ℎ

ℎ/2

ℎ/4
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Forward (FW):    (sin(1 + ℎ) − sin(1))/ℎ − cos(1);
Backward (BW): (sin(1) − sin(1 − ℎ))/ℎ − cos(1);
Central (CT): sin(1 + ℎ) − sin(1 − ℎ))/(2ℎ) − cos(1);

Example Consider the function 𝑢 𝑥 = sin 𝑥 at 𝑥 = 1, where the exact 

derivative is of course cos 1. 

clear; close all 
h = 0.1; 
for i=1:5, 

a(i,1) = h; 
a(i,2) = (sin(1+h)-sin(1))/h - cos(1); 
a(i,3) = (sin(1) - sin(1-h))/h - cos(1); 
a(i,4) = (sin(1+h)-sin(1-h))/(2*h)- cos(1); 
h = h/2;

end 

a = abs(a); 
h1 = a(:,1); 
e1 = a(:,2); e2 = a(:,3); e3 = a(:,4); 
loglog(h1,e1,h1,e2,h1,e3) 
axis('equal'); axis('square’) 
axis([1e-6 1e1 1e-6 1e1]) 
gtext('Slope of FW and BW = 1') 
gtext('Slope of CD =2’) 
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• As ℎ gets smaller, round-off errors become evident and eventually 

dominant. 

• The best ℎ can be estimated by balancing the formula error and the 

round-off errors. 
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Deriving FD Formulas Using the Method of 
Undetermined Coefficients 

Goal: To approximate a first derivative to second-order accuracy 

Tool: Taylor expansion 

“one-sided” finite difference 
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Another one-sided finite difference formula?
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2.3.1 FD Formulas for Second-order Derivatives 
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Finite difference operators can be used to derive approximations for 

partial derivatives 
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Here we use the 𝑥 subscript on 𝛿𝑥 to denote the central finite 

difference operator in the 𝑥 direction, and so on. 



Consistency, Stability, Convergence

Global Error :  the approximate solution 

If , the finite difference method has 𝑝-th order accurate. 

Definition 2.1.  A finite difference method is called convergent if 

A smallest upper bound for the error vector: 

• The maximum or infinity norm 

• The 1-norm 

• The 2-norm 

analogous to 

analogous to 

:  the exact solution 
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Local truncation errors refer to the differences between the original 

differential equation and its finite difference approximations at grid points. 

Local truncation error of the finite difference scheme at 𝑥𝑖 is

Two steps to obtain local truncation error: 

1. Move the right-hand side to the left-hand side

2. Substituting the true solution 𝑢 𝑥𝑖 for 𝑈𝑖. 
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The original differential 

equation:

Finite difference 

approximation:



Definition 2.2.  A finite difference scheme is called consistent if

How to check whether or not a finite difference scheme is consistent? 

------ Perform Taylor expansion for all the terms in the local truncation error at a 

master grid point 𝑥𝑖.

To obtain , we let

The difference scheme is consistent and the discretization is second-

order accurate.

However, consistency can not guarantee the convergence of a scheme, and we 

need to satisfy another condition, namely, its stability. 
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takes the boundary condition into account. 

Definition of Stability

Local truncation error

Error of the solution

If is nonsingular, then 
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Theorem 2.4. A consistent and stable finite difference method is convergent. 

“convergent = consistent + stable” 

Recall that we already have , which means

We want , then we need 

Definition of a “stable” scheme

25



26

Local truncation error: 𝑇𝑖 = LHS-RHS with 𝑈𝑖 substituted by 𝑢 𝑥𝑖 at 𝑥𝑖

Order of the discretization of 

the scheme:
𝑇𝑖 = 𝑂 ℎ𝑝 for all 𝑥𝑖,   or   𝑇(𝑥) = 𝑂 ℎ𝑝

Order of the finite difference 

method:
||𝐄|| < 𝐶ℎ𝑝

Consistence: when ℎ → 0, 

error of the scheme → 0
lim
ℎ→0

𝑇𝑖 = 0 lim
ℎ→0

𝑇(𝑥) = 0 lim
ℎ→0

||𝐓|| = 0or or

Stability: ||𝐀−1|| < 𝐶

Convergence: when ℎ → 0, 

error of the solution → 0
lim
ℎ→0

||𝐄|| = 0



for 

Usually it is easy to prove consistency but more difficult to prove stability.

To prove the convergence of the central finite difference scheme 

We examine the condition

where
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Theorem 2.6. The central finite difference method for 𝑢′′(𝑥) = 𝑓 (𝑥) and a 

Dirichlet boundary condition is convergent. 
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We can proof this theorem by the following three steps:

1. If 𝜆𝑗 is the 𝑗-th eigenvalue of 𝐴, show that the eigenvalue of 𝐴−1 is  
1

𝜆𝑗
.

𝐴𝑥 = 𝜆𝑗𝑥 ⇒ 𝐴−1𝐴𝑥 = 𝜆𝑗 𝐴
−1𝑥 ⇒

𝑥

𝜆𝑗
= 𝐴−1𝑥 ⇒ the eigenvalue of 𝐴−1 is  

1

𝜆𝑗
.

2. If A is symmetric, show that 𝐴−1 is also symmetric.

Since 𝐴−1 𝑇 = 𝐴𝑇 −1and 𝐴𝑇 = 𝐴, so 𝐴−1 𝑇 = 𝐴−1.

3. Show that ||𝐴−1||2 =
1

min 𝜆𝑗
.

Since ||𝐴||2= 𝜆𝑚𝑎𝑥(𝐴
𝑇𝐴) and 𝐴𝑇 = 𝐴, we have ||𝐴||2= max 𝜆𝑗 ,

so ||𝐴−1||2= max
1

|𝜆𝑗|
=

1

min 𝜆𝑗
.



1D Sturm–Liouville problem 

Step 1: Generate a grid. 

Steps to develop finite difference method 
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Step 2: Substitute derivatives with finite difference formulas at each grid point. 

Using the central finite difference formula at a typical grid point 𝑥𝑖 with 

half grid size 

Applying the central finite difference scheme for the first-order derivative at 

𝑥𝑖+1/2 and 𝑥𝑖−1/2

①

②
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The consequent finite difference solution 𝑈𝑖 ≈ 𝑢 𝑥𝑖 is then defined as the 

solution of the linear system of equations 
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• Symmetric

• Negative definite

• Weakly diagonally dominant 
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2.7 The Ghost Point Method for Boundary Conditions 
Involving Derivatives 

Neumann and mixed (Robin) boundary conditions 

where the solution at 𝑥 = 𝑎 is unknown. 
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Interior grid points 

An additional equation at 𝑥 = 𝑎 Known value,

no need of equation
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Slightly different here! Not −
2

ℎ2
Unknown 

Contribution from Dirichlet 

boundary condition

Note: only First-order due to the boundary 

condition at 𝑥 = 𝑎
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The Ghost Point Method 

A ghost grid point Interior grid points 

Insert into 
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First-order Method
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Send-order Method (Ghost Point Method)
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The exact solution is 

Comparison of the two finite difference methods 

0 0.5
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function [x,U] = two_point(a,b,ua,ub,f,n) 

h = (b-a)/n; h1=h*h; 
A = sparse(n-1,n-1); 
F = zeros(n-1,1); 

for i=1:n-2, 
A(i,i) = -2/h1; 
A(i+1,i) = 1/h1; 
A(i,i+1)= 1/h1; 

end 
A(n-1,n-1) = -2/h1; 

for i=1:n-1, 
x(i) = a+i*h; 
F(i) = feval(f,x(i)); 

end 

F(1) = F(1) - ua/h1; 
F(n-1) = F(n-1) - ub/h1; 

U = A\F;

return 

Form the matrix

Form the 

RHS

Dirichlet on both ends
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function [x,U] = ghost_at_b(a,b,ua,uxb,f,n) 

h = (b-a)/n; h1=h*h; 
A = sparse(n,n); 
F = zeros(n,1); 

for i=1:n-1, 
A(i,i) = -2/h1; 
A(i+1,i) = 1/h1; 
A(i,i+1)= 1/h1; 

end 
A(n,n) = -2/h1; 
A(n,n-1) = 2/h1; 

for i=1:n, 
x(i) = a+i*h; 
F(i) = feval(f,x(i)); 

end 

F(1) = F(1) - ua/h1; 
F(n) = F(n) - 2*uxb/h; 

U = A\F; 

return 

Form the matrix

Form the 

RHS

Dirichlet and Neumann on different sides
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2.8 An example of a Nonlinear BVP 

Using the central finite difference scheme 

Discretizing a nonlinear differential equation generally produces a nonlinear 

algebraic system. 
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Given an initial guess               , we proceed 

Involving a two-point BVP at each iteration. 

Unknown Known value: treated as a 

coefficient 

k=k+1

Simple substitution method

46



Newton’s method 

A nonlinear system of equations is obtained if we discretize （2.46）

where 
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Given an initial guess , the Newton iteration is 

where is the Jacobian matrix defined as 
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Initial guess: Mesh size: Tolerance: 
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• It is not always easy to find 𝐽(𝑈) and it can be computationally expensive.

• Newton’s method is quadratically convergent locally. 

• Well-known software packages are available (MINPACK, PETSc (for parallel 
computing))

Remarks on Newton method:
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2.9 The Grid Refinement Analysis Technique 

To validate and confirm the analysis (consistency, stability, order of convergence, 
etc) numerically:

• Analyse the output to see whether they agree with the ODE or PDE 

• Compare the numerical solutions with experiential data 

• Perform a grid refinement analysis 
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When there is an exact solution: 

Assume a method is 𝑝-th order accurate, such that                         , 

if we divide h by half to get                , then 

• For a first-order method (𝑝 = 1), the ratio → 2
• For a second-order method (𝑝 = 2), the ratio → 4
• If 1 < 𝑝 < 2, the method is called superlinear convergent 
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When there is no exact solution 

To compare a numerical solution with one obtained from a finer mesh. 

Suppose the numerical solution converges and satisfies 
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Not 2, but goes to 2

Not 4, but goes to 4
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