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Examples of Linear and Nonlinear Equations of Elliptic PDEs 

 Laplace equations in 2D 

In 2D, the gradient operator is 

The divergence of the vector v is 

(3.1) means that the conservative vector field               is also 

divergence free, i.e., 

The solution 𝑢 is sometimes called a potential function. 

=
𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦



• Many incompressible flow solvers are based on solving one or several Poisson or 

Helmholtz equations. 

• The Helmholtz equation arises in scattering problems. 

• The problem is hard to solve numerically if 𝜆 is large. 



The incompressible Navier-Stokes equation

Chorin's projection method for solving the above equation:





3.1 Boundary and Compatibility Conditions 



• In some cases, a boundary condition is periodic 



An example: 

different boundary conditions on different parts of the boundary

(A typical case in fluid dynamics: flow passing through a tube)



Compatibility condition for a Poisson equation with a purely Neumann 

boundary condition 



3.2 The Central Finite Difference Method for Poisson Equations 



 Step 2: Approximate the partial derivatives at grid points with finite difference formulas 
involving the function values at nearby grid points. 

The local truncation error 

Recall that



Three-point central finite difference formula 

master grid point 



The finite difference discretization is second-order accurate and consistent 

• Step 3: Solve the linear system of algebraic equations (3.19), to get the 

approximate values for the solution at all of the grid points.

• Step 4: Error analysis, implementation, visualization, etc. 



3.2.1 The Matrix–vector Form of the FD Equations 

unknowns {Uij} are a 2D array 

ordering 

1D 

array 





The k-th finite difference equation corresponding to 𝑖, 𝑗

3.2.1.1 The Natural Row Ordering 









• −𝐴 is symmetric positive definite ⇒ 𝐴 is nonsingular/invertible 

⇒The solution of                is unique

• − 𝐴 is weakly diagonally dominant ⇒ can be solved by iterative methods 

efficiently

i.e., Jacobi, Gauss–Seidel, or SOR(ω), …

𝑛 × 𝑛



3.3 The Maximum Principle and Error Analysis 



…   (Find the contradiction between (3.29) and (3.30))

Full Proof on P56-57 of the 

Textbook:

Zhilin Li et al., Numerical 

Solution of Differential 

Equations -- Introduction to 

Finite Difference and Finite 

Element Methods.





3.3.1 The Discrete Maximum Principle 

Compared to Theorem 3.1  

𝑎 = 𝑐 = 1, 𝑏 = 0



contradiction

Unless? 



If U looks like this, what’s the sign of 



3.3.2 Error Estimates of the Finite Difference Method for 
Poisson Equations 



3.4 Finite Difference Methods for General Second-order 
Elliptic PDEs 

𝑢 = ℎ(𝑥, 𝑑)

𝑢 = ℎ(𝑥, 𝑐)

𝑢 = ℎ(𝑏, 𝑦)

A uniform Cartesian grid 



The finite difference scheme



A uniform Cartesian grid 

Ghost points

Central finite difference

scheme for the flux boundary condition:

At       :



• The discretization is second-order accurate

• The stencil involves nine grid points

• The linear system is no longer diagonally dominant thus is 

difficult to solve 

⇒ Centered finite difference scheme:

3.4.1 A Finite Difference Formula for Approximating 
the Mixed Derivative



3.8.1 A Matlab Code for Poisson Equations using A\F

a b
c

d

i=1 i=m+1

i=1

i=n+1

Neumann

Dirichlet

Dirichlet

Dirichlet



a b
c

d

i=1 i=m

j=1

j=n-1

(i,j)

(3.19)

(3.43)

(3.19)

(3.19)



(3.19)

(3.19)

𝑚 ×𝑚



y(1) is on the bottom boundary, 

which is not included here.





3.5 Solving the Resulting Linear System of Algebraic Equations

𝑛 × 𝑛

• For 𝑛 = 100, the 𝑂 104 × 104 matrix cannot be stored in most modern 

computers if the desirable double precision is used.

• 𝐴 is sparse since the nonzero entries are about 𝑂 5𝑛2 .



Advantages of iterative methods

 Zero entries play no role in the matrix-vector multiplications

 For some methods, there is no need to manipulate the matrix and vector forms

 Usually less operations than direct methods (LU factorization, Gauss elimination)

where 𝐴 is nonsingular (det(𝐴)≠ 0), if 𝐴 = 𝑀 −𝑁 can be written as where 𝑀 is 

an invertible matrix, then we have

or

We may iterate starting from an initial guess      , 

the iteration converges or diverges depending on the spectral radius of



3.5.1 The Jacobi Iterative Method

The idea of the Jacobi iteration is to solve for the variables on the diagonals and then form 
the iteration.

𝑎11𝑥1

𝑎𝑖𝑖𝑥𝑖





For 1D Poisson equation,



3.5.2 The Gauss–Seidel Iterative Method

In the Gauss–Seidel iterative method the most updated information is used as follows:



𝑘 + 1 𝑘𝑘𝑘 + 1 𝑘 + 1

A pseudo-code



𝑘

𝑘

𝑘 + 1

𝑘 + 1



3.5.3 The Successive Overrelaxation Method SOR(ω)

The idea of the successive overrelaxation (SOR(𝜔)) iteration is based on an

extrapolation technique.

In component form:

A pseudo-code:

u0 is from the solution of last solution, u is the current solution at k+1



: Extrapolation or over relaxation

: Interpolation

: the Gauss–Seidel method

For elliptic problems, we usually choose

The convergence of the SOR(𝜔) method depends on the choice of 𝜔.

For five-point stencil applied to a Poisson equation with

The optimal 𝜔 is unknown for general elliptic PDEs, we can use the optimal 𝜔 for 

the Poisson equation as a trial value.



3.5.4 Convergence of Stationary Iterative Methods





Convergence of the Jacobi, Gauss–seidel, and SOR(𝜔) Methods

𝐴 = 𝐷 − 𝐿 − 𝑈

−𝐿

−𝑈



𝑖

𝑖



For an elliptic PDE defined on a rectangle domain or a disk

 Simple iterative methods such as Jacobi, Gauss–Seidel, SOR(𝜔)

 Fast Poisson solvers such as the fast Fourier transform (FFT) or cyclic 
reduction

 Multigrid solvers, either geometric multigrid or algebraic multigrid

 Gradient descent method

 Krylov subspace methods such as the conjugate gradient (CG) or 
preconditioned conjugate gradient (PCG), generalized minimized residual 
(GMRES), biconjugate gradient (BICG) method for nonsymmetric system of 
equations.



Gradient descent method

Solving a linear system Finding minimum of a function



Gradient descent method



The Conjugate Gradient Algorithm



Reference (On UMMoodle):

Dianne P. O'Leary, Notes on Some Methods for Solving Linear 
Systems.



3.7 A Finite Difference Method for Poisson Equations in Polar 
Coordinates



The central finite difference scheme:

Poisson Equations in Polar Coordinates

Using a uniform grid:



3.7.1 Treating the Polar Singularity

Staggered grid

Read P71 in the textbook



3.7.2 Using the FFT to Solve Poisson Equations in Polar Coordinates

2. Substitute into the Poisson equation

ODE

PDE

1. Approximate 𝑢 by the truncated Fourier series

4. Substitute back to the 

Fourier series

3.Solve the ODE system


