
Finite Difference Methods 
for Parabolic PDEs

1

MATH 3014

Monday & Thursday 14:30-15:45

Instructor: Dr. Luo Li

https://www.fst.um.edu.mo/personal/liluo/math3014/

Department of Mathematics

Faculty of Science and Technology

https://www.fst.um.edu.mo/personal/math3014/


A linear PDE of the form 

where 𝑡 usually denotes the time and 𝐿 is a linear elliptic differential operator in one 

or more spatial variables, is called parabolic. 

Furthermore, the second-order canonical form 

is parabolic if 𝑏2 − 𝑎𝑐 ≡ 0 in the entire 𝑥 and 𝑡 domain. 

2



or the reaction term 

3



Initial and Boundary Conditions 

for consistency

Finite difference methods applicable to elliptic PDEs can be used to treat the 

spatial discretization and boundary conditions, so let us focus on the time 

discretization and initial condition(s). 

4



4.1 The Euler Methods 

Steps to find a numerical solution: 

1. Generate a grid.

𝑘

𝑘 + 1

2. Approximate the derivatives with finite difference 

approximations. 
5



4.1.1 Forward Euler Method (FW-CT) 

Forward FDM for 𝑢𝑡 Central FDM for 𝑢𝑥𝑥

The local truncation error:

FW-CT scheme:

6

𝑘

𝑘 + 1



The method is called explicit because the solution at the next time level 𝑘 + 1 is 

obtained from the solution at previous time steps.

7



Example

8



a=0; b=1; t = 0;   
m=10; n=20; 
h = (b-a)/m;   % space step size
k = (h*h)/2; % time step size
tau = k/(h*h);     % 𝛽
for i=1:m+1, 

x(i) = a + (i-1)*h; 
y1(i) = uexact(t,x(i)); 
y2(i) = 0; % for next time level 

end 
plot(x,y1); hold 

for j=1:n, 
y1(1)=0;  % boundary condition
y1(m+1)=0; % boundary condition
for i=2:m 

y2(i) = y1(i) + tau*(y1(i-1)-
2*y1(i)+y1(i+1)) + k*f(t,x(i)); 

end 
plot(x,y2); 
pause(0.25) 
t=t+k; 
y1=y2;    % k=k+1

end 

9



10



The method works well when                           , but blows up when

This is a question of numerical stability 

A time step constraint, often called the CFL (Courant–Friedrichs–Lewy) 

stability condition 

If not satisfying the the CFL condition, the error increases as time envolves, 

blow-up happens due to the instability of the algorithm. 

The method is consistent 

11



4.1.2 The Backward Euler Method (BW-CT) 

Backward FDM for 𝑢𝑡 Central FDM for 𝑢𝑥𝑥

To get the approximate solution at the time level 𝑘 + 1: (implicit, coupled) 

12

𝑘

𝑘 + 1



Forward Euler method (FW-CT):   first-order in time

The time step size                            to meet the CFL condition.

If ℎ = 0.01, the final time is 𝑇 = 10 and 𝛽 = 100, then we need 2 × 107 steps to 

get the solution at the final time. 

Backward Euler method (BW-CT):   first-order in time

If we want second-order accuracy             , we need to take                        . 

The truncation error:

Not much better than

13



4.3 The Crank–Nicolson Scheme 

14

𝑘

𝑘 + 1



The discretization is second-order in time.

LHS:

RHS:

Recall that we need LHS – RHS so that 𝑢𝑡 and 𝑢𝑥𝑥
are cancelled.

15



• At each time step, we need to solve a tridiagonal system of equations to get 𝑈𝑘+1. 
With fast tridiagonal solver (Burden and Faires 2010), the computation complexity 
is similar with the explicit Euler method.

• Although the Crank–Nicolson scheme is an implicit method, it is much more 
efficient than the explicit Euler method since it is second-order accurate.

Forward Euler scheme Crank–Nicolson scheme 

Order in time First-order Second-order

Time step size
Δ𝑡 =

ℎ2

2𝛽

Δ𝑡 = ℎ

Time steps
𝑖𝑛𝑡

2𝛽T

ℎ2
𝑖𝑛𝑡

𝑇

ℎ

16



4.3.1 The θ-Method

For the heat equation 

𝜃 = 1 The explicit Euler scheme First-order

1/2 < 𝜃 < 1 The method is conditionally stable First-order

𝜃 = 1/2 The Crank–Nicolson scheme Second-order

0 < 𝜃 ≤ 1/2 The method is unconditionally stable First-order

𝜃 = 0 The backward Euler scheme First-order

17



4.4 Stability Analysis for Time-dependent Problems 

------ von Neumann method based on the discrete Fourier transform 

Consider 

The Fourier transform 

The inverse Fourier transform 

The space domain The frequency domain 

18



1.

2.

3.

4.

Properties of  Fourier transform

The Parseval’s relation 

or

19



Example 

Apply the Fourier transform to the PDE and the initial condition, 

ODE:

20



4.4.2 The Discrete Fourier Transform 

21



22



4.4.3 Definition of the Stability of a FD Scheme 

• The growth of the solution is at most a constant multiple of the sum of 

the norms of the solution at the first 𝐽 + 1 steps. 

• Λ corresponds to all possible ∆𝑡 and ℎ
23



24

This condition is stronger than (4.26), but it is more useful. 



4.4.4 The von Neumann Stability Analysis for FD Methods 

Discrete scheme 

Apply discrete Fourier transform 

Compute growth factor 𝑔 𝜉

Find stability region ( 𝑔 𝜉 ≤ 1?) 

25



Example The forward Euler method (FW-CT) for the heat equation 

Discrete scheme 

Apply discrete Fourier transform 

26



Substituting these relations into the forward Euler finite difference scheme 

The discrete Fourier transform is unique, which implies 

Growth factor

Find stability region

27



From the Euler equation

Note that 

Thus a sufficient condition for the stability of the forward Euler method is 

28



4.4.5 Simplification of the von Neumann Stability Analysis 

29



The von Neumann stability analysis usually involves the following steps: 

30



Example The backward Euler method for the heat equation 

Step 1.

Step 2.

Step 3.

The backward Euler method is 

unconditionally stable. 

31



4.5 FD Methods and Analysis for 2D Parabolic Equations 

For the dynamic stabilityboundary conditions

initial condition

The PDE can be written as where L is the spatial differential operator.

For simplicity, let us consider the heat equation

suppose 𝛽 is a constantThe forward Euler method:

32



• The method is first order in time and second order in space.

• The stability condition is

To show stability using the von Neumann analysis with 𝑓 = 0:

Step 1.

Step 2.

Step 3.

33



The backward Euler scheme

The Crank–Nicolson scheme

Local truncation error

• These schemes are unconditionally stable for linear problems.

• Need to solve a system of equations with a block tridiagonal coefficient matrix.

34



4.6 The Alternating Direction Implicit (ADI) Method

The ADI is a time splitting or fractional step method.

• Second order in time and in space

• Unconditionally stable for linear problems

• Fast tridiagonal solvers can be used!

For the heat equation the ADI method is

35



We can use symbolic expressions to discuss the method 

Thus on moving unknowns to the left-hand side, in matrix-vector form we have 

36



The k-th finite difference equation corresponding to 𝑖, 𝑗

Recall that

37



From the first equation we get 

and substituting into the second equation to have 

38



we can go further to get 

Applying to both sides and using the following commutative operation 

39



4.6.1 Implementation of the ADI Algorithm 

In the 𝑥 −direction, 

Unknown Known

40



The system of equations in matrix-vector form is 

Let  

41

For fixed j



Boundary condition

42



%-------------- loop in the x direction
for j = 2:n, % Loop for fixed j 
A = sparse(m-1,m-1); 
b=zeros(m-1,1); 
for i=2:m, 
b(i-1) = (u1(i,j-1) -2*u1(i,j) + u1(i,j+1))/h1 

+ f(t2,x(i),y(j)) + 2*u1(i,j)/dt; 

A(i-1,i-1) = 2/dt + 2/h1; 
end 

ut = A\b;  % Solve the diagonal matrix 
%-------------- loop in the y direction
…

if i == 2 
b(i-1) = b(i-1) + uexact(t2,x(i-1),y(j))/h1; 
A(i-1,i) = -1/h1; 

else
if i==m 

b(i-1) = b(i-1) + uexact(t2,x(i+1),y(j))/h1; 
A(i-1,i-2) = -1/h1; 

else 
A(i-1,i) = -1/h1; 
A(i-1,i-2) = -1/h1; 

end 
end 

…

Boundary condition

• Why i-1? Because A is created with size (m-
1) x (m-1), (i,j) here is the point position 

• Just regard it as “i” 43

Loop in the x direction



%-------------- loop in the y direction
for i = 2:m, % Loop for fixed i
A = sparse(m-1,m-1); 
b=zeros(m-1,1);
for j=2:n,
b(j-1) = (u2(i-1,j) -2*u2(i,j) + u2(i+1,j))/h1 

+ f(t2,x(i),y(j)) + 2*u2(i,j)/dt;

A(j-1,j-1) = 2/dt + 2/h1; 
end

ut = A\b; % Solve the diagonal matrix 

if j == 2
b(j-1) = b(j-1) + uexact(t1,x(i),y(j-1))/h1;
A(j-1,j) = -1/h1;

else
if j==n
b(j-1) = b(j-1) + uexact(t1,x(i),y(j+1))/h1;
A(j-1,j-2) = -1/h1;

else
A(j-1,j) = -1/h1;
A(j-1,j-2) = -1/h1;

end
end

…

Boundary condition

Loop in the y direction

44



4.6.2 Consistency of the ADI Method 

45



46



Substituting into (4.53): 

The discretization is second-order in time and space

47



LHS:

48



RHS:

49



4.6.3 Stability Analysis of the ADI Method 

Taking 𝑓 = 0 and setting

from Page 39, we have

Substitute into the equation

50



Example The backward Euler method for the 1D heat 

equation 
Step 1.

Step 2.

Step 3.

The backward Euler method is 

unconditionally stable. 

51



52



4.7 An Implicit–explicit Method for Diffusion and Advection Equations 

a 2D vector the gradient operator 

• An implicit scheme for the diffusion term ()

• An explicit scheme for the advection term 

Where 

53



The CFL constraint is not a main concern unless ∥ 𝑤 ∥ is very large. The 

time step constraint is 

At each time step, we need to solve a generalized Helmholtz equation 

We need 𝒖1 to get the scheme above started. We can use the explicit Euler method 

(FW-CT) to approximate 𝒖1 . 

𝒖0

= 𝒖0(𝑥, 𝑦)

𝒖1

𝒖2

FW-CT

54


