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For the canonical form
a(x, )uy + 2b(x, t)ux: + c(x, t)uxx + lower-order terms =f'(x, ¢)

IS hyperbolic if In the entire x and t domain.

A few typical model problems involving hyperbolic PDEs are as follows:

e Second-order linear wave equation:

Uy =AUl . O0<x <1,



e Advection equation (one-way wave equation):

u +au.=0, 0<x<l1,
u(x,0)=mn(x), IC,
u(0,t)=g)(t) it a>0, or u(l,t)=g(t) it a<0.

Here g; and g, are prescribed boundary conditions from the left and right,
respectively.

e Linear first-order hyperbolic system:

u, = Au, +f(x. 7).

where u and f are two vectors and A Is a matrix. The system is called
IfAls , 1.e., If there Is a nonsingular matrix T
suchthat A = TDT ™1, and all eigenvalues of A are real numbers.



e Nonlinear hyperbolic equation or system, notably conservation laws:

;
, . u-
u, + flu), =0, e.g.., Burgers’ equation u, + (%) —=0:
X
u, +f, + gy = 0.

For hyperbolic PDE, (a discontinuous solution) can develop
even if the initial data is smooth.



Some phenomena of shocks

Sound barrier Dam breaking Forward-facing step flow



5.1 Characteristics and Boundary Conditions
The exact solution for the
u+au, =0, —00<X<00.
u(x,0)=n(x), >0
su(x,t)=n(x — at).
For the domain problem
u+au,=0. O0<x<l.

u(x,0)=n(x), >0, u(0,1)=gi(t) 1ta>0

We consider In which the solution is constant along
the characteristics.



The method of characteristics

dx
Z—q
For the IVP of ODE dt Ch tic i
X(O) =C aracteristic line
t x(t,c)
The solution x(t, c) = at + c is called the =
of the IVP of PDE.
Along the characteristic line x = x(t,c), u = (x(t,c),t) —t
satisfies the following ODE -
du ou . dudx ou ou " A - >
ac ~ ot Vorar — o T %% =0 «(©O=c x
. _ o The x — t diagram
which means that u(x, t) is along the characteristic line.

Therefore, we have

u(x(t,c),t) =u(x(0,c),0) = u(c,0) =n(c)
mem) 1u(x,t) =n(x — at).



Characteristic line

at

A

x(t,c) /

x(03 =

Thex —t

diagram

The x — u diagram



5.2 Finite Difference Schemes for Hyperbolic equations

 Lax—Friedrichs method;

« Upwind scheme;

* Leap-frog method;
 Lax—Wendroff method,;
 Crank—Nicolson scheme; and
« Beam-—Warming method.



Consider the one-way wave equation ;, + au, =0

The FW-CT scheme:

Ut =Uf — ( Uiy — UL ) . pu=alt/(2h).

Jj—1
» The local truncation error is O(Ar + /?) _
* The method is
The : . .
(The growth factor) g(6) =1 — p ( e _ {J—mgj

= 1 — p2isin(h€), where 0 =h&, jp=alt/(2h).

we have
2(0)> =1+ 4 sin*(h) > 1.
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—Friedri C overs ki ko, rk
The Lax—Friedrichs scheme: average U using U | and U} | to get

R |
rhk+1 rk rk rk
Uit =2 (D L+ bﬁl) Y (Dm bj_l) .
k+1

 The local truncation error is O(Ar + h) if Ar~h.
* The method is ° o k

The growth factor:
2(0)]7 = cos” (he) + 47 sin® (h€)

1 Jih —ih& Jihg — —ih&
g(f) = Ste + [
| ( ) ( ) — | — sin” (h€) + 44 sin? (h€)

2

= cos(h&) — 2usin(hf)i -

=1 — (1 — 4p%)sin*(h¢) .

Therefore, if At<h/|a| == 1 _4,>>0 == |g(0) <]

11



The Lax—Friedrichs scheme

clear; close all

a = 0; b=1; tfinal = 0.5; m=20;
h = (b-a)/m;
k =h; mu=k/h;

t=0;

n = fix(tfinal/k);

vyl = zeros(m+1,1); y2=y1; x=y1;
% Initial condition

fori=1:m+1,
X(i) = a+ (i-1)*h;
y1(i) = uexact(t,x(i)); % current
y2(i) = 0; % next level

end

e e ey

end

= O’
for j=1:n,

y1(1)=bc(t);
y2(1)=bc(t+k); % Physical boundary condition
fori=2:m
% FW-CT scheme
% y2(i) = y1(i) - mu*(y1(i+1)-y1(i-1))/2;
% Lax-Friderichs scheme

y2(i) = 0.5*(y1(i+1)+y1(i-1)) - mu*(y1(i+1)-y1(i-1))/2;

End

I =m+1;
% Numerical boundary condition
y2(i) = y1(i) - mu*(y1(i)-y1(i-1) );

t=t+k;

yl=y2;
plot(x,y2); pause(0.5)
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Problem: the 1D advection equation
u; + uy =0 1n the domain 0 < x < 1.

0 if 0<x<1/2,

The initial condition is u(x,0)=up(x) = B
I if 1/2<x<1.

The boundary condition is u(0, 7) =sin 1.

up(x — 1)  if 0<r<x<l,

The analytic solution is u(x,7) =< L |
sin(r—x) if O<x<r<l.

t — x Is the time period that the sin function experiences.

13



Solutions at different time steps obtained using the Lax—Friedrichs scheme
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The Upwind scheme:

The upwind scheme for u; + au, =0 1s

¢ d .
J J
Ar A
\ h(U+l U) ifa<0,

/

« The scheme is first-order accurate in time and in space
* The method is

The growth factor for the case when a >0 is:
g0)=1—pu (1 - e"""f) g(O)F = (1 — i+ pcos(h))” + pi* sin® (h)

) =(1— ,u-)2 +2(1 — p)pcos(he) + i

= 1 — pu(1 —cos(h€)) — ipsin(hé) =1 —2(1 — p)pu(1 = cos(hé)),

soif 1 —pu>0 (e, pu<l)or At<h/awe have |g(6)| < 1.
16



The Upwind scheme

' v
clear; close all % Time marching
i for j=1:n,
a = 0; b=1; tfinal = 0.5; m = 20; | y1(1)=bc(t);
| v2(1)=bc(t+k);
aa =1; % The coefficient i fori=2:m+1
h = (b-a)/m; k = h/abs(aa); | y2(i) = y1(i) - mu*(y1(i)-y1(i-1) );
mu = aa*k/h; % Set mesh and time step. i end
i t=t+k;
t = 0; n = fix(tfinal/k); | yl=y2;
vyl =zeros(m+1,1); y2=y1; x=y1; | plot(x,y2); pause(0.5);
End
figure(1); |
%axis([-0.1 1.1 -0.1 1.1]); % Define exact solution for comparison
fori=1:m+1, i u_e =zeros(m+1,1);
x(i) = a + (i-1)*h; for i=1:m+1
y1(i) = uexact(t,x(i)); % Initial data | u_e(i) = uexact(t,x(i));
y2(i) = 0; | end
end

: , max(abs(u_e-y2))

------------------------------- plOt(X,y2,'O|;XIU_e) ol
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The Leap-frog Scheme:

The leap-trog scheme tor u; + au, =0 1s

o
Ukt _ Uﬁ'—]
W )
2At 2/1 J o s
. ff\"‘] . ﬂx—l T}' fT‘J"-L
Ol L.! - L.f (LH—] L.f—l) ’
s

« The discretization is second-order in time and in space.
» The method is , CFL condition: At < ﬁ
* It requires an Numerical Boundary Condition at one end.

* It needs Ul to get started, we can use the upwind or other
scheme to obtain Ul

19



The von Neumann analysis for the leap scheme

Substituting
L-}f!( =, D}‘-E‘_H =g(&)e", L-}’-E‘__l 2 (15) e
into the leap-frog scheme, we get
@+ (" — e Mg —1=0,
or ¢+ 2ui sm(hé)g—1=0,
with solution
g = —ipsin(hé) + \/ | — p2sin®(h€). (5.10)

We distinguish three different cases.

1. If ;| > 1, then there are £ such that at least one of |g_| > 1 or |g.| > 1 holds,
so the scheme 1s unstable!
2. If || < 1, then | — p? sinz(hg) > 0 such that

ge|?P =t sin*(h€) + 1 — pFsin (h¢) =1.
20



3. If'|pe| =1, we still have |go| =1, but we can find £ such that g sin(4¢) =1 and
g, =g _=—i, ie, —iisadouble root of the characteristic polynomial. The
solution of the finite difference equation therefore has the form

U = Ci(—i)* + Ck(—i)* .

where the possibly complex numbers C; and 5 are determined from the
initial conditions. Thus there are solutions such that |[UX|| ~k which are
unstable (slow growing).

21



5.3 The Modified PDE and Numerical Diffusion/Dispersion

A modified PDE is the PDE that a finite difference equation at
grid points.

Take the upwind method for the advection equation 1, + au,. = 0 with a > 0

for example
brf{—l— I {_,Tf

At ’ T (U - U~ ):0'

Insert v(x, 7) in to the finite difference equation to derive a PDE that v(x, ?)
satisfies

(Xt + A1) —v(x,0)  a | )
At _{_/3((1 t) — (f‘t—/?..fjj—()_




v+ A) - ) a
At +h(‘(-hf) vix —h,t))=0.

Expanding the terms in Taylor series about (.x, 7) and simplifying vields
I I 1,
Vet AV A (Ve = 5+ e Ve 0] =0,

which can be rewritten as

g ] 1 : :
The modified PDE VL av, = E(f-,,;,wxx — Atvy) _[E (ahzvm n (Ar)zvn) L. High order terms can be ignored

which is the PDE that v satisfies. Consequently,

i |
% on both sides  —) Vi = —aVy + E(aiwm — Atvyy)
= —avx + O(At, h) : Use E’; +av,= %(ahvﬂ — Atvy) + O(Ar,h)}
= —c'.f,i (—c‘.r.vx + O(Ar,h)) :
X
SO the modified PDE is
1 1A
v +ave=—ah |1 — a=7 Viex - (5.11)

2 h

_\* Advection—diffusion equation 23



The original PDE
u; +~au, =0, a>0

A first-order accurate
approximation to the true
solution of the original PDE

k+1 77k
Ut -y

The upwind scheme

+

da

h (U}Q_ ({;’11):0

At
Satisfies exactly /

The high order terms are
0(h? + At?) + O(At?h)
I

The modified PDE

1
V, +av, = E((th Ver — Atvy)

1

c ((thzvmx + (Ar)zvfr) 4o

\

A second-order accurate
approximation to the true solution
of the leading modified PDE

The leading modified PDE

|
v, +av, = =ah (1 —

a/\t ;
2 AN

h

24



The modified equation tells some of the scheme:

: . . e I A
* The computed solution smooths out discontinuities because of the diffusion term 5/ (l — %) Vix

* We have second-order accuracy to v, + au, = 0 if a is a constant and Ar=//a.

« \We can add the correction term to offset the leading error term to render a higher-order
accurate method, but the stability needs to be checked. For instance, we can modify the
upwind scheme to get a second-order scheme when Ar~/h:

Lf\ I L'T {’T B (’"f—l | (1 - LJA{) L'-?—l —2 {"T i L"T;{Erl

_ L
A Y, PR i 2

, therefore the RHS of
(5.11) can be cancelled with
0(h3).

25



Why some schemes are unstable?

The PDE: u; + au, =0
The FW-CT scheme: uitt-uf o UL U
+ a =0
At 2h
u(x,t+ At) —u(x.t) At 9 ou
At Tt e O((A)’) - ot (at)_at B a N
Jd ,o0u, d du
B 1 —a —~(3;)=—a —(-a—-
H;—l—jii’ (Af}”n —I—O((A?‘} ) g g
The leading term of the modified PDE for the FW-CT scheme:
N The sign is here! Similar
Vi T aVx ==~ Vxx to the backward heat equation

'

that i1s dynamically unstable



5.4 The Lax-Wendroff Scheme
Note that for the time discretization of the PDE u; + au, =0:

u(x.t+ At) —u(x, 1) At ) d au _
= U+ —-ty + O((A1)°) ot at) ot (_ a_
At > \ ¢ (au x ( a
= u, + ;a‘?(iz‘)uu + O((AI)E) .
— — 2
Recall that 7(x)= "= =2 FUEED () - Tl () 4= 0(2)

I, : L :
Hence Ea“(ﬂf)u.\-.x- can be cancelled by using the central finite difference with 2" order accuracy

The Lax—\Wendroff scheme:

Uttt — Uk Uf 1 — Uf‘-_l | @’ At _
Far ety = (UL ) s




To derive the Lax-Wendroff scheme

Do the Taylor expansion only with respect to .

Make use of the original PDE to transform u;; to a term involving
the derivatives w.r.t x (i.e., u,,), the resulting formulation is called

the

Apply finite difference for the term involving the derivatives w.r.t
x (Spatial discretization).



The Lax—Wendroff scheme is second-order accurate both in time and space.

The

u(x, t+ At) —u(x, 1)

T(x,t) =

At
At (u(x —h,t) = 2u(x.t) +u(x+ht))

of the Lax—\Wendroff scheme:

a(u(x+ht)—ulx—nht))

At
p— HI + 7”” - (!’Eh —

_|_

— O((Ar)?

h?) .

2eﬁ-_\}+ O

(A1) + 1?) M= —ay

B 9. 2
Uy = — AUyt = — U7 Uy = d" Uxx

29




The CFL condition for the Lax—Wendroff scheme
The von Neumann stability analysis

2
{Q(Q) — 1 — L; (({,ﬁhf . (_)—mg) 4 % (@_’M _o4 eﬂhf)

=1 — pisin® — 24 sin”(6/2).
where again # = /&, so
. 7 9 7 .2
1g(6)]? (1 — 2% sin” 5) + 1= sin” ¢
5 0 6 .5 0 6
= 1 — 47 sin’ 3 + 4p*sin® = + 417 sin” = > (1 — sin” = )

>
: N
:1—4.-'(1— ) it~
1L po)sin” 5

<1 — 47 (l — ,u:) :

We conclude |g(0)| <l if p <1, ie., At <h/|a|. If At >h/|al|, there are £ such
that |g(#)| > 1 so the scheme is unstable.

30



of the Lax—\Wendroff scheme:

« Second-order accurate both in time and space
« Conditionally stable (A7 </ /|al)

of the Lax—Wendroff scheme:
 Leads to a dispersive modified PDE

N ] 2 aAt\ >
v, +av, = ——ah” — | —/— Vixx
! . 6 h

« The numerical result can be expected to develop a train of oscillations
behind the discontinuity

1

0.4 F ‘ 0.4t
0.2t | : 0.2¢,,
‘ TSy
0 == Ceea06666560 ot *S”"J‘"@a T

-0.2
0 0.1 02 03 04 05 06 07 08 09 1

Time step O (initial condition) Time step 10



The Lax—Wendroff method for u; + au, =0:

Uff'f—H _ Uk Uk _ Uk 1 2A
J J J+1 Jj—1 a-Al k
— +E: DS (U - 2uf U ) 54

k+1

® ° L

IS A

The Beam—Warming method for u; + au, =0 fora > 01s

k4l _ gk |4 k k k (aA0)* o) k k
= v G (U ek o) G (020 - 0,
(5.18)

k+1
Whena > O: When a < O: ke+1

J-2 J-1 J j j*1 2 @



5.4 The Beam—Warming scheme

« The Beam—Warming method is second-order accurate in time and space if Az~ /.

Recall the one-sided finite difference formulas

' (x) = Bu(x) — 4u(x _7/:?) + u(x — 2h) + O(I?),
A (x) = u(x) — 2u(x —]f) + u(x — 2h) o).
2
2h

 The CFL constraintis 0 < Ar < ﬂ .
(l

 For this method, we do not require an Numerical Boundary Condition (NBC) at
x = 1, but we need a scheme to compute the solution ({ ,



5.4.2 The Crank-Nicolson Scheme

k41 prk k7 7k th+1  prk+1
U Uk UE - UR U - U

J j+1 j—1 k43
~ ~ | | = 5.21
A il / =D
« Second-order accurate in time and In space. ° ok +1
 Unconditionally stable.
® ® k
« An NBC is needed at x = 1 for case a > 0. j-1 j jt+1

« This method is effective for the 1D problem, since it Is easy to solve the
resulting tridiagonal system of equations.

» For 2D and 3D, use Alternating Direction Implicit (ADI) Method.



5.5 Numerical Boundary Condition

For the one-way wave equation u, + au, =0, we need a numerical boundary
condition (NBC) at one end when we use any of the “ ” FDM, i.e.,
the Lax—Friedrichs, Lax—\Wendroff, or leapfrog schemes.

« \We have one (and only one) physical boundary condition at one end.
e For“ ” FDM, we don’t need NBC, I.e., the Upwind
scheme, the Beam-\Warming scheme.

Lagrange interpolation
X — X7 L. XN — X

+f(-\‘2)' :

- - - . .";\- ] .",f\- ] . N 3 )
First-order approximation: U = Uy S(x) = /(1)

- X — X2

2 . i e -":g-' Y .‘\.‘J.- J__ A '\"‘j i — -“:‘-' f—2
Second-order approximation: Uy = Uj, V= AM=1 |kt XM T M

XMl — XM " NXM—2 — XM

k+1 rk+1 I,r)f{—|— 1
& M U M-=-2 + 2 L M—-1-



5.6 Finite Difference Methods for Second-order Linear Hyperbolic PDEs

Modeling 1D sound wave propagates in directions

2 .
Uy =da Uy, where a >0 1s the wave speed.

Find the analytic solution by changing variables:

- £E+n
. =X —dal .
Let . or 2
=X+ at f:'?’l—ff
| 2a

. . o 9. 9]
Using the chain-rule Uy = —dg + Aty Uy = A Uge — 207 Ugy + A7 Uy,
—

Uy = Ue T+ Uy, Uy = Uge + 2Uey + Uy .

2 40 I
Ueed™ — 207 Ug, + A Uy, = a” (Uee + 2y + Uyy)
2
da”ugy =0

36



Find the analytic solution as follows:

2
Uy = A" Uy,

1 Changing of variables
2 .
daug, =0
1 u must not contain any mix terms that depend
on both & and 7], otherwise RHS # 0

u(x,1) = F(E) + G(1)

where F(£) and G(n) are two differential functions of one variable.

!
u(x,t)=F(x —at) + G(x + at)

The two functions F, G are determined by initial and boundary conditions.

37



Example: the Cauchy problem

« 1D wave propagates in directions

U = (12“\\ . —0O0 < X <O .
H(,f\‘g 0) — H()(“\C) ; l»{;(.f\‘g 0) — g(‘C) )
The analytic solution is called the , as
1 1 X+t
u(x,t) =< (up(x —at) + up(x + at)) + — / g(s)ds.
2 2a |

« 1D wave propagates in direction

U+ auy =0, —oo<Xx<0o0.,

u(x.0)=n(x), t>0

The analytic solutionis  #(x, 1) =n(x — at).

38



« 1D wave propagates in directions

(a)
(X, o)

X

(xg— at, 0) (xo + at, 0)

The domain of

The solution u(x,7) ata
point (xo, 7o) depends on the
Initial conditions only in the
Interval of (xo — ato, xo + aty).

NCA

Xo— at = X

The domain of influence

Solution value u(x, ), t>0,
In the cone formed by the
characteristic lines x + at = x
and x — at=x( depends

on the initial values at (xg, 0).

39



5.6.1 An FD Method (CT-CT) for Second-order Wave Equations
Uy = Al O0<x<l.
IC: u(x,0)=uo(x), ur(x,0)=ui(x).
BC:  u(0,0)=g1(2). u(l,1)=g(1).

Central finite difference discretization both in time and space (CT-CT):

f\'. —|— l /\’ f\'. — l f\'. f\'. /\’
UI' B ZU] T UI' :az Uf_l B ZUf ™ Uj+l (5 26)
(A7)? h? ’ '

« Second-order accurate both in time and space ((Az)> + h?).

» The CFL constraint for this method is Ar< /.

 The values of U~ ! ~ u(x;, —At) is not explicitly defined, how to start the time stepping?
The IC u;(x,0)=u;(x) can be used here! Two methods are as follows:

1. Forward Euler method: U; = U + Aru(x;)

2. Ghost point method:  U;™' = U} — 2Azu () Substitute
a’ At? j into (5.26)
Ul = U + Atuy (z;) + o (U, =200+ U?,,)

ur(x,0) =u(x) {
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5.6.1.1 The Stability Analysis of the CT-CT scheme

The von Neumann analysis gives

g—24+(1/g) e M 24 s
— (- .

(A7)? 2

When s = |a|At/h, using 1 — cos(h€) = 2sin’(hE/2), this equation becomes
> —2g¢+1= (—4;1.2 sin’ 6’) g,

or
I (2 — 44 sin’ (9) g+ 1=0,

where 6 = h& /2, with solution

g=1—2u’sin" 6 + \/(1 —212sin 9)2 — 1.
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Note that | — 242 sin?# < 1. If we also have 1 — 201 sin®# < —1, then one of
the roots 1s

For some u

12002 92 0in2 )2 _
=125 0 — \J(1 - sinP0) —1<—1 0l

so |gi| > 1 for some 6, such that the scheme is unstable.

To have a stable scheme, we require 1 — 2° sin” 6 > 1, or 4° sin” ¢ <1,
which can be guaranteed if ;> <1 or A7r</h/|al|. This is the CFL condition
expected. Under this CFL constraint,

_ | p) 3
ef? = (1 - 2u7sin®0) + (1 - (1-24"sin"0) ) =1. |If g2 < 1,for
any @, stable
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5.8 Finite Difference Methods for Conservation Laws

The canonical form for the 1D conservation law 1s

u, + f(u), =0, (5.34)

and one famous benchmark problem is Burgers’ equation

u? A
Uy + (T) =0, (5.35)
X

in which f(u) =u?/2. The term f(u) is often called the flux. This equation can

be written 1n the nonconservative form

uy + vy =0 . (5.36)
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The solution likely develops shock(s) where the solution is discontinuous, even if the
Initial condition is arbitrarily differentiable, i.e., uy(x) = sin x.

Example: x € [—2,2], uy (x) = sin(mx + 1), the periodic condition is applied.

Time step O (initial condition)

1
0.5 /
0

—

Time step 15

Time step 5

Time step 10

1
0.5 4
o

—

Time step 20

1
0.5
0
05
El
2 1 5 2

Time step 25
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Upwind scheme for the Burgers’ equation

The conservative form:

rk+1 rk TTRN2 17k 2

. _ if Uk >
A 2 A

Uk — . Y
N 2 I

The non-conservative form:

rhk+1 ik Tk JTk
{'j L.j . {j L f {’j— | 0
At h
rk+1 7k k Tk
{"j L’J’ 4 [k Lf+l {’f —0
At J h '

if {;’* > (),

if [f‘ <0,
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Lax—Wendroff scheme for the Burgers’ equation (non-conservative form)

Review the L-W scheme for linear problem on page 23-25.

Step 1. wu(x,t+ At) —u(x,t At .
pl uf Az 1) S i+ 0((A)?)
Step 2. Uy = —ully — Uldyy . :
_ Wi + () The modified equation
o ) ——> JAN 4 5 )
= Ul + U Uy T Uldxyx Up + ULy = 7 (2””1‘ T+ u ”-T-‘f)

= 2uui + Ul :
Step 3. Apply finite difference for the modified equation, we obtain the L-W scheme:

Uk — U
fn"\'—i—] . ;A’ . p’( _H‘] _f_l
Uftt = Uf - aruf

Tk ko \ 2 Tk [k Tk
— + (Ar)z 2(/}{'{ L.,H_l o L.f_l + (L;A)E L.f_l 2Lf + L,H—]
2 J 2h J h? '
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5.8.1 Conservative FD Methods for Conservation Laws

Consider the conservation law
u, + f(u), =0,

and let us seek a numerical scheme of the form

of =t =5 (g ) (5.38)
where B L 8,1
8-~ 8 (uf p+1 uf_ﬁz_. T .llfquH) u; u; u;
\ | J—1 j j+1
1s called the numerical flux, satisfying YS'[encn ’ ’ ;j ’
glu u,....u)=f(u). (5.39)

. : o) ~
Such a scheme is called conservative. For example, we have g(u) =u~/2 for
Burgers’ equation.
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For a scalar conservation law, how to find g?

Step 1. Integrate the equation with respect to x from X;_1tox;, 1, to get
ST T3
X, o1
+5 j+3
f S uydy = —/ * f(u)odx
X, 1 X ]
J== J=3

= (fl4.0) =l )

Step 2. Integrate the equation above with respect to ¢ from ¢* to t**!, to get
k1

e
/ "2 dy dr = —/ (f(u(,\:ﬁl, 1)) —f(u(xj_%, r))) dr
X, 1 tk T2 '
I

tk

(]

/xﬁ%(tf(x. () —u(x, r"')) dx = — /I:HI(f(“(f‘feré‘ 1)) = Juloxy f))) ar.

=

b=
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Define the average of u(x, t) as

L[5 4
u'{‘/ﬁz u(x, t5)dx (5.40)
1

which is the|cell average of u(x, t) over the cell (l}— LN 1 ) at the time level k.
S 2 2
The expression that we derived earlier can therefore be rewritten as

l Ik—l—l rk—i—l
— k+1 —k . .
up =y = (frf\ f(u(;ﬁé, t))dt — /;k f(u(,yj_%_. r))dr)
oA Was | Was
_k .
== (Ar frﬁ flu(x Vil t))dt — Ar f(u(:v_%,f))dr

I o l
— T (‘gﬁé 3”%)-‘ where g1 =" [ flulx, 1.0
1= Ar ) _

) scheme‘.j

Step 3. Approximate this integral to obtain a (
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5.8.2 Some Commonly Used Numerical Scheme for Conservation Laws

e [ ax—Friedrichs scheme

, 1 At _
Uit =2 (Uk + UR) = 5 (AR — AR D) s (54D

e [ ax—Wendroff scheme

TH T Ar TiIC
Uit = Uf = S (Uf) — £UL)

o (P00 =10D) = 4,y (101 ~ 1)}

J J=

(5.42)
where A, = Df(u(x;,

. 1)) 1s the Jacobian matrix of f(u) at u(,\ﬂ%, ).

A modified version

TA—i—")‘ l rl' Af rk
U =3 (U o) - 3 (ko )
, A !
Ujf’wr] U! f(f( (/2

(5.43)
L h

pa| =

need the Jacobian matrix.

) — A U/ ,,) the Lax—Wendroff—Richtmyer scheme, does not
j+3 = ’
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Some comments

 For linear hyperbolic problems, if the initial data is
1t Is recommended to use accurate
methods such as the Lax—\Wendroff method.

« If the initial data has finite discontinuities, called , s second- or
high-order methods often lead to near the discontinuities
( )

 For a conservative nonlinear hyperbolic system, shocks may develop
In finite time

are preferred for hyperbolic differential equations,
usually there is no strict time step constraint as for parabolic problems.



