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For the second-order canonical form 

is hyperbolic if 𝑏2 − 𝑎𝑐 > 0 in the entire 𝑥 and 𝑡 domain. 

A few typical model problems involving hyperbolic PDEs are as follows: 
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where 𝐮 and 𝐟 are two vectors and 𝐴 is a matrix. The system is called 

hyperbolic if 𝐴 is diagonalizable, i.e., if there is a nonsingular matrix 𝑇
such that 𝐴 = 𝑇𝐷𝑇−1, and all eigenvalues of 𝐴 are real numbers. 
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For nonlinear hyperbolic PDE, shocks (a discontinuous solution) can develop 

even if the initial data is smooth. 
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Some phenomena of shocks
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Sound barrier Dam breaking Forward-facing step flow



5.1 Characteristics and Boundary Conditions 

The exact solution for the one-way wave equation 

For the finite domain problem 

We consider the method of characteristics in which the solution is constant along 

the characteristics. 
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For the IVP of ODE

The solution 𝑥 𝑡, 𝑐 = 𝑎𝑡 + 𝑐 is called the characteristic 

line of the IVP of PDE.  

Along the characteristic line 𝑥 = 𝑥 𝑡, 𝑐 , 𝑢 = (𝑥(𝑡, 𝑐), 𝑡)
satisfies the following ODE

which means that 𝑢(𝑥, 𝑡) is constant along the characteristic line. 

Therefore, we have

𝑢 𝑥 𝑡, 𝑐 , 𝑡 = 𝑢 𝑥 0, 𝑐 , 0 = 𝑢 𝑐, 0 = 𝜂 𝑐

𝑢 𝑥, 𝑡 = 𝜂 𝑥 − 𝑎𝑡 .

ቐ
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𝑑𝑡
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The method of characteristics 
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5.2 Finite Difference Schemes for Hyperbolic equations

• Lax–Friedrichs method; 

• Upwind scheme; 

• Leap-frog method;

• Lax–Wendroff method; 

• Crank–Nicolson scheme; and 

• Beam–Warming method. 

9



The FW-CT scheme:

Consider the one-way wave equation 

The von Neumann stability analysis: 

• The local truncation error is

• The method is unconditionally unstable 

we have

（The growth factor）
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𝑘

𝑘 + 1



The Lax–Friedrichs scheme:

• The local truncation error is

• The method is conditionally stable 

Therefore, if

The growth factor:
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𝑘

𝑘 + 1



clear; close all

a = 0; b=1; tfinal = 0.5; m=20;

h = (b-a)/m;

k = h; mu = k/h;

t = 0;

n = fix(tfinal/k);

y1 = zeros(m+1,1); y2=y1; x=y1;

% Initial condition

for i=1:m+1,
x(i) = a + (i-1)*h;
y1(i) = uexact(t,x(i)); % current
y2(i) = 0; % next level

end

t = 0;

for j=1:n,
y1(1)=bc(t); 
y2(1)=bc(t+k); % Physical boundary condition
for i=2:m

% FW-CT scheme
% y2(i) = y1(i) - mu*(y1(i+1)-y1(i-1))/2;
% Lax-Friderichs scheme
y2(i) = 0.5*(y1(i+1)+y1(i-1)) - mu*(y1(i+1)-y1(i-1))/2;

End

i = m+1;
% Numerical boundary condition
y2(i) = y1(i) - mu*(y1(i)-y1(i-1) ); 

t = t + k;
y1 = y2;
plot(x,y2); pause(0.5)

end
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The Lax–Friedrichs scheme



The initial condition is

The boundary condition is

The analytic solution is

Problem: the 1D advection equation
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𝑡 − 𝑥 is the time period that the sin function experiences. 



Time step 0 (initial condition) Time step 1 Time step 3

Time step 8 Time step 16 Time step 40

Solutions at different time steps obtained using the Lax–Friedrichs scheme

when Δ𝑡 = ℎ

14



Solutions at different time steps obtained using the Lax–Friedrichs scheme

when Δ𝑡 = 1.5ℎ (Blow up)

Time step 0 (initial condition) Time step 1 Time step 3

Time step 8 Time step 16 Time step 40 15



The Upwind scheme:

• The scheme is first-order accurate in time and in space

• The method is conditionally stable 

The growth factor for the case when            is：
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clear; close all

a = 0; b=1; tfinal = 0.5; m = 20; 

aa = 1; % The coefficient
h = (b-a)/m; k = h/abs(aa); 
mu = aa*k/h; % Set mesh and time step.

t = 0; n = fix(tfinal/k); 
y1 = zeros(m+1,1); y2=y1; x=y1;

figure(1); 
%axis([-0.1 1.1 -0.1 1.1]);
for i=1:m+1,

x(i) = a + (i-1)*h;
y1(i) = uexact(t,x(i)); % Initial data
y2(i) = 0;

end

% Time marching
for j=1:n,

y1(1)=bc(t); 
y2(1)=bc(t+k);
for i=2:m+1

y2(i) = y1(i) - mu*(y1(i)-y1(i-1) );
end
t = t + k;
y1 = y2;
plot(x,y2); pause(0.5); 

End

% Define exact solution for comparison
u_e = zeros(m+1,1);
for i=1:m+1

u_e(i) = uexact(t,x(i));
end

max(abs(u_e-y2))
plot(x,y2,'o',x,u_e)
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The Upwind scheme



18

Time step 0 (initial condition) Time step 2 Time step 4

Time step 6 Time step 8 Time step 10

Solutions at different time steps obtained using the Upwind scheme

when Δ𝑡 = 0.5ℎ (Smooth out effect)



The Leap-frog Scheme:
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𝑘

𝑘 + 1

𝑘 − 1
• The discretization is second-order in time and in space.

• The method is conditionally stable, CFL condition: 

• It requires an Numerical Boundary Condition at one end. 

• It needs        to get started, we can use the upwind or other 

scheme to obtain      .



The von Neumann analysis for the leap scheme
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5.3 The Modified PDE and Numerical Diffusion/Dispersion
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A modified PDE is the PDE that a finite difference equation satisfies exactly at 

grid points.

Take the upwind method for the advection equation                            with 

for example

The derivation of a modified PDE is similar to computing the local truncation error.

Insert              in  to the finite difference equation to derive a PDE that 

satisfies exactly.



𝜕

𝜕𝑡
on both sides

Use

High order terms can be ignored

Advection–diffusion equation 23

The modified PDE
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The upwind scheme

A second-order accurate 

approximation to the true solution 

of the leading modified PDE

A first-order accurate 

approximation to the true 

solution of the original PDE

The high order terms are 

𝑂 ℎ2 + Δ𝑡2 + 𝑂 Δ𝑡2ℎ

Satisfies exactly

The original PDE

The modified PDE The leading modified PDE
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The modified equation tells some features of the scheme:

• The computed solution smooths out discontinuities because of the diffusion term

• We have second-order accuracy to                        if 𝑎 is a constant and                .

• We can add the correction term to offset the leading error term to render a higher-order 

accurate method, but the stability needs to be checked. For instance, we can modify the 

upwind scheme to get a second-order scheme when             :

this approximates 𝑢𝑥𝑥 with 

𝑂 ℎ2 , therefore the RHS of 

(5.11) can be cancelled with 

𝑂 ℎ3 .



Why some schemes are unstable?
--- check the modified equation 

The FW-CT scheme:

The PDE:
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𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑡
)=

𝜕

𝜕𝑡
(−𝑎

𝜕𝑢

𝜕𝑥
)=

−𝑎
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑡
)= −𝑎

𝜕

𝜕𝑥
(−𝑎

𝜕𝑢

𝜕𝑥
)

The leading term of the modified PDE for the FW-CT scheme:

The sign is negative here! Similar 

to the backward heat equation 

that is dynamically unstable



5.4 The Lax–Wendroff Scheme
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Note that for the time discretization of the PDE                        :

𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑡
)=

𝜕

𝜕𝑡
(−𝑎

𝜕𝑢

𝜕𝑥
)=

−𝑎
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑡
)= −𝑎

𝜕

𝜕𝑥
(−𝑎

𝜕𝑢

𝜕𝑥
)

Recall that

can be cancelled by using the central finite difference with 2nd order accuracy Hence

The Lax–Wendroff scheme:
One additional term 

compared to FW-CT 

The derivation of the L-W scheme is easier than the derivation of the modified upwind second-order 

scheme on Page 21, because the central difference for the first-order term 𝑎𝑢𝑥 already gives a high order 

truncation error, here we only do the Taylor expansion w.r.t 𝑡. 
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1. Do the Taylor expansion only with respect to 𝑡.

2. Make use of the original PDE to transform 𝑢𝑡𝑡 to a term involving 

the derivatives w.r.t 𝑥 (i.e., 𝑢𝑥𝑥), the resulting formulation is called 

the modified PDE.

3. Apply finite difference for the term involving the derivatives w.r.t 

𝑥 (Spatial discretization).

To derive the Lax-Wendroff scheme
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The Lax–Wendroff scheme is second-order accurate both in time and space.

The local truncation error of the Lax–Wendroff scheme: 



The CFL condition for the Lax–Wendroff scheme
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The von Neumann stability analysis

If this is positive, then stable
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Advantages of the Lax–Wendroff scheme:

• Second-order accurate both in time and space

• Conditionally stable (                  )  

Disadvantages of the Lax–Wendroff scheme:

• Leads to a dispersive modified PDE

• The numerical result can be expected to develop a train of oscillations

behind the discontinuity

Time step 0 (initial condition) Time step 10
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The Lax–Wendroff method for                           :

𝑘

𝑘 + 1

𝑗𝑗-1 𝑗+1

𝑘

𝑘 + 1

𝑗𝑗-1𝑗-2

When 𝑎 > 0: When 𝑎 < 0:

𝑘

𝑘 + 1

𝑗 𝑗+1 𝑗+2



• The Beam–Warming method is second-order accurate in time and space if

• The CFL constraint is

Recall the one-sided finite difference formulas

• For this method, we do not require an Numerical Boundary Condition (NBC) at 

𝑥 = 1, but we need a scheme to compute the solution

5.4 The Beam–Warming scheme
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5.4.2 The Crank–Nicolson Scheme

• Second-order accurate in time and in space.

• Unconditionally stable.

• An NBC is needed at x = 1 for case 𝑎 > 0.

• This method is effective for the 1D problem, since it is easy to solve the 

resulting tridiagonal system of equations.

• For 2D and 3D, use Alternating Direction Implicit (ADI) Method.

𝑘

𝑘 + 1

𝑗𝑗-1 𝑗+1
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5.5 Numerical Boundary Condition

For the one-way wave equation                       we need a numerical boundary 

condition (NBC) at one end when we use any of the “central type” FDM, i.e.,

the Lax–Friedrichs, Lax–Wendroff, or leapfrog schemes.                        

• We have one (and only one) physical boundary condition at one end.

• For “upwind type” FDM, we don’t need NBC, i.e., the Upwind 

scheme, the Beam-Warming scheme.

First-order approximation:

Second-order approximation: 

If a uniform grid is used

Lagrange interpolation
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5.6 Finite Difference Methods for Second-order Linear Hyperbolic PDEs
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Modeling 1D sound wave propagates in two directions

Find the analytic solution by changing variables:

Let 

Using the chain-rule
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𝑢 must not contain any mix terms that depend 

on both     and    , otherwise RHS ≠ 0

The two functions 𝐹, 𝐺 are determined by initial and boundary conditions.

Find the analytic solution as follows:

Changing of variables



Example: the Cauchy problem
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The analytic solution is called the D’Alembert’s formula, as

• 1D wave propagates in one direction

• 1D wave propagates in two directions

The analytic solution is 

For comparison
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The domain of dependence The domain of influence

The solution at a

point depends on the 

initial conditions only in the 

interval of 

• 1D wave propagates in two directions

Solution value 

in the cone formed by the 

characteristic lines 

and                      depends

on the initial values at



5.6.1 An FD Method (CT–CT) for Second-order Wave Equations
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Central finite difference discretization  both in time and space (CT-CT):

• Second-order accurate both in time and space

• The CFL constraint for this method is               .

• The values of                                 is not explicitly defined, how to start the time stepping? 

The IC                              can be used here! Two methods are as follows:

1. Forward Euler method:

2. Ghost point method: Substitute 

into (5.26)



5.6.1.1 The Stability Analysis of the CT-CT scheme
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For some 𝜇
and 𝜃, unstable

If 𝜇2 ≤ 1, for 

any 𝜃, stable
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5.8 Finite Difference Methods for Conservation Laws
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Note for conservation law problems:

The solution likely develops shock(s) where the solution is discontinuous, even if the 

initial condition is arbitrarily differentiable, i.e., 𝑢0(𝑥) = sin 𝑥.

Example:        𝑥 ∈ −2,2 , 𝑢0 𝑥 = sin 𝜋𝑥 + 1 ,  the periodic condition is applied.

Time step 0 (initial condition) Time step 5 Time step 10

Time step 15 Time step 20 Time step 25



Upwind scheme for the Burgers’ equation 
(first-order accurate in space and time)
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The non-conservative form:

The conservative form:

The conservative 

form is better if 

shocks develop



Lax–Wendroff scheme for the Burgers’ equation (non-conservative form)  

(second-order accurate in space and time)
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Review the L-W scheme for linear problem on page 23-25.

Step 1.

The modified equation
Step 2.

Step 3. Apply finite difference for the modified equation, we obtain the L-W scheme:



5.8.1 Conservative FD Methods for Conservation Laws
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𝑥𝑗

𝐮𝑗𝐮𝑗−1 𝐮𝑗+1

𝐠
𝑗−

1
2

𝐠
𝑗+

1
2

Stencil



For a scalar conservation law, how to find g?
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Step

Step
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where

Step 3. Approximate this integral to obtain a (Finite Volume) scheme.
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5.8.2 Some Commonly Used Numerical Scheme for Conservation Laws

the Lax–Wendroff–Richtmyer scheme, does not 

need the Jacobian matrix.



• For linear hyperbolic problems, if the initial data is smooth (no 

discontinuities), it is recommended to use second-order accurate 

methods such as the Lax–Wendroff method. 

• If the initial data has finite discontinuities, called shocks, as second- or 

high-order methods often lead to oscillations near the discontinuities 

(Gibbs phenomena) 

• For a conservative nonlinear hyperbolic system, shocks may develop 

in finite time even if the initial data is smooth. 

• Explicit methods are preferred for hyperbolic differential equations, 

usually there is no strict time step constraint as for parabolic problems. 
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Some comments


