IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

5528715

Hyperspectral Image Transformer
Classification Networks

Xiaofei Yang ™, Weijia Cao

Abstract— Hyperspectral image (HSI) -classification is an
important task in earth observation missions. Convolution neural
networks (CNNs) with the powerful ability of feature extraction
have shown prominence in HSI classification tasks. However,
existing CNN-based approaches cannot sufficiently mine the
sequence attributes of spectral features, hindering the fur-
ther performance promotion of HSI classification. This article
presents a hyperspectral image transformer (HiT) classification
network by embedding convolution operations into the trans-
former structure to capture the subtle spectral discrepancies
and convey the local spatial context information. HiT consists
of two key modules, i.e., spectral-adaptive 3-D convolution pro-
jection module and convolution permutator (ConV-Permutator)
to retrieve the subtle spatial-spectral discrepancies. The spectral-
adaptive 3-D convolution projection module produces the local
spatial-spectral information from HSIs using two spectral-
adaptive 3-D convolution layers instead of the linear projec-
tion layer. In addition, the Conv-Permutator module utilizes
the depthwise convolution operations to separately encode the
spatial-spectral representations along the height, width, and
spectral dimensions, respectively. Extensive experiments on four
benchmark HSI datasets, including Indian Pines, Pavia Uni-
versity, Houston2013, and Xiongan (XA) datasets, show the
superiority of the proposed HiT over existing transformers and
the state-of-the-art CNN-based methods. Our codes of this work
are available at https://github.com/xiachangxue/DeepHyperX for
the sake of reproducibility.

Index Terms—3-D convolution projection, convolution neural
network (CNN), hyperspectral image (HSI) classification,
transformers.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) collecting hundreds of
wavelength bands in spectral dimension at each pixel
offer much more abundant spatial and spectral information for
land cover recognition at a fine-grained level. This provides
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great potential in various high-precision earth observation
missions, such as land cover identification [1], [2], urban
change detection [3], [4], and environment monitoring [5], [6].

HSI classification extracts the spatial-spectral information
to identify the pixels using various methods. The classification
process mainly includes three steps: 1) image preprocessing
(e.g., denoising [7], cloud removal [8], and missing data recov-
ery [9]); 2) dimensionality reduction [10], [11]; and 3) fea-
ture extraction [12]-[14]. Among them, feature extraction is
the key step to obtain high-precision classification results.
Many hand-crafted-based methods of feature extraction for
HSI classification have been developed in the past decade.
For example, a support vector machine (SVM) [15] and
K -nearest neighbor (KNN) [16] classifiers are widely used in
HSI classification. Duan et al. [17] proposed a semisupervised
method, called geodesic-based sparse manifold hypergraph,
to extract HSI features by using nonlinear geodesic sparse
hypergraphs. Luo et al. [11] proposed a multistructure unified
discriminative embedding (MUDE) method for better repre-
senting the low-dimensional features, and achieved satisfactory
classification results. However, these methods could not fit and
represent a large number of complex data, resulting in the
unsatisfactory performance.

Since deep learning architectures have great success in nat-
ural image recognition [18]-[22], many researchers apply them
to HSI classification and propose various deep-learning-based
HSI classification methods to extract more abundant features
by inserting various models. For example, Boulch er al. [23]
proposed an autoencoder (AE)-based network for HSI classi-
fication by using four AE layers followed by a Max-pooling
layer. Yang et al. [24] presented convolution neural network
(CNN)-based methods (e.g., 2-D-CNN and 3-D-CNN), stack-
ing convolution operations (2-D or 3-D) followed by the
BatchNorm (BN) [25] and rectified linear unit (ReLU) [26]
activation function. It was noted that this article used a
convolution layer with step size 2 to reduce dimension rather
than the pooling layer. They have achieved satisfactory clas-
sification results, which attributes to the powerful ability to
extract the local spatial context information. Other methods
are recurrent neural network (RNN)-based HSI classification
methods, which could handle the sequentiality data analysis.
For example, Mou et al. [27] applied the RNNs to HSI
classification and proposed an RNN classification network to
mine the relationships of spectral bands. However, all these
deep-learning-based HSI classification methods have some
drawbacks.

1) For CNNs: All the CNN-based methods are susceptible

to the lack of the ability to capture the subtle spectral
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discrepancies from the neighboring spectral bands, even
though they have the powerful ability in capturing the
local context information from HSIs. Second, CNN-
based methods are overly concerned with spatial sequen-
tial information, resulting in misrepresenting the spectral
sequential information in the extracted features and
making it more difficult to mine and represent intrinsic
and potentially spectral information.

For RNNs: The RNN-based methods suffer from severe
gradient vanishing and hardly learn the long-term depen-
dences due to their extreme dependence on the order of
spectral bands, leading to a performance bottleneck in
practical HSI classification.

Very recently, the transformer network [28], a novel deep
learning mechanism, is proposed to solve natural image classi-
fication tasks from a sequence data perspective. Unlike CNNs
and RNNs, transformer networks are more effective while ana-
lyzing the sequential data, mainly because of the self-attention
techniques. This provides a new and effective approach for
HSI classification. It is well known that the self-attention
technique is the key module in transformers and can capture
global information by encoding the positions. However, these
transformer networks are proposed for natural image classifi-
cation tasks. Some researchers applied the transformer to HSI
classification. For example, He et al. [29] directly employed
the transformer network for HSI classification and proposed
the HSI-bidirectional encoder representations from transformer
(BERT) by using bidirectional encoder representation from
the transformer. He et al. [30] proposed a spatial-spectral
transformer network for HSI classification. However, these
two transformers directly used linear projection and do not
consider the local spatial context information. In addition,
the existing transformers have some problems, which restrict
the further improvement of the performance for the HSI
classification task. The problems are summarized as follows.

1) Although they perform well in solving the issue
of long-term dependence of spectrum characteristics,
they fail to capture the local spatial-spectral fusion
information.

According to [31] and [32], due to the crucial
2-D convolution operations, transformer networks can
capture the local spatial context information. However,
2-D convolution operations cannot satisfactorily retrieve
the local spectral information.

Existing transformer networks encode spatial informa-
tion sequentially using the flattening operation and
linear projection, leading to the loss of the local
spatial-spectral information and position information.

Based on the above-mentioned analysis, this article aims
to propose a novel transformer-based classification network,
called hyperspectral image transformer (HiT), to achieve the
high-performance HSI classification by integrating the local
feature and the global feature. Specifically, HiT consists of two
key modules, namely, the spectral-adaptive 3-D convolution
projection (SACP) module and the Conv-Permutator mod-
ule. Different from the existing transformer-based HSI clas-
sification methods (such as [29] and [30]), our proposed
HiT method is a vision transformer (ViT)-based method that

2)

2)

3)
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could extract the local spatial-spectral fusion representations
from the input HSIs using the SACP module and encode
the representations using the Conv-Permutator module. More
specifically, the SACP module is proposed to extract the
local spatial information and adaptive capture the long-term
spectral information. The Conv-Permutator module could sep-
arately encode the representations along the height, width,
and spectral dimensions, respectively. In general, the main
contributions of this article can be summarized as follows.

1) We propose a novel transformer-based HSI classification
method called HiT. To the best of our knowledge,
this article is the first to apply ViTs with convolution
operation in the HSI classification.

2) We propose an SACP module to adaptively extract
the spectral information, and further capture the
spectral-spatial fusion information. To the best of our
knowledge, this article is the first to employ the
3-D convolution operation to project the input HSIs.

3) We propose a new module, named Conv-Permutator,

to capture much more spectral-spatial information by
encoding the input representations along the height,
width, and spectral dimensions, respectively.
The experimental results based on four benchmark
datasets demonstrate that the proposed HiT outper-
forms the state-of-the-art transformers and CNN-based
methods.

We organize the remaining of this article as follows.
Section II discusses the related work about deep-learning-
based HSI classification and transformer networks. Section III
gives a brief illustration of the proposed HiT. Section IV
illustrates the four benchmark HSI datasets, experimental set-
tings, and experimental results and the corresponding analyses.
Section V finally draws conclusions and a brief outlook of the
future work.

4)

II. RELATED WORK
A. Deep-Learning-Based Methods for HSI Classification

Due to the great success of deep learning architectures
(e.g., AEs, CNNs, and RNNs) on natural image recognition,
many deep-learning-based methods are proposed for HSI
classification [33]-[37]. For example, Chen et al. [38] and
Boulch et al. [23] applied AEs into HSI classification, and
proposed AE networks to extract deep features from HSIs,
respectively. Mou et al. [27] and Hang et al. [39] utilized the
RNNSs to model the sequentiality data for HSI classification.

Since CNNs have the powerful ability in extracting the local
spatial context information, many CNN-based approaches
have been established for HSI classification. For example,
Sharma et al. [40] proposed a 2-D-CNN-based approach for
HSI classification by stacking 2-D convolution layers to cap-
ture the local spatial context information. Ran et al. [41]
utilized two CNNs to extract spectral information and
spatial context information, respectively. Some proposed
modules were also inserted into the backbone networks
to improve the classification performance. For example,
Lorenzo et al. [42] proposed a new CNN-based method to
classify the HSIs by applying the attention mechanism to
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select the bands. Liu ef al. [43] designed a semisupervised
CNN-based method for HSI classification. Owing to the pow-
erful ability of 3-D-CNNs in extracting the spatial-spectral
fusion information, Yang et al. [24] and Chen et al. [44] pro-
posed 3-D-CNN-based approaches for HSI classification. Lee
and Kwon [45] designed a deep fully 3-D-CNN to capture the
spatial-spectral information from HSIs. Li et al. [46] designed
a new 3-D-CNN method without any pooling layers to produce
a higher classification accuracy.

However, these deep learning approaches have their draw-
backs in HSI classification. Although RNNs can model the
sequentiality to represent the spectral bands, they may fail
in processing the long-term dependences, because they are
extremely dependent on ordered spectral bands. Although
CNNs and their variants have achieved promising classification
results, their inherent network and excessive concern with
the local spatial information may not capture much more
useful spectral sequentiality information. This will hinder
them from generating a higher classification accuracy in HSI
classification tasks.

B. ViTs for Image Classification

Recently, researchers rethink the natural image classification
tasks from a sequence perspective using transformers networks
and have proposed many transformer-based approaches for
image classification. For example, Dosovitskiy et al. [47] first
applied the transformer to the image classification task and
proposed the ViT network. In ViT, the input images should be
cropped into nine blocks, and then, the means of positional
encoding are used to obtain the globally sequential informa-
tion. However, the attention maps tend to be similar with the
increase in the ViT’s depth, which is called attention collapse.
To overcome this issue, Zhou et al. [48] exchanged the atten-
tion weight of each head to recalculate the attention values
using a learnable matrix, proposing the DeepViT for image
classification. Nevertheless, these methods fail to capture the
local spatial contextual information. Yuan et al. [49] down-
sampled the image sequence by unfolding to overlap the input
image data in each token and proposed a new tokens-to-tokens
(T2T) vision transformer for the image classification task.

Some researchers attempted to improve the performance
of transformer networks by embedding the convolution tech-
niques [50]-[57]. For example, Graham et al. [32] proposed
a ViT in ConvNet’s Clothing, called LeViT, by utilizing
convolution projection instead of patchwise projection and
adding extra nonlinearity in attention. Heo et al. [31] revisited
the ViT and established a robust vision transformer (RvT)
by combing some sturdy components, such as convolution
layers, pooling layers, and more attention heads. All these
ViTs, however, are established for the natural image clas-
sification tasks. Although there are some transformer-based
HSI classification methods [29], [30], they fail in capturing
the local spectral discrepancies in HSI classification tasks. In
this article, we propose a novel ViT classification network
named HiT to handle the HSI classification problems from
a sequential perspective. HiT consists of two simple and
effective modules, namely, SACP module used for capturing
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the local spatial-spectral fusion information and long-term
spectral information, and Conv-Permutator with depthwise
convolutions and pointwise convolutions utilized for separately
encoding the representations along the height, width, and
spectral dimensions, respectively.

III. METHODOLOGY

In this section, we will introduce the proposed HiT for
HSI classification, including the details of SACP module and
ConV-Permutator.

A. Overview of the Proposed HiT

In this article, we aim at designing a novel transformer-
based method, i.e., HiT, for performing the high-precision
classification of HSIs. HiT consists of two key modules
for addressing the challenges in HSI classification, namely,
SACP module that extracts the local spatial information and
the long-term spectral information using the spectral-adaptive
3-D convolution layers and Conv-Permutator that separately
encodes the representations along the height, width, and spec-
tral dimensions using the depthwise and pointwise convolution
layers. Thus, the proposed HiT can enhance the capturing
capacity of the local spatial-spectral information and reduce
the local information loss with deepening the networks. Fig. 1
illustrates an overview of the proposed HiT in the HSI classi-
fication task. We report the detailed definition of the proposed
HiT in Table I. The first and second columns are the name of
each block and its definition in terms of the layers. The third
and fourth columns denote the input size and the output size
of each block. It is worth noting that L and G denote the local
branch and the global branch.

B. SACP Module

Our SACP is  built with two spectral-adaptive
3-D convolution layers, shown in Fig. 2, which consists
of two branches: local spatial branch L and global spectral
branch G. The local spatial branch aims to learn the spatial
location-sensitive importance map, and the global spectral
branch adaptively aggregates the spectral information in a
convolution manner. Suppose that X e RCE*S*HxW g the
input image (H and W are 15 in this article), where C
represents the number of channels, and S, H, and W are its
spectral-spatial dimensions. Thus, the SACP layer can be
formulated as follows:

Y = G(X)®(L(X)®X) (1)

where ) is the convolution operation and (©) denotes
the elementwise multiplication. It is worth noting that the
above-mentioned two branches focus on different aspects of
spectral-spatial information.

1) For the Local Branch: It attempts to capture the short-
term spectral-spatial information and to attend the
important features by using 3-D convolution.

2) For the Global Branch: It aims to incorporate long-range
spectral information to conduct adaptive spectral aggre-
gation by using 3-D convolution layers.
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Fig. 1. Overall architecture of the proposed HiT. The SACP is spectral-adaptive 3D convolution projection module, which is used to extract the spatial-spectral
representation from the input image, and then, this extracted representation is fed into a sequence of Conv-Permutators (e.g., four stages in this article) for
feature encoding along the height, width, and spectral dimensions, respectively. Finally, a global average pooling layer and a fully connected layer are used
for the class prediction. We note that the Conv3D and downpool layers are used to reduce the dimensions.
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Fig. 2. Illustration of the proposed SACP layer. The SACP is composed of
two branches: a local branch L and a global branch G. We note that ® is
the convolution operation and @ denotes the elementwise multiplication.

1) Local Branch: 1t is spatial location-sensitive and aims
to leverage short-term spectral dynamics to perform local
spatial-spectral feature extraction operations.

As shown in Fig. 2, the local branch is built by a sequence
of 3-D convolution layers with ReLU [26]. Since the goal
of the local branch is to capture short-term spatial-spectral
information, we first average pooling the input image with
the “AdaptiveAvgPool3d” operation, but not in the spectral
dimension, and then set the first 3-D convolution kernel size
K as (3, 1, 1) to learn an importance map solely based
on a local spectral window. Specifically, the first Conv3D is

followed by BN [14] and ReLU. Then, the second Conv3D
with a Sigmoid activation yields the importance weights W €
RC*S which are sensitive to spectral location. Finally, the
spectral excitation is formulated as follows:

Z = Fescae W) (O X = LX) () X
W = L(X) = Sigmoid(Conv3D(J(Conv3D(X))))

)
3)

where (©) and 0 denote the elementwise multiplication
and the activation function ReLU, respectively. In addition,
Z € ROS*HXW Tn order to match the size of X, Frescate (W)
rescale the W to W e RE*S*HxW by replicating in spatial
dimension. Then, we can get the output of the local branch.

2) Global Branch: It incorporates global spectral informa-
tion and learns to produce spectral-adaptive convolution kernel
for dynamic aggregation.

As shown in Fig. 2, the global branch is built with two
Conv3D layers, whose size is 1 x 1 x 1. It is similar to the
squeeze-and-excitation (SE) block, except that the convolution
layer is the 3-D convolution layer. It is worth noting that the
generated kernel is channelwise, which means that the global
branch only models the spectral relations without considering
the channel correlation. More formally, for the cth channel,
the adaptive kernel is learned as follows:

0. = G(X), = softmax(F (W, o(F (W), (X)) &)

where ®. € RX is generated adaptive kernel (aggregation
weights) for the cth channel, K is the adaptive kernel size,
and J denotes the activation function ReLU. F(W;) and F(W>)
denote the Conv3D layers, and ®(-) is the adaptive average
pool operation. Since the learned adaptive kernel has the global
receptive field, it could aggregate global spectral context. The
learned aggregation weights ® = |, 0,,..., 0, will be
employed to perform spectral-spatial adaptive convolution.
3) Spectral-Adaptive Aggregation: In this step, we output
the final features by combining the local branch and the global
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TABLE I

ARCHITECTURAL DETAILS OF THE PROPOSED HiT

Block

Definition

Input size

Output size

Input

1x200x15 x 15

4 x 100 x 8 x 8

SACP-1

AvgPool
3 x 1 x 1Conv3D
1 x 1 x 1Conv3D
Sigmoid
AvgPool
1 x1x 1Conv3D
1 x1x 1Conv3D
Softmax ]
stride = (2,2,2)

4 x 100 x 8 x 8

4 x 100 x 8 x 8

SACP-2

AvgPool
3 x 1 x 1Conv3D
1 x 1 x 1Conv3D
Sigmoid
AvgPool
1 x 1 x 1Conv3D
1x1x 1Conv3D
Softmax ]
stride = (2,1,1)

4 x 100 x 8 x 8

8 X 50x8x%x8

Layer Norm
1 x 1Conv2D
1 x 1Conv2D
1 x 1Conv2D
L Layer Norm |
Layer Norm

Conv-Permutator-1

x4 400 x 8 X 8 400 x 8 X 8

Layer Norm
1 x 1Conv2D
1 x 1Conv2D
1 x 1Conv2D
L Layer Norm |
LayerNorm

Conv-Permutator-2

X 3 400 x 8 X 8 400 x 8 X 8

Downpooling 1 x 1 Conv2D stride=2

400 x 8 x 8 400 x 4 x 4

LayerNorm
1 x 1Conv2D
1 x 1Conv2D
1 x 1Conv2D
L Layer Norm |
Layer Norm

Conv-Permutator-3

400 x 4 x 4 512 x4 x4

Layer Norm
1 x 1Conv2D
1 x 1Conv2D
1 x 1Conv2D
L Layer Norm |

Layer Norm

Conv-Permutator-4

X 3 512 x4 x4 512 x4 x4

FC LayerNorm

512 x1x1 16 x 1 x1

Softmax

branch, which can be formulated as follows:

Y =G6X))Z (5)

where Y is the final output features (Y € RC*S*H>xW),

In summary, our SACP presents an adaptive module
and focuses on capturing different structures (i.e., short-
term spatial-spectral and long-term spectral structures). It is
worth noting that we finally reshape the output ¥ to ¥ €
R(CEX$)XHXW = \where the third dimension is the spectral
dimension.

C. Conv-Permutator

According to Fig. 1, our Conv-Permutator module con-
sists of two key components, i.e., ConvPermute and
channel-master limited partnership (MLP) to encode the local
spatial information and spectral information, respectively. The
channel-MLP adopts a similar structure in ViP, consisting of

two fully connected layers with a Gaussian error linear unit
(GELU) [58] intermediate activation function. Sharing the sim-
ilar processing of spatial encoding in ViP, the spatial-spectral
information is processed along the height, width, and spectral
dimensions, respectively. Different from ViP, we extract the
spatial-spectral representations by utilizing the depthwise and
pointwise convolution layers rather than linear projection.
Given an input embedding D tokens T € RT*WxD | the
outputs of Conv-Permutator can be formulated as

Y = ConvPermute(LN(T)) + T (6)
Z = channel- MLP(LN(Y)) + Y (7

where LN denotes the LayerNorm, and Y and Z are
the outputs of ConvPermute and channel-MLP, respectively.
The ConV-Permutator in ConV-Permutator module will
be introduced in detail as follows. The LayerNorm LN
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Fig. 3. Illustration of the proposed Conv-Permute module. The proposed

Conv-Permute module first encodes the spatial-spectral features along the
height, width, and spectral dimensions, respectively. The extracted features are
then aggregated utilizing elementwise addition and a fully connected layer.

can be formulated as
x — E(x)

v = Var(x) + € ®

where E is the mean, Var denotes the standard deviation, and
€ is a very small constant, such as le — 7. x and y are the
input feature maps and output feature maps, respectively.

ConvPermute: Fig. 3 illustrates the proposed ConvPermute.
Since the features obtained from the previous projection
module have three dimensions—H and W in the spatial
domain, and § in the spectral domain—we propose a special
architecture, named ConvPermute, that could divide the input
features into three branches to encode the input representations
along the height, width, and spectral dimensions, respectively.

Suppose that the hidden dimension § is 256, and the
input representations are with size 8 x 8. To encode the
spatial-spectral information, we conduct the height channel
and width channel operations along the spatial dimensions,
and spectral channel operation along the spectral dimension.
The spectral channel operation captures the local spectral
information from the input X using a simple pointwise
convolution layer with weights Wg € R'*!, generating the
local spectral features Xg. Given the input X € RH*WxD,
the spatial information encoder divides X into two branches:
height-channel encoder and width-channel encoder. The height
channel operation extracts the height local spatial information
using a depthwise convolution layer with weights Wy, pro-
ducing the local spatial information in height dimension Xy.
The width channel operation utilizes a depthwise convolution
layer with weights Wy to capture the width local spatial
information, producing outputs of the local spatial information
in height dimension Xy. We then simply fuse the output
features obtained from three branches using the elementwise
addition. To further improve the fused features, we recalibrate
the importance of the three different branches by using a new
fully connected layer. It can be calculated as

Xn = Fy(X) )
Xw = Fw(X) (10)
Xs = Fs(X) (11

X = F(Xy + Xw + Xs) (12)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

where Fy and Fy are the depthwise convolution layers, and
Fs denotes the pointwise convolution operation. F(-) denotes
a fully connected layer with weights Wp € R€*C,

Finally, we employ a skip connection [20] to avoid the
vanishing gradient problem.

1) Depthwise and Pointwise Convolutions: Our proposed
ConvPermute is built with depthwise convolution and point-
wise convolution. While the standard convolution operation [as
shown in Fig. 4(a)] simultaneously presents the channelwise
and spatialwise computation, depthwise convolution is a spa-
tial feature learning operation that applies a single convolution
filter for each input channel and the pointwise convolution is a
channel feature learning operation that combines the channels.
Supposing an input feature map Fy; of size Dy X Dy X Dy
and a standard convolution filter K of size h X w X m X n,
then the output feature map Op can be acquired

Op = E Kiimn - Fivi-ti+j-1m

i,j,m

13)

where i € h and j € w.

Different from the standard convolution, the output feature
map Op obtained with the depthwise convolution (K is the
filter) [as shown in Fig. 4(b)] can be calculated

Op = E Kijm - Frritivj—1m-

i,J

(14)

When applying the pointwise convolution [as shown in
Fig. 4(c), and its size 1 X 1] on the input feature map Fyy,
the output feature map Op can be formulated

00 = Z Km,n : Fk—l,l—l,m- (15)
m

Since the spectral information is embedded in the channel

dimension, the pointwise convolution layer is used for cap-

turing the spectral information.

In summary, the depthwise and pointwise convolutions are
used for capturing the spatial correlations and the spectral
correlations, respectively. It is worth noting that the sizes of
depthwise convolution layers Fy and Fy are setto 3 x 1 and
1 x 3 in this article.

IV. EXPERIMENT

In this section, we first depict four benchmark HSI datasets,
including the Indian Pines dataset, Pavia University dataset,
Houston2013 dataset, and Xiongan (XA) dataset. Second,
we will introduce the experimental setup, including the eval-
uation metrics used for this article, state-of-the-art backbone
methods (such as AE-based methods, RNN-based methods,
CNN-based methods, and transformer-based methods), and
the implementation details. Finally, we conduct extensive
experiments and ablation studies to evaluate the performance
of the proposed HiT.

A. Datasets Description

1) Indian Pines Dataset: This hyperspectral dataset record-
ing remote sensing images over North-Western Indiana, USA,
was obtained in 1992 using the Airborne Visible Imaging
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Different convolution operations, including standard, depthwise, and pointwise convolution operations. It is worth noting that we show four input

channels, two outputs for standard and pointwise convolution layers, and four outputs for depthwise convolution layers. The kernel size is 3 x 3. (a) Standard

convolution. (b) Depthwise convolution. (c) Pointwise convolution.

Spectrometer (AVIRIS) sensor. The HSI consists of 145 x
145 pixels in the spatial dimension, and 220 bands in the
spectral dimension. There are 200 spectral bands retained after
removing 20 noisy bands. There are 16 categories in this
dataset, including alfalfa, corn, and woods. We use 10% train-
ing samples and the other 90% samples are testing samples.

2) Pavia University Dataset: This dataset was collected
using the Reflective Optics System Imaging Spectrome-
ter (ROSIS) sensor at Pavia University, Pavia, Italy. The
Pavia University image consists of 610 x 340 in the spatial
dimension, and 103 bands in the spectral dimension. This
dataset contains nine land cover classes, including asphalt,
gravel, and trees. Only 10% samples are set as the training
samples, and 90% samples are testing samples.

3) Houston2013 Dataset: This hyperspectral dataset was
captured by the innovative teaching methods for tomorrows’
renewable specialists (ITRES) CASI-1500 sensor over the
University of Houston and its surroundings in Texas, USA.
It has been widely used for assessing the performance of the
land cover classification [59]. There are 349 x 1905 pixels
and 144 bands in the spatial and spectral dimensions of
the Houston2013 images, respectively. It is noted that the
Houston2013 dataset used in this article is a cloud-free ver-
sion provided by the Geo-Science and Remote Sensing Soci-
ety (GRSS) data fusion competition. There are 15 categories,
including highway, road, and trees. The samples are divided
into 10% training samples and 90% testing samples.

4) Xiongan Dataset: This is a new hyperspectral dataset,
which was collected using the visible and near-infrared imag-
ing spectrometer over the XA County and its neighboring
Baiyangdian Lake areas in China, and provided by the Chinese
Academy of Sciences in October 2017 [60]. The sensor can
capture 250 spectral bands varying from 400 to 1000 nm,
and the image size consists of 3750 x 1580 pixels. These
data contain 20 land cover classes, including willow, rice, and
corn. Only 1% samples are set for training and the other 99%
samples are used for testing.

B. Experimental Setup

1) Evaluation Metrics: We evaluate the classification per-
formance of all methods by using two widely used metrics,
i.e., overall accuracy (OA) and kappa coefficient (x).

2) Comparison With State-of-the-Art Backbone Methods:
To conduct the following comparison experiments,

we select several representative baselines and state-of-the-art
backbone methods, including AEs (i.e., Boulch ef al. [23]),
RNNs (i.e., Mou et al [27]), CNN-based methods
(i.e., 2-D-CNN [24], R-2D-CNN [24], 3-D-CNN [24], and
He et al. [37]), and transformer-based methods (i.e., ViT [47],
Deep ViT [48], LeViT [32], and RvT [31]). These comparison
methods are designed as follows.

1) For Boulch ef al. [23], an AE-based method, the
encoder layers are equal to the spectral bands of the
input image. Each layer consists of one 1-D convolu-
tion operation followed by 1-D-Maxpool, BN [25], and
ReLU [26] activation function.

2) For Mou et al. [27], an RNN-based method, there is one
recurrent layer with the gated recurrent unit. Each layer
has 64 neuron units.

3) The 2-D-CNN [24] comprises three 2-D convolution
blocks and a softmax layer. Each 2-D convolution
block consists of a 2-D convolution layer, a BN
layer, a ReLU activate function, and an avg-pooling
layer.

4) For R-2D-CNN [24], there are two CNNs with three
2-D convolution blocks. Each CNN has equal parame-
ters to the 2-D-CNN.

5) The 3-D-CNN [24] consists of three 3-D convolution
blocks and a softmax layer. Each 3-D convolution block
comprises a 3-D convolution layer, a BN layer, a ReLU
activation function, and a 3-D convolution layer with
step size 2.

6) For He et al. [37], another 3-D-CNN-based method,
different from the 3-D-CNN, includes a total of ten
3-D convolution layers and a softmax layer.

7) For ViT, a classical transformer-based method, following
the ViT architecture [47], it contains a linear-projection
component and transformer encoders.

8) The Deep ViT [48] is a ViT-based method by adding a
linear layer following the self-attention modules.

9) The T2T [49] method uses a soft-split operation instead
of a hard-split operation to improve the tokenization in
ViT. As a result, the T2T can capture the finer local
structure. This method consists of a patch embedding
block without class token and a transformer block with
the class token.

LeViT [32], a transformer-based method, includes four
convolution embedding layers instead of linear projec-
tion. Similar to ViT, we also follow the LeViT archi-

10)
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TABLE 11
CLASSIFICATION RESULTS OF THE INDIAN PINES DATASET
Class No AEs RNNs CNNs , . Transformers' ]
" ["Boulch [23] | Mou [27] | 2D-CNN [24] 3D-CNN [24] He [37] R-2D-CNN [24] | ViT [47] Deep ViT [48] T2T [49] LeViT [32] RvT [31] HiT (Ours)
1 0.00 69.88 96.30 52.63 74.63 76.47 48.48 57.63 24.49 68.42 67.44 94.25
2 35.67 65.56 88.70 75.07 66.69 90.16 66.69 72.80 68.37 68.15 74.99 92.68
3 29.96 56.63 78.84 57.02 59.53 80.09 51.60 60.47 54.43 59.75 74.51 78.55
4 0.00 53.40 91.32 41.81 47.06 74.64 56.66 67.27 70.68 72.73 85.30 86.73
5 12.93 86.65 87.52 83.88 75.21 87.39 47.81 55.14 46.34 44.07 59.03 85.53
6 54.99 94.24 98.85 97.45 92.64 99.47 77.00 91.85 91.55 85.80 86.10 98.32
7 0.00 47.06 74.42 4242 4242 89.36 40.00 88.46 26.67 14.63 55.56 92.00
8 75.02 95.30 94.39 90.09 92.78 94.03 87.32 93.20 88.74 89.33 92.91 94.63
9 0.00 26.09 97.14 36.36 75.86 100 28.57 80.00 85.71 44.44 22.22 64.86
10 52.18 54.90 78.22 75.92 72.78 89.74 59.29 73.55 75.68 68.13 78.27 89.48
11 64.04 72.33 93.43 82.57 81.22 89.17 69.54 80.90 75.31 72.09 81.09 94.40
12 447 66.72 89.76 72.12 49.04 91.00 52.36 73.34 65.81 52.53 67.25 89.32
13 5.15 90.45 100 94.15 98.65 99.19 91.27 92.78 93.78 79.37 82.64 99.46
14 82.72 91.90 98.22 94.81 95.18 98.08 88.57 91.12 90.05 89.82 91.74 97.23
15 29.82 59.28 68.85 53.52 50.31 69.95 37.76 60.99 50.40 43.97 51.27 68.71
16 0.00 85.39 90.48 66.67 66.14 93.83 44.26 83.54 70.34 78.01 98.18 91.67
OA (%) 51.26 73.98 86.29 76.57 73.57 86.20 64.89 75.07 71.17 68.78 75.89 87.54
K (%) 4252 70.08 84.48 73.33 69.84 84.47 60.11 71.65 67.29 64.47 7272 85.93
TABLE III
CLASSIFICATION RESULTS OF THE XA DATASET
Class No. AEs RNNs CNNs ] ] Transformers. ]
Boulch [23] | Mou [27] | 2D-CNN [24] 3D-CNN [24] He [37] R-2D-CNN [24] | ViT [47] Deep ViT [48] T2T [49] LeViT [32] RvVT [31] HiT (Ours)

I 64.10 68.68 96.17 82.45 84.78 96.30 78.56 89.21 34.24 87.75 79.30 96.92
2 4527 80.53 98.68 89.27 86.31 98.80 81.38 92.16 46.03 90.26 85.22 99.12
3 0.00 72.55 98.56 72.28 85.47 99.00 87.07 92.80 52.30 90.71 86.85 98.69
4 94.75 97.89 99.26 97.44 98.53 99.20 98.24 98.81 92.78 98.41 98.62 99.33
5 71.06 75.34 98.20 88.97 86.05 80.24 83.96 91.96 40.68 91.47 86.55 98.22
6 9.69 82.64 98.86 88.10 87.79 98.50 80.27 91.32 38.93 89.98 76.99 98.98
7 0.00 87.95 99.23 96.47 97.49 98.20 91.73 97.85 7.01 96.92 7431 99.46
8 92.23 95.65 99.20 96.67 97.31 99.20 97.04 98.22 89.34 98.42 96.32 99.42
9 92.67 95.50 99.61 97.20 95.47 98.70 97.95 98.66 95.45 98.24 98.54 99.68
10 93.81 95.88 99.17 97.80 98.16 99.80 98.55 99.08 84.04 98.82 98.68 99.84
11 0.00 8.45 93.23 8.54 19.75 87.80 21.06 67.82 0.20 43.87 31.97 91.62
12 0.00 58.65 95.45 75.28 74.50 95.50 69.98 83.27 52.50 83.26 76.97 94.40
13 75.12 84.59 97.08 89.17 87.61 97.50 86.33 92.18 70.14 91.91 90.13 97.81
14 0.00 31.90 84.64 53.89 63.67 77.00 55.92 80.24 5.17 72.80 68.23 90.57
15 0.00 67.22 93.34 74.77 77.26 92.50 79.52 88.48 9.09 88.11 78.74 94.71
16 0.00 38.11 81.88 44.84 40.35 7.00 47.68 67.74 23.71 62.93 56.05 82.80
17 0.00 2.40 38.26 8.04 0.13 29.00 7.60 36.71 0.00 25.33 12.58 59.86
18 71.29 76.49 94.95 81.78 85.36 96.90 82.66 90.32 56.34 90.23 83.76 97.19
19 0.00 52.34 97.28 75.81 67.62 97.30 73.70 86.84 45.92 87.05 83.19 97.15
20 0.00 88.48 95.89 90.90 89.77 96.90 90.32 94.10 86.32 92.95 92.62 96.35
OA (%) 71.14 82.16 97.11 88.23 88.07 97.38 86.17 92.50 62.00 91.96 88.03 97.73
K (%) 65.57 79.36 96.64 86.35 86.10 96.90 83.92 91.30 55.25 90.68 86.12 97.37

tecture containing four convolution embedding layers,
three stages comprised four multihead attention layers,
and four MLP layers, respectively.

The RvT [31] consists of position-aware attention scal-
ing and patchwise augmentation technologies. In detail,
we follow the RvT architecture to design the network in
the HSI classification task.

For the proposed HiT, we adopt two SACP lay-
ers to build an SACP module to embed the input
images. Then, the 3-D token representations are sep-
arately processed along the height, width, and spec-
tral dimensions, respectively. In detail, two depthwise
convolution layers are used to process the height and
width information and a pointwise convolution layer
for processing spectral information. Finally, a global
average pooling layer and linear layer are attached to
predict the category.

11)

12)

3) Implementation Details: The proposed HiT and the com-
pared methods were implemented on the PyTorch platform
using a desktop PC with an Intel Core 7 Duo CPU (at
3.40 GHz), 64 GB of RAM, and one GTX R3090 GPU
(24 GB of ROM). We adopt the Adam optimizer with batch

size 100 and the learning rate le-3. It is noted that the
transformer-based methods could not perform excellent results
if the initialization of the learning rate is not le-3. We set the
epochs on these four benchmark datasets to 100.

C. Results and Analysis

We conduct extensive experiments on four benchmark HSI
datasets in terms of two well-known metrics, i.e., OA and «.
In detail, the results of these HSI datasets [e.g., Indian Pines,
Pavia University (PaviaU), Houston2013, and XA datasets] are
listed in Tables II-V, respectively.

According to the results, the AE-based methods
(e.g., Boulch er al. [23]) achieve the worst classification
results on all four benchmark datasets. Specifically,
Boulch et al. [23] only achieves 51.26% and 42.52% in
terms of OA and x on the Indian Pines dataset. Owing to the
powerful learning ability of the spectral sequential dimension,
the RNN-based methods (e.g., Mou et al. [27]) produce
better results than Boulch et al.’s [23] method. For example,
73.98% versus 51.26% in terms of OA on the Indian Pines
dataset. Since CNNs have the powerful ability to capture the
local spatial context information, the CNN-based methods,
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TABLE IV
CLASSIFICATION RESULTS OF THE HOUSTON2013 DATASET

Class No AEs RNNs CNNs . . Transformers
" " | Boulch [23] | Mou [27] | 2D-CNN [24] 3D-CNN [24] He [37] R-2D-CNN [24] | ViT [47] Deep ViT [48] T2T [49] LeViT [32] RvT [31] HiT (Ours)
1 93.74 94.47 92.96 96.84 92.11 98.04 91.89 86.70 95.50 97.60 90.30 98.07
2 92.35 95.06 91.12 95.14 97.39 98.23 9291 85.90 96.10 97.64 90.40 98.93
3 98.06 100 99.76 97.89 98.31 100 91.43 94.80 98.70 98.09 99.90 100
4 76.46 95.26 95.01 95.98 92.81 98.62 91.75 94.40 96.70 91.79 96.00 97.82
5 93.48 98.14 98.46 93.95 95.39 98.32 89.45 94.80 96.10 96.32 97.90 97.87
6 0.00 96.65 92.56 74.81 67.87 91.27 63.72 87.10 93.80 94.53 83.30 91.83
7 52.85 60.51 93.70 87.78 90.17 95.03 87.56 93.30 93.00 94.81 88.20 96.13
8 67.59 65.71 76.65 78.43 80.55 94.41 74.10 63.70 89.10 93.03 73.60 94.82
9 61.88 71.44 91.10 83.90 83.70 92.55 78.15 86.80 90.00 91.56 87.10 93.58
10 71.91 29.95 82.40 86.86 84.41 94.70 71.72 80.10 92.80 91.36 73.10 96.55
11 62.47 46.55 93.74 87.40 82.37 95.58 69.29 71.30 93.10 9331 78.90 96.11
12 35.34 61.60 81.82 80.87 77.06 94.78 61.57 72.10 95.50 88.27 81.70 97.09
13 0.00 49.60 95.66 85.48 85.71 90.85 33.15 56.40 96.10 82.37 83.90 91.39
14 0.00 94.95 97.81 95.33 93.21 95.19 82.40 89.90 98.70 97.26 95.70 99.74
15 97.85 98.25 97.38 97.31 93.69 99.25 78.44 92.50 96.70 94.06 97.90 99.17
OA (%) 71.73 76.22 90.52 89.01 87.70 95.63 79.38 83.11 96.10 93.73 86.95 96.35
K (%) 69.29 7427 89.76 88.13 86.70 95.28 71.72 81.80 93.80 93.23 85.90 96.06
TABLE V
CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY DATASET
Class No. AEs RNNs CNNs . . TransformersA ]
Boulch [23] | Mou [27] | 2D-CNN [24] 3D-CNN [24] He [37] R-2D-CNN [24] | ViT [47] Deep ViT [48] T2T [49] LeViT [32] RvT [31] HIiT (Ours)
1 91.43 50.50 96.49 94.30 94.90 94.80 90.20 94.80 94.00 93.62 94.62 96.19
2 96.18 94.50 92.71 92.70 91.90 92.71 89.99 92.05 92.00 91.42 92.05 92.79
3 11.13 49.70 88.38 87.00 86.80 92.50 71.59 87.17 89.00 84.27 88.32 93.21
4 90.68 94.55 97.24 96.90 97.00 97.60 96.06 96.36 96.00 96.98 97.50 97.33
5 85.94 99.92 99.85 99.60 99.90 99.96 99.42 99.93 99.00 99.93 99.96 99.96
6 89.22 83.89 100.00 99.80 96.20 99.95 90.32 97.88 98.50 95.97 97.41 99.91
7 33.15 4341 99.13 92.80 93.30 93.30 81.23 94.76 95.00 93.01 96.93 98.22
8 73.58 70.99 97.06 94.60 95.80 98.53 90.02 96.79 97.00 95.30 96.31 99.15
9 99.47 99.30 98.99 98.90 99.50 99.95 98.01 98.04 98.00 99.79 99.84 99.77
OA (%) 88.04 81.14 91.63 90.73 90.23 91.54 86.41 90.54 90.90 89.68 90.65 92.00
K (%) 83.92 75.30 89.30 88.10 87.50 89.19 82.60 87.90 88.00 86.83 88.05 89.77

such as 2-D-CNN [24], R-2D-CNN [24], 3-D-CNN [24], and
He et al. [37], observably perform excellent classification
results. This also demonstrates the value and practicality of
convolution operations in HSI classification. Without any
convolution layers, transformer-based methods, e.g., ViT [47]
and Deep ViT [48], are capable of capturing subtle spectral
information and producing a competitive classification
performance compared to the state-of-the-art CNN-based
methods. Capturing the local spatial context information
by using 2-D convolution operations, the LeViT [32] and
RvT [31] outperform ViT [47] and Deep ViT [48] and
achieve better classification results than CNN-based methods,
such as the classification performances of LeViT [32] on
Houston2013 and XA datasets.

On the other hand, the existing transformer-based meth-
ods have limitations in acquiring the local spectral dis-
crepancies, leading to a performance bottleneck. We argue
that the main factor leading to the improvement of our
proposed HiT is the ways of image embedding and encod-
ing spatial-spectral information. Different from current exist-
ing transformer-based methods, we adaptively embed the
input images using an SACP module, which consists of
two spectral-adaptive 3-D convolution layers to extract
the spatial location-sensitive importance map and adap-
tive capture the long-term spectral information. We fur-
ther separately encode the embedded representations along

the height, width, and spectral dimensions, resulting in
position-sensitive features. According to the results, the pro-
posed HiT undoubtedly outperforms other transformer-based
methods and state-of-the-art CNN-based methods. For exam-
ple, the performance of HiT on Houston2013 dataset is
96.35%, which is better than R-2D-CNN [24] (96.35% versus
95.63%). Compared with some transformer-based methods,
such as T2T [49] (96.10%), LeViT [32] (93.73%), Deep
ViT [48] (83.11%), and RvT [31] (86.95%), our results are also
better.

We utilize the visualization results for qualitative evaluation
of the performance of all methods. Figs. 5-8 report the
achieved classification result maps of Indian Pines, PaviaU,
Houston2013, and Xiaongan datasets, respectively. These
qualitative visualization results provide a rough finding that
all methods achieve relatively smooth classification maps.
Moreover, owing to the powerful local context information
extraction ability of CNNs, their classification maps usually
have less noise. On the other hand, the classification maps of
the 3-D-CNN-based methods (e.g., 3-D-CNN and He) often
have many pixels with incorrect recolonization. This is because
a large number of training samples are urgently needed in
training 3-D-CNNs. For transformer-based methods, they have
the capability of extracting sequential representations from
HSIs, producing classification maps approached to those of
CNN-based methods. The proposed HiT performs satisfactory

Authorized licensed use limited to: Universidade de Macau. Downloaded on June 01,2022 at 00:45:47 UTC from IEEE Xplore. Restrictions apply.



5528715

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 5. Classification maps obtained by different methods on the Indian Pines dataset (with 10% training samples). (a) Input image. (b) Ground truth. (c) Mou.
(d) Boulch. (e) 2-D-CNN. (f) R-2D-CNN. (g) 3-D-CNN. (h) He. (i) ViT. (j) Deep ViT. (k) T2T. (1) LeViT. (m) RvT. (n) HiT (Ours).

(h) (@) G)

Fig. 6.
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Classification maps obtained by different methods on the Pavia University dataset (with 10% training samples). (a) Input image. (b) Ground truth.

(c) Mou. (d) Boulch. (e) 2-D-CNN. (f) R-2D-CNN. (g) 3-D-CNN. (h) He. (i) ViT. (j) Deep ViT. (k) T2T. (1) LeViT. (m) RvT. (n) HiT (Ours).

classification results, attributing to utilizing an SACP module
for enhancing the local spatial-spectral information and a
Conv-Permutator for separately encoding spatial-spectral rep-
resentations along the height, width, and spectral dimensions,
respectively. It is worth noting that Figs. 7 and 8 only
visualize the results of some areas from Houston2013 and XA
datasets, and the specific visualization results are shown in the
supplementary materials.

Finally, we evaluate the efficiency of various methods and
present the results in Table VI. It is worth noting that the
size of the input image is 1 x 200 x 15 x 15, and
“bimg” denotes 100 images per batch. The term “param”
denotes the parameters, and the term “Tp” is the shorthand

for Throughput. We can observe that the proposed HiT
performs admirably, but its efficiency in terms of speed is
not optimal. This is also the limitation of the proposed HiT,
which has a large number of parameters and does not perform
well. Compared with the CNN-based methods, most of the
transformer-based methods require lots of time to learn a
satisfactory feature representation (such as 88.01 s versus
479.91 s in training time). This is mainly because most of the
transformer-based methods need many repeated self-attention
modules to learn abundant feature representation, leading to
much larger sizes of transformer-based methods than those
of CNN-based methods. When compared with the other
transformer-based methods except RvT, our HiT effectively

Authorized licensed use limited to: Universidade de Macau. Downloaded on June 01,2022 at 00:45:47 UTC from IEEE Xplore. Restrictions apply.



YANG et al.: HiT CLASSIFICATION NETWORKS

(h) (@) )}

)

5528715

(2

o) (m) (n)

Fig. 7. Classification maps obtained by different methods on some areas of the Houston2013 dataset (with 10% training samples). (a) Input image. (b) Ground
truth. (c) Mou. (d) Boulch. (e) 2-D-CNN. (f) R-2D-CNN. (g) 3-D-CNN. (h) He. (i) ViT. (j) Deep ViT. (k) T2T. (1) LeViT. (m) RvT. (n) HiT (Ours).

Fig. 8.

Classification maps obtained by different methods on some areas of the XA dataset (with 1% training samples). (a) Input image. (b) Ground truth.

(c) Mou. (d) Boulch. (e) 2-D-CNN. (f) R-2D-CNN. (g) 3-D-CNN. (h) He. (i) ViT. (j) Deep ViT. (k) T2T. (1) LeViT. (m) RvT. (n) HiT (Ours).

TABLE VI
COMPUTATIONAL COMPLEXITY OF ALL METHODS

Methods Flops (GB) | Param (MB) | Tp (bimg/s) | Training time (s) | Testing time (s)
2D-CNN [24] 0.07 0.49 436 15.92 1.21
3D-CNN [24] 0.27 1.46 111 88.01 3.53
R-2D-CNN [24] | 3.88 45.82 16 31.60 1.91
ViT [47] 0.14 2.60 115 62.87 2.09
Deep ViT [48] 2.71 52.21 31 110.31 6.60
LeViT [32] 1.81 16.94 13 148.56 7.06
RvT [31] 0.42 8.93 45 67.56 3.67
T2T [49] 5.95 730.18 8 479.91 6.79
HiT (Ours) 2.33 51.18 20 112.04 6.70

reduces both the training and testing times while producing the
best performances (Tables II-V) on all datasets, e.g., compared
with T2T, training time 112.04 s versus 479.91 s, and testing
time 6.70 s versus 6.79 s. Specifically, compared with RvT
(transformer-based method), the proposed HiT requires more
training and testing times. Our HiT, however, achieves much
better performances (Tables II-V) on all datasets. Especially,
on the Houston2013 dataset, our HiT method improves the
OA and x by 97.73% and 97.37%, respectively. All aspects of
comparisons demonstrate the best performances and satisfac-
tory efficiency superiority of our HiT.

D. Ablation Studies

1) Ablation Study of the Proposed SACP Module: We first
show that the SACP is important for the transformer-based HSI
classification method. To demonstrate this argument, we adjust
the image projection step by employing different projection
modules (e.g., linear, Conv2D, Conv3D, and SACP) and keep
the Conv-Permutators unchanged. We report the performance
for different HiTs in Table VII. It is worth noting that the
input size is 1 x 200 x 15 x 15 and the ViT [47] is
chosen as the baseline method. According to the results,
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TABLE VII
ABLATION STUDY OF THE PROPOSED SACP ON THE PAVIAU DATASET
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TABLE VIII

ABLATION STUDY OF THE PROPOSED HiT WITH A COMBINATION OF
DIFFERENT COMPONENTS ON THE XA DATASET

Methods Flops (GB) | Parameters (MB) | OA(%)

ViT [47] 0.14 2.60 86.41 (-5.59%) Methods Components Metric

HiT-linear 0.72 50.23 90.47 (-1.53%) SACP HDWC WDWC CMLP | OA (%)

HiT-Conv2D | 2.24 50.23 90.74 (-1.26%) ViT X X X X 86.17 (-11.56 %)

HiT-Conv3D | 2.17 4957 91.96 (-0.04%) ViT v X X X 88.10 (-9.63%)

HiT-SACP 237 51.18 92.00 HiT (Ours) | / v X X 96.71 (-1.02%)
HiT (Ours) | / x v x 96.16 (-1.57%)
HiT (Ours) | +/ V4 v x 96.95 (-0.78%)

1.8 HiT (Ours) | / v VA v 97.73

= HiT with SACP(ours)
= HiT with Conv2D(ours)
= HiT with Conv3D(ours)
= HiT with Linear(ours)
—=ViT
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Fig. 9. Training loss of five different methods based on the PaviaU dataset.

HiT-SACP shows the best performance (92.00% in OA).
Despite more parameters used in HiIT-SACP, its efficiency still
is the fastest (2.37 GB in Flops). This demonstrates that we
can appropriately use more SACP to embed the input images
to improve the performance. We further report the training
loss of these five methods in Fig. 9. As shown in Fig. 9,
such HiT with 3-D convolution projection modules (such as
Conv3D and SACP) could improve the performance for HiT.
This demonstrates that embedding much more spectral-spatial
fusion representations does help in improving the proposed
HiT performance but a drawback is that the parameters go
increase a little.

Class activate map (CAM) [61] uses the principle of feature
map weight overlapping to obtain the heatmaps, which helps
us to have a good explanation of the network. We adopt CAM
to explain why utilizing 3-D convolution projection module is
necessary for the transformer-based networks in HSI classifi-
cation tasks. We visualize the CAM of the proposed HiT (with
different projection modules) in Fig. 10. It is worth noting that
the darker the color is, the more attention the model focuses.
We can observe that the network with SACP and Conv3D pro-
jection modules not only pays attention to the global region but
also the local region closer to the central pixel. These attribute
to the transformer-based architecture that could capture the
global information, and the 3-D convolution projection module
which could provide local spectral-spatial fusion information.
Since the 2-D convolution projection module can extract the
local spatial context information, the network with the Conv2D
projection module is capable of focusing on the local region
surrounding the central pixel. According to Fig. 10, the linear
could offer sequence information to help the network for
capturing the global region, however, resulting in the output
features without the local information.

2) Ablation Study of the Proposed Modules: This ablation
analysis will examine the effectiveness of these components
in the proposed HiT, including SACP, height and width

depthwise convolution operations, and channel-MLP. We con-
duct extensive ablation experiments on the XA dataset by
adding different components. We summarize the results under
different components in Table VIII. It is worth noting that there
are some abbreviations in Table VIII, for example, SACP is
the abbreviation of spectral-adaptive 3D convolution projec-
tion module. Height depthwise convolution (HDWC), width
depthwise convolution (WDWC), and channel master limited
partnership (CMLP) denote the height depthwise convolution
module, WDWC, and channel-MLP, respectively.

It is clear that the classical ViT [47] without using any
components performs the lowest classification results. This
indicates that the classical ViT may not be applied to HSI
classification tasks. However, the ViT outperforms the classical
ViT when introducing the SACP in ViT to capture the local
spectral information. In addition, we can see that joining either
height information encoder or width information encoder leads
to a better performance than the classic ViT (96.71% or
96.16% versus 86.17%). This demonstrates that local spatial
information plays a crucial role in the HSI classification
tasks. We can also observe that the joint exploitation of
HDWC and WDWC can further improve the performance
from 96.71% to 96.95%. By adding the CMLP module, the
proposed HiT finally achieves the best classification accuracy
of 97.73%.

3) Ablation Study of the Model Scale: Making the models
deeper and wider for deep learning methods is always an
effective way to improve the performance. Thereby, we learn
the influence of the model scaling on the proposed HiT by
increasing the number of layers and hidden dimension (Dim).
We present the results of four different HiT with various layers
and Dim in Table IX, including HiT-small/18, HiT-small/18
(with 512 Dim), HiT-medium/24, and HiT-large/36. We can
observe that increasing the number of layers and Dim could
lead to a better performance of the proposed HiT. HiT-small/18
(with 512 Dim) could improve the performance from 90.79%
(obtained by HiT-small/18 (with 208 Dim) to 91.01%, but
the parameters (“param” for short) only increase 6.65 MB
(35.87 MB versus 29.22 MB). Further increasing the number
of layers will result in achieving the better performance of
91.60% (obtained by HiT-larger/36).

4) Ablation Study of the Percentage of Training Sam-
ples: According to [47] and [48], transformer-based methods
urgently require a large number of training samples. It is
interesting to study that how the training samples affect
the performance of the proposed HiT. We conduct extensive
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(2)

Fig. 10.

5528715

Visualization of the CAM on four different input images. The first column denotes the input images; the second, third, and fourth columns are

the CAMs of linear, Conv2D, Conv3D, and SACP (ours), respectively. It can be seen that the linear projection pays attention on a sequence of vectors, and
the Conv2D focuses on the local spatial. For Conv3D and SACP, they focus on the spatial-spectral fusion information. It is worth noting that the darker the
color, the more attention the model focus. (a) Inputs. (b) Linear. (¢c) Conv2D. (d) Conv3D. (e) SACP.

TABLE IX

ABLATION STUDY OF THE MODEL SCALE ON THE PAVIAU
DATASET (10% TRAINING SAMPLES)

Methods Layers | Dim | Flops (GB) | Param(MB) | OA(%)
HiT-small/18 18 208 1.09 29.22 90.79
HiT-small/18 18 512 1.80 35.87 91.01
HiT-medium/24 | 24 512 2.21 50.07 91.46
HiT-large/36 36 512 3.93 70.57 91.60

experiments on four benchmark HSI datasets varying the
training samples from 10% to 50% at intervals of 10%. We run
the proposed HiT for ten times. Fig. 11 reports the average
results of the OA achieved by the proposed HiT. We can
see that the classification performance gradually improves
with varying the percentage of training samples from 10%
to 50%. The OA has been obviously improved, particularly
when increasing the training samples from 10% to 20%.
This demonstrates that the number of training samples also
affects the performance of the proposed HiT. It is noted that
the OAs are tending to stabilize when varying the training
samples from 40% to 50%, proving the stability of the
proposed HiT.

100.0

97.5 4

95.0 4

92.5 4

3 L .
£ —
8 90.0 4
87.5
—8— IndianPines
85.0 —=— PaviaU
—a&— Houston2013
—¥— Xiongan
82.5 4 T T T T T T T T T
10 15 20 25 30 35 40 a5 50
The percentage of used training samples(%)
Fig. 11. Classification results (OA) achieved by the proposed HiT with a

varying number of training samples on four benchmark datasets.

V. CONCLUSION

HSIs consist of spatial and spectral information that can
be regarded not only as natural image data along the spatial
dimension but also as a sequence of data. CNNs can perform
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satisfactory results on HSI classification by extracting the
local spatial context features. However, CNNs cannot mine the
subtle spectral discrepancies. On the other hand, transformers
have been proved that they have a powerful ability to cap-
ture global information from sequence data. Nevertheless, the
existing transformer-based methods (e.g., ViT and Deep ViT)
have a failure of capturing the subtle spectral discrepancies
and fail in conveying the local spatial-spectral information
from the shallow to deep layers. This article proposes a new
transformer-based method, i.e., HiT, for HSI classification
from a sequential perspective. The proposed HiT consists
of two key modules for addressing the problems in HSI
classification, i.e., an SACP module and a Conv-Permutator
module. The SACP module captures the local spatial-spectral
information (especially the subtle spectral discrepancies) using
two spectral-adaptive 3-D convolution layers. The spectral-
adaptive 3-D convolution layer consists of two branches: the
local spatial branch to learn the spatial location-sensitive
importance map and the global branch to adaptive capture
the long-term spectral information. Conv-Permutators sepa-
rately encode the spatial-spectral representations along the
height, width, and spectral dimensions and convey the encoded
spatial-spectral information to the next step. Extensive exper-
iments on four benchmark HSI datasets demonstrate that
the proposed HiT outperforms the other transformer-based
methods and state-of-the-art CNN-based methods.

Our future work aims at integrating the advantages of CNNs
and transformers, and improving the transformer architecture
by introducing advanced techniques (e.g., transfer learning
and self-supervised learning). Specifically, we will design a
universal and lightweight transformer-based method that is
more suitable for HSI classification. On this basis, we will
establish a general HSI classification platform that integrates
various state-of-the-art algorithms.
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