
SmartDistance: A Mobile-based Positioning System
for Automatically Monitoring Social Distance

Li Li1, Xiaorui Wang2, Wenli Zheng*3, and Cheng-Zhong Xu4

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2The Ohio State University

3Shanghai Jiao Tong University
4 Faculty of Science and Technology, State Key Laboratory of IoTSC, University of Macau

Abstract—Coronavirus disease 2019 (COVID-19) has resulted
in an ongoing pandemic. Since COVID-19 spreads mainly via
close contact among people, social distancing has become an
effective manner to slow down the spread. However, completely
forbidding close contact can also lead to unacceptable damage to
the society. Thus, a system that can effectively monitor people’s
social distance and generate corresponding alerts when a high
infection probability is detected is in urgent need.

In this paper, we propose SmartDistance, a smartphone
based software framework that monitors people’s interaction
in an effective manner, and generates a reminder whenever
the infection probability is high. Specifically, SmartDistance
dynamically senses both the relative distance and orientation
during social interaction with a well-designed relative positioning
system. In addition, it recognizes different events (e.g., speaking,
coughing) and determines the infection space through a droplet
transmission model. With event recognition and relative posi-
tioning, SmartDistance effectively detects risky social interaction,
generates an alert immediately, and records the relevant data for
close contact reporting. We prototype SmartDistance on different
Android smartphones, and the evaluation shows it reduces the
false positive rate from 33% to 1% and the false negative rate
from 5% to 3% in infection risk detection.

I. INTRODUCTION

COVID-2019 is an infectious disease caused by severe acute

respiratory syndrome coronavirus 2. It was first identified in

December 2019 and has since spread globally, resulting in an

ongoing pandemic. As of August 2020, more than 16.6 million

cases have been reported across 188 countries and territories,

resulting in more than 658,000 deaths [1]. The virus is believed

to be primarily spread between people during close contact,

often via small droplets produced by coughing, sneezing and

talking.

Social Distancing and Close Contact Reporting. Social

distancing [2] and close contact reporting have become two

important ways to control and slow down the spread of Covid-

19, but they are difficult to conduct. Social distancing means

that keeping a safe space between ourselves and other people

who are not from our household. However, unintentional dis-

tancing violation still commonly occurs, as it is inconvenient

to measure the distance between people in social interaction. It

is also uneasy to determine how much space is large and safe

enough in various environments, while a static criteria (e.g., 6

feet) might be sometimes too conservative and prohibit some

necessary social interaction. Moreover, when an infection case

is reported, it is critical to identify the group of individuals

who have been in close contact with the diagnosed patient, in

order to understand and mitigate the spread of the pandemic.

Previous attempts analyze the close contact networks related to

disease transmission mainly through online questionnaire, sur-

veys or recall by the diagnosed patients. However, such kind

of manual approaches usually require a significant amount of

effort, and can easily miss some individuals who have high

probability to get infected. Thus an automatic solution for an

individual to take care of her/his social interaction is in urgent

need in order to 1) immediately generate an alert when the

social distance is too small to avoid infection, and 2) report

the individuals who are likely to be infected when an infection

case is found.

Existing Solutions and Challenges. Despite the promising

benefits, two main obstacles exist which prevent such an infec-

tion risk detection system to be viable. First, it is noticed that

not only the relative distance but also the relative orientation is

critical to determine the infection probability. For instance, a

person is much more likely to get infected when he is talking to

a diagnosed patient face to face than back to back [3], keeping

the same distance. The problem is that the relative orientation

cannot be directly sensed by an ordinary mobile device like a

smartphone. Previous work has proposed different approaches

to monitor the position information, which are unfortunately

insufficient to solve the social distancing problem. First, the

widely used positioning technologies like GPS may not work

well in indoor environment, and its high power consumption

severely hurts the battery lifetime of mobile devices [4].

Moreover, although many studies have attempted to estimate

the locations of people using radio signals [5]–[7], these

solutions usually require extra hardware equipment and are

hardly practical in outdoor environment [8], [9]. Thus, existing

solutions cannot be easily applied to sense the social distance.

Second, while it is already known that the droplet transmission

of Covid-19 usually follow a certain pattern and impacts the

surroundings in a certain range, different actions (e.g., speak-

ing, coughing, sneezing) during the social interaction usually

form totally different droplet transmission patterns that result

in different infection spaces. How to dynamically recognize

those actions and determine the corresponding infection space

is another non-trivial challenge.
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Our Contribution. In this paper, we propose SmartDis-

tance, an intelligent mobile-based positioning system that

detects the infection risk in social interaction. SmartDistance

mainly consists of two parts: 1) Infection Space Determina-

tion and 2) Relative Positioning. Specifically, the first part

decides the infection space under different action events (e.g.,

speaking, coughing and sneezing), within which people are

highly probable to get infected due to droplet transmission. We

use a CNN-based classifier to recognize different actions with

the acoustic signals in real time, and a droplet transmission

model to characterize the tendency of droplet movement

given a specific action. In the relative positioning part, we

design a location mapping algorithm that analyzes both the

relative orientation and relative distance of two individuals

in dynamic movement scenarios. Thus, when an individual

is detected to be in the infection space, an alert will be

generated immediately, and the corresponding individual will

be automatically recorded for later contact networks analysis.

We compare SmartDistance with a state-of-the-art relative

positioning system and show that SmartDistance effectively

reduces the relative orientation and distance errors. We also

compare SmartDistace with a state-of-the-practice infection

risk detection approach, and find that the false positive and

false negative rates are both reduced (from 33% to 1% and

from 5% to 3%, respectively). To our best knowledge, Smart-

Distance is the first work that studies the real-time infection

risk detection problem with mobile-based relative positioning.

Specifically, our major contributions are as follows:

• We propose SmartDistance, which integrates mobile-

based relative positioning with acoustic signal-based in-

fection space determination, for real-time infection risk

detection.

• We design a relative positioning system on mobile de-

vices that detects not only the relative distance but also

the relative orientation between two individuals, in a

timely and energy efficient manner.

• We design an infection space determination system based

on a droplet transmission model and an action recognition

component, and solve the problem about how to deter-

mine the infection space with different relevant actions.

• We evaluate SmartDistance with both testbed experiments

and simulation. It reduces the false positive rate from

33% to 1% and the false negative rate from 5% to 3% in

infection risk detection.

The rest of the paper is organized as follows. Section II

presents the motivation and system architecture of SmartDis-

tance. Section III presents the relative positioning system.

Section IV discusses the infection space determination process

in different scenarios. Section V presents the evaluation of

SmartDistance. Then Section VI discusses prior research that

is closely related with SmartDistance. Finally, Section VII

concludes the paper.

II. MOTIVATION AND SYSTEM ARCHITECTURE

In this section, we first present the motivation of this work,

and then introduce the motivated design of SmartDistance

Fig. 1: Different close contacts in social interaction.

system architecture.

A. Motivation

Covid-19 spreads mainly among the people who are in close

contact for a period of time. When an infected individual talks,

coughs or sneezes, the droplets are sprayed from the mouth or

nose into the air. Those droplets can then be inhaled into the

mouths or noses of others nearby. The virus is transmitted in

this process. Figure 1 shows different close contacts in social

interaction. For the individuals B and C who are talking to

each other face to face, if B carries the virus, C is highly

probable to get infected. This is because C is within the droplet

transmission space of B. In this case, D has less probability to

get infected, since D maintains a longer distance from B (i.e.,

out of the droplet transmission space of B). It is important to

note that A is also unlikely to get infected, though he/she is

close to B. The droplets exhaled by B are hard to reach A in

this case due to the relative orientation between A and B. Thus,

the following two critical challenges need to be addressed in

order to make SmartDistance viable: 1) How to determine
the infection space due to droplet transmission in different
scenarios? 2) How to determine the relative position (both
relative orientation and distance) between two individuals in
real time?

B. System Architecture

Figure 2 shows the system architecture of SmartDistance.

The Infection Space Determination part contains a well-

designed droplet transmission model and an action recognition

component to effectively decide the infection space with differ-

ent actions in real time. The Relative Positioning part consists

of a motion info retrieval component and a location mapping

algorithm to analyze the relative position information. In order

to be efficiently deployed on mobile devices, SmartDistance

also needs to meet the following two design requirements:

1) it should generate the alert in time in order to effectively

prevent the infection, and 2) it should be energy efficient

for battery-powered mobile devices. In order to balance the

energy efficiency and realtimeness, we design SmartDistance

as follows:

• During social interaction, a mobile device first makes

connection with the nearby devices. In this work, we

select Bluetooth to provide the communication service

due to the following reasons: 1) Bluetooth is widely

equipped on smartphones, 2) it consumes low energy and

3) it fits the social interaction scenario which is conducted

within a short geographical distance (the maximum com-

munication distance of Bluetooth is 30m). In the current
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Fig. 2: System Architecture of SmartDistance.

implementation, SmartDistance requires that the users

keep their Bluetooth on during the overall social interac-

tion process. This assumption has been widely made by

the previous research which focuses on the cooperation

and monitoring of mobile devices in proximity [10], [11].

• After the connection is established, the Motion Info
Retrieval component starts sensing the movement infor-

mation of the nearby devices. The Action Recognition
component also starts to constantly recognize the prede-

fined actions (e.g., speaking, coughing and sneezing).

• Once a predefined action is recognized, the Droplet
Transmission Model is used to estimate the infection

space of the corresponding action. At the same time, the

Location Mapping algorithm is triggered to analyze the

relative position.

• If a certain individual is detected to be within the in-

fection space, the alert is generated and the ID of that

corresponding individual is automatically recorded.

It is important to note that, in Figure 2, the components

in grey background (Action Recognition and Motion Info

Retrieval) run constantly during the social interaction process,

while the other components are triggered by the predefined

events (e.g., speaking/coughing/sneezing). This event-based

design helps with both the timeliness and energy efficiency

of the system.

III. RELATIVE POSITIONING

In this section, we propose the method to estimate the

relative orientation at first, and then present the system design

of the Relative Positioning part, with discussing the detailed

problems and solutions at last.

A. Estimation of Relative Position

Following the discussion in Section II, the relative position-

ing system has one important design requirement: it has to

provide not only the distance, but also the orientation relative

to each other in different social interaction scenarios (e.g.,

stationary or moving at different speeds). Figure 3 shows an

example that Alice (A) identifies the relative distance dAB and

the relative orientation α of Bob (B). α is defined as the angle

between the Magnetic north and the vector AB anticlockwise.

In the case shown in Figure 3, α is 90◦. Here, we use

the magnetic north to measure the orientation because it is

Fig. 3: Illustration of Relative Positioning, with two members

in a group. From A′ point of view, the relative distance of B

is dAB , and the relative orientation of B is α.

independent of the various factors local to each member (e.g.,

smartphone facing up or down, which direction an individual

is facing) that may unnecessarily complicate our problem.

While the estimation of relative distance has been widely

studied before, there is no appropriate solution to estimate the

relative orientation yet, for people in social interaction. We

tackle this problem based on the following Key Observation:

The distance between two individuals and their moving vectors
(e.g., moving distance and direction measured using the local
smartphone’s sensors) can help them estimate the orientation
relative to each other.

Figure 4a illustrates the above observation. Initially, A and

B locate at A(0) and B(0) respectively. Then, A moves to

A(1) along the moving vector VA(1) and B moves to B(1)

along the moving vector VB(1). The coordinates of the points

A(0), B(0), A(1) and B(1) are as follows: (xA(0), yA(0)),
(xB(0), yB(0)), (xA(1), yA(1)), and (xB(1), yB(1)), respectively.

Similarly, the moving vectors VA(1) and VB(1) can be rep-

resented as (uA(1), vA(1)) and (uB(1), vB(1)), where u and v
represents the moving vector components along the x-axis and

y-axis, respectively. In order to calculate the orientation α, we

need to know the coordinates of B(1).

Therefore, the problem becomes to find the coordinates of

B(1) using the known moving vectors VA(1), VB(1) and the

known distances dA(0)B(0), dA(1)B(1), which are measured in

the Motion Info Retrieval component as introduced in Section

III-B. We note that the coordinates of A(1) can be represented

as a function of the coordinates of A(0) and the components

of the moving vector VA(1), as follows:

xA(0) + uA(1) = xA(1), yA(0) + vA(1) = yA(1) (1)

To locate B from the point of view of A, we set the origin

of the observation system always at the current location of

A. It means that after A arrives at A1, the coordinates of

A(1) become (0,0). As a result, we can rewrite Equation 1 as

xA(0) = −uA(1) and yA(0) = −vA(1). Thus, the coordinates of

A(0) and A(1) are known. On the other hand, using a similar

system of equations for B, the coordinates of B(0) and B(1)

are unknown. To derive the coordinates of B(0) and B(1), we

can use the distance relationship as follows:

(xA(0) − xB(0))
2 + (yA(0) − yB(0))

2 = d2A(0)B(0) (2)

(xA(1) − xB(1))
2 + (yA(1) − yB(1))

2 = d2A(1)B(1) (3)
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Fig. 4: Example of Relative Positioning: 1) distance before

moving (dA(0)B(0) = 1m), 2) moving vectors (VA(1) =
(0, 1) and VB(1) = (1, 1)), and 3) distance after moving

(dA(1)B(1) = 2m). Circle1: center=(0, 0), radius = 2m,

Circle 2: center=(1, 0), radius = 1m. Intersection point (2, 0)
is the solution of relative position (xB(1), yB(1)).

By substituting Equation 1, which represents the moving

procedure of A, and the similar equations of B, into Equations

2 and 3, we have a system of two equations with only two

unknown variables, xB(1) and yB(1). Thus, the position of B

relative to A can be obtained by jointly solving Equations 2

and 3. Then the relative orientation α can be easily obtained

by leveraging the inverse tangent function.

B. System Design of Relative Positioning

As mentioned above, the relative positioning system needs

the distance and the local moving vectors to calculate the

relative orientation. Figure 5 shows the architecture of the

relative positioning system in SmartDistance, including two

main components: 1) Motion Info Retrieval, and 2) Location

Mapping. Motion info Retrieval tracks the moving vectors

and the distances between two individuals. This information is

then input to Location Mapping, which determines the relative

distance and orientation between two individuals.

Motion Info Retrieval first retrieves the distance between

individuals A and B at time point T0. The initial distance

between the two smartphones d0 is retrieved using the received

signal strength indication (RSSI) of Bluetooth with a mean

error of 0.2 meters, according to [12]. After that, the two

individuals track their own moving vectors locally. At time

point T1, the two individuals exchange their moving vec-

tors (uA(1), vA(1)) and (uB(1), vB(1)) measured between time

points T0 and T1. At the same time, they measure the distance

(d1) between each other through the RSSI during the message

exchange. In this work, a step detector is implemented to

detect each step and the corresponding step length [12]. A

heading detector [13] is implemented to get the orientation

information of each step with data collected from the gyro-

scope, accelerometer and magnetometer.

Location Mapping leverages the obtained sensing infor-

mation to get the relative position between two individuals.

Specifically, with the information (1) the distance between in-

dividuals A and B before the moving process (e.g., dA(0)B(0)),

(2) their moving vectors (e.g., VA(1)) and VB(1)), and (3) the

distance after the moving process (e.g., dA(1)B(1)), Location

Mapping calculates the position of B relative to A through

Distance Detection 

Motion Tracking

Distance Detection 

Distance Detection 

Motion Tracking

Distance Detection 

Location Mapping Location Mapping

T0 T0

T1 T1

଴

ଵ࢛ , ࢜

M
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Info R
etrieval

L
M

M L

࢛ , ࢜

Fig. 5: Architecture of Relative Positioning System.

solving Equations 2 and 3, based on the method in Section

III-A.

C. Problems and Solutions with Location Mapping

The real-world cases are much more complex than the

example in Figure 4, requiring to consider the following two

problems for Local Mapping to work in practice:

• Problem 1: The system of Equations 2 and 3 is a system

with 2 equations and two variables (e.g., xB(1), yB(1)),

and it is solvable. However, in general, this type of system

may have no solution, one solution or two candidate

solutions. As a result, in some cases, we may need to

estimate the relative position if there is no solution, or

choose between two candidate solutions.

• Problem 2: The noises and errors introduced during the

movement tracking and distance estimation can impact

the detection accuracy. For instance, the noises and er-

rors can impact the centers (determined by the moving

vectors) and radiuses (determined by the distances) of

the two circles as shown in Figure 4b. As a result, the

intersection points may deviate from the real relative

position, leading to inaccurate position estimation.

Thus, we design the following three steps to solve the above

problems: 1) positioning with multiple vectors, 2) potential

solution generation, and 3) clustering analysis.

Positioning with Multiple Moving Vectors. In order to

solve Problem 1, we propose to calculate the relative position

with multiple moving vectors obtained by using the history of

moving vectors during a period of time (e.g., VA(1)...VA(n),

VB(1)...VB(n)) and the calculated relative position for each

sample. We can get the current relative position (xB(i), yB(i))
from the previous step (xB(i−1), yB(i−1)) combining with the

moving vectors (uA(i), vA(i)) and (uB(i), vB(i)) as follows:

xB(i) = xB(i−1) + uB(i) − uA(i) (4)

yB(i) = xB(i−1) + vB(i) − vA(i) (5)

The more previous moving vectors we consider (e.g., uB(i−n)

to uB(i−1)), the more solution points we can get for the current

relative positions. This is because each pair of moving vectors

can contribute to a solution of the current relative position

through Equations 4 and 5.

In summary, we get the current relative position from two

approaches: Approach 1: solving Equations 2 and 3 with the
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(a) Potential Solution range (b) Clustering Analysis

Fig. 6: Examples of potential solution generation (a) and

clustering analysis (b). In (b), the cluster that contains the

most data points is selected and its medoids is reported as the

relative position.

latest moving vectors and distances, and Approach 2: estimate

the current relative position based on the previous relative

position combined with the moving vectors with Equations

4 and 5. Then, we save the data obtained through both the

two approaches for further analysis.

Specifically, Problem 1 can be solved as follows:

• When there is no solution for Approach 1 (e.g., no

intersection points on the two circles in Figure 4b), we

can get the current relative position with Approach 2 from

the previous solution set.

• In the case that there are two solutions (e.g., the two

circles in Figure 4b have 2 intersection points), only one

of them is the real relative position. We collect multiple

data points with Approach 2 (e.g., considering multiple

previous moving vectors), and the majority of data points

are supposed to be close to the real relative position,

which has been confirmed with our evaluation results.

Potential Solution Generation. In order to solve Problem

2, instead of only considering the intersection points, we select

the points located within a certain range of the intersection

points and consider them as potential solutions. As a result,

the solution set has a higher probability of covering the real

relative position. Figure 6a shows an example of the potential

solution range. The data points in the box are selected out.

Moreover, the range size is configurable, based on the average

error and noise introduced by smartphone sensors.

Clustering Analysis. Both the above two steps (i.e., posi-

tioning with multiple moving vectors and potential solution

generation) generate multiple data points for the current rela-

tive position, which can contain the real relative position and

the ones caused by other issues (e.g., the two-solution case,

sensing errors). Thus, we need to select out those that are

close to the real relative location. To solve this problem, we

use clustering analysis.

Clustering analysis is used to group the saved potential

solution points into different clusters. Figure 6b shows an

example. Specifically, SmartDistance adopts K-Medoids Parti-

tioning Around Medoids (PAM) for clustering analysis, which

has more tolerance to noise and outliers compared to the K-

means algorithm. Moreover, Silhouette analysis is adopted

to determine the right number of clusters. Then, the cluster

that contains the most data points is selected out. Finally,

Fig. 7: Illustration of the Jet Model.

the medoid (center) of the cluster is reported as the relative

position.

IV. INFECTION SPACE DETERMINATION

In this section, we discuss how SmartDistance determines

the infection space. Specifically, we first present the modeling

of droplet transmission, and then explain the action differen-

tiation methodology.

A. Droplet Transmission Model

Close contact can create the condition for droplet transmis-

sion. When people are talking with each other, droplets are

sprayed from mouths. The droplets containing pathogens can

be the primary medium for infection transmission, and some

droplet nuclei and fine droplets can be directly inhaled by

the people who are having a face-to-face interaction. Thus,

effectively modeling the droplet transmission route and the

corresponding transmission range are critical to determine

whether a certain individual is highly probable to get infected

during a social interaction event.

According to [3], the exhaled air flow from an infected

person can be treated as a turbulent round jet which can be

mainly divided into two zones: 1) a flow establishment zone

and 2) a flow established zone. Figure 7 shows the illustration

of the jet model. The flow rate and the velocity profiles can

be obtained by classic jet theories [14]. The corresponding

notations are as follows:

• s represents the center line distance travelled by the jet.

• dm represents the source mouth diameter.

• ug is the Gaussian velocity.

• u0 represents the initial velocity at the source mouth

outlet.

• r is the radial distance away from the jet center line.

• R represents the radius of the jet’s potential core.

• b represents the Gaussian half width.

• Qjet is the jet flow rate.

• ugc represents the Gaussian center line velocity.

In the flow establishment zone (s ≤ 6.2dm, Gaussian

profile):

ug = u0; r ≤ R (6)

ug = u0exp

[
− (r −R)2

bg
2

]
; r ≥ R (7)

Qjet = πbg
2u0 (8)
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Fig. 8: Amplitude of acoustic signal of different events.

bg = 0.5dm + 0.033355s (9)

In the established flow zone (s > 6.2dm, Gaussian profile):

ugc = 6.2u0(dm/s) (10)

Qjet = πbg
2ugc (11)

bg = 0.114s (12)

From the equations above, we can calculate the radius of

the jet bg through the length of s as follows:

bg =

{
0.5dm + 0.033355s s ≤ 6.2dm

0.114s s > 6.2dm
(13)

We can see from Equation 13 that in the flow establishment

zone, the radius of the jet bg is determined by dm and the

center line distance travelled by the jet. In the established

flow zone, the radius of the jet bg is only decided by the

corresponding center line distance travelled by the jet. Thus,

when the source mouth diameter dm is treated as fixed, each

center line distance maps to a corresponding bg . Hence in

order to determine the infection space, we need to decide the

range of the center line distance and the corresponding radius

of the jet bg . Equation 10 shows the relationship among the

Gaussian center line velocity ugc, the initial velocity at the

source mouth outlet u0 and the center line distance travelled

by the jet. We assume that the droplet does not transmit any

more when the Gaussian center line velocity is below a certain

threshold uthreshold. Since dm is usually a fixed value for

a particular individual, the maximum center line distance is

determined by the initial velocity at the source mouth outlet

u0.

However, u0 can be totally different with different actions.

For instance, the average velocity at the mouth for speaking

is 3.9 m/s while it is 11.7 m/s for coughing [3]. A higher

initial velocity leads to longer center line distance and larger

infection space. Thus, recognizing different actions in real-

time is critical for SmartDistance to estimate the infection

space.

B. Action Recognition

The action recognition component differentiate actions (e.g.,

speaking, sneezing and coughing) in real time based on

acoustic signals. Specifically, we follow the approach in [15]

to design the action recognition component, which mainly

consists of an audio sampler and an action detector.

Fig. 9: Architecture of the CNN-based Classifier.

Audio Sampler reads acoustic samples from the micro-

phone for further analysis. Figure 8 shows corresponding ex-

amples of relevant acoustic signals. Specifically, audio signals

are continuously sampled, and each sample is converted into

a 16-bit binary value. After that, the stream of acoustic data

is then segmented into frames. In the current implementation,

the length of each frame is 4ms. Finally, multiple consecutive

frames are grouped together as a window. Each window is then

send as input to the action detector for detection analysis.

Action Detector mainly contains the following two steps:

1) preprocessing the acoustic signals and 2) training a classifier

to effectively detect different events.

• Step 1: The preprocessing step conducts the frame ad-

mission process. Specifically, for each window (64ms),

the RMS energy is first retrieved and compared with

a predefined threshold. The windows whose energy is

below the threshold are treated as ambient noise. These

windows are then discarded. For the windows whose en-

ergy is above the threshold, a 128-bin ShortTime Fourier

Transform (SIFT) is applied to generate a 64∗16 spectral

segment. These segments are then fed into the following

classifier for event differentiation.

• Step 2: In this step, we train a CNN-based classifier in

order to effectively differentiate various events, which has

been widely used in action recognition, speech recogni-

tion and natural language processing. Figure 9 represents

the concrete architecture of the classifier [16]. It consists

of five layers including two convolutional layers, two

fully connected layers and a softmax classification layer.

The last layer takes the outputs of the second fully con-

nected layer and differentiates the corresponding inputs

as speaking, coughing or sneezing.

V. EVALUATION

In this section, we first introduce the experimental method-

ology and baselines, and then discuss the results.

A. Experimental Setup

We build a prototype of SmartDistance as the testbed, using

Android smartphones with different hardware configurations

including Nexus 4, Nexus 5, Galaxy S2, Galaxy S4, Galaxy

mini and LG v10. A Monsoon Power Monitor [17] is used

to measure the energy overhead of SmartDistance on different

mobile devices. In addition to the testbed experiments, we

conduct simulations with different traces of human mobility

and action events, to evaluate SmartDistance with more diverse
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scenarios. We generate the mobility traces based on a human

mobility model [18] which contains different statistical pat-

terns of human mobility including fractal way-points, pause-

times, inter-contact times and truncated power-law distribu-

tions. The mobility model [18] effectively characterizes the

social interaction scenarios in a specific community such as

parks, university campus and companies. Moreover, the action

event traces are created through randomly generating the

predefined events (e.g., speaking/coughing) at different time

points. The sensing errors collected on the testbed smartphones

are adopted in the simulations.

We adopt the following solutions as the baselines, for the

comparison with SmartDistance.

• Dis-Only determines whether an individual is highly

probable to get infected only based on the relative dis-

tance, without considering the orientation and relevant

action events. Specifically, if the distance between two

individuals is less than 6 feet [19], the alert will be

generated.

• AMIL is a state-of-the-art relative positioning technique

[20] that uses the acoustic information to detect the

relative positions of nearby devices. AMIL assumes that

the nearby devices are stationary during the detection

process and does not track their motion information,

because it treats the nearby devices as the anchors and do

triangulation for positioning. SmartDistance differs from

it for tracking the motion information (moving distance

and direction) of each individual locally in the social

interaction process, which enables a new positioning

algorithm with higher accuracy, since the mobile devices

are not likely to be always stationary during social

interaction.

• One-Step finds the optimal solution meeting the con-

straints represented by Equations 2 and 3, constructed

by the latest moving vectors and distance information. In

comparison, SmartDistance not only uses multiple mov-

ing vectors, but also applies potential solution generation,

and hence performs more comprehensive analysis.

B. Performance of SmartDistance

In this section, we evaluate SmartDistance through compar-

ing with Dis-Only. Ten sample cases with different relative

distances, relative orientations, face orientations and actions

events are presented in Figure 10. We test SmartDistance

and Dis-Only with the ten sample cases, and compare their

decisions on whether to make alerts or not to the Ground Truth,

as shown in Figure 11. The Ground Truth is the theoretically

optimal decision given the exact position information, action

events, and the infection space determined by the droplet

transmission model. Since the Dis-Only scheme uses a fixed

distance (6 feet or 1.83 meters here) as a threshold, it generates

an alert if and only if the distance is within the threshold.

However, the orientation information can actually make a

difference. If two individuals are back to back, the possibility

for any of them to be infected via droplet transmission by

each other is low, even with a relatively short distance. We can

see a similar instance in Sample Case 1: although the relative

distance is short (0.97m), the alert should not be generated

as the relative orientation is 63.9◦ and the face orientation

is 115◦. On the other hand, some actions such as coughing

usually have a larger infection range. SmartDistance addresses

those issues through jointly considering the relative position

and action information, and therefore effectively minimizes the

false positive rate (1%) and false negative rate (3%), as shown

in Figure 12, which presents the statistics of 100 samples. In

comparison, the Dis-Only scheme has higher false positive

rate (33%) and false negative rate (5%), so the alert can be

mistakenly generated and an individual is mistakenly marked

with high possibility to get infected, or an individual can

become highly possible to get infected without being alerted

or recorded.

C. Performance of Relative Positioning

We evaluate the performance of relative positioning from

two perspectives: 1) the orientation error which is defined

as the angle between the real orientation and the estimated

orientation, and 2) the distance error which is defined as the

distance between the real position and the estimated position.

We first compare SmartDistance with the baseline One-Step.

The two schemes are evaluated with 20 moving test cases, in

which the testbed smartphones are taken by the testers walking

around in a library. We can see from Figure 13a that with

SmartDistance, the orientation errors are less than 22◦ in all

the cases, and 80% of them are less than 15◦. However, Figure

13b shows the orientation error achieves up to 200◦ with the

One-Step scheme. This is caused by the following two reasons:

1) with the potential solution generation step, SmartDistance

leverages more data points and thus is more robust to the

noise and errors introduced in moving vector tracking and

distance estimation, 2) the clustering analysis step reports the

right solution through selecting the cluster that contains the

most potential data points. Figures 13c and 13d present similar

comparison results about distance errors.

Then we compare SmartDistance with AMIL [20]. From

Figure 14, we can find that when the moving distance is con-

strained within 0.5m, SmartDistance and AMIL have similar

errors on average. For AMIL, the distance and orientation

errors increase as the the group members move over longer

distances during the detection process, and the worse-case

error can be much larger than the average error. The moving

distance does not significantly impact SmartDistance, because

SmartDistance keeps tracking the motion information of each

device. Moreover, the motion information is exchanged during

the detection, which means a device integrates both the motion

information of itself and those of the nearby devices. Thus, the

motion-based relative positioning technique of SmartDistance

is more effective when people have different motion behaviors

at any time, which is common in daily social interaction.

D. Impact of The Potential Solution Range

As discussed in Section III, in order to reduce the impact

of noise and errors caused by the moving vectors and distance
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(a) Relative Distance. (b) Relative Orientation. (c) Face Orientation.

Fig. 10: Relative distance, relative orientation and face orientation in different sampling cases. The corresponding events are

S, S, C, C, S, S, S, C, C, C (S stands for speaking and C stands for coughing.)

Fig. 11: Comparison on generating alerts.

(a) False Positive. (b) False Negative.

Fig. 12: Statistics of 100 samples of alert decisions.
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Fig. 13: Comparison between SmartDistance and One-Step on

the orientation error (a and b) and distance error (c and d).

estimation, we select the data points within a certain range

of the intersection points (e.g., shown in Figure 6a) as the

potential solutions. Here we evaluate the impact of different

sizes of this range on the performance of relative positioning.

Figure 15a shows the distance errors with different range
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Fig. 14: Performance Comparison between SmartDistance and

AMIL [20]. The moving distance constraint is the longest

distance that a member can move during a detection period

of relative positioning.

sizes. When the range size is 0.1m, the highest distance

error is observed, because there are no solutions meeting

the constraints represented by Equations 2 and 3, due to the

distance and moving vector estimation error. In this way,

no position can be reported. (We set the distance error as

50m to represent those no-solution cases in the figure.) As

the range size increases to 2m, the distance error decreases,

because more potential solution points are collected and there

is a higher probability to cover the real position during this

process. Then, the distance error increases again when the

range size increases to 5m, because too many points that are far

from the real position are selected as potential solutions in this

case, and thus the solution reported by the clustering analysis

can deviate from the real position. The results in Figure 15b

show a similar trend for the same reasons.

E. Impact of The Number of Vectors

As discussed in Section III, the previous moving vectors

can contribute to the potential solution sets of the current

relative position. We evaluate the impact of the number of

moving vectors on the system performance. Figure 16 shows

the distance and orientation errors with different numbers of

moving vectors for the location mapping. We can see that
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Fig. 15: Impact of different potential solution generation range.
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Fig. 16: Impact of different number of moving vectors.

the average distance and orientation errors decrease as more

vectors are used to determine the current relative position, so

do the variance of errors. More potential solutions are collected

when more moving vectors are leveraged. This improves

the system performance from two aspects: 1) the clustering

analysis gets more data points and makes it easier to select the

right cluster (e.g., the cluster that contains the real position),

and 2) more data points make the system more robust to the

errors caused by motion sensing and distance estimation.

F. System Overhead

We evaluate the overhead of SmartDistance based on

an LG V10 smartphone. The average power consumption

of relative positioning is 119.178mW, which includes step

detection, heading estimation, distance estimation, and the

location mapping. It accounts for 7.9% of the total power

consumption of the whole smartphone. Moreover, the delay

of relative positioning is 418ms which is mainly consumed

by the clustering analysis. Power consumption and delay of

other components are negligible. We can see that the system

overhead of SmartDistance is acceptable in real-world cases.

VI. RELATED WORK

Infection Risk Estimation has attracted a lot of attention

recently due to the spread of COVID-19 [21]–[23]. The work

that is most related to SmartDistance is conducted by Guo et

al., who propose an automatic method to identify people who

are potentially-infected by droplet-transmitted disease through

the captured surveillance videos [21]. However, this approach

has the following three limitations that negatively impacts its

effectiveness. First, the surveillance video is not efficient in

dark environment. Second, it requires extra hardware devices

(e.g., camera). Third, it cannot alert people in real-time.

SmartDistance effectively solve these problems from a new

perspective, based on smartphones with non-visual sensors.

Localization with Smartphones has been widely adopted

in different mobile services. A variety of positioning tech-

niques have been proposed to improve the localization per-

formance in different scenarios [24]–[27]. Specifically, WiFi

[28]–[31], FM radio [32], magnetic fingerprinting [33] and

Motes [34] have been widely adopted in indoor localization

through analyzing the received RF signal strength or location

fingerprinting [32]–[35]. However, these existing approaches

cannot be directly applied in the social interaction monitoring

scenario for the following two reasons: 1) extra hardware de-

vices (e.g., antenna arrays) are required which are not suitable

for outdoor social interaction; 2) they usually cannot provide

the orientation information which is important to determine

whether a person has high probability to get infected. More-

over, existing research also investigates relative positioning

on mobile phones. For instance, Banerjee et al. [27] propose

virtual compass in order to sense mobile social interactions.

Though virtual compass can effectively sense the relative

distance, it still cannot efficiently obtain the relative orientation

information. In addition, there are also commercial solutions

that conduct real-time location tracking with integrated GPS,

internet, and Wi-Fi technology [36]. However, lacking of

orientation and infection range information prevents them to

be directly applied in the infection risk detection scenario.

VII. CONCLUSION

Coronavirus disease 2019 has resulted in an ongoing pan-

demic. Social distancing and close contact reporting have

become the effective manners to slow down the spread. In this

paper, we propose SmartDistance, a mobile based system that

intelligently detects the infection risk in an effective manner.

SmartDistance can generate alerts in time and records the

corresponding individuals whenever a high infection risk is

detected. Specifically, SmartDistance dynamically senses both

the relative distance and orientation during social interaction

with a well-designed relative positioning system. In addition, it

recognizes different events (e.g., speaking, coughing, sniffing)

and determines the infection space accordingly through a

droplet transmission model. We prototype SmartDistance on

Android devices with different hardware configurations, and

evaluate its performance with both simulation and hardware

testbed. The experiment results show that SmartDistance re-

duces the false positive rate from 33% to 1% and the false

negative rate from 5% to 3% in infection risk detection,

compared with the state-of-the-practice social distancing so-

lution. Moreover, it effectively improves the positioning ac-

curacy compared with the state-of-the-art relative positioning

scheme.
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