

Designing Web Information Systems for Internet Commerce

through the Virtual Organization Model

Kam Hou VAT

Faculty of Science & Technology

University of Macau, Macau

Fax: (853) 838-314

fstkhv@umac.mo

Abstract

This paper investigates the design of digital
universities in the form of Web information systems
(WISs) prototyped for activities including electronic
commerce (EC). Specifically, we describe the
business and technology architectures constituting
our virtual university model (VU). We interpret the
WISs as an iterative means to realize the services
offered by the VU, and discuss the importance of
designing an enterprise information architecture (EIA)
and constructing a repository of reusable strategic
assets (business and technology). Also we explain the
ideas behind our methodology to transform a
bricks-and-mortar university to its clicks-and-mortar
form. These include integrating its EC vision and
strategy, architecting business processes and
technology applications to operationalize the strategy,
and creating the architectural components for future
reuse. The paper concludes by discussing the
corresponding software architectural approaches
required to develop the different WISs applications
supporting the EC activities of the VU.

1. Introduction

The notion of virtual organization, according to
Mowshowitz [19, 20], could be expressed as a set of
principles for managing goal-oriented activity based
on a categorical split between task requirements and
their satisfaction [12, 18]. In this formulation, the
virtual organization model can be conceived as an
approach to management that explicitly recognizes
the conceptual distinction between functional
requirements and the means for their realization in
practice, as well as providing a framework for
accommodating dynamic changes in both

requirements and available services. In a dynamically
changing organizational and technological
environment, it is essential that we can logically
separate the requirements from the means for their
satisfaction. That way, management could create an
environment in which the means for reaching a goal
are continually and routinely evaluated in relation to
explicit criteria. Such management structure ensures
that requirements are satisfied as appropriately as
possible. It is believed that this idea could be adopted
in a variety of settings to enhance the efficiency and
effectiveness of the underlying information systems
and to motivate the participants involved to reflect on
organizational goals. We have chosen to experiment
with this notion in the design of our digital university,
referred to as the Virtual University (VU). And our
VU involves the construction of numerous
Web-based information systems (WISs) [15] for
different functional requirements including those
related to the activities of electronic commerce over
the Internet, commonly called Internet Commerce.

2. The VU’s Virtual Organization Model

The virtual organization model behind our VU,
makes explicit the need for dedicated management
activities (called meta-management) which identify
the abstract requirements needed to realize certain
objective while simultaneously but independently,
investigating and specifying the concrete means for
satisfying the abstract requirements. Formally, the
VU can be characterized by a number of activities.
These include [18, 19, 20]: formulation of abstract
requirements; tracking and analysis of concrete
satisfiers; dynamic assignment of concrete satisfiers
to abstract requirements on the basis of explicit
criteria; and exploration and analysis of the
assignment criteria associated with organizational

mailto:fstkhv@umac.mo

goals. The VU exploits the advantages of switching
through dynamic assignment of available services to
requests according to explicit criteria. It is believed
that the VU’s ability to switch systematically based
on explicit formulation of goals, allows for a high
degree of flexibility and responsiveness in improving
resource utilization, achieving better quality products,
strengthening managerial control, and providing
cost-effective services. Indeed, the VU, being an
innovative form of organization, promotes reflection
by providing a meta-management framework for
exploring requirements, satisfiers, assignment
methods and criteria, to assess and optimize the
organizational performance.

3. The VU’s Vision of Internet Commerce

With the rapid advances in networking
technologies and the commercialization of the
Internet, universities nowadays are well poised to
deliver customized educational content worldwide
for life-long learners [10]. Yet, this vision, which
looks at education as an information industry, often
requires establishing some electronic infrastructure
within the physical university, in order to take
advantage of the new technologies and the business
opportunities. Our VU’s electronic infrastructure is
supported by the incremental creation of WISs,
which are interpreted as an iterative means to realize
the various services offered dynamically by the VU.
In today’s electronic markets, the VU, as supplier of
education, will have to meet the specific needs of a
diverse, globally distributed customer base. New
players will certainly enter the education and training
markets. The competitive business climate often
requires a team of separate business partners working
together to meet the diverse complicated market
demands. High-performance computer networks
allow companies to collaborate electronically,
through data and technology sharing, to assemble the
creative ideas to develop complex products, and to
achieve production agility. This arrangement, often
called an industrial virtual enterprise [11], is a
consortium of independent member companies
coming together based on cost-effectiveness and
product uniqueness without regard for organization
sizes, geographic locations, computing environments,
technologies deployed, or processes implemented.
Virtual enterprise companies share costs, skills, and
core competencies that collectively enable them to
access global markets with world-class solutions
their members could not deliver individually. When
applied to the VU context, the virtual enterprise

could include partners in the form of other
universities, research centers, major publishers,
tools-vendors, or other education brokerages.

4. The VU’s Digital Framework for WISs

To understand the VU’s digital framework in
support of WISs, we distinguish the information
technology (IT) applications both inside and outside
the system firewall. The former often termed
intra-organizational applications, are internally
focused to enhance the existing relationship between
parties within the organization, typically by
promoting the efficient exchange of information. The
latter called inter-organizational applications, are
externally focused to facilitate new business
relationships and attract new customers via the
organization’s Web site. The VU’s WISs focus on
both the intra- and inter-organizational IT
applications, and they are respectively deployed on
the VU’s Intranet (internal private network) [31], and
Extranet [22], which currently has two connotations.
The first represents an inter-organizational
collaborative network using Internet technology to
provide seamless communication services among
member organizations to engage in cross-application
information messaging. The goals are often to
enhance efficiency and reduce time to market of
business-to-business deliverables, and to increase the
competitiveness of the entire consortium versus other
virtual enterprise. The second denotes part of an
organization’s Intranet made accessible to other
business partners or customers for such services as
data mining and processing. They are essentially
inter-organizational decision support systems where
an external partner uses a Web browser to drill down
and pull the desired information into the client
applications.

5. The VU’s Positioning of WISs

Our VU positions the WISs as an iterative means
to realize the services offered dynamically according
to the ongoing functional requirements of the
business models. Technically, WISs, represent the
important information systems (IS) efforts geared
toward exploiting the benefits of the Web platform.
They are the systems that organizations, their clients
and business partners, use to conduct Intranet-based
and Extranet-based distributed applications including
Internet commerce. According to Isakowitz, et al.
[15], unlike Web pages designed largely for leisure

browsing, WISs enable users to perform work, and is
usually tightly integrated with other non-WISs such
as databases and transaction processing systems. Our
VU believes that in WIS development, user
participation is as critical as it is for traditional IS
development. And WISs should be developed by
using the same disciplined system development
principles, rigorous business value assessment, and
user-centered approaches that are required to build
successful non-WISs [7]. Meanwhile, we also believe
that WISs development is sufficiently different from
traditional IS development in that it requires new
approaches to software engineering, because WISs
have the potential to provide distributed computing
environments among geographically dispersed
coworkers. These differences include such Web
development details as [28]: 1) navigation structure
designed to support specific work flow; 2) structured
data modeling representing relationships among
pieces of information; 3) features that enable users to
process business data interactively; 4) support for
distributed collaboration work style; and 5) link
referential integrity for mission-critical tasks.
Ultimately, it is believed that WISs should help
organizations to enhance their competitiveness and
facilitate differentiation of their products and services
from other competitors’ through standards of high
quality.

6. The VU’s e-Transformation Methodology

The electronic transformation (e-Transformation)
from a physical university to its digital counterpart,
as in the case of our VU, requires an objective
methodology. And this methodology must be
instrumental to creating a productive and efficient
electronic university model, which enables us to
follow an iterative development sequence. This
means being able to plan and prepare for a launch
based on a new business model within a very short
cycle time. In particular, this model should enable
our VU to launch and learn, and then incorporate
those lessons and launch again. Actually, this can be
accomplished only if we have an agile operation
based on a reusable business and technology
infrastructure, and supported by a repository of
reusable business and technology assets. We try to
characterize the methodology to achieve this model
as follows: First, we need to define an electronic
vision (e-Vision) for our VU, to bring all of its
real-world and virtual-world strengths together in a
re-configurable constellation. Second is to define the
VU’s business architecture, encompassing its

associated business models, processes, and
applications which will let us move from vision to
reality. Third, we have to entail a corresponding
technology architecture that allows an iterative
implementation of the business architecture. Fourth
is to create a reusable infrastructure of both business
models and technology applications, which allow us
to recycle every piece of learning, time after time,
and in as little time as possible. In other words, we
recognize that becoming an electronic University is
not simply a technology issue to be managed by an
IT department. Instead, the e-Transformation itself
involves business process engineering and
re-engineering, and it is a core strategic issue,
requiring meticulous planning before construction. It
is about molding selected aspects of the running
university into whatever the reengineered vision of
the educational process and the market (global and
local) demand that they be. And it is about setting
long-term goals to refocus the business of education.
Hence, it is about business as much as it is about
technology, and as such it must be managed directly
by a team of integration specialists (executives,
administrators, professors, technologists) who can
walk the line between university-wide (corporate)
strategy and IT issues. Oftentimes, this requires IT
leaders to learn business, and business leaders to
learn technology. In today’s complex
business-to-customers (b-c) and business-to-business
(b-b) environment, it is believed that the core of an
electronic university is a backbone of
inter-organizational business processes which cross
organization boundaries to include external
stakeholders. And a successful platform for the
electronic applications provided by the WISs of our
VU, must involve, not only customers and suppliers,
but also internal processes, employees, and
back-office functions, as well as external partners.

7. The VU’s Business Architecture

The VU’s business architecture comprises
components of the university architecture that are
directly related to modeling the business
functionality of the organization. Its design should be
guided by the overall re-engineered vision of the
educational process, and must remain grounded in
the realities of university execution, which include
such tangible issues as product (program/course)
development plans, and customer (student)
relationship management. The VU’s business
architecture is generally divided into three distinct
components [14]: e-Business models, e-Process

models, and e-Application models, where “e”
denotes electronic.

• e-Business Models. These models provide a
high-level perspective of the VU’s business structure,
which include determining the organization’s target
market and primary audience for its goods and
services, the optimal product and service mix for
each market segment, and the revenue streams that
will be generated by the product-service-customer
mix. They also include such elements as branding,
distribution channel, partnership strategy, and the
issue of ownership of intellectual property and
physical assets. Moreover, the business models
should include careful analysis of university
resources to ensure that the organization reuses assets
that provide value. More importantly, the models
must define critical success factors, and the
return-on-investment analysis and measurement
criteria in order to create a balance scorecard to keep
the university on track.

• e-Process Models. These models describe the
internal and external processes that define the
organization’s day-to-day behavior. They must reflect
the university’s information strategy, and the
individual business models chosen for
implementation. The electronic process modeling
typically involves defining and working with
business entities such as customers, suppliers and
departments, which are then assembled to form
complete inter-organizational business processes,
reusable in multiple iterations of business process
engineering.

• e-Application Models. These models are aimed to
represent the electronic applications that will be
developed to streamline business processes.
Specifically, they outline the overall application
functionalities from the end-user perspective, in the
form of a user-interface mock-up, which allows users
to step through the process through the application’s
navigation aids. Often, the application functionalities
are supported by some data and object models, which
describe the underlying data structure and usage for a
target application.

8. The VU’s Technology Architecture

The VU’s technology architecture is aimed to
translate the organization’s business vision into

effective electronic applications that support the
re-engineered intra- and inter-organizational business
processes. And it is typically composed of distinct
stages of development such as [14]: e-Application
rules, e-Application data, and e-Application
distribution, where “e” denotes electronic.

• e-Application Rules. Every business process has
rules to govern the operation. And e-Application
rules are the technical mechanisms, which enforce
business rules. Typically, these rules are unique to
each and every implementation. And they must be
modeled to each university’s policies and
specifications. In terms of implementation, such rules
are generally embedded within various software
artifacts, which implement the necessary business
requirements. When a transaction is entered into the
computer system, the software artifacts interact to see
if it is allowed to complete the transaction. That way,
the application logic is made to mirror the business
logic prescribed during the e-Process modeling phase
of the business architecture development. Typical
components of the e-Application rules include:
business objects, and application frameworks, which
involve different levels of technical design.

• e-Application Data. The e-Application Data
comprises data stored and manipulated by the VU’s
applications through open standards such as JDBC or
ODBC. Often, the e-Application Data simply
consists of relational databases. However, some data
management systems could include object databases
that store data in encapsulated software objects rather
than as entries in a database. No matter how data is
stored, it must be monitored and distributed to
applications within and outside the organization in a
manner that first anticipates data requirements and
second enforces data access policies to what is often
sensitive business information.

• e-Application Distribution. Since the VU’s
platforms have to cross internal departmental
boundaries and even bridge multiple member
organizations of the virtual enterprises, they must by
necessity work with a wide variety of existing
technology implementations. The cornerstone of
e-Application distribution is a distributed architecture,
which allows application resources to be located on
individual application servers. And these servers are
connected by a network infrastructure, which
provides a backbone of communication between the
multiple distributed platforms of the VU’s, and which

communicates using middleware standards such as
CORBA and COM/DCOM.

9. The VU’s Reusable Asset Repository

The VU’s e-Transformation methodology
requires iterations of references and modification of
the components developed in the business and the
technology architectures of the university. This
requirement implies the importance of a reusable
asset repository for storing various business-specific
and technology-related components. The VU’s
business repository stores information, which we can
use to standardize definitions for business and
process models. Typically, users can archive existing
process components, including business entities such
as purchaser and supplier, activities such as approval
and requisition, and processes such as procurement
and approvals. These archived entities can then be
recalled later by coworkers in other departments to
be reused or modified for new process models.
Similarly, the technology repository stores
technology resources such as business objects,
pre-built and purchased components, developer
documentation, application design parameters and
other technology standards. Actually, developing
repositories are organizational steps taken to capture
and store the tacit knowledge of people throughout
the organization and to provide services to business
partners across the organizational boundaries. So,
repositories are essential elements of the
organization’s knowledge management platform. It is
believed that information repositories should be
codified according to the final business use supported
by the information. To enable this specific
segmentation, we should first focus on a single
particular area of application, called a domain, and
collect only components which are known to be
useful in that domain, then expand the required
repository domains as the range of reusable assets
grows. We should also be concerned with the
ownership issue as to who will own, manage and
maintain the information in the organization. The end
result of a successful business and technology
repository should be a reusable asset that enable the
VU to share information to reduce its application
costs, and the cycle-time for new versions of
applications and process models. More importantly, it
should provide strategic advantage in the form of
faster time-to-market and responsiveness to customer
needs, which is especially important in life-long
learning where the needs of the students evolve with
their careers.

10. An Example of Enterprise Modeling for

the VU

In this section, we shall start from a typical
business-to-customer (b-c) electronic commerce (EC)
scenario for the VU, and then describe the necessary
business and technology components to be deposited
into the reusable asset repository. These components
will become the constituents to be used in the
development of an appropriate WIS including the
various distributed applications, to fulfill the e-Vision
behind the scenario.

10.1 VU’s e-Vision for B-C EC Scenario

The VU’s e-Vision looks at education as a
business and the potential students as customers. A
typical business transaction starts when customers,
on approaching the VU’s Web site, submit their
learning needs, specifying the general or exact topic
they are interested in. They will give their
preferences for language, length of course, time and
medium of delivery. They can also supply the VU
with personal profiles detailing their backgrounds
and proficiency levels and outlining their
professional goals, if they so desire. In return, the VU
will guide the customer to the suitable electronic
catalogs to assist in course comparison and selections.
If convinced, the customer will proceed to electronic
payment for the educational products, and participate
in the course online with continuous fulfillment over
the Internet, through some specially adapted
approaches and unique resources assembled for the
homogeneous group taking the same course. In
practice, the VU is expected to draw on the standard
b-c EC methods to deliver information over the
networks. These could include ensuring the security
of the information; carrying out transaction
processing and electronic payments; and routing the
traffic to the appropriate secure Internet servers.
Security and authentication mechanisms are of high
priority because they are needed to guarantee the
integrity of the learning materials and to ensure that
only authorized customers have access to the
materials and examinations, and receive credit on
completing the requirements. Besides, development
of electronic payment systems based on a wide
variety of industry-accepted standards, and a flexible
payment scheme (installment possible) is also
important from the supplier’s perspective. Certainly,
it is in the interest of both the customer and the VU
to establish standards and quality requirements that
apply to the electronic educational product and

define procedures for the certification and assessment
of the learners’ progress and achievement.

10.2 VU’s e-Business Model for the B-C EC

Scenario

The VU’s fundamental business problems could
be stated as follows. We must have something to sell,
make it known to potential customers, induce the
buying action, accept payment, deliver the goods or
service, and provide appropriate fulfillment service
after the sale. Also, we want to create a customer
relationship that will bring repeat business. This
whole sequence of ideas or actions is generally
known as the commerce value chain [21]. At each
step in the chain, something of value must be added
along the way in creating and delivering the product.
When applied to the VU’s b-c context, the value
chain could include: selecting the educational
products (degree programs + courses) that will be
offered; making or purchasing the course elements
for course/program packaging; arranging an
attractive electronic display; advertising to attract
potential students; assisting customers with their
selections; taking electronic payments for the product;
and delivering the course to the customer. Each of
these links in the chain is important to the business,
and if any of them breaks down, the whole business
is affected.

10.3 VU’s e-Process Model for the B-C EC

Scenario

Indeed, the VU’s e-Processes can be
conceptualized as a basic combination of four core
customer-oriented activities: Attract, Interact, Act,
and React. These are considered by Treese and
Stewart [29], as the generic value chain in
developing a business system for Internet commerce:

• Attract customers. This is the marketing effort to
get and keep customer interest. It refers to whatever
steps the VU takes to draw customers into the
primary Web site, whether by paid advertising on
other sites, email, television, print, or other forms of
promotion. The idea is to make an impression on
customers and pull them into the detailed catalog or
other information about products and services for
sale.

• Interact with customers. This is the sales effort to
turn interest into orders. It is generally
content-oriented and includes the catalog,
publications, or other information available to
customers over the Internet. Technically, the content
may be static or dynamic, depending on the
respective editorial requirements to change it
infrequently or frequently.

• Act on customer instructions. This is the function
of order management. Once a buyer has searched
through a catalog and initiates to make a purchase,
there must be a way to capture the order, process
payment, and handle fulfillment. There must be some
convenience of purchase installed, say, providing the
shopping cart for customers to modify purchase
content, to discard items, to add new ones, to change
quantities, and to compute the total costs.

• React to customer requests. This is the function of
customer service in the form of technical support.
After a sale is complete, the customer may have
questions or difficulties that require service. Usually,
companies provide the facilities of help desk or
service center to handle customer inquiries. Though
many questions require a person to answer
immediately, oftentimes many can be handled with
an appropriate information system, like a
Web-enabled learning (course support) environment
in the VU context.

10.4 VU’s e-Application Model for the B-C EC

Scenario

The b-c e-Applications that support the b-c
purchasing process, would have to address and
provide functionality consistent with the following
phases: product identification, catalog search,
product comparison, and purchase.

• Product Identification. This phase of the b-c
e-Application often involves a combination of online
advertising and one-to-one marketing in virtual
marketplaces. On the Internet, advertising
opportunities include banner advertisements on Web
sites as well as inclusion in important content
aggregation sites such as certain search engines, and
aggregator portals. Once advertising has driven
traffic to the VU’s site, one-to-one marketing and
content personalization become key factors.
Frequently, marketing promotions aim to encourage

buyers to not only make individual purchases (join
certain online programs or individual courses), but
also develop long-term business relationships with
the university.

• Catalog Search. This phase focuses on the product
catalog itself, which is the primary repository for
product and service offerings. The b-c e-Application
needs to construct an electronic customizable catalog
aimed to provide goods and services to potential
customers. Most b-c catalogs include products and
services with pre-negotiated prices, and they should
be easy to navigate, enabling the customers to
browse specific areas they choose. Mostly, in order to
bring back customers for repeat business, the
e-Application will try to tailor content by tracking
their browsing and generating content to fit their
suspected tastes.

• Product Comparison. This phase provides features
that enable customers to navigate catalogs, compare
similar offerings, and make product selections. The
most complex catalogs dynamically generate catalog
content from a collection of multiple supplier
catalogs in order to facilitate and automate the
comparison process. A successful electronic catalog
should be flexible, permitting the VU to change its
catalog sources as the market shifts and to cater to a
customer base with different interests.

• Purchase. When a potential customer is finally
ready to make a purchase, the e-Application must
provide authentication and encryption services to
ensure that the transaction is confidential and
accurate. The VU must be prepared to accept some
form of online credit, such as credit card or digital
cash. Once a transaction is processed, details about
individual product preference and browsing habits
can be stored under a personal profile, ensuring that
the customer next shopping experience has a
one-to-one feel. In the VU context, as many students
require at least some student services in the
course-taking phase, the b-c e-Applications should
hand the customer data off to a student care
management application before ending the
purchasing transaction.

10.5 VU’s Technology Components for the B-C

EC Scenario

The technology components employed to

translate the VU’s b-c EC strategies into effective
e-Applications, are based on the underlying business
processes (e-Process model), which often require
defining specific entities such as customer, catalog,
program, course, materials (based on the
e-Application models). Recently, component-based
EC applications development has become the current
trend, where EC systems consist of a lightweight
kernel to which new features can be added in the
form of business components [3]. In the software
industry, components are referred to as a specific
piece of functionality that can be accessed by other
software through a contractually specified interface.
They are self-contained, clearly identifiable artifacts
that describe and perform specific functions [24].
And the business component concept is developed to
meet an architectural vision where components can
be put together to form complete business systems –
an environment where components combine
dynamically to implement the required business
processes and where new components are added to
deliver new business functions.

• e-Application Rules. When a situation covered by
the business rule occur, an obligation is incurred to
satisfy the rule. Typically, this is achieved by the
process business components and the entity business
components [9]. The former represent the business
processes identified in the problem domain, and they
are subject to change based on the business rules
because business processes are the most volatile
aspects of a business system. The latter represent the
relatively stable business entities identified in the
same problem domain, and they are responsible for
achieving the designated objectives by performing
the steps of business processes. Principally, the basic
capabilities of business components should include
the plug-and-play features at various granularities,
interoperability across networks, portability on
different hardware and software platforms,
coexistence with legacy applications, mobility in
various networking environments such as Internet,
Intranet, and Extranet, and ability of self-managing
data resources.

• e-Application Data. The enterprise data for the b-c
EC scenario includes the data that are shared across
the business processes of the VU. It mainly includes
the customer information used in different
applications such as order processing, billing,
accounts receivable/payable, and marketing.
Typically, this data has to be architected (i.e.,
modeled, designed, allocated, interconnected) and

managed carefully [30]. Essentially, the enterprise
data is considered as an enterprise asset, and not a
single application captive property. Architecture of
the b-c EC data, involves a combination of issues.
These include: classical relational database design
issues (data modeling, logical database design, data
normalization); distributed database design issues
(data partitioning, data allocation); and middleware
issues such as selecting appropriate client/server
paradigms and protocols (remote data access or
remote procedure call) and database gateways. The
database life cycle ties these issues and approaches
into a consistent framework, which has become an
important technology component of the VU’s
reusable asset repository.

• e-Application Distribution. The distribution model
of the b-c EC e-Applications lies on the separation of
business rules (functional logic) from the
presentation (user interface) and data management
functions of applications. This separation of concerns
leads to a three-layered application architecture:
presentation services, data services, and processing
services. Such separation promotes the notions of
interoperability, reuse, and manageability of
applications. Different modules can be designed and
deployed on different machines for different
presentation styles, user groups, and data
management software, according to a specific
distributed architecture. For example, two-tiered
architectures commonly refer to the traditional
client/server (C/S) applications that use remote SQL
to access database servers (tier 2 machines) from
programs and user interfaces residing at desktops
(tier 1 machines); and three-tiered architecture
introduces a middle machine dedicated to application
logic [8].

11. The VU’s Software Architectural

Approach to Reuse

The VU’s reuse policy is conceived around an
architectural approach to software design, offering
such promising benefits as the reduction in costs of
development, and the increase in reliability [1].
Architecture-driven design is aimed to fulfill not
merely the functional requirements (size and
performance), but also the non-functional aspects
such as ease of maintenance, and accommodation of
projected changes. It carries out design within the
context of the architecture. Currently, many systems
were designed and built individually, and previous

“similar but different” systems were examined to see
if anything could be taken out and used again under
the same context. We believe this approach is not
systematic because the strategy is one of
opportunistic and accidental reuse. For reuse to be
systematic, it needs to be planned for. If we produce
an architecture for a particular context, and design
some code within the constraints of the architecture,
then it is believed that wherever we use the
architecture, we can reuse the code. Actually,
architecture-based reuse represents more than
planning for the systematic reuse of code, but also
that of the context referring to the reuse of analysis
and design, which defines how function is located
and how functional loci communicate. Yet,
abstracting common context for a range of systems is
difficult, and it can hardly be found without example
systems to work from. We believe that the object
technology could help since it has a heavy emphasis
on the process of finding good abstractions. Besides,
an architecture relies on an architectural vision, and it
is about structure rather than function. If we choose
an architecture that meets non-functional
requirements, it shall constraints the design work,
which is required to meet the functional ones. This is
believed to be a more mature process than just
carrying out object-oriented analysis, design and
implementation. Overall, we believe that architecture
is the key to reuse. A common architecture can be
used as the basis for a number of similar-but-different
systems. This means we are also reusing analysis and
design and so achieve greater levels of reuse than if
we were reusing code alone. This also represents our
emergent philosophy of how to develop and evolve
our business and technology architectures in the VU
context.

12. The VU’s WIS Applications Engineering

Earlier we mentioned that the WISs are
interpreted as an important iterative and incremental
means to realize the information system services
offered dynamically by the VU according to its
ongoing business requirements. These include:
increased demands for flexibility, pressures to
respond quickly to market conditions, intense local
and global competition, and continual business
process re-engineering and improvement for
enterprise efficiency. In this section, we discuss the
construction of individual WIS applications based on
the interrelationships among business processes,
applications, and IT platforms. Business processes
represent the day-to-day business related activities of

the VU. They support enterprise goals and thus
establish requirements and the business drivers for
lower level technology utilization. Applications
provide automated support to the business processes,
and thus provide business value to an enterprise.
They are said to be business aware in a sense that
they entail business logic and data that is specific to
the business requirements. They typically consist of a
user database, a set of programs to access and
manipulate the database, and user interfaces to
execute the programs. The IT platforms are used to
build, deploy and operate the applications. They
enable the applications and are business unaware in a
sense that the same platforms could be used for
different business systems. An important part of the
IT platform is middleware [2], which is used to
interconnect and support applications and users
across computer networks. Middleware services
typically include directories and facilities to call
remotely located procedures and software to access
and manipulate remotely located databases.
Specifically, we believe that business processes
provide the requirements that drive the applications
and the IT platforms. And applications enable the
business processes and the IT platforms enable the
applications. Essentially, IT platforms do not add any
direct business value, and if not handled properly,
could disable applications and business processes. In
the VU context, a key role of the IT platforms is to
enable various distributed applications to support the
distributed business processes.

12.1 Developing WIS Application Architectures

Development of a WIS application is composed
of a series of mini applications, which are closely
tied together to solve a business problem. Different
parts of this application may support different classes
of users, utilize different programming languages,
run at different sites, use different computing
platforms, employ different database technologies,
and be interconnected through a diverse array of
network communication devices and software. We
need a systematic methodology to develop WIS
applications that maximize the benefits to the VU,
and minimize the risks [13]. And it is convinced that
such methodology consists of successive iterations,
refinements, and expansions between analysis,
architectures, implementations, deployment and
support activities. Here we focus on describing the
architectural concerns in constructing the WIS
application, which depict how the mini-systems tie
together to satisfy the necessary requirements.

Simply put, the architecture of a WIS application
should describe the components, the functions of the
components, and the interactions between the
components of the application. More precisely, a
WIS application requires the development of an
application architecture involving respectively its
data, software and IT-platform components, which
are commonly referred to as its data architecture,
application software architecture, and platform
architecture. And they are the functional equivalents
of our respective constituents (e-Application Data,
e-Application Rules, e-Application Distribution) in
the VU’s technology architecture previously
mentioned.

12.1.1 Data Architecture. This architecture is
concerned with the crucial issues of data definition,
data placement, data access, and data administration.
The definition of data identifies such concerns as
what constitutes the required data, who owns them,
who generates them, and who will use them. The
placement of data involves such concerns as what
data are located where in the enterprise network
(Intranet, Extranet), how many copies of data exist,
where they exist, and which copy is primary. The
mechanism for data access points to who needs to
access the data, on what platforms they should reside,
whether or not the users employ the Web or other
technologies to access the database. The
administration of data manages who is responsible
for the integrity, security and quality of data.

12.1.2 Application Software Architecture. This
architecture catalogs the application components,
manages the inter-relationships between these
components, administers their allocations and their
coordination paradigms. It raises the portability and
interoperability issues in distributed environments
because numerous mini-applications are tied together
within this architectural context to fulfill different
business and technical requirements. According to
Umar [30], application architecture development
involves the following steps: a) define a logical
model (often an object model), which describe static
and dynamic behavior of the application; b) extend
the model to a distributed object model by dividing
the application logic between client and server
objects and evaluate issues such as two- versus
three-tiered configurations, as well as thin-client or
fat-client approach; c) evaluate/choose the IT
platforms, especially the middleware; and d) evaluate
the allocation strategies of application components to

various computers (hardware tiers) and analyze
performance trade-offs.

12.1.3 Platform Architecture. This architecture
provides the set of technologies (middleware,
networks, operating systems, database/transaction
managers, computing hardware) that glue together
the application pieces across an enterprise. A typical
WIS application may use a combination of
middleware such as Web technologies (Web browsers,
Web servers, HTML + XML, and HTTP), distributed
object technologies (CORBA, DCOM) and SQL
middleware (ODBC + JDBC drivers, database
gateways) that operate over TCP/IP networks across
PC Windows, Windows NT, UNIX, and LINUX
platforms.

12.2 Deriving VU’s Enterprise Information

Architecture

In engineering the WIS applications, it is
important to derive the VU’s enterprise information
architecture (EIA), which specifies the IT-based
solution approach that will satisfy the information
requirements of the enterprise [5, 16]. The EIA is
aimed to specify those pieces of information
(enterprise data, applications, and platforms) which
should maximize benefits and minimize costs and
risks. Particularly, it should minimize the impact of
platform and vendor changes on applications.
Technically, this means promoting the use of tools
that should hide the underlying middleware details
(application programming interfaces, APIs) from
programs. Principally, the VU’s EIA is composed of
its business architecture and technology architecture.
The latter is often expressed in terms of the various
application architectures including respectively the
specific data architectures, application software
architectures, and platform architectures of the
various WIS applications. Operationally, once an
overall EIA is in place, the selection and
modification of the platforms should not affect the
implemented application whose investment is thus
protected despite platform and vendor changes.
Simply put, the VU’s EIA provides a framework for
reducing information system complexity and enables
the enterprise to effectively and efficiently deploy
new technology for enterprise information sharing,
with the promising benefits of reducing data and
software redundancy to move to the new technology.

12.3 Previewing WIS Application Software

Architectures

Development of software architecture for WIS
applications is quite a complex endeavor. We must
take into account the data architectures, the
application requirements (functional, operational,
organizational), and the platform architectures
(ever-evolving infrastructures and standards). So, an
approach is needed to decompose the software
architecture activity into smaller and manageable
steps. Here, we describe in an executive summary
manner the important guidelines we have been
following as follows [30].

12.3.1 Refine and Extend the Object Model. This
step is meant to represent as accurately as possible
the abstract components (objects) of the application
and the abstract messages between these components.
Granularity of components is a major concern: small
objects that represent program routines versus large
business component that represent business entities.
Typically, we use the object-oriented analysis and
design techniques to build the abstract model that
captures the functional requirements of the
application in an implementation-independent
fashion.

12.3.2 Separate Concerns into Suitable Software
Layers. This step groups the components into three
layers: presentation (P), application logic (L), and
data management (D). This is based on the separation
of business rules from the user interface and data
requirements of the application. This separation of
concerns promotes the notions of interoperability,
reuse and manageability of applications in distributed
environments because different modules can be
designed and deployed on different machine for
different presentation styles, user groups and data
management software.

12.3.3 Decompose Application into Tiers. This
step casts the logical architecture into a client/server
configuration which identifies the physical tiers
(physical levels of distribution) of the application. An
application can be physically configured as:
single-tiered, two-tiered, three-tiered. The first
assigns all application layers (P, L, D) in one
machine. The second splits the application layers
between front-end and back-end computers. The

former typically includes the P + L layers (thick
client), whereas the latter the D layer (thin server).
The third splits the application layers across three
types of machines: a front-end with the P layer (thin
client), a middle machine with the L layer, and a
back-end machine with the D layer. Determination of
an appropriate level of distribution impacts the
choice of infrastructure, especially middleware,
performance results and implementation
considerations of the application.

12.3.4 Evaluate/Choose an Infrastructure. An
infrastructure is needed to support interoperability,
facilitate different interaction paradigms, enable
system management (security, failure handling,
performance management), and ensure needed
network services for connectivity between remotely
located client and server processes. This step requires
examination of a wide range of issues such as APIs,
exchange protocols, data management software,
directory services, and network services. It is a
challenging step, especially when numerous
distributed WIS applications span multi-vendor
environments.

12.3.5 Performance and Allocation Analysis.
Allocation of application components to different
machines impacts the performance of distributed
applications. A well-architected application can
easily self-destruct if its components are assigned to
slow or congested computers that are interconnected
through slow communication links. It is important to
optimize the performance of applications by placing
application components (databases and programs) at
the most appropriate sites. This step is to determine
the best sites for allocation of data, processes and
user interface handling.

12.4 Architectural Standards for WIS

Applications Components

Given the architectural concerns described above,
software developers are faced with significant
challenges as they attempt to mold their current
solutions into real implementations. In this section,
we shall discuss some of the emerging technology
components that are the underlying implementation
infrastructure for the WIS applications. We call them
standards because they represent well-defined bodies
of work intended for widespread use according to its

definition, whether promoted by a standardization
body, or a commercial vendor or consortium.

12.4.1 CORBA – Common Object Request
Broker Architecture. The CORBA standard is
conceived around the idea of distributed objects.
Essentially, we are talking about decomposing
enterprise-wide applications into objects that can
reside on different machines on a network. And an
object on one machine can send message to objects
on other machines, thus viewing the entire network
as a collection of objects. Support for these
distributed-object-based applications requires
special-purpose middleware that will allow remotely
located objects to communicate with one another. A
common mechanism used by such middleware is an
object-request broker (ORB) that receives an object
invocation and delivers the message to another
appropriate object. And CORBA [25] is the basic
Object Management Group (OMG) standard that
allows software applications to communicate in this
fashion. Specifically, it allows different components
of an application to execute in different locations, on
different hardware/software platforms, and in
different programming languages. It is relatively
mature and supported by a large number of vendor
products.

12.4.2 UML – Unified Modeling Language. UML
[4] is a language for specifying, visualizing,
constructing, and documenting the artifacts
(architecture) of software systems, as well as
business modeling. It represents a collection of best
engineering practices that have proven successful in
the object-oriented modeling of large and complex
systems. The development of UML had many
objectives in mind including to provide sufficient
semantics to address certain future modeling issues
related to distributed computing, frameworks and
component technology, and to facilitate model
interchange between a variety of tools. The basic
UML semantics can be used to define classes,
interfaces, attributes, operations, relationships, state
machines, use cases and many other details of
object-oriented models. It also provides extensibility
mechanisms that effectively make it into a family of
related languages, each customized for a specific
purpose. Historically, UML is developed by OMG,
near the end of 1997, to serve as the standard
language of blueprints for software.

12.4.3 XML – eXtensible Markup Language.
XML [23] is a new tag-based language for describing
data. It is basically a subset of the Standard
Generalized Markup Language (SGML), a complex
standard for describing document structure and
content. XML, being a meta-language, lets us define
our own customized markup languages for different
document classes. It is defined by the World Wide
Web Consortium (W3C) to ensure that related data
can be transmitted and exchanged in a structured
manner over the Web. Unlike the Hypertext Markup
Language (HTML), which is being used to convert
text stream into the presentation of a page, XML’s
goal is to convert text stream into a data object with a
complex inner data structure and leave the
presentation separate. This separation of structured
data from presentation allows seamless integration of
data from diverse sources. Purchase orders, catalog
data, and other similar information from disparate
sources can easily be converted through the Web
browser or could be fed to other distributed
application for further aggregation and processing.

12.4.4 XMI – XML Metadata Interchange. XMI
was adopted as an OMG standard in March 1999
[27]. It gives a standard method to interchange UML
models in the form of XML documents, that can be
stored in files and streamed across the Internet. XMI
is based on an OMG standard called MOF
(Meta-Object Facility) which is used to define
meta-models. This means we can use XMI to
interchange models in any modeling language
defined using MOF, of which UML is just one
example. UML and XMI together provide the
capability to define semantically rich object models
in a tool-independent format, and the ability to
interchange such models between one tool and
another without loss of information.

12.4.5 EJB – Enterprise Java Beans. This is a
standard programming model for enterpise
componentry, and is member of a set of technologies
and tools defined by the JavaSoft [26], for
developing multi-tier distributed applications. The
infrastructure is called the Java Platform for the
Enterprise (JPE), which besides EJB, also includes
Remote Method Invocation (RMI), Java Naming and
Directory Interface (JNDI), Java Database
Connectivity (JDBC), Java Transaction Service (JTS)
and Java Messaging. Basically, an EJB is a software
component that defines business application logic,
and is run on an Enterprise Java Server (EJS) which

implements containers. Containers are conceived as
software constructs, where EJBs are deployed, and
which implement ‘qualities of service’ for the EJBs
to utilize as they executes, such as transactional
behavior, security characteristics, and persistence
features. The EJB specification defines two kinds of
beans: session beans and entity beans. The former are
intended to implement a piece of business logic on
behalf of a single client. The latter are representations
of a persistent state, normally in a database, or
implemented by an existing enterprise application, to
be shared between multiple client sessions. Hence,
the EJB model is enabled to implement a complete
separation of business logic from technical
processing.

13. Remarks for Continuing Challenges

The overall picture confronting today’s
enterprises is this. At the core is the installed base of
existing IT systems, which includes the legacy data
and business logic. Around the edge are increasingly
pro-active customers, to which the enterprise must
offer an increasing quality of service through existing
and new channels. In between, the enterprise is
re-engineering its business processes, with a focus on
knowing its customers better, and offering
continuous improvement of its products and services.
From an IT perspective, the legacy systems become
surrounded by a matrix of go-between componentry
providing services to support the changing business,
with increased flexibility and reduced development
times as compared with the legacy systems. This is
the backdrop behind which our VU is conceived in
terms of its WIS applications development. And we
call this, the VU’s e-Transformation which is tackled
based on the virtual organizational model focusing on
a categorical split between task requirements and
their satisfaction. This paper has focused on
identifying the abstract requirements needed to
realize the WIS applications, while at the same time,
investigating and specifying the current technological
means (software architectural approach) for
satisfying the requirements. Among the numerous
WIS application design problems to be solved
include the following. For ease of development and
reuse and interoperability, we need to develop some
architectural descriptions (perhaps based on UML,
CORBA, XML) to define some reference
architectures to address the specific
Web-development details of the WIS. For example, a
collaboration architecture could provide, to a
dispersed set of participants, an effective means of

working together and communicating with one
another on topics of joint interest. A thin-client
transactional architecture could address the need to
do enterprise-wide administrative business. A service
center architecture could provide Web-based access
for customers to do business, say, accessing the
digital learning environment in the process of serving
the student client. Such reference architectures may
be thought of as large-scale design patterns [6, 17],
which should capture the design of enterprise-wise
WIS applications.

References

[1] Anderson, B., and Dyson, P., “Reuse Requires

Architecture,” In L. Barroca, J. Hall, and P. Hall

(Eds.), Software Architectures: Advances and

Applications, Springer-Verlag, Berlin Heidelberg,

2000, pp. 87-99.

[2] Berstein, P., “Middleware: A Model for Distributed

System Services,” Comm. ACM, Vol. 39, No. 2,

Feb. 1996, pp. 86-98.

[3] Bichler, M., Segev, A., and Zhao, J.,

“Component-based E-Commerce: Assessment of

Current Practices and Future Directions,” ACM

SIGMOD Record, Vol. 27, No. 4, Dec. 1998, pp.

7-14.

[4] Booch, G., “UML in Action,” Comm. ACM, Vol.

42, No. 10, Oct. 1999, pp. 26-28.

[5] Cook, M.A.. Building Enterprise Information

Architectures: Reengineering Information Systems,

Prentice Hall PTR, 1996.

[6] Cook, S., “Architectural Standards, Processes and

Patterns for Enterprise Systems,” In L. Barroca, J.

Hall, and P. Hall (Eds.), Software Architectures:

Advances and Applications, Springer-Verlag,

Berlin Heidelberg, 2000, pp. 179-190.

[7] Dennis, A.R., “Lessons from Three Years of Web

Development,” Comm. ACM, Vol. 41, No. 7, Jul.

1998, pp.112-113.

[8] Dickman, A., “Two-Tier versus Three-tier Apps,”

Information Week, Nov. 13, 1995, pp. 74-80.

[9] Eeles, P., “Business Component Development,” In

L. Barroca, J. Hall, and P. Hall (Eds.), Software

Architectures: Advances and Applications,

Springer-Verlag, Berlin Heidelberg, 2000,

pp.27-59.

[10] Hamalainen, M., Whinston, A.B., and Vishik, S.,

“Electronic Markets for Learning: Education

Brokerages on the Internet,” Comm. ACM, Vol. 39

No. 6, Jun 1996, pp. 51-58.

[11] Hardwick, M., and Bolton, R., “The Industrial

Virtual Enterprise,” Comm. ACM, Vol. 40, No. 9,

Sept. 1997, pp. 59-60.

[12] Harrington, J. Organizational Structure and

Information Technology, Prentice-Hall

International, Hertfordshire, U.K., 1991.

[13] Henderson, J., and Venkatraman, “Strategic

Alignment: Leveraging Information Technology

for Transforming Organizations,” IBM Systems

Journal, Vol. 32, No. 1, 1993, pp. 4-16.

[14] Hoque, F. e-Enterprise: Business Models,

Architecture, and Components, SIGS Cambridge,

2000.

[15] Isakowitz, T., Bieber, M., and Vitali, F., “Web

Information Systems,” Comm. ACM, Vol. 41, No.

7, Jul. 1998, pp.78-80.

[16] Melling, W., “Authoring an Enterprise Information

Architecture: A Pragmatist’s Approach to a

Process,” Gartner Group Conference, Feb. 22-24,

1995.

[17] Mowbray, T., and Malveau, R. CORBA Design

Patterns, John Wiley & Sons, New York, 1997.

[18] Mowshowitz, A., “Virtual Organization,” Comm.

ACM, Vol. 40 No. 9, Sep. 1997, pp. 30-37.

[19] Mowshowitz, A., “Virtual Organization: A Vision

of Management in the Information Age,” Inf. Soc.

10, 4 (1994), pp. 267-288.

[20] Mowshowitz, A., “On the Theory of Virtual

Organization,” Syst. Res. 14, 4(1997).

[21] Porter, M.E. Competitive Advantage: Creating and

Sustaining Superior Performance, The Free Press,

New York, NY, 1985.

[22] Riggins, F.J., and Rhee, H.S., “Toward a Unified

View of Electronic Commerce,” Comm. ACM, Vol.

41 No. 10, Oct. 1998, pp. 88-95.

[23] Roy, J., and Ramanujan, A., “XML: Data’s

Universal Language,” IEEE IT Professional, Vol. 2,

No. 3, May/Jun. 2000.

[24] Sametinger, J. Software Engineering with Reusable

Components, Springer-Verlag, Berlin Heidelberg,

1997.

[25] Seetharaman, K., “The CORBA Connection,”

Comm. ACM, Vol. 41, No. 10, Oct. 1998, pp.

34-36.

[26] See http://www.javasoft.com.

[27] See

http://www.software.ibm.com/ad/features/xmi.html

[28] Takahashi, K., “Metalevel Links: More Power to

Your Links,” Comm. ACM, Vol. 41, No. 7, Jul.

1998, pp.103-105..

[29] Treese, W., and Stewart, L. Designing Systems for

Internet Commerce, Addison Wesley, Reading,

Mass., 1998.

[30] Umar, A. Application (Re)Engineering: Building

Web-Based Applications and Dealing with

Legacies, Prentice Hall PTR, 1997

http://www.javasoft.com/
http://www.software.ibm.com/ad/features/xmi.html

[31] Weston, R., and Nash, K., “Intranet Fever,”

ComputerWorld, Vol. 30 No. 27, 1996, pp. 1-15.

