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Abstract

Crowd flow prediction is one of the key problems in human mobil-
ity modeling, forecasting crowd flows of locations based on historical
human mobility traces. Traditional human mobility traces (collected via
telecommunication companies, online social media platforms, or field
studies/experiments, etc.) suffer from severe data quality issues such as
low precision, data sparsity, and insufficient coverage. In this paper, we
investigate crowd flow prediction using Wi-Fi connection records on the
campus of a university, which imply comprehensive, large-scale, high-
coverage, and multi-grained (building/floor/room level) human mobility
traces. However, we are facing not only non-trivial noises in the raw
Wi-Fi connection data when extracting human mobility traces, but also
the trade-off between location granularities and mobility patterns when
modeling multi-grained crowd flow. Against this background, we propose
CrowdTelescope, a Wi-Fi-positioning-based multi-grained spatiotempo-
ral crowd flow prediction framework. We design a systematic approach
for robust human mobility trace extraction from the noisy Wi-Fi connec-
tion records and adopt spatiotemporal Graph Neural Networks to model
multi-grained crowd flow under a unified graph model for the three-level
location hierarchy. We also develop a prototype system of CrowdTele-
scope, providing the interactive visualization of crowd flows on campus.
We evaluate CrowdTelescope by collecting a Wi-Fi connection dataset
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on the campus of the University of Macau. Results show that CrowdTele-
scope can effectively extract informative human mobility traces from the
noisy Wi-Fi connection records with an improvement of 3.3% over base-
lines, and also accurately predict on-campus crowd flow across different
location granularities with 1.5%-24.1% improvements over baselines.

Keywords: Mobility, Crowd Flow, Wi-Fi Positioning, Smart Campus

1 Introduction

Crowd flow prediction forecasts the crowd flows of locations based on historical
human mobility traces [1], which can benefit both authorities and residents. For
example, it can provide insight to authorities and organizations for decision-
making in various aspects, such as risk assessment [2], resource management
[3], predictive policing [4], etc. Meanwhile, it can also benefit residents by bet-
ter scheduling their daily activities. In particular, facing the recent COVID-19
epidemic, social distancing (i.e., avoiding crowdedness) has been suggested as
an effective measure by many countries worldwide [5]; in this context, accu-
rately forecasting crowd flow can significantly help the implementation of social
distancing in practice [6].

Toward the goal of accurate crowd flow prediction, it is indispensable to col-
lect human mobility traces. On one hand, Outdoor Positioning Systems (OPS)
such as global positioning systems (GPS) or cell identification (CID)-based
systems have been widely deployed, providing real-time positioning services
to users in an outdoor environment. Due to the low positioning precision of
CID and GPS in an indoor environment, existing work using OPS mobility
traces usually focuses on macroscopic mobility, such as global level [7], coun-
try level [8], or urban level [2]. On the other hand, Indoor Positioning Systems
(IPS) such as Wi-Fi-based or Bluetooth-based position systems provide fine-
grained indoor and outdoor (depending on the density of the deployed access
points/hotspots) localization. Due to the implementation constraints of these
Wireless Local Access Networks (WLAN) from their service providers, the
scale of the publicly available mobility traces is often small, which is usually
limited to hundreds of users (e.g., about 700 students in Copenhagen Networks
Study [9], about 200 users in Lausanne Mobile Data Challenge [10]).

Against this background, in this study, we focus on Wi-Fi-positioning-
based human mobility traces on the campus of the University of Macau. The
uniqueness of on-campus Wi-Fi connection records implies comprehensive,
large-scale, high-coverage, and multi-grained human mobility traces on cam-
pus. For example, on the campus of the University of Macau, over 7,000 Wi-Fi
Access Points (APs) have been deployed, covering over 80% of the campus
(both indoor and outdoor areas), providing Internet services to over 10,000
students and staff, as well as to guests. With the ubiquity of smartphones
and wearable devices (e.g., smart watches or bracelets), individuals carrying
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mobile devices leave their spatiotemporal “digital footprints” when moving on
campus, which are recorded by the (automatic) connection logs between the
devices and Wi-Fi APs. For example, during a typical semester weekday on 1st
March 2021, we observed 2,321,420 records from 28,551 devices and 7,096 APs.
However, crowd flow prediction from such data sources faces the following two
issues:

• How to extract informative human mobility traces from noisy Wi-Fi con-
nection records. Although Wi-Fi connection records serve as a powerful
crowdsensing paradigm for mobility traces, such a data source contains two
types of non-trivial noises. First, connection records from some devices (such
as Wi-Fi-equipped desktops and smart home equipment) that cannot reflect
human mobility need to be filtered out. Second, connection records from mul-
tiple mobile devices carried by the same user (such as smartphones, tablets,
and smartwatches of the same individual) cause over-sampled mobility traces
from the user, which need to be merged to alleviate the over-sampling bias.
In this context, it is thus indispensable to consider these intrinsic noises and
design a robust method to extract informative human mobility traces.

• How to model multi-grained crowd flow from on-campus mobility traces.
Wi-Fi connection records reflect the user mobility traces at different levels
of granularities, usually following a three-level hierarchy of “building-floor-
AP”. Modeling such mobility traces faces the trade-off between location
granularity and mobility patterns, where finer-grained crowd flow usually
has weaker mobility patterns and verse vice. For example, the mobility tran-
sition between APs is usually less obvious than that between buildings.
On the other hand, understanding such multi-grained mobility patterns is
crucial for accurate crowd flow prediction, which can serve as a “crowd tele-
scope” to analyze crowd flows at different granularities. It is challenging to
model multi-grained crowd flow with varying mobility patterns.

To address these two issues, we propose CrowdTelescope, a Wi-Fi-
positioning-based multi-grained spatiotemporal crowd flow prediction frame-
work for smart campus. To address the first issue of noisy Wi-Fi connection
records, we design a robust human mobility trace extraction method, which
firstly uses a heuristic-based noisy data filter to remove those devices that can-
not reflect human mobility and then learns to integrate mobility traces from
devices carried by the same user using cross-grained features. To address the
second issue of multi-grained crowd flow modeling, we adopt spatiotemporal
Graph Neural Networks (GNNs) to model multi-grained crowd flow, by formu-
lating the location graphs of different granularities under a unified graph model
considering the three-level location hierarchy (“building-floor-AP”). Finally,
we develop a Web-based prototype system visualizing both historical and pre-
dicted crowd flows via an interactive map. To evaluate our CrowdTelescope,
we collect an in-house Wi-Fi connection dataset on the campus of the Univer-
sity of Macau and perform evaluation on two tasks, i.e., human mobility trace
extraction and crowd flow prediction tasks. Results show that in the human
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mobility trace extraction task, CrowdTelescope can effectively integrate mobil-
ity traces from devices carried by the same user, with an improvement of
3.3% over baselines; in the crowd flow prediction task, it can also make accu-
rate predictions of crowd flow across different location granularities, yielding
1.5%-24.1% improvements over baselines without using location graphs.

2 Related Work

2.1 Human Mobility Data Sources

In the early stage, human mobility study mainly relies on demographic data
[11], which incurs significant human effort in data collection. With the recent
advance of wireless sensing and communication technologies, various position-
ing systems have been used to monitor and collect human mobility traces,
which mainly fall into two categories, i.e., outdoor and indoor positioning
systems.

First, Outdoor Positioning Systems (OPS) such as global positioning sys-
tems (GPS) or cell identification (CID)-based systems have been widely
deployed, providing real-time positioning services to users in an outdoor
environment. However, these systems have their intrinsic limitation on the
localization precision in an indoor environment. More precisely, while CID-
based positioning systems (mapping to a nearby cell tower location) have
an intrinsic drawback in localization precision (about 50m) [14], GPS (using
satellite signals and trilateration) is known to have poor indoor localization
precision due to the signal attenuation caused by construction materials [12].
Subsequently, existing work using OPS mobility traces usually focuses on
macroscopic mobility, such as global level [7], country level [8], or urban level
[2]. Moreover, these data sources often have a sparsity issue of the collected
mobility traces [13] and also a low and insufficient coverage of the population
in the target area, as the data is usually collected by a telecommunication
service provider (CID-based positioning [14]) or an urban transportation com-
pany (e.g., Taxi mobility traces [15]), or is crawled on an online social network
platform (e.g., Foursquare/Twitter [16–18]), etc.

Second, Indoor Positioning Systems (IPS) such as Wi-Fi-based or
Bluetooth-based position systems provide fine-grained indoor and outdoor
(depending on the density of the deployed access points/hotspots) localization.
However, due to the implementation of the Wireless Local Access Networks
(WLAN) and its privacy sensitivity, the scale of the publicly available mobil-
ity traces are often small, which is usually limited to hundreds of users (e.g.,
about 700 students in Copenhagen Networks Study [9], about 200 users in
Lausanne Mobile Data Challenge [10]). To the best of our knowledge, the only
work using large-scale Wi-Fi-positioning-based mobility traces in this category
is from Georgia Institute of Technology [6], which involves about 40K stu-
dents and 7K Wi-Fi Access Points. The scale of this data is comparable to the
mobility traces at the University of Macau. However, this large-scale dataset
is not publicly accessible due to privacy protection regulations. Therefore, we
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collect an in-house Wi-Fi connection dataset on the campus of the University
of Macau to study the on-campus human mobility.

2.2 Human Mobility Modeling Methodology

According to the problem settings [1], human mobility modeling techniques
generally fall into two types of tasks (i.e., predictive and generative tasks) with
two types of data representation (i.e., mobility trajectory and flow). First,
predictive tasks on mobility trajectories are known as next-location predic-
tion problems, forecasting the location of an individual based on her historical
mobility traces [13, 19]. Second, predictive tasks on crowd flow forecast the
crowd flows (the number of individuals or vehicles) of locations based on his-
torical human mobility traces [20, 21]. Third, generative tasks with mobility
trajectories try to generate synthetic trajectories that are similar to real-world
human mobility traces in terms of statistical patterns [22, 23]. Finally, gen-
erative tasks with mobility flow generate synthetic flows among locations,
mimicking the real-world mobility flow [24, 25]. These mobility modeling
tasks have been widely studied to support various smart city applications,
such as urban event organization [26, 27], location recommendation [28, 29],
crowdsensing [30, 31], and urban resource allocation [32, 33], etc.

This paper studies the crowd flow prediction problem using the on-campus
Wi-Fi connection records, which implies comprehensive mobility traces on
campus. Accurate crowd flow prediction requires subtly capturing spatiotem-
poral dynamics and dependencies of crowd flow. Traditional solutions to this
problem use time series prediction algorithms based on autoregression, such
as AutoRegressive Integrated Moving Average (ARIMA) [34]. However, the
autoregression models often ignore spatial dependencies and also fail to capture
complex temporal dynamics, resulting in unsatisfied results [1]. Recently, Deep
Learning models have been widely used for crowd flow prediction problems.
Specifically, Recurrent Neural Networks (RNNs), such as vanilla RNN [35],
Long Short-Term Memory (LSTM) [36], and Gated Recurrent Unit (GRU)
[37], are designed to capture sophisticated temporal dynamics over time series
and sequences. On the other hand, spatial dependencies have been modeled by
applying Convolutional Neural Networks (CNNs) [38] on a crowd flow matrix
(where the matrix represents the targeted geographical region and each entry
in the matrix represents the flow in a spatial grid), or adopting Graph Neu-
ral Networks (GNNs) [39] on a crowd flow graph (where the graph represents
the spatial connection between locations and each node represents the flow
at a specific location). Recent approaches to this problem combine RNNs
and CNNs/GNNs into a unified model by jointly capturing spatiotemporal
dynamics and dependencies. For example, STGCN [40] combines two temporal
gated convolution layers and a spatial graph convolution layer as a “sand-
wich” structure; STTN [41] integrates a spatial and a temporal transformers
to capture dynamical directed spatial dependencies and long-range temporal
dependencies, respectively; GWNET [42] designs a learnable adaptive depen-
dency matrix to capture the hidden spatial dependencies; MTGNN [43] learns
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Fig. 1 CrowdTelescope overview with three steps: 1) Robust human mobility trace
extraction, 2) Multi-grained crowd flow modeling and 3) Prototype development.

to extract uni-directed relations among multi-variate variables to capture spa-
tial dependencies. In this paper, we explore spatiotemporal GNNs for crowd
flow prediction using Wi-Fi-positioning-based human mobility traces.

3 CrowdTelescope

Figure 1 shows the overview of our CrowdTelescope framework. First, from
the large-scale and noisy Wi-Fi connection records, we design a robust human
mobility trace extraction method to obtain informative human mobility traces.
Second, based on the extracted human mobility traces, we adopt spatiotem-
poral GNNs to model multi-grained crowd flow, by formulating the location
graphs of different granularities under a unified graph model considering
the three-level location hierarchy. Finally, we develop a prototype system of
CrowdTelescope visualizing both historical and predicted crowd flow via an
interactive map on the Web.

3.1 Robust Human Mobility Trace Extraction

With the ubiquity of smartphones and wearable devices, the raw Wi-Fi connec-
tion records imply comprehensive human mobility traces on campus. However,
these records contain two types of non-trivial noises: 1) records from some
devices (such as Wi-Fi-equipped desktops and smart home equipment) that
cannot reflect human mobility, and 2) records from multiple mobile devices
carried by the same user (such as smartphones, tablets, smartwatches of the
same individual) which cause over-sampled mobility traces from the user. To
extract informative human mobility traces from such noisy data, we design a
robust human mobility trace extraction pipeline as follows.
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3.1.1 Wi-Fi connection log preprocessing

According to the configuration of the Wi-Fi AP provider (Aruba Net-
works), the Wi-Fi connection records have six types of connection events
between devices and APs, i.e., Authentication request, Authentication success,
Deauthentication from station, Association request, Association success and
Disassociation from station. A device is uniquely identified by a MAC address
when accessing Wi-Fi (here we do not have any device meta data due to the
privacy protection regulation). When a device wants to connect to an AP
for the first time, the log traces are “Authentication request—Authentication
success—Association request—Association success”; the authentication pro-
cess requires a valid user account registered at the university to reach a success
state for the internal Wi-Fi services. When a connected device moves from one
AP to another, if the device enables fast-roaming, the log traces are “Asso-
ciation request—Association success”; otherwise the system record a full set
of logs, the same as the device connects to the AP for the first time. Subse-
quently, to extract the mobility traces of devices, we keep the “Association
success” events only, which is the final step of all these log traces, indicating
the presence of a device at an AP at a certain timestamp.

Note that we ignore “Deauthentication from station” and “Disassociation
from station” events due to the fact that these two events are often significantly
lagged in the log traces. For example, when a device moves from one AP to
another, the “Disassociation from station” event at the former AP is often
recorded with a timestamp later than the “Association success” event at the
latter AP; subsequently, the “Disassociation from station” event cannot be
used to record one’s presence at an AP.

3.1.2 Noisy device trace filtering

Based on the “Association success” events of a device, we can extract a trajec-
tory of the device, represented as a sequence of AP-timestamp pairs. However,
records from some devices usually fail to reflect human mobility. Through our
empirical analysis, we identify three types of such noisy devices.

• Non-(or low-)mobile devices, such as Wi-Fi-equipped desktops, lab equip-
ment or smart home equipment, cannot reflect human mobility. Such a
device often attaches to a small number of different APs over a long period
of time. We define these devices as those that have ever connected to less
than 10 different APs during a week.

• Publicly shared devices, such as shared handsets for campus management
and security staff, do not reflect individual’s mobility traces. A shared device
often connects to a large number of APs, such as a shared handset for
security patrolling. We define these devices as those that have ever connected
to over 500 different APs during a week.

• Devices from irregular user accounts cannot reflect real human mobility
traces. Specifically, the authentication process requires a valid user account.
We observe a few user accounts that are associated with many mobile
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Fig. 2 Data statistics in raw data. (a) The frequency of the number of unique APs connected
by each device per week. (b) The frequency of the number of unique devices by each user.

devices, implying that one user account is shared by many users. In this
case, the device mobility traces cannot reflect a single user’s mobility traces.
We empirically define irregular user accounts as those that have been used
by over five different devices.

We filter out these noisy devices according to the above criteria. As shown
in Figure 2, noisy data defined above are mostly the outliers from the data
distribution. Note that the above three types of noisy devices may overlap. For
example, multiple publicly shared handsets for security patrolling may use the
same user account for Wi-Fi authentication.

3.1.3 Integration of the mobility traces of the devices of the
same user

Based on the filtered device mobility traces, we need to extract human mobility
traces. Specifically, if a user has only one device, the device’s mobility traces
represent the user’s mobility traces. However, when a user has multiple devices
(such as a smartphone and a smart watch/bracelet), these devices’ traces cause
over-sampled mobility traces from the users. Therefore, it is critical to over-
come this bias by integrating the mobility traces of the multiple devices of
the same user. To this end, we need to identify the devices of the same user.
Note that the device ownership information is not always available due to
various reasons. First, the authentication may not necessarily be conducted
with UM registered account; devices can also access Wi-Fi via eduroam1 Wi-
Fi networks or public Wi-Fi, where we cannot link these devices to any UM
registered accounts. Second, user account information for accessing Wi-Fi may
be protected due to privacy issues.

Against this background, we design a novel method to learn to identify
whether a pair of devices belong to the same user. When two mobile devices
are carried by the same user, their spatiotemporal mobility traces should be
very similar (not necessarily identical due to the stochasticity of the wire-
less network connection). For example, from the spatial perspective, the two
devices may connect to two neighboring APs, respectively; from the temporal

1https://eduroam.org/
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Fig. 3 Spatiotemporal granularities tolerating the connection stochasticity

Fig. 4 Our proposed CNN model for the classification of device pairs

perspective, the two devices may connect one after the other to APs. Subse-
quently, it is necessary to consider these aspects to tolerate such stochasticity
when measuring the similarity between two devices’ trajectories. In this study,
instead of manually defining a fixed spatiotemporal tolerance to accommodate
such stochasticity, we define three levels of spatial granularities and four levels
of temporal granularities and design a convolutional neural network to learn
to classify whether two devices belong to the same user.

Figure 3 shows our defined spatiotemporal granularities for tolerating the
connection stochasticity. We consider three levels of spatial granularity, i.e.,
building, floor, and AP, and four levels of temporal granularity, i.e., 10 mins,
5 mins, 1 min, and 1 sec. Subsequently, each device trajectory can be trans-
formed into these 12 spatiotemporal granularities. To compute the similarity
between two devices’ trajectories, we borrow ideas from Jaccard similarity
between two sets. However, instead of using Jaccard similarity directly, we
define the size of the intersection and the size of the union as two features.
A toy example for feature extraction is shown on the top of Figure 4 for one
granularity (AP, 1 min), where we extract two features, i.e., size of intersection



Springer Nature 2021 LATEX template

10 CrowdTelescope

and size of union. Subsequently, we can extract 24 features under the 12 spa-
tiotemporal granularities. Based on these features, we design a Convolutional
Neural Network (CNN) model to learn to classify if two devices belong to the
same user, as shown at the bottom of Figure 4. Specifically, we reshape the
extracted 24 features as an “image” of 4 × 3 (temporal granularities by spa-
tial granularities) with 2 channels (size of the intersection and the size of the
union). Afterward, the “image” is firstly fed to a convolutional layer with nt

temporal filters of size 4× 1, and then fed to another convolutional layer with
ns temporal filters of size 1 × 3, followed by a fully connected layer to out-
put the predicted score (the probability of the input pair of devices belonging
to the same user). The key idea behind this design is to let the CNN model
learn to tolerate the connection stochasticity across different spatiotemporal
granularities for predicting devices belonging to the same user.

The model is trained using those devices of which we have the user own-
ership information. For each (positive) pair of devices belonging to the same
user, we randomly sample a negative pair of devices not belonging to the same
user. The negative pairs are randomly sampled in each epoch during the model
training process. Finally, the trained model can be used to identify the devices
belonging to the same user. To extract a user’s mobility trace from her devices,
we aggregate the devices’ mobility traces by taking the most active device
traces within each week, to form the user’s mobility traces.

3.2 Multi-Grained Crowd Flow Prediction

Based on the extracted user mobility traces, we adopt spatiotemporal GNN
models for predicting multi-grained crowd flow. Specifically, Wi-Fi connection
records reflect user mobility traces at different levels of granularities, follow-
ing a three-level hierarchy of “building-floor-AP”. In this context, mobility
modeling faces the trade-off between location granularity and mobility pat-
terns, where finer-grained crowd flow usually has weaker mobility patterns, and
verse vice (as evidenced by our experiments later). Therefore, we train three
independent spatiotemporal GNNs for the respective location granularities,
under a unified graph model capturing spatial dependencies between loca-
tions. In the following, we first present crowd flow estimation from extracted
mobility traces, followed by our proposed crowd flow prediction models using
spatiotemporal GNNs.

3.2.1 Crowd flow estimation from human mobility traces

Based on the filtered and aggregated human mobility traces, we estimate the
crowd flow as follows. Considering the practical use cases (e.g., the frequency
of campus loop shuttle is 10-15 minutes), we first define the targeted temporal
granularity for crowd flow prediction as 10 minutes and assume that a user can
contribute to only one AP’s flow in this period of time. The crowd flow of one
AP is then estimated as the total number of users contributing to the AP in
each time slot of 10 minutes. However, this crowd flow estimation method has
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to consider the following practical issues raised from our empirical analysis of
the dataset.

• An extracted human mobility trace may connect to multiple APs in one
time slot. In this case, we select the AP with the most connection records as
the contributed AP. In contrast, if a user mobility trace has no connection
in a time slot, we estimate her associated APs as follows.

• When a user stays at the same place for a long time (e.g., attending a class
for 45 minutes or sleeping in the dormitory), her devices may enter to a
sleeping mode and do not have any connection records. In this case, if a
user is associated with the same AP in a row, we assume the user always
contributes to the AP’s flow during that time period.

• If the two consecutively associated APs are different and the time interval
is less than one hour (considering the campus size of 1.09 km2), we assume
that the user is moving from the first AP to the second one. The user thus
contributes to the flow of the first/second AP in the first/second half of the
time interval, respectively.

• If the two consecutively associated APs are different and the time interval
is greater than one hour, we assume that the user is away from the campus
and thus does not contribute to any APs’ flow during that time period.

Following these heuristics, we estimate the crowd flow for each AP in each time
slot. Subsequently, we can further compute the crowd flow for other location
granularities. Specifically, the locations of APs follow a three-level hierarchy of
“building-floor-AP”. For example, an AP of ID “E11-GF-22” is located at the
building E11, on the ground floor (“GF”). Using this information, the flow in
one floor/building is computed as the sum of flows of all APs located in the
floor/building, respectively.

3.2.2 Crowd flow modeling using spatiotemporal GNNs

Crowd flow modeling requires to capture the spatiotemporal dynamics and
dependencies of the input flow. To this end, we adopt spatiotemporal GNNs
which have been shown as a powerful technique for solving various crowd flow
modeling problems [1, 44]. Specifically, spatiotemporal GNNs combines a GNN
model that leverages a graph structure to encode spatial dependencies and a
temporal component (mostly RNN models) that learns the temporal dynamics
of the flow. In the following, we first present our unified graph modeling process
for the three-level hierarchy of locations, followed by the spatiotemporal GNN
models.

The graph topology uniquely defines the spatial dependencies between
locations in GNNs. Figure 5 shows our graph model for the three-level loca-
tion hierarchy of “building-floor-AP”; the hierarchy is represented by the red
dashed edges on the right panel. First, for the building level, we adopt Delau-
nay triangulation [45], which is a widely used method for surface morphology
studies in Geographic Information Systems (GIS). Specifically, it treats each
building as a node (with its GPS coordinates) and connects the nodes to form
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Fig. 5 Graph modeling with the three-level hierarchy of locations

a triangular irregular network, ensuring that no node lies within the interior
of any of the circumcircles of the triangles in the network. Note that Delaunay
triangulation is the dual graph for Voronoi diagrams [46] which is also a pop-
ular spatial tessellation method in GIS. The left panel of Figure 5 shows the
Delaunay triangulation on buildings on the maps of the University of Macau,
which is an unweighted and undirected graph (all edges have the same distance
of one). Second, based on the building graph, we use the “building-floor” hier-
archy to construct a floor graph, following three principles: 1) the floor nodes
belonging to the same building are fully connected with a distance of one; 2)
the floor nodes of two neighboring buildings (on the building graph) are con-
nected with a distance computed by traversing the building graph, which is
three in this case (floor → building → building → floor), where all the hier-
archy edges also have a distance of one; 3) the floor nodes of non-neighboring
buildings are not connected. Finally, following the similar logic of construct-
ing a graph from the graph of the higher hierarchy, we construct an AP graph
based on the floor graph. Note that the edges in the floor graph now have
either a distance of one or three; the AP nodes of neighboring floors (in the
floor graph) are now connected via (AP → floor → floor → AP ) with a dis-
tance of either three (in the case of floor → floor having the distance of one)
or five (in the case of floor → floor having the distance of three).

Based on the constructed graphs, we adopt spatiotemporal GNNs to model
the spatiotemporal dynamics and dependencies of crowd flows. We train three
independent spatiotemporal GNNs for the respective location granularities.
Figure 6 shows the spatiotemporal GNNs with the building graph as an exam-
ple. Specifically, we have a flow graph for each time slot, where each node
(building) in this graph is associated with the computed crowd flow as its
attribute. Given a sequence of such flow graphs in the past, the crowd flow pre-
diction tries to forecast the attribute (crowd flow) of each node in this graph in
a future time slot. Note that the topological structure of this graph is the same
over time, while the node attribute (crowd flow) evolves. Following this prob-
lem formulation and settings, we will experiment with a sizeable collection of
state-of-the-art spatiotemporal GNN models (see our experiments below) and
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Fig. 6 Crowd flow prediction using spatiotemporal GNNs. We use the building graph as a
toy example.

adopt the best-performing one in our CrowdTelescope. Note that CrowdTele-
scope as a general framework can flexibly integrate with any spatiotemporal
GNN models.

3.3 Prototype Development

We develop a prototype system “CrowdTelescope” as a smart campus applica-
tion. The prototype system is built with an interactive user interface visualizing
both historical and forecasted crowd flows on campus, providing decision
support to a wide range of users, including the campus management team, stu-
dents, staff and visiting guests, etc. Specifically, Figure 7 shows a snapshot of
our Web user interface built on top of Mapbox2. We use heat maps to visualize
the crowd flow, where the hotspots can be easily identified by their color. A
user-friendly interactive visualization interface is provided through a few con-
trol options. Users can switch between historical and forecasted crowd flow.
For the historical crowd flow, users can specify a date and click the start/pause
button to visualize the crowd flow of the selected date as a video. The progress
bar also serves as an option to flexibly control (by sliding on the progress bar)
the time of the crowd flow that users want to visualize. For the forecasted
crowd flow, users can visualize the predicted crowd flow for the current day,
through the same control penal as for the historical crowd flow.

4 Experiment

We evaluate our CrowdTelescope using a Wi-Fi connection record dataset on
two tasks, i.e., human mobility trace extraction and crowd flow prediction. We
present the experiment setup below, followed by the results and discussion.

4.1 Experiment setup

4.1.1 Dataset

We collect Wi-Fi connection records on the campus of the University of Macau
for four consecutive weeks in March 2021. Table 1 shows the statistics of the

2https://www.mapbox.com/
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Fig. 7 The Web user interface of CrowdTelescope prototype https://pursue1221.github.
io/CrowdTelescope/. The screenshot shows the visualization of the historical crowd flow on
01 Mar. 2021. We observe active crowd flow transition from residential colleges to central
teaching buildings right before 10 am.

Table 1 Dataset statistics in different data processing steps.

Data Processing Steps Raw Data
Device Traces

(Section 3.1.2)
User Traces

(Section 3.1.3)
#Device 48,565 18,136 13,621
#User 29,743 13,593 13,593
#Record 52,174,535 24,266,224 21,027,546
#Record per device 1,074 1,338 1,544
#Device per user 1.63 1.33 1.00

dataset across different data processing steps. From the raw data, we first
filter device traces using the criteria discussed in Section 3.1.2. We observe
that 63% of the devices and 53% of the connection records are removed, which
implies the raw data contains a large amount of noisy data, including non-(or
low-)mobile devices, publicly shared devices, and devices from irregular user
accounts. Afterward, we extract human mobility traces from the filtered device
traces by identifying and integrating the mobility traces of the devices of the
same user, using our proposed method in Section 3.1.3. We observe that in the
final integrated user traces, the number of devices is slightly higher than the
number of users, which implies that for a few users, the most active devices
are different across different weeks. In other words, most of the users have a
unique active device across the four weeks of the data collection period.

4.1.2 Evaluation protocol and baselines

We evaluate our CrowdTelescope in both human mobility trace extraction and
crowd flow prediction tasks. We present our evaluation protocol and baselines
for each task below.

https://pursue1221.github.io/CrowdTelescope/
https://pursue1221.github.io/CrowdTelescope/
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For the human mobility trace extraction task, the key problem is formu-
lated as a classification task to classify whether two devices belong to the
same user, as discussed in Section 3.1.3. To evaluate our proposed method, we
first consider a Single-Grained Feature, i.e., Jaccard similarity between the
mobility traces of two devices under a single spatiotemporal granularity, and
learn a threshold using a decision tree algorithm for classification. In addition,
based on our Cross-Grained Features, i.e., 24 features with intersection
and union features on each of the 12 spatiotemporal granularities as shown
in Figure 4, we consider several popular classification techniques as baselines,
including Multi-Layer Perceptron, Logistic Regression, Naive Bayes,
Decision Tree and Random Forest. For our proposed method CrowdTele-
scope (CNNs), we set the numbers of temporal and spatial filters as nt = 16
and ns = 64, respectively. To evaluate the classification performance, we col-
lect a set of positive device pairs (belonging to the same user), and randomly
sample the same amount of negative device pairs (not belonging to the same
user). We split them into 80% training and 20% test datasets, with a balanced
amount of positive and negative data in both. We report the accuracy for each
method averaged over 10 repeated trails (randomly sample negative samples
in each trail).

For the crowd flow prediction task, we follow the problem setting as
specified in Figure 6, and consider the following baselines. First, traditional
time series prediction methods include Historical Average (HA), AutoRegres-
sive Integrated Moving Average (ARIMA) [34], Support Vector Regression
(SVR) [47]. Second, deep sequence models include Recurrent Neural Networks
(RNN) [35], Long Short-Term Memory (LSTM) [36], and Gated Recurrent
Unit (GRU) [37]. For these two types of baselines, the flow of each node
(building, floor or AP) is considered as an independent time series, and pre-
diction is made only based on these time series without using the graph
structure. Finally, we consider the following spatiotemporal GNNs which can
all be integrated in our CrowdTelescope: DCRNN [48] capturing the spatial
dependency using bidirectional random walks on the graph and the temporal
dependency using an encoder-decoder architecture; STGCN [40] combining
two temporal gated convolution layers and a spatial graph convolution layer as
a “sandwich” structure; STTN [41] combining a spatial and a temporal trans-
formers to capture dynamical directed spatial dependencies and long-range
temporal dependencies, respectively; HGCN [49] considering the hierarchi-
cal structure of location networks; GWNET [42] using a learnable adaptive
dependency matrix to capture the hidden spatial dependencies; MTGNN
[43] learning to extract uni-directed relations among multi-variate variables
through a graph learning process for better capturing spatial dependencies. For
each level of location granularities (building/floor/AP), we train each method
using the first three week data and evaluate on the last week’s data. This
experiment uses the algorithm implementation from LibCity [50].
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Table 2 Accuracy of identifying devices of the same user. Best performing results in each
category of the methods are highlighted in bold.

Method Accuracy

Single
Grained
Feature

Building, 10 mins 0.8811
Floor, 10 mins 0.8889
AP, 10 mins 0.8651
Building, 5 mins 0.8844
Floor, 5 mins 0.8901
AP, 5 mins 0.8668
Building, 1 min 0.8807
Floor, 1 min 0.8847
AP, 1 min 0.8764
Building, 1 sec 0.8055
Floor, 1 sec 0.8007
AP, 1 sec 0.7671

Cross
Grained
Features

Multi-Layer Perceptron 0.8884
Logistic Regression 0.8895
Naive Bayes 0.8756
Decision Tree 0.8591
Random Forest 0.9019
CrowdTelescope (CNNs) 0.9037

4.2 Performance on human mobility trace extraction

Table 2 shows the results comparing different features and methods for device
pair classification.

First, comparing single-grained features across different spatiotemporal
granularities, we observe the varying performance. In particular, the finest spa-
tiotemporal granularity (AP, 1 sec) yields the worst performance, failing to
accommodate the network connection stochasticity when identifying devices
from the same user; under this granularity, even two devices always carried
by the same user will not have similar traces due to connection stochastic-
ity. When moving to coarser spatiotemporal granularities, the performance
increases, while the best performing granularity is (Floor, 5mins). When fur-
ther coarsening the granularity, the performance slightly drops, due to a high
false positive rate; the devices of different users will have similar traces under
the coarser spatiotemporal granularities.

Second, compared to single-grained features, we observe the cross-grained
features achieve better performance on average with an improvement of 3.3%
(average accuracy of 0.8864 and 0.8576 for cross-grained and single-grained
features, respectively). This implies that cross-grained features are more infor-
mative than single-grained features for predicting devices belonging to the
same user. Furthermore, compared to baseline classification techniques, our
proposed method achieves the best performance, showing the superiority of
our designed CNN architecture when learning to tolerate the connection
stochasticity across different spatiotemporal granularities.
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Table 3 Crowd flow prediction performance. Best performing results are highlighted in
bold for each metric. Note that “-” denotes the case where the method run out of GPU
memory on our test PC with NVIDIA GeForce RTX 3090 of 24GB RAM.

Building Floor AP

Method MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

ARIMA 10.585 18.173 0.253 2.920 4.909 0.677 0.483 1.135 1.499
HA 13.387 29.422 0.162 3.677 9.568 0.319 0.704 1.766 1.130
SVR 11.149 28.394 0.135 2.569 8.286 0.223 0.385 1.246 0.617

RNN 16.236 33.492 0.197 4.231 11.010 0.368 0.555 1.817 0.894
GRU 15.286 31.598 0.185 4.012 10.618 0.349 0.556 1.833 0.895
LSTM 14.941 31.464 0.181 3.858 10.380 0.336 0.556 1.826 0.895

DCRNN 8.800 19.164 0.107 2.502 7.849 0.218 - - -
STGCN 8.246 18.137 0.100 2.489 6.447 0.217 0.406 1.230 0.653
STTN 11.421 25.721 0.139 3.292 8.687 0.287 - - -
HGCN 8.876 16.876 0.109 2.414 5.466 0.212 0.317 1.096 0.515
GWNET 7.870 17.877 0.095 2.256 6.474 0.196 0.321 1.225 0.517
MTGNN 7.722 15.481 0.094 2.228 5.967 0.194 0.314 1.178 0.505

4.3 Performance on crowd flow prediction

To evaluate the crowd flow prediction performance, we report three met-
rics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Weighted Mean Absolute Percentage Error (WMAPE). Smaller values of these
metrics imply better performance. The greater difference between MAE and
RMSE, the greater the variance in the individual errors in the test set. Com-
pared to MAE and RMSE, WMAPE discounts the absolute values of flow (e.g.,
different scales of flow values in building, floor and AP levels) and is robust
against varying flows with very small values (e.g., zero flow values of some APs
in some time slots); it can thus support the performance comparison across
different levels of location granularities. Table 3 shows the results.

First, we observe that spatiotemporal GNNs achieve significantly better
performance in general, compared to traditional time series prediction tech-
niques and deep sequence models. This implies that our graph model captures
crucial information on the spatial dependencies of locations of different granu-
larities, which can significantly improve the crowd flow prediction performance.
In particular, the best spatiotemporal GNN model, i.e., MTGNN, yields an
improvement of 24.1%, 1.5% and 10.9% (on building, floor and AP levels,
respectively) over the best-performing baselines without using location graphs.
We thus adopt it in our prototype system.

Second, comparing the crowd flow performance across different levels of
location granularities, we observe that finer-grained crowd flow usually has
weaker mobility patterns. Specifically, comparing WMAPE of each method
across different location granularities, we observe that finer granularities have a
larger value of WMAPE, which is consistent for all methods. This implies that
the finer-grained crowd flow shows weaker patterns and thus is more difficult
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to model. Note that MAE and RMSE are smaller for finer-grained locations,
which is due to the smaller absolute values for flows of finer-grained locations;
they are thus not appropriate for the performance comparison across different
location granularities.

5 Discussion

Although we show that CrowdTelescope can achieve accurate crowd flow pre-
diction, there are still inevitable data biases due to the data collection and
preprocessing, causing the discrepancy between the mobility observed from
Wi-Fi connection records and the actual mobility on campus. We discuss two
major data biases below.

• The coverage of Wi-Fi connection records over the actual population on
campus. The population of Wi-Fi users may not cover the actual population
on campus, such as some users who prefer using cellular networks rather
than Wi-Fi. However, according to the official statistics of the University
of Macau34, there are 13,787 staff and students in 2021, which is close to
the number of users processed by the User Traces in Table 2. We thus
believe that the Wi-Fi connection records can well represent the human
mobility on the whole campus. Note that the raw data include much more
user accounts due to the fact that the accounts of the same user for internal
Wi-Fi and eduroam are different, leading to the almost doubled number of
users compared to the number of actual users. By extracting device traces,
the number of users is already reduced by half, because students and staff
mostly prefer internal Wi-Fi instead of eduroam, while the latter is mostly
for guests from other educational institutions.

• The bias of integrating the mobility traces of the devices of the same user.
When integrating the mobility traces of the devices of the same user, we may
have both false positives and false negatives. For example, if two devices of
two classmates are together quite often, they may be treated as the same
user; if a user has two devices that are carried alternatively, they may be
treated as different users. However, as CrowdTelescope can achieve over 90%
accuracy in classifying device pairs, we believe the integrated mobility traces
are informative to represent the overall on-campus mobility.

6 Conclusion

In this paper, we propose CrowdTelescope, a Wi-Fi-positioning-based multi-
grained spatiotemporal crowd flow prediction framework for smart campus.
Specifically, crowd flow prediction using Wi-Fi connection records faces not
only non-trivial noises in the raw connection records, but also the trade-
off between location granularities and mobility patterns. To address the first
issue, we design a robust human mobility trace extraction method, which

3https://reg.um.edu.mo/qfacts/y2021/staff/
4https://reg.um.edu.mo/about-reg/facts-and-figures/students-figures/
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firstly uses a heuristic-based noisy data filter to remove those devices that
cannot reflect human mobility and then learns to integrate mobility traces
from devices carried by the same user using cross-grained features. To address
the second issue, we adopt spatiotemporal Graph Neural Networks (GNNs)
to model multi-grained crowd flow, by formulating the location graphs of dif-
ferent granularities under a unified graph model considering the three-level
location hierarchy (“building-floor-AP”). We also develop a prototype system
of CrowdTelescope, providing the interactive visualization of crowd flows on
campus. We evaluate CrowdTelescope by collecting a Wi-Fi connection dataset
on the campus of the University of Macau. Results show that CrowdTelescope
cannot only effectively extract informative human mobility traces from the
noisy Wi-Fi connection records (outperforming baselines by 3.3%), but also
accurately predict on-campus crowd flow across different location granularities
(yielding 1.5%-24.1% improvements over baselines).

In the future, we plan to further investigate unified spatiotemporal GNNs
to directly learn from the hierarchical location graphs, jointly modeling crowd
flows across different location granularities.
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G.: Survey of cellular mobile radio localization methods: From 1g to 5g.
IEEE Communications Surveys & Tutorials 20(2), 1124–1148 (2017)

[13] Yang, D., Fankhauser, B., Rosso, P., Cudre-Mauroux, P.: Location pre-
diction over sparse user mobility traces using rnns. In: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
pp. 2184–2190 (2020)

[14] Blondel, V.D., Esch, M., Chan, C., Clérot, F., Deville, P., Huens, E.,
Morlot, F., Smoreda, Z., Ziemlicki, C.: Data for development: the d4d
challenge on mobile phone data. arXiv preprint arXiv:1210.0137 (2012)



Springer Nature 2021 LATEX template

CrowdTelescope 21

[15] Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-
drive: driving directions based on taxi trajectories. In: Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 99–108 (2010)

[16] Yang, D., Zhang, D., Chen, L., Qu, B.: Nationtelescope: Monitoring and
visualizing large-scale collective behavior in lbsns. Journal of Network and
Computer Applications 55, 170–180 (2015)

[17] Yang, D., Qu, B., Yang, J., Cudre-Mauroux, P.: Revisiting user mobility
and social relationships in lbsns: a hypergraph embedding approach. In:
The World Wide Web Conference, pp. 2147–2157 (2019)

[18] Yang, D., Qu, B., Yang, J., Cudré-Mauroux, P.: Lbsn2vec++: Hetero-
geneous hypergraph embedding for location-based social networks. IEEE
Transactions on Knowledge and Data Engineering (2020)

[19] Wu, R., Luo, G., Shao, J., Tian, L., Peng, C.: Location prediction on
trajectory data: A review. Big data mining and analytics 1(2), 108–127
(2018)

[20] Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: Deepstn+: Context-aware spatial-
temporal neural network for crowd flow prediction in metropolis. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp.
1020–1027 (2019)

[21] Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y.: Traffic flow prediction
with big data: a deep learning approach. IEEE Transactions on Intelligent
Transportation Systems 16(2), 865–873 (2014)

[22] Liu, X., Chen, H., Andris, C.: trajgans: Using generative adversarial net-
works for geo-privacy protection of trajectory data (vision paper). In:
Location Privacy and Security Workshop, pp. 1–7 (2018)

[23] Feng, J., Yang, Z., Xu, F., Yu, H., Wang, M., Li, Y.: Learning to simulate
human mobility. In: Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 3426–3433
(2020)

[24] Shin, S., Jeon, H., Cho, C., Yoon, S., Kim, T.: User mobility synthesis
based on generative adversarial networks: A survey. In: 2020 22nd Inter-
national Conference on Advanced Communication Technology (ICACT),
pp. 94–103 (2020). IEEE

[25] Simini, F., Barlacchi, G., Luca, M., Pappalardo, L.: Deep gravity: enhanc-
ing mobility flows generation with deep neural networks and geographic
information. arXiv preprint arXiv:2012.00489 (2020)



Springer Nature 2021 LATEX template

22 CrowdTelescope

[26] Chen, L., Jakubowicz, J., Yang, D., Zhang, D., Pan, G.: Fine-grained
urban event detection and characterization based on tensor cofactor-
ization. IEEE Transactions on Human-Machine Systems 47(3), 380–391
(2016)

[27] Yu, Z., Yi, F., Lv, Q., Guo, B.: Identifying on-site users for social events:
Mobility, content, and social relationship. IEEE Transactions on Mobile
Computing 17(9), 2055–2068 (2018)

[28] Yang, D., Zhang, D., Yu, Z., Wang, Z.: A sentiment-enhanced personal-
ized location recommendation system. In: Proceedings of the 24th ACM
Conference on Hypertext and Social Media, pp. 119–128 (2013)

[29] Yu, Z., Xu, H., Yang, Z., Guo, B.: Personalized travel package with multi-
point-of-interest recommendation based on crowdsourced user footprints.
IEEE Transactions on Human-Machine Systems 46(1), 151–158 (2015)

[30] Yu, Z., Ma, H., Guo, B., Yang, Z.: Crowdsensing 2.0. Communications of
the ACM 64(11), 76–80 (2021)

[31] Yu, Z., Zhang, D., Yu, Z., Yang, D.: Participant selection for offline event
marketing leveraging location-based social networks. IEEE Transactions
on Systems, Man, and Cybernetics: Systems 45(6), 853–864 (2015)

[32] Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., Wu, Z., Pan, G.,
Nguyen, T.-M.-T., Jakubowicz, J.: Dynamic cluster-based over-demand
prediction in bike sharing systems. In: Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
pp. 841–852 (2016)

[33] Wang, L., Yu, Z., Guo, B., Yang, D., Ma, L., Liu, Z., Xiong, F.: Data-
driven targeted advertising recommendation system for outdoor billboard.
ACM Transactions on Intelligent Systems and Technology (TIST) 13(2),
1–23 (2022)

[34] Shumway, R.H., Stoffer, D.S., Stoffer, D.S.: Time Series Analysis and Its
Applications vol. 3. Springer, ??? (2000)

[35] Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., Wang, B., Liu, T.-
Y.: Sequential click prediction for sponsored search with recurrent neural
networks. In: AAAI (2014)

[36] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735–1780 (1997)
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