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Abstract. Numerical simulation of blood flows in patient-specific arteries is becoming an important tool in understanding5
vascular diseases and surgery planning. Depending on the branching geometry and the patient parameters, the flow can be quite6
complicated with local vortex structures and rotations, but the principal component of the flow is always along the centerline of7
the artery. Based on this observation, we introduce a new two-level domain decomposition method for unsteady incompressible8
Navier-Stokes equations in three-dimensional complex patient-specific arteries, and the key component of the preconditioner is a9
parameterized one-dimensional unsteady Navier-Stokes or Stokes coarse problem defined along the centerline of the artery. The10
one-dimensional preconditioner and some overlapping three-dimensional subdomain preconditioners are combined additively to11
form the two-level method via interpolations using radial basis functions. The most important feature of the method is that12
the cost of solving the coarse problem is nearly neglectable compared with the subdomain solver. The blood flow is modeled13
by the unsteady incompressible Navier-Stokes equations with resistance outflow boundary conditions discretized by a stabilized14
finite element method on fully unstructured meshes and the second-order backward differentiation formula in time. Numerical15
experiments indicate that the proposed method is highly effective and robust for complex arteries with many branches, in other16
words, the numbers of linear and nonlinear iterations change very little when the mesh is refined or the number of subdomains17
is increased or the number of arterial branches is increased.18
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1. Introduction. Early identification can often reduce the probability of the morbidity and mortal-22

ity of vascular diseases such as peripheral artery disease [43], cerebral aneurysm [25] and coronary artery23

atherosclerosis [8]. Hemodynamics analysis [1, 15, 44, 55, 60], the study of the behavior of blood flows, can24

be helpful to gain insight into the formation and progression of vascular diseases, even identify early as well25

as make a treatment plan for certain vascular diseases. Many clinical techniques are available for the diag-26

nosis of vascular diseases such as computed tomography, magnetic resonance imaging, transcranial Doppler27

and four-dimensional flow magnetic resonance imaging. Recently with the advances in supercomputing28

and parallel algorithms, tremendous progress has been made on image-based computational fluid dynamics29

(CFD) methods to study hemodynamics because they are non-invasive and can offer reasonably accurate30

solutions for clinical applications [41, 45, 46, 47, 50, 59]. When simulating blood flows using image-based31

CFD methods, the unsteady incompressible Navier-Stokes equations are often considered with suitable out-32

flow boundary conditions such as the resistance boundary condition and the impedance boundary condition33

[45, 62]. Taking account of the nonlinearity of the system and the geometrical complexity, the unsteady34

incompressible Navier-Stokes equations are quite difficult to solve. Many numerical methods have been de-35

veloped to solve the equations discretized implicitly on fully unstructured meshes. Newton-Krylov methods36

[35] solve the nonlinear systems by inexact Newton methods in which the Jacobian systems are solved by a37

Krylov subspace method with suitable preconditioner, for example, block preconditioners [10, 11, 14, 32, 33],38

multigrid preconditioners [36] and overlapping Schwarz preconditioners (NKS) [3, 5]. Projection methods39

[26, 48, 49] split the discretized problem into some smaller problems involving the velocity and pressure40

fields and then approximately solve them successively. We also mention that there are many other methods41

for the hemodynamics simulation including lattice Boltzmann methods [51], dual-primal FETI methods [2],42

BDDC methods [40], multigrid methods [21] and isogeometric methods [63]. Taking advantage of Newton43

methods [9], Krylov subspace methods [54] and domain decomposition methods [61], in this paper, we solve44

the unsteady incompressible Navier-Stokes equations in patient-specific arteries by NKS and focus on the45

construction of a two-level additive Schwarz preconditioner with a highly effective, robust, and low cost46

coarse preconditioner.47
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In two-level additive Schwarz preconditioners, the coarse problem together with its restriction and ex-48

tension plays a crucial role in the overall performance. In [27, 28], a monolithic overlapping Schwarz pre-49

conditioner with generalized Dryja-Smith-Widlund (GDSW) coarse spaces was introduced and studied, the50

method was inspired by the original GDSW coarse spaces [12] and the monolithic Schwarz preconditioner51

[34]. [37, 38] introduced a coarse problem by discretizing the original problem in a geometry-preserving52

three-dimensional coarse mesh. Since the geometries of the coarse and fine meshes match each other, the re-53

striction and extension matrices can be constructed by the finite element basis functions of the coarse mesh.54

[7] presented a non-nested coarse mesh to reduce the number of mesh points of the geometry-preserving55

coarse mesh near the wall and the restriction and extension matrices are defined using radial basis functions56

to deal with the non-matching geometries of the coarse and fine meshes. All the coarse meshes developed57

in [7, 37, 38] are three-dimensional and solving these coarse problems takes a significant percentage of the58

overall compute time.59

Recently, for steady Stokes equations in two-dimensional tube-like domains, we introduced a coarse60

problem based on the parameterized one-dimensional steady Stokes equations defined on the centerline of61

the domain, and showed that the method is quite effective to reduce the number of iterations and the cost of62

the coarse preconditioner is nearly negligible [42]. In fact, as cheap approximations of complex blood flows63

in three-dimensional arteries, one-dimensional models have been studied widely [17, 18, 56, 58]. However,64

limited by the characteristics of one-dimensional models, most of the studies focus on the global behaviors65

of the flow such as the averaged pressure and the flow waveforms [52, 53] or combining the one-dimensional66

model with three-dimensional models to simulate blood flows in multiscale arteries [16]. In this paper, we67

extend the idea of the one-dimensional coarse preconditioner to a one-dimensional unsteady Navier-Stokes68

model to solve the unsteady incompressible Navier-Stokes equations in three-dimensional patient-specific69

arteries. The full three-dimensional Navier-Stokes model is sometimes necessary especially for exploring the70

localized hemodynamic quantities such as the wall shear stress, local vortex dynamics, and flow rotations in71

patient-specific arteries [24, 55].72

The one-dimensional model of the unsteady incompressible Navier-Stokes equations on the centerline of73

an artery with multiple branches is obtained by a homogenization of the three-dimensional unsteady incom-74

pressible Navier-Stokes model on the cross section with suitable compatibility conditions at bifurcations. We75

then use a fully discretized matrix of the one-dimensional model to construct the one-dimensional coarse76

preconditioner with appropriate restriction and extension matrices between the one-dimensional coarse mesh77

and the three-dimensional fine mesh. Experiments show that the method works quite well even for situations78

with a large number of branches. It is known that in a cardiac cycle, the flow is usually easier to model in79

the diastole phase than the systole phase, and the proposed method works well in both phases. This type of80

robustness is important for clinical applications.81

The rest of the paper is organized as follows. In Section 2 we describe the model problem and the82

stabilized finite element discretization. In Section 3 we briefly recall the Newton-Krylov-Schwarz method83

and focus on the details of the one-dimensional coarse preconditioner. Section 4 shows some numerical84

experiments for patient-specific arteries to verify the effectiveness and robustness of the one-dimensional85

coarse preconditioner. Some concluding remarks are given in Section 5.86

2. Unsteady incompressible Navier-Stokes model with resistance outflow boundary condi-87

tion and its stabilized finite element discretization. Consider the unsteady imcompressible Navier-88

Stokes problem in an arterial domain Ω ∈ R3 (see Fig. 1),89

(2.1)


ρ

(
∂u

∂t
+ u · ∇u

)
− ν∆u+∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

90

where u and p are the velocity and pressure, f and u0 are the given source term and initial velocity, ρ91

and ν are the blood density and viscosity coefficient. Denote by ∂Ω = ΓI ∪ ΓW ∪ ΓO the boundary of the92

domain, where ΓI , ΓW and ΓO =
m
∪
i=1

ΓiO are the inlet boundary, the arterial wall and the m outlet boundaries,93

respectively. On the boundaries, we impose a Dirichlet condition for the inlet velocity, a no-slip condition94

on the wall velocity, and a resistance condition on the outlet pressure; more precisely, we have the following95

This manuscript is for review purposes only.



1D COARSE PRECONDITIONER FOR 3D NAVIER-STOKES FLOW 3

Fig. 1: A sample artery with 1 inlet and 12 outlets

conditions:96

u = uI on ΓI × (0, T ),(2.2)97

u = 0 on ΓW × (0, T ),(2.3)98

p = RiQi on ΓiO × (0, T ),(2.4)99100

where uI is the inlet velocity, Ri is the constant resistance and Qi =

∫
ΓiO

u · ndΓiO is the fluid flux at the101

local outlet surface ΓiO with the outward unit normal vector n.102

Before introducing the weak form of (2.1), we define H1
W (Ω) =

{
v ∈H1(Ω) : v|ΓI = uI ,v|ΓW = 0

}
,103

H1
IW (Ω) =

{
v ∈H1(Ω) : v|ΓI∪ΓW = 0

}
. Then the variational formulation of (2.1) with boundary conditions104

(2.2)–(2.4) is to find (u(·, t), p(·, t)) ∈H1
W (Ω)× L2(Ω) such that105

(
ρ
∂u

∂t
,v

)
+ (ν∇u,∇v)− (p,∇ · v) + (q,∇ · u) + (ρu · ∇u,v)106

− 〈ν∇u · n,v〉ΓO +

m∑
i=1

Ri

∫
ΓiO

u · ndΓiO

∫
ΓiO

v · ndΓiO = (f ,v),(2.5)107

108

for all (v, q) ∈H1
IW (Ω)× L2(Ω) and t ∈ (0, T ), where (u, v) :=

∫
Ω

uvdΩ and 〈u, v〉Γ :=

∫
Γ

uvdΓ.109

Let Th be a shape-regular unstructured tetrahedral mesh of Ω, and the continuous, piecewise linear110

polynomial function space on Th is denoted by Sh. We define the finite element spaces Vh = [Sh]3∩H1
W (Ω),111

Wh = [Sh]3 ∩H1
IW (Ω) for the velocity and Qh = Sh ∩ L2(Ω) for the pressure. Considering the advantages112

of the low- and equal-order finite element pair in terms of the computational complexity and the ease of113

implementation compared with the stable finite element pairs, following [7, 19], we use the stabilized finite114

element method to spatially discretize the weak formulation (2.5), that is, to find (uh(·, t), ph(·, t)) ∈ Vh×Qh,115
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such that116

(2.6)



(
ρ
∂uh
∂t

,vh

)
+ (ν∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh) + (ρuh · ∇uh,vh)

− 〈ν∇uh · n,vh〉ΓO +

m∑
i=1

Ri

∫
ΓiO

uh · ndΓiO

∫
ΓiO

vh · ndΓiO

+
∑
K∈Th

(
ρ

(
∂uh
∂t

+ uh · ∇uh
)

+∇ph, γ1(uh · ∇vh +∇qh)

)
K

+
∑
K∈Th

(∇ · uh, γ2∇ · vh)K

= (f ,vh) +
∑
K∈Th

(f , γ1(uh · ∇vh +∇qh))K ,

117

for all (vh, qh) ∈Wh ×Qh and t ∈ (0, T ). Here the stabilization parameters γ1 and γ2 are defined as118

γ1 =

√ 4

4t2
+ uThGuh + 36

(
ν

ρ

)2

G : G

−1

, γ2 =

(
8γ1

3∑
i=1

Gi,i

)−1

,119

where G = (Gi,j), (i, j = 1, 2, 3) is the covariant metric tensor satisfying Gi,j =

3∑
k=1

∂x̂k
∂xi

∂x̂k
∂xj

, {x̂i}3i=1 and120

{xi}3i=1 are the local reference and global physical coordinate variables, respectively. Let {ϕi}Ni=1 be the basis121

functions, where N is the number of mesh points. Then the numerical solution uh and ph can be written as122

uh(t, x) =

N∑
i=1

(Ui(t), Vi(t),Wi(t))ϕi(x) and ph(t, x) =

N∑
i=1

Pi(t)ϕi(x), where U = (Ui), V = (Vi),W = (Wi)123

and P = (Pi) are the vector of the nodal values of the velocity unknowns and the pressure unknowns,124

respectively. Define X = (U, V,W,P )T and then (2.6) can be rewritten as a system of ordinary differential125

equations126

(2.7)
dX

dt
= L(X).127

Considering the numerical accuracy, instead of the implicit backward Euler formula, we use the second-order128

backward differentiation formula (BDF2) for the temporal discretization with the time step size 4t, then129

the fully discretized system at t = n4t is given by130

(2.8)
3
2X

n − 2Xn−1 + 1
2X

n−2

4t
= L(Xn), (n ≥ 2)131

where X1 can be obtained by the first-order implicit Euler method with the given initial value X0.132

3. Implicit solver with a two-level Schwarz preconditioner. The nonlinear algebraic system (2.8)133

is large, sparse, and quite difficult to solve because its underlying arterial geometry is complex and its solution134

involves highly nonlinear features. In a cardiac cycle, many systems of form (2.8) need to be constructed135

and solved, and some of them are relatively easy to solve but others are difficult to solve, therefore a robust136

nonlinear solver is important for the simulation of the blood flow in a whole cardiac cycle. Rewrite the137

nonlinear system (2.8) as138

(3.1) Fn(Xn) = 0.139

The general framework of the nonlinear solver [5] can be described as follows.140
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1D COARSE PRECONDITIONER FOR 3D NAVIER-STOKES FLOW 5

Fig. 2: A non-bifurcating (left) and a bifurcating (right) artery with the marked centerline and cross sections.

Algorithm 3.1 Inexact Newton for Fn(Xn) = 0

1: Give an initial guess Xn
0 = Xn−1.

2: for k = 0, 1, 2, . . . do
3: Find the Newton direction snk by solving the Jacobian system by a preconditioned restarted GMRES method

(3.2) Jn
k (Mn

k )−1Mn
k s

n
k = −Fn(Xn

k ),

with the stopping criterion

(3.3) ‖Fn(Xn
k ) + Jn

k s
n
k‖2 ≤ max

{
atolGMRES, rtolGMRES ‖Fn(Xn

k )‖2
}
.

4: Find the step size λn
k by the line search technique (Armijo rule)

(3.4) f(Xn
k + λn

ks
n
k ) ≤ f(Xn

k ) + ελn
k∇f(Xn

k )T snk .

5: Update the Newton solution Xn
k+1 = Xn

k + λn
ks

n
k .

6: if ‖Fn(Xn
k+1)‖

2
< max

{
atolNewton, rtolNewton ‖Fn(Xn

0 )‖2
}
then

7: Xn = Xn
k+1, return.

8: end if
9: end for

In Algorithm 3.1, Jnk is the analytically constructed Jacobian matrix of the nonlinear system Fn at141

Xn
k , (Mn

k )
−1

is a preconditioner to be discussed later, f is a merit function defined as f(X) = ‖F (X)‖22
/

2142

and ε is a control parameter with a default value ε = 10−4. The user-defined absolute and relative toler-143

ances atolGMRES, rtolGMRES and atolNewton, rtolNewton are used to control the Krylov and Newton iterations,144

respectively.145

In order to construct an efficient preconditioner Mn
k at each Newton step, we consider a two-level over-146

lapping additive Schwarz preconditioner of the form M−1 = M−1
cl +M−1

1s , where M−1
cl is a one-dimensional147

coarse preconditioner and M−1
s is the sum of some three-dimensional subdomain preconditioners, which will148

be introduced in the following subsections.149

3.1. One-dimensional coarse preconditioner. We consider a coarse preconditioner of the form150

(3.5) M−1
cl = EclA

−1
cl Rcl,151

where Acl is the discretized matrix of a coarse problem, Rcl and Ecl are the restriction and extension152

matrices between the coarse and fine finite element spaces, respectively. In this subsection, we focus on153

the construction of a coarse preconditioner in which Acl is derived from discretizing a parameterized one-154

dimensional unsteady Navier-Stokes coarse problem defined on the centerline of the artery. The problem155

is obtained by an approximate integration of the three-dimensional Navier-Stokes equations on the cross156

section centered at a point on the centerline.157

3.1.1. One-dimensional parameterized unsteady incompressible Navier-Stokes equations158

and their discretization. Denote Ωcl as the centerline of Ω, which is a curve in the three-dimensional159
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6 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

space parameterized by the arc length s, Cs(s) as the cross section of Ω and As(s) as the corresponding area.160

Let ucl(t, s) be the tangential component of the velocity along the centerline and pcl(t, s) be the value of the161

pressure on the centerline. We assume that the pressure is a constant on each cross section and the velocity162

consists mainly of the component us along the centerline, i.e., u ≈ usτ , where τ = (τ1, τ2, τ3) is the unit163

tangent vector along the centerline. Further we assume that the component us has a parabolic profile at164

each cross section, i.e.,165

(3.6) us(t, r, s) = ucl(t, s)ζ

(
r

r0(s)

)
,166

where ζ(y) = (1 − y2) (y ∈ [0, 1]) is a parabolic profile function, r0(s) is the radius of Cs(s) and r is the167

radial coordinate with respect to Cs(s). Define Q =

∫
Cs

usdCs as the flux on the cross section Cs. For168

a non-bifurcating artery Ω (see the left sub-figure in Fig. 2), the one-dimensional unsteady Navier-Stokes169

model on the centerline Ωcl can be described as [42, 46]170

(3.7)


ρ
∂Q

∂t
+ βρα

∂

∂s

(
Q2

As

)
+Kr

Q

As
+As

∂pcl

∂s
= f cl,

∂Q

∂s
= 0, ucl(s, 0) = ucl0 (s),

171

where α = 4/3 is the Coriolis coefficient, Kr = 8πν, f cl =

∫
Cs

f · τdCs and ucl0 =

∫
Cs

u0 · τdCs. Here β = 0172

represents the one-dimensional Stokes model and β = 1 represents the Navier-Stokes model. By the flux173

conservation equation
∂Q

∂s
= 0, the nonlinear term

∂

∂s

(
Q2

As

)
in (3.7) can be reduced as Q

∂

∂s

(
Q

As

)
. Based174

on the assumption (3.6), we have Q = Asu
cl
/

2, and (3.7) can be rewritten as175

(3.8)


ρ
As
2

∂ucl

∂t
+ βρ

α

4
Asu

cl ∂u
cl

∂s
+
Kr

2
ucl +As

∂pcl

∂s
= f cl,

∂(Asu
cl)

∂s
= 0, ucl(s, 0) = ucl0 (s).

176

At the inlet point sI and the outlet point so of the centerline, we consider the following boundary conditions177

ucl(sI , t) = − 2

|ΓI |

∫
ΓI

uI · ndΓI := uclI ,(3.9)178

pcl(so, t) = RoQo ≈
RoAs(so)

2
ucl(so, t),(3.10)179

180

obtained by integrating (2.2) on the inlet boundary and (2.4) on the outlet boundary.181

Define the centerline velocity function spaces M(Ωcl) =
{
vcl ∈ H1(Ωcl) : vcl(sI) = uclI

}
, M0(Ωcl) =182 {

vcl ∈ H1(Ωcl) : vcl(sI) = 0, vcl(so) = 0
}

. Then the variational formulation of the one-dimensional prob-183

lem (3.8) with the boundary conditions (3.9)–(3.10) is to find (ucl(·, t), pcl(·, t)) ∈ M(Ωcl) × L2(Ωcl) such184

that185

(3.11)



(
ρ
As
2

∂ucl

∂t
, vcl

)
+ β

(
ρ
α

4
Asu

cl ∂u
cl

∂s
, vcl

)
+

(
Kr

2
ucl, vcl

)
+Asv

clpcl
∣∣∣so
sI
−
(
∂(Asv

cl)

∂s
, pcl

)
+

(
∂(Asu

cl)

∂s
, qcl

)
=
(
f cl, vcl

)
,

RoAs(so)

2
ucl(so)− pcl(so) = 0,

186

for all (vcl, qcl) ∈ M0(Ωcl) × L2(Ωcl) and t ∈ (0, T ). Let T clh be a polyline mesh for Ωcl with the mesh187

size O(hcl) and Sclh be the corresponding continuous, piecewise linear polynomial function space. Define the188

finite element spaces V clh = Sclh ∩M(Ωcl),W
cl
h = Sclh ∩M0(Ωcl) for the velocity and Qclh = Sclh ∩ L2(Ωcl) for189
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the pressure. The stabilized finite element discretization of the weak formulation (3.11) is written as: find190

(uclh (·, t), pclh (·, t)) ∈ V clh ×Qclh , such that191

(3.12)



(
ρ
As
2

∂uclh
∂t

, vclh

)
+ β

(
ρ
α

4
Asu

cl
h

∂uclh
∂s

, vclh

)
+

(
Kr

2
uclh , v

cl
h

)
+

(
Asv

cl
h ,
∂pclh
∂s

)
−
(
Asu

cl
h ,
∂qclh
∂s

)
+Asu

cl
h q

cl
h

∣∣∣so
sI

+ γcl
∑
e∈T clh

(
ρ
As
2

∂uclh
∂t

+ βρ
α

4
Asu

cl
h

∂uclh
∂s

+
Kr

2
uclh +As

∂pclh
∂s

, h2
cl

∂qclh
∂s

)
e

=
(
f cl, vclh

)
+ γcl

∑
e∈T clh

(
f cl, h2

cl

∂qclh
∂s

)
e

,

RoAs(so)

2
uclh (so)− pclh (so) = 0,

192

for all (vclh , q
cl
h ) ∈ W cl

h × Qclh and t ∈ (0, T ), where γcl > 0 is a stabilization parameter. Using the implicit193

first-order backward Euler method for the temporal discretization with the time step size 4t, we have a194

linearized and fully discretized scheme of (3.12) at t = n4t195

(3.13)


Bcl
(
ucl,nh , pcl,nh ; vclh , q

cl
h

)
=
(
Fcl, v

cl
h

)
+ γcl

∑
e∈T clh

(
Fcl, h

2
cl

∂qclh
∂s

)
e

,

RoAs(so)

2
ucl,nh (so)− pcl,nh (so) = 0,

196

where

Fcl = f cl + ρ
As

24t
ucl,n−1
h + βρ

α

4
Asu

cl,n−1
h

∂

∂s

(
ucl,n−1
h

)
and197

Bcl
(
ucl,nh , pcl,nh ; vclh , q

cl
h

)
=
(
Bcl, v

cl
h

)
+ γcl

∑
e∈T clh

(
Bcl, h

2
cl

∂qclh
∂s

)
e

−
(
Asu

cl,n
h ,

∂qclh
∂s

)
198

+Asu
cl,n
h qclh

∣∣∣so
sI
,199

200

with

Bcl = ρ
As

24t
ucl,nh + βρ

α

4
As

(
ucl,n−1
h

∂

∂s

(
ucl,nh

)
+ ucl,nh

∂

∂s

(
ucl,n−1
h

))
+
Kr

2
ucl,nh +As

∂pcl,nh

∂s
.

The coarse matrix Acl is simply the matrix form of (3.13). The linearized term (i.e., the second term in Bcl)201

corresponds to the nonlinear term in (3.8). When β = 0, this term vanishes and the matrix Acl degenerates202

into the one-dimensional Stokes matrix.203

For general bifurcating arterial networks, the one-dimensional model can be derived by combining the204

one-dimensional model (3.8) at each non-bifurcating branch with suitable compatibility conditions on each205

bifurcation. To briefly describe the conditions, we assume that there is one inflow branch and two outflow206

branches on each bifurcation, see the right sub-figure in Fig. 2, then using the conservation of flux and the207

continuity of the pressure [17, 42] on each bifurcation, we have the compatibility conditions208

(3.14) As(s1)ucl(s1) = As(s2)ucl(s2) +As(s3)ucl(s3), pcl(s1) = pcl(s2) = pcl(s3).209

For more general bifurcations involving more bifurcating branches, similar compatibility conditions can also210

be given.211
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Fig. 3: Diagram of the extension process from the one-dimensional space to the three-dimensional space by
piecewise linear and radial basis interpolations. First obtain the value at the point on the centerline (blue
point) of the cross section (green section) by linear interpolation and then use it to obtain the value at the
mesh points (black points) on the cross section by a radial basis interpolation.

3.1.2. 1D-3D restriction and extension matrices. Let {xi}Ni=1 and {x(si)}Ncli=1 be the collection of212

mesh points of Th and T clh , respectively. Denote {Ii}Ncl−1
i=1 as the collection of line elements of T clh . Then for213

any s in T clh , there exists a unique j ∈ {1, . . . , Ncl − 1}, denoted by j(s), such that s ∈ Ij . Define a mapping214

I : {xi}Ni=1 → {Ii}
Ncl−1
i=1 by215

I(xi) = Ij ,216

where j = min
s∈s∗

j(s) and s∗ = arg min
s∈T clh

|xi − x(s)|. We define an extension operator from (uclh , p
cl
h ) ∈ V clh ×Qclh217

to (uh, ph) ∈ Vh ×Qh as218

(3.15) uh(xj) = uclh (s)ζ

(
|xj − x(s)|

r0(s)

)
τ (s), ph(xj) = pclh (s),219

for any xj (j = 1, . . . , N) with s satisfying s ∈ I(xj) and xj ∈ Cs(s). The extension operator (3.15) can220

be described in two steps, for a non-bifurcating artery as shown in Fig. 3: (1) first for each line segment221

[si, si+1] we compute the value of the function at s ∈ [si, si+1] by the piecewise linear interpolation; (2) we222

compute the values of the function for mesh points on the cross section Cs(s) by the parabolic radial basis223

interpolation. For any xj , we denote by rj = |xj − x(s)|, where s satisfies s ∈ I(xj) and xj ∈ Cs(s). Let224

the influence set Di of si be defined as225

Di =
{
x ∈ {xi}Ni=1 : I(x) ⊂ [si−1, si+1], x ∈ Cs(s), ∀s ∈ [si−1, si+1]

}
.226

Below we describe the detailed algorithm to compute the 3D-1D restriction and 1D-3D extension matrices.227
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Fig. 4: Example of non-overlapping and overlapping partitions of an arterial domain with one overlapping
layer, where the red elements represent the overlapping part.

Algorithm 3.2 Computation of the 3D-1D restriction matrix Rcl and 1D-3D extension matrix Ecl

1: Construct the Ncl × N weighting matrices Wu = (wu
i,j) for the velocity and W p = (wp

i,j) for the pressure with
the weighting coefficients

wu
i,j =

{
ζ
(

rj
r0

)
φi(s), xj ∈ Di,xj ∈ Cs(s)

0, xj /∈ Di

, wp
i,j =

{
ψi(s), xj ∈ Di,xj ∈ Cs(s)
0, xj /∈ Di

,

where {φi}Ncli=1 are the nodal basis functions of Scl
h and ψi(s) is a function of s.

2: Calculate the Ncl ×Ncl tangent matrices Tk (k = 1, 2, 3) as

(3.16) Tk := diag
(
τk(s1), · · · , τk(sNcl)

)
,

where τk(si) is the kth component of the unit tangent vector τ at the mesh point si.
3: Construct the 2Ncl × 4N restriction matrix Rcl by

(3.17) Rcl =

(
Wu

1 Wu
2 Wu

3 0
0 0 0 W p

)
, Wu

k = TkW
u (k = 1, 2, 3),

with ψi(s) = 1 in W p.
4: Construct the 4N × 2Ncl extension matrix Ecl by

(3.18) Ecl =

(
Wu

1 Wu
2 Wu

3 0
0 0 0 W p

)T

, Wu
k = TkW

u (k = 1, 2, 3),

with ψi(s) = φi(s) in W p.

3.2. Multiscale two-level additive Schwarz preconditioner. In this subsection, we introduce a
multiscale restricted additive Schwarz preconditioner consisting of a one-dimensional coarse preconditioner
and some overlapping three-dimensional subdomain preconditioners. Let us first divide the arterial domain
Ω into np non-overlapping subdomains {Ωi}npi=1 such that each subdomain Ωi consists of some elements in

Th denoted by Th,i, i.e., Th =
np
∪
i=1
Th,i, where Th,i ∩ Th,j = ∅ for i 6= j. In practice, this step is often realized

by some graph partitioning libraries such as METIS or ParMETIS [31]. Then we obtain the overlapping
subdomains

{
Ωδi
}np
i=1

with the mesh T δh,i by extending each subdomain Ωi with δ layers of elements from
neighboring subdomains (see Fig. 4), i.e.,

T 0
h,i = Th,i, T δh,i =

{
K ∈ Th : ∃K ′ ∈ T δ−1

h,i , ∂K ′ ∩ ∂K 6= ∅
}
.
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For each overlapping subdomain Ωδi , the corresponding local finite element space is defined by228

V i
h =

{
v ∈ Vh|Ωδi : v|∂Ωδi \(∂Ω\ΓW ) = 0

}
, P ih =

{
q ∈ Ph|Ωδi : q|∂Ωδi \∂Ω = 0

}
.229

Let Ri : Vh × Ph → V i
h × P ih be a restriction operator which returns all degrees of freedom associated with230

the subspace V ih ×P ih and the transpose RTi of Ri be the extension operator. Similarly we denote by R0
i as a231

restriction operator associated with the non-overlapping subdomains. Let A be the Jacobian matrix Jnk and232

Ai = RiAR
T
i be the ith subdomain matrix. Then the one-level restricted additive Schwarz preconditioner233

[6] can be defined as234

(3.19) M−1
1s =

np∑
i=1

(R0
i )
TA−1

i Ri.235

Finally, combining the coarse preconditioner (3.5) with the one-level preconditioner (3.19), we obtain the236

two-level additive Schwarz preconditioner237

(3.20) M−1
2s,cl = M−1

cl +M−1
1s = EclA

−1
cl Rcl +

np∑
i=1

(R0
i )
TA−1

i Ri.238

In (3.20), the matrix Acl derived from the discretization of the one-dimensional problem depends on the239

model parameter β. When β = 0, it means that the coarse problem is the one-dimensional Stokes problem240

and Acl in Algorithm 3.1 stays unchanged for each time and Newton step. When β = 1, the one-dimensional241

problem represents a linearized unsteady incompressible Navier-Stokes problem and consequently Acl needs242

to be recalculated at each time step based on the solution at the previous time step. In our implementation,243

for this case, uclh at the previous time step is obtained by an interpolation of uh because the original one-244

dimensional problem (3.13) is not solved. Note that in (3.20) the coarse preconditioner and the one-level245

Schwarz preconditioner are added together; other hybrid versions [7, 61] can also be designed.246

In this paper, we focus on the Newtonian model for the blood flows, the non-Newtonian effect is important247

for some situations [4, 22, 23, 29, 30, 39] and we expect that the extension of the proposed algorithm to248

non-Newtonian Navier-Stokes equations is straightforward [57].249

4. Numerical experiments. In this section, we provide some numerical experiments to illustrate the250

effectiveness of the multiscale two-level restricted additive Schwarz preconditioner for unsteady incompress-251

ible Navier-Stokes flows in 3D patient-specific arteries. For the blood flows, we set the viscosity ν = 0.035252

g/(cm·s), the density ρ = 1 g/cm3 and the source function f = 0. On each outlet ΓiO, the resistance satisfies253

Ri = Rtotal

(∑m
j=1 |Γ

j
O|
/
|ΓiO|

)1.5

with a total resistance constant Rtotal to be given for each test case later [7].254

The BDF2 with 4t = 0.005 s is used for the temporal discretization and the stabilized P1−P1 finite element255

method is used for the spatial discretization. At each time step, we solve the nonlinear system by an inexact256

Newton method with a line search technique. At each Newton step, the Jacobian system is solved by the257

right-preconditioned GMRES(30) method. The default parameters of Newton and GMRES stopping condi-258

tions in Algorithm 3.1 are rtolNewton = 10−4, atolNewton = 10−6 and rtolGMRES = 10−4, atolGMRES = 10−6.259

For the Schwarz preconditioners, we choose the overlapping parameter δ = 1 and ILU with one fill-in level260

is used to solve the subdomain problems. In the experiments, we consider a tube and two patient-specific261

arteries with different 3D fine meshes (Table 1) and 1D coarse meshes (Table 2). For the one-dimensional262

coarse preconditioner, there are two models to use; i.e., the Stokes model (β = 0) and the Navier-Stokes263

model (β = 1). For the test problems considered in this paper, the Stokes model is quite efficient in terms264

of the number of GMRES iterations and the coarse preconditioner needs to be computed only once for all265

time steps and all Newton iterations (the subdomain matrices are recomputed at every Newton iteration),266

therefore in the following experiments, we use the Stokes model for most of the tests. In the end of the section267

we show some numerical results when the Navier-Stokes model is used. Note that in the following tables268

we only report the average number of GMRES iterations per Newton iteration and the average number of269

Newton iterations per time step is reported when the calculation is for a full cardiac cycle.270

4.1. Womersley flow in a tube. We first verify the correctness of the implementation of the proposed271

algorithm by the Womersley flow in a tube with length Ltube = 5 cm and radius Rtube = 0.5 cm. It is known272
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Table 1: Details of three-dimensional fine meshes used in the experiments. N , E and h are the number of
mesh points, the number of elements and the approximate mesh size, respectively.

Tube Three-branch artery Twelve-branch artery

N E h (mm) N E h (mm) N E h (mm)

1789 8179 1.690 30114 147223 0.289 87866 380332 0.276
12542 65432 0.846 144701 752741 0.174 243013 1130531 0.188
93659 523456 0.422 1079408 6024816 0.087 1497225 8050242 0.100

Table 2: Details of one-dimensional coarse meshes used in the experiments. Ncl and hcl are the number of
mesh points and the approximate mesh size of the centerline, respectively.

Tube Three-branch artery Twelve-branch artery

Ncl hcl (mm) Ncl hcl (mm) Ncl hcl (mm)

100 0.505 247 0.609 677 0.879

that (2.1) has the following analytic solution [20],273

u(r, t) = −R
2
tube

νw2
o

(sin(t)J1(r) + cos(t)J2(r)) , v = 0, w = 0, p(x, t) = cos(t)

(
x− Ltube

2

)
,274

where r =
√
y2 + z2, wo = Rtube

√
ρ/ν is the Womersley number, J1(r), J2(r) are the real and imaginary275

parts of J(r) = 1 − J0(Λ
r

Rtube
)J0(Λ)−1,Λ = woe

i 34π with the zeroth order Bessel function of the first kind276

J0. For the boundary conditions, on the inlet the velocity is set to satisfy the exact velocity solution and on277

the outlet we set Rtotal = 0 dyn·s/cm5 to be consistent with the exact pressure solution. We compute the278

solution for a period of [0, 2π] with 4t = π/100 and test three unstructured meshes described in Table 1. For279

this case, the maximum Reynolds number in a period is about 15. Fig. 5 shows the numerical results of the280

velocity profile, the distributions and the errors of the magnitude of the velocity and the average pressure281

difference between the inlet and the outlet. We can see that the numerical solutions gradually converge282

to the analytic solution with the use of finer meshes and the numerical solution with N = 93659 is quite283

close to the analytical solution, which indicates the correctness of the implementation. Table 3 shows the284

average number of Newton iterations at each time step and the average number of GMRES iterations at285

each Newton step with different preconditioners. The number of Newton iterations is almost independent of286

the fine mesh size, the coarse mesh size, the number of subdomains and the preconditioners, but the number287

of GMRES iterations is sensitive to the fine mesh size and the preconditioner. Compared with the one-level288

preconditioner, the new two-level preconditioner offers a better GMRES convergence and scalability with289

respect to the fine mesh size for this case.290

4.2. Patient-specific arteries. In this subsection, we focus on two patient-specific arteries, including291

a three-branch artery and a twelve-branch artery. For the three-branch artery, there is one inlet with292

diameter 2.30 mm and three outlets with diameters 1.36 mm, 1.30 mm and 1.00 mm. For the twelve-branch293

artery, there is one inlet with diameter 3.00 mm and twelve outlets with diameters about 1.00 mm. On the294

inlet, we prescribe a pulsatile periodic flow velocity (see Fig. 6) with the parabolic profile. On the outlet,295

we set Rtotal = 1500 dyn·s/cm5. Three different unstructured meshes (see Table 1) for both arteries are296

considered. Note that the maximum Reynolds number is about 260 for the three-branch case and 340 for297

the twelve-branch case. For the two-level method, the coarse mesh information is given in Table 2.298

First for the three-branch artery, we show the time histories of the velocity and pressure at different299

points for a cardiac cycle in Fig. 7. These curves of the velocity and pressure have the similar waveforms300

as the inlet flow waveform. Fig. 8 displays local features near the bifurcation at different phases. The301

velocity profiles have noticeable differences at the peak systole and early diastole phases. The maximum302
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(a) Velocity profile

(b) Time history of velocity

(c) Time history of average pressure difference

(d) The error of velocity (e) The error of average pressure difference

Fig. 5: A comparison of the analytical solution and the numerical solution obtained with three meshes with
1789, 12542 and 93659 mesh points labeled by ‘mesh1’, ‘mesh2’ and ‘mesh3’, respectively. (a): the velocity
profile on the cross section x = 0 at different time t = π/3, 2π/3, π, 4π/3, 5π/3, 2π. (b): the time history of
the velocity at the center (0, 0, 0) of the tube. (c): the time history of the average pressure difference scaled
by the length of the tube, i.e., the ratio of the pressure different between the inlet and the outlet and the
length of the tube. (d): the error of the velocity shown in the subfigure (b). (e): the error of the average
pressure difference shown in the subfigure (c). Note that the black solid line is covered by other lines.
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Table 3: A comparison of the one-level and two-level preconditioners in terms of the average number of
Newton iterations per time step and the average number of GMRES iterations per Newton iteration in a full
period for the Womersley flow. N is the total number of mesh points, and np is the number of subdomains.

N np
One-level Two-level

Newton GMRES Ncl Newton GMRES

1789 8 1.74 12.06 34 1.84 5.74
12542 16 1.87 17.84 100 1.86 5.74
93659 32 1.88 29.43 100 1.84 6.46

Fig. 6: The velocity pulse at the center of the inlet for a cardiac cycle.

value of the velocity magnitude happens in areas close to the wall and the corner of the bifurcation at the303

peak systole phase, but move to the internal center at the early diastole phase. The pressure at the corner304

of the bifurcation reaches the local maximum for both phases and the obvious vortex occurs at the early305

diastole. In Table 4 and 5, we give the number of Newton iterations and the average number of GMRES306

iterations at each Newton step of the one-level and two-level methods at the peak systole and the early307

diastole, respectively. Compared to the early diastole case, both methods require more GMRES iterations308

at the peak systole. For both phases, the two-level method scales much better with respect to the fine mesh309

size and the number of subdomains, but the one-level method performs poorly, especially on the fine mesh.310

Further we consider the more complicated twelve-branch artery. Fig. 9 shows the magnitude of the311

velocity and the wall shear stress at different locations at the peak systole and the wall shear stress is defined312

by313

wss := −ν∇u · n+ ((ν∇u · n) · n)n.314

Fig. 10 shows the streamlines at the peak systole. In order to study the effectiveness of the two-level method315

for this case, we provide the number of iterations at the peak systole (Table 6) and the early diastole (Table316

7) and observe similar behaviors as the three-branch case. Comparing the three-branch case with the twelve-317

branch case, for the one-level method, we see that the number of GMRES iterations increases a lot, but the318

increase of the two-level method is not much. These results indicate that the proposed two-level method is319

effective and robust with respect to the complexity of the arterial geometry.320

The above discussions focus on the performance of the proposed method at two different times in a321

cardiac cycle, namely the peak systole phase when the velocity and pressure are near their maximum values322

and the early diastole phase when their respective values are close to their minimum. In Table 8 we illustrate323

the performance in a complete cardiac cycle. The average number of Newton iterations stays unchanged324

and the average number of GMRES iterations has a small increase when refining the mesh, and we can325
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Table 4: At the systole phase: a comparison of one-level and two-level preconditioners in terms of the number
of iterations for the three-branch artery. N is the total number of mesh points, and np is the number of
subdomains.

Phase N np
One-level Two-level

Newton GMRES Newton GMRES

Systole

30114
16 2 297.50 2 19.50
32 2 307.50 2 19.50
64 2 319.50 2 20.00

144701
32 2 583.50 2 24.50
64 2 558.00 2 25.00
128 2 633.50 2 24.00

1079408
256 2 485.00 2 36.00
512 2 807.50 2 36.00
1024 2 1128.50 2 36.50

Table 5: At the diastole phase: a comparison of one-level and two-level preconditioners in terms of the
number of iterations for the three-branch artery. N is the total number of mesh points, and np is the
number of subdomains.

Phase N np
One-level Two-level

Newton GMRES Newton GMRES

Diastole

30114
16 2 156.50 2 15.00
32 2 134.00 2 15.00
64 2 247.00 2 15.00

144701
32 2 226.50 2 17.00
64 2 222.50 2 17.50
128 2 235.50 2 17.00

1079408
256 2 244.50 2 25.00
512 2 366.50 2 25.50
1024 2 426.50 2 25.50

Table 6: At the systole phase: a comparison of one-level and two-level preconditioners in terms of the number
of iterations for the twelve-branch artery. N is the total number of mesh points, and np is the number of
subdomains.

Phase N np
One-level Two-level

Newton GMRES Newton GMRES

Systole

87866
32 2 675.00 2 36.00
64 2 748.50 2 36.50
128 2 845.50 2 36.00

243013
64 2 1318.50 2 41.00
128 2 980.50 2 41.00
256 2 1214.50 2 42.00

1497225
256 4 2670.00 2 113.00
512 3 2461.00 2 113.00
1024 3 2841.33 2 112.00

This manuscript is for review purposes only.



1D COARSE PRECONDITIONER FOR 3D NAVIER-STOKES FLOW 15

Fig. 7: The time histories of the velocity and pressure at different points for a cardiac cycle.

Table 7: At the diastole phase: a comparison of one-level and two-level preconditioners in terms of the
number of iterations for the twelve-branch artery. N is the total number of mesh points, and np is the
number of subdomains.

Phase N np
One-level Two-level

Newton GMRES Newton GMRES

Diastole

87866
32 2 279.00 2 26.00
64 2 280.00 2 25.50
128 2 328.00 2 26.50

243013
64 2 412.00 2 26.50
128 2 425.00 2 26.50
256 2 463.00 2 27.00

1497225
256 2 651.50 2 62.50
512 2 655.00 2 63.00
1024 2 890.50 2 63.00

see that the two-level method works well for the full cardiac cycle. Next, we consider the impact of other326

algorithmic parameters including the ILU fill-in level, the overlapping parameter and the coarse mesh size.327

Table 9 shows the number of iterations for different ILU fill-in levels and indicates that the ILU fill-in level328

has an obvious impact on the number of GMRES iterations and ILU(2) can clearly improve the GMRES329

convergence. Considering the overlapping parameter, Table 10 shows that a small overlapping parameter is330

enough, which is consistent with the classical theory of two-level Schwarz methods in [13]. Table 11 lists the331

number of iterations with different coarse meshes and shows, as expected, that a finer coarse mesh provides332

a better GMRES convergence especially at the systole phase of a cardiac cycle.333

This manuscript is for review purposes only.



16 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Fig. 8: The distributions of the magnitude of the velocity (top), pressure (middle) and the streamline
(bottom) near the bifurcation at the systole phase when t = 0.165 s (left) and the diastole phase when
t = 0.405 s (right).
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Fig. 9: The wall shear stress and velocity magnitude at different locations at the peak systole.

Fig. 10: The streamlines at different locations at the peak systole.

Next, in Table 12, we present the performance of the one-dimensional coarse preconditioner for different334

time step sizes when there is a stenosis in the artery. In this experiment, we test the three-branch artery335

with and without a stenosis which reduces the diameter of the artery by 50%, as shown in Fig. 11. Fig. 11336

also shows the distribution of the pressure which decreases rapidly passing the stenosis. Table 12 indicates337

that with the increase of the time step size, the numbers of Newton and GMRES iterations both increase338

slightly.339
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Table 8: The average number of iterations of the two-level preconditioner in a cardiac cycle for three-branch
and twelve-branch arteries. N is the total number of mesh points, and np is the number of subdomains.

Artery N np Newton GMRES

Three-branch

30114 16 1.59 16.70
144701 32 1.58 18.56
1079408 256 1.53 28.43

Twelve-branch
87866 32 1.70 33.33
243013 64 1.69 33.68
1497225 256 1.66 71.27

Table 9: The effect of the ILU fill-in level ‘ILU’ on the number of iterations of the two-level preconditioner.

Phase ILU
Three-branch Twelve-branch

Newton GMRES Newton GMRES

Systole
0 2 62.00 2 234.00
1 2 36.00 2 113.00
2 2 29.50 2 72.00

Diastole
0 2 36.50 2 95.50
1 2 25.00 2 62.50
2 2 20.00 2 43.00

Note that the coarse preconditioner in all the experiments presented so far in this section is constructed340

based on the one-dimensional Stokes model (β = 0). In order to show the effect of the one-dimensional Navier-341

Stokes model (β = 1) on the number of iterations, in Table 13, we provide a comparison of the number of342

iterations with different coarse models for the twelve-branch artery. We see that the one-dimensional Navier-343

Stokes model moderately improves the GMRES convergence at the peak systole and the difference is quite344

small at the early diastole. Therefore we conclude that for problems considered in this paper, the Stokes345

model is sufficient, but for more complicated problems the Navier-Stokes model might be more useful.346

5. Conclusions. Modeling blood flows using the three-dimensional unsteady incompressible Navier-347

Stokes equations in patient-specific arteries with many bifurcating branches is computationally very expen-348

sive. In this paper, we developed a Newton-Krylov method with an effective two-level restricted additive349

Schwarz preconditioner consisting of overlapping three-dimensional subdomain preconditioners and a one-350

dimensional coarse preconditioner constructed by a parameterized unsteady Navier-Stokes model defined on351

the centerline of the artery with appropriate 3D-1D restriction and 1D-3D extension operators. The key352

feature of the method is that the cost of the one-dimensional coarse problem is almost neglectable but it353

reduces significantly the number of GMRES iterations comparing with the one-level method. Numerical354

experiments show that the proposed method is not only scalable in terms of the numbers of linear and355

nonlinear iterations, but is also quite robust with respect to the complex geometry of the artery and varying356

flow conditions. In the future work, we plan to further develop the method for diseased arteries with, for357

example, aneurysm or stenosis, as well as study its performance on large-scale parallel computers.358
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Table 10: The effect of the overlapping parameter δ on the number of iterations of two-level preconditioners.

Phase δ
Three-branch Twelve-branch

Newton GMRES Newton GMRES

Systole
1 2 36.00 2 113.00
2 2 35.00 2 104.00
3 2 34.00 2 100.50

Diastole
1 2 25.00 2 62.50
2 2 24.00 2 63.00
3 2 22.50 2 63.00

Table 11: The effect of the number of coarse mesh points Ncl on the number of iterations of two-level
preconditioners.

Phase
Three-branch Twelve-branch

Ncl Newton GMRES Ncl Newton GMRES

Systole
88 2 53.50 522 2 128.00
128 2 46.50 677 2 113.00
247 2 36.00 998 2 99.00

Diastole
88 2 38.00 522 2 64.00
128 2 32.50 677 2 62.50
247 2 25.00 998 2 61.00

Table 12: The performance of the one-dimensional coarse preconditioner with respect to the time step size
and the three-branch artery with and without a stenosis at t = 0.16 s. N is the total number of mesh points.

Geometry N 4t (s) Newton GMRES

Norm 331370
0.005 2 30.00
0.01 2 41.50
0.02 3 46.00

Stenosis 329938
0.005 2 30.50
0.01 2 44.50
0.02 3 48.00

Fig. 11: The distribution of the pressure at t = 0.16 s for the three-branch artery with a stenosis.

This manuscript is for review purposes only.



20 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Table 13: A comparison of the coarse preconditioner with one-dimensional Stokes (β = 0) and Navier-Stokes
(β = 1) models in terms of the number of iterations. rtolGMRES is the GMRES relative tolerance.

Phase rtolGMRES
β = 0 β = 1

Newton GMRES Newton GMRES

Systole
10−4 2 113.00 2 89.50
10−3 2 94.00 2 77.50
10−2 2 85.00 2 78.00

Diastole
10−4 2 62.50 2 63.00
10−3 2 45.00 2 45.00
10−2 2 36.00 2 36.00
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