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Hypergraphs have attracted increasing attention in recent years thanks to their flexibility in naturally modeling a broad range of systems
where high-order relationships exist among their interacting parts. This survey reviews the newly born hypergraph representation
learning problem, whose goal is to learn a function to project objects - most commonly nodes - of an input hyper-network into a latent
space such that both the structural and relational properties of the network can be encoded and preserved. We provide a thorough
overview of existing literature and offer a new taxonomy of hypergraph embedding methods by identifying three main families of
techniques, i.e., spectral, proximity-preserving, and (deep) neural networks. For each family, we describe its characteristics and our
insights in a single yet flexible framework and then discuss the peculiarities of individual methods, as well as their pros and cons. We
then review the main tasks, datasets, and settings in which hypergraph embeddings are typically used. We finally identify and discuss
open challenges that would inspire further research in this field.
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1 INTRODUCTION

Hypergraphs are the natural representation of a broad range of systems where group (or high-order or many-to-many)
relationships exist among their interacting parts. Technically speaking, a hypergraph is a generalization of a graph
where a (hyper)edge allows the connection of an arbitrary number of nodes [28]. Such structures can easily abstract
social systems where individuals interact in groups of any size [17, 117]; for instance, in the case of a co-authorship
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Fig. 1. An example of co-authorship hypergraph where each node represents an author, and each hyperedge connects all authors
that have contributed to the same article.

collaboration network, a hyperedge may represent an article and link together all authors (nodes) having collaborated
on it [10, 55, 57, 85, 97, 138, 160, 164, 182, 195] (see Figure 1). Similar situations, characterized by high-order interactions,
also exist in biology [65, 151], ecology [54, 67], and neuroscience [94, 121]. Despite their powerful expressiveness,
hypergraphs have been underexplored in literature (in favor of their graph counterpart) because of their inherent
complexity and the lack of appropriate tools and algorithms. Recently, the trend has been drifting, thanks to a rising
number of systematic studies demonstrating how the transformation of a hypergraph to a classical graph either leads
to an inevitable loss of information or creates a large number of extra nodes/edges that increases space and time
requirements in downstream graph analytic tasks [2, 17, 199, 203]. Specifically, hypergraphs have been proven to
be a critical tool to use when the underlying system to study exhibits highly non-linear interactions between its
constituents [17]. In practice, this consideration translates into using hyperedges to model (possibly indecomposable)
group interactions that cannot be described simply in terms of dyads (and, hence, via graphs). For instance, hypergraph
modeling has been exploited to embed key sociological concepts such as homophily (i.e., the influence a group exerts
on a single individual) and conformity (i.e., group pressure, namely the tendency of an individual to align their beliefs
to those of their peers, often reinforced by the nature of shared opinions) to investigate the dynamics of opinion
formation [92, 131, 132, 149] and social influence diffusion [6, 163, 180, 222, 223] when groups are explicitly taken
into account. Similarly, hypergraphs have been used to model epidemic-spreading processes to expressly account for
community structure and non-linear infection pressure [5, 25, 82], and group dynamics [45, 93, 106, 122]. Throughout
this review, we will discuss other application scenarios in which hypergraph modeling could be more beneficial than
traditional graph modeling and elaborate on the characteristics of the many-to-many relations abstracted and the
specific tasks addressed.

All graph-related problems and corresponding challenges still hold for the hypergraph-based setting, where the
computational cost is even more significant due to the presence of high-order interactions [127, 155]. In this sense, the
task of hypergraph representation learning (a.k.a. hypergraph embedding) further assumes a critical role in effectively
and efficiently solving analytic problems. Embedding a network - either a graph or a hypergraph - means projecting
its structure and possibly additional information onto a low-dimensional space where the structural and semantic
information (e.g., nodes’ neighborhood and features) is ideally preserved. The underlying idea of this procedure is that
representing the nodes and (hyper)edges as a set of low dimensional vectors allow the efficient execution of the traditional
vector-based machine learning algorithms on the (hyper)graph. As for graphs, the problem of hypergraph embedding,
thus, lies in the overlap of two traditional research problems: hypergraph analytics and representation learning [30].
Manuscript submitted to ACM
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Fig. 2. Number of peer-reviewed publications related to hypergraphs from 1970 to 2021 (source: Scopus).

While the first problem aims to mine useful information from the hyper-network structure, representation learning seeks
to learn compact representations (i.e., latent feature vectors) when addressing, for instance, classification [10, 159, 221],
link prediction [52, 200, 217], and recommendation [175, 176, 206] tasks. Learning a latent representation of hypergraphs,
rather than graphs, enables the exploration of the high-order correlation among data and the indecomposable nature of
certain group relations to build more comprehensive representations, leading to better performance in practice [156, 204].

As witnessed in Figure 2, for the last decade, a growing body of work has devoted its efforts to investigating
hypergraphs to design more effective solutions in various domains [17]. Still, so far, there is no systematic exploration of
hypergraph embedding methods, as discussed in the following. This survey aims to fill this gap by providing a thorough
overview of existing literature and offering a taxonomy of hypergraph embedding techniques. Our broadest intent is to
develop a comprehensive understanding and critical assessment of the knowledge of this newly born research area.

Differences with previous surveys. Current surveys [63, 212] closely related to ours substantially differ in the topics
discussed and the literature covered.

The work from Gao et al. [63] deals with the hypergraph learning problem (sometimes called hypergraph regulariza-
tion), which is a related but different topic than hypergraph representation learning. According to [63], hypergraph
learning is the process of passing information along the hypergraph topology in analyzing the structured data and
solving problems such as node classification. Learning hypergraph embeddings is not the goal of hypergraph learning,
although both tasks share some concepts and ideas (e.g., [221]). Further, the authors thoroughly analyze hypergraph
generation methods (not covered in this survey).

The most recent survey from Zhang et al. [212] presents a shallow and brief excursus on hypergraph representation
learning techniques, offering a single-level taxonomy similar to the one provided in this survey (see Section 5). However,
the authors limit the discussion to a few representative works, focusing on how to handle uncertain data using
hypergraphs. Their survey also covers some graph representation learning and hypergraph generation methods.

For the above reasons, our work can be regarded as a complement to the surveys by Gao et al. [63] and Zhang et
al. [212] since it emphasizes the task of learning hypergraph embedding (a.k.a.hypergraph representation learning),
providing a series of novel contributions that are listed below.

Contributions. Our contributions can be summarized as follows:

• Inherent challenges. As hypergraphs are a generalization of graphs, some challenges are directly inherited by
the graph representation learning problem. However, the high-order nature of hypergraphs imposes additional
difficulties. We discuss the classical challenges of (hyper)graph embedding to then detail the peculiar challenges
these structures pose.

Manuscript submitted to ACM
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• New taxonomies. We propose three taxonomies, classifying hypergraph embedding methods based on (i) their
learning approach (spectral, proximity-preserving, and neural network techniques), (ii) the structure of the input
hypergraph (homogeneous/heterogeneous, undirected/directed, uniform/non-uniform, static/dynamic, attribute/
not attributed nodes, transformation into a graph) and (iii) the desired output (node/hyperedge embedding).
• Comprehensive review. The recent booming of the hypergraph representation learning field enabled us to
collect, systematically review and characterize the whole evolution of this research area. We describe the most
representative approaches of each hypergraph embedding class, unraveling the pros and cons of each learning
mechanism and highlighting the high-level connections among the described techniques within each category.
• Hypergraph analytic tasks. We review the discussedmethods under the lens of representation learning applications,
categorizing them according to node-related and hyperedge-related tasks.
• Future directions. We examine the limitations of the current state-of-the-art and propose six potential future
directions in the area in terms of problem setting, modeling techniques, interpretability, and scalability.

Article organization. The remainder of this survey is organized as follows. Section 2 details the paper collection
process and the inclusion criteria for selecting the articles included in this survey. Section 3 introduces the concepts and
the notation we will use throughout this work. Section 4 formally defines the problem of hypergraph representation
learning (see Section 4.1), describes a taxonomy of the problem setting, in terms of hypergraph embedding input and
output, (see Section 4.2) and discusses the problem’s inherent challenges (see Section 4.3). Section 5 categorizes the
literature based on the embedding technique, describing spectral representation learning (see Section 5.1), proximity-
preserving (see Section 5.2), and (deep) neural network (see Section 5.3) methods, unraveling their pros and cons and
comparing these three methodologies (see Section 5.4). Section 6 presents examples of applications enabled by the
hypergraph embedding methods previously described. Section 7 identifies and discusses open research challenges and
future directions in this field. Finally, Section 8 concludes this survey.

2 METHODOLOGY

This section clarifies the data collection process and the inclusion criteria for the selected articles.

2.1 Data collection

We conducted our literature review by in-depth reading, interpreting, and categorizing articles addressing the problem
of generating a low-dimensional representation of a hypergraph. We carried out our search in the Scopus database since
it represents a comprehensive and accurate database of peer-reviewed research articles in the fields relevant to this
survey. Specifically, we submitted the following query: TITLE-ABS-KEY ("hypergraph embedding" OR "hypergraph

learning" OR "hypergraph representation learning" OR "hypergraph neural network*" OR "hypergraph

convolution" OR "hypergraph attention"), limiting the results to only English-written contributions. We repeated
the same query by replacing the word hypergraph with the terms hyper-network and high-order, as well as trying
out different spellings of these words. We did not limit either the subject areas or the publication year. The rationale
behind this choice relies on two main reasons. First, hypergraphs - and, more generally, graphs - embody a tool to study
emergent phenomena in a wide range of application domains. Second, hypergraphs rose to prominence only recently
in the academic landscape, and the topic of hypergraph representation learning represents an even more novel research
field. A total of 1338 non-duplicated articles met these criteria by June 2022.
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Fig. 3. PRISMA chart reporting the selection process of our systematic literature review.

2.2 Inclusion criteria

We followed a standard two-step selection process to pick the final set of articles to include in this survey. First, we
screened the original set by filtering each article based on its title and abstract. In this phase, we removed all articles
related to (higher) student education and high-order neural networks [104, 137]. In the second step, we filtered the
remaining articles based on their content, removing out-of-scope articles, such as hypergraph-regularized methods.
After this process, the number of articles was narrowed down to 102. Figure 3 schematically shows the selection process,
while Figure 4 provides an overview of the venues where the selected articles have been published.

3 FUNDAMENTALS

This section introduces the concepts we will use throughout the paper, from formally defining hypergraphs to describing
how these structures can be transformed into their graph counterparts. Table 1 lists the mathematical notation and the
hypergraph-related concepts that will be explicitly referred to in the remainder of this survey.
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Fig. 4. Distribution of the ranking of the venues where the selected articles have been published. Conference and journal rankings
have been evaluated according to CORE 2021 (A∗ > A > B > C > not ranked) and Scimago (Q1 > Q2 > Q3 > Q4), respectively.

3.1 Hypergraphs

A hypergraph is an ordered pair 𝐻 = (V, E), whereV is the set of nodes1, and E is the set of hyperedges (Figure 5a).
Each hyperedge is a non-empty subset of nodes. The structure of a hypergraph is usually represented by an inci-
dence matrix H ∈ {0, 1} |V |× | E | , with each entry H(𝑣, 𝑒) indicating whether the vertex 𝑣 is in the hyperedge 𝑒 , i.e.,
H(𝑣, 𝑒) = ⟦𝑣 ∈ 𝑒⟧.

The degree of a vertex 𝑣 and the degree of a hyperedge 𝑒 are defined as

deg(𝑣) =
∑︁
𝑒∈E

H(𝑣, 𝑒) and 𝛿 (𝑒) =
∑︁
𝑣∈V

H(𝑣, 𝑒),

respectively. D𝑣 ∈ R |V |× |V | and D𝑒 ∈ R | E |× | E | indicate their corresponding diagonal matrix. When all hyperedges
have the same degree 𝑘 , i.e., 𝛿 (𝑒) = 𝑘 ∀𝑒 ∈ E, we say that 𝐻 is a k-uniform hypergraph. 𝑘-uniform hypergraphs also
have a tensor representation [101, 205]. As for classical networks, both nodes and hyperedges may be of more than one
type; in such cases, the hypergraph is heterogeneous.

The dual 𝐻∗ of a hypergraph 𝐻 is the hypergraph constructed by swapping the roles of nodes and hyperedges, i.e.,
𝐻∗ = (V∗, E∗) whereV∗ ≡ {𝑖 | 𝑒𝑖 ∈ E} and E∗ ≡ {{𝑖 | 𝑣 ∈ 𝑒𝑖 ∈ E} | 𝑣 ∈ V}.

In aweighted hypergraph, denoted by a tuple𝐻 = (V, E,W), each hyperedge 𝑒 ∈ E has a weight𝑤 (𝑒), representing
the importance of that relation in the whole hypergraph. W ∈ R | E |× | E | denotes the diagonal matrix of the hyperedge
weights, i.e., diag(W) = [𝑤 (𝑒1),𝑤 (𝑒2), ...,𝑤 (𝑒 | E | )].

In aweighted hypergraph, the degree of a vertex 𝑣 is defined as deg(𝑣) = ∑
𝑒∈E

𝑤 (𝑒)H(𝑣, 𝑒). A non-weighted hypergraph

can be seen as a special case of the weighted one whereW = I𝑛 .
1In this survey, we use the terms node and vertex interchangeably.
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3.2 Hypergraph to graph transformations

Hypergraphs have usually been converted into a corresponding graph representation in the literature. Even though such
transformation has often been preferred over hypergraphs, especially for computation convenience and the easiness of
dealing with graphs rather than higher-order structures, this process may either bring a loss of information or introduce
redundant vertices/edges regarding the original hypernetwork structure. The typical transformation of a hypergraph
into a graph relies on its two-section, incidence, or line graph representation [28]. Figure 5 shows a toy hypergraph and
its corresponding two-section, incidence, and line graphs.

Two-section graph. The two-section or clique graph of 𝐻 is the graph, denoted with [𝐻 ]2, whose vertices are the
vertices of 𝐻 and where two distinct vertices form an edge if and only if they are in the same hyperedge of 𝐻 (see
Figure 5b). In other words, each hyperedge of 𝐻 appears as a complete sub-graph in [𝐻 ]2.

The major drawback of using such a transformation is that clique graphs completely lose the notion of groups since
pairwise connections substitute each high-order interaction. Consequently, we have a high probability of materializing

Category Symbol/Concept Interpretation

General v Bold-faced lowercase letters are used to identify vectors.
A Bold-faced capital letters are used to identify matrices.

A(𝑖, 𝑗) The indexed notation identifies the 𝑗-th element in the 𝑖-th
row of the matrix A.

A Calligraphic capital letters are used to identify sets.
|A| The cardinality (i.e., number of elements) of the set A.
〚𝑃 〛 Indicator function: it equals 1 if the predicate 𝑃 is true; 0

otherwise.
[𝑛] Set of integers from 1 to 𝑛, i.e., N≤𝑛 .
I𝑛 The 𝑛 by 𝑛 identity matrix.

diag(A) Diagonal of the matrix A.
diag(v) Diagonal matrix with its diagonal equals to v.

Hypergraph-related V Vertex set, where |V| = 𝑛.
E Hyperedge set, with |E | =𝑚.

E𝑣 ≡ {𝑒 ∈ E | 𝑣 ∈ 𝑒} Hyperedges containing the vertex 𝑣 .
H Incidence matrix of the hypergraph 𝐻 .

^ (𝑣) Degree of a vertex 𝑣 .
𝛿 (𝑒) Degree or cardinality of a hyperedge 𝑒 .
𝑤 (𝑒) Weight of a hyperedge 𝑒 .
W Diagonal matrix of hyperedge weights.
D𝑣 Diagonal matrix of node degrees.
D𝑒 Diagonal matrix of hyperedge cardinalities.
𝐻∗ Dual hypergraph 𝐻∗ of 𝐻 , constructed by swapping the

role of nodes and hyperedges.
𝑘-uniform Hypergraph in which each hyperedge has cardinality 𝑘 .

Representation L Hypergraph Laplacian.
learning X Nodes’ feature matrix.

𝜎 Non-linear activation function.
𝚯,𝚽 Learnable neural network parameters.

Table 1. Summary of the notation used throughout this survey.
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Fig. 5. Hypergraph to graph transformations.

interactions that did not exist in the original hypergraph. This intuitive concept of losing the notion of groups is
formalized by the fact that different hypergraphs can be transformed in the same clique graph; hence, we cannot
uniquely reconstruct the original hypergraph from its clique graph. Further, clique graphs can yield computational
issues as each hyperedge of size 𝑘 is transformed into 𝑘×(𝑘−1)

2 edges.

Incidence graph. The incidence graph or star expansion of 𝐻 is the bipartite graph 𝐼 (𝐻 ) = (V, E, E′), where 𝑣 ∈ V
and 𝑒 ∈ E are adjacent if and only if 𝑣 ∈ 𝑒 , i.e. E′ ≡ {(𝑣, 𝑒) | 𝑣 ∈ 𝑒} (see Figure 5c).

Bipartite graph representations effectively describe group interactions (see Figure 5c). In this model, one vertex set
corresponds to the hypergraph’s vertices, the other to the hyperedges. Hence, a link in this graph connects a vertex to
the interactions - of arbitrary order - in which it takes part. However, also bipartite graphs have a critical shortcoming
inherent in their structure. Vertices in the original system do not interact directly anymore as the interaction layer
always mediates their relationship. This interaction structure implies that any measure or dynamic process defined on
the bipartite representation must consider this additional complexity.

Line graph. The line graph of𝐻 is the graph 𝐿(𝐻 ) = (V′, E′) such thatV′ ≡ E, and {𝑖, 𝑗} ∈ E′, 𝑖 ≠ 𝑗 ⇐⇒ 𝑒𝑖 ∩𝑒 𝑗 ≠ ∅
(see Figure 5d). Essentially, each hyperedge is transformed into a node and an edge is added between two nodes if the
corresponding hyperedges intersect in the original hypergraph.

As happens for clique graphs, distinct hypergraphs can have identical line graphs as they lose the information about
the composition of each hyperedge, storing only whether two hyperedges intersect but not in which manner. Further,
sparse hypergraphs can yield relatively dense line graphs as a vertex of degree 𝑑 in the hypergraph yields

(𝑑
2
)
edges in

its line graph.

4 THE HYPERGRAPH REPRESENTATION LEARNING PROBLEM

This section formally introduces the hypergraph representation learning problem to then detail the problem setting in
terms of input and output. Finally, it discusses the intrinsic challenges of learning latent representations of a hypergraph.

4.1 Problem Formulation

Definition 4.1. Hypergraph embedding. For a given hypergraph 𝐻 = (V, E), whereV is the set of nodes and E is
the set of hyperedges, a hypergraph embedding is a mapping function Φ : V → R |V |×𝑑 , where 𝑑 ≪ |V|, such that Φ
Manuscript submitted to ACM
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defines the latent representation (a.k.a. embedding) of each node 𝑣 ∈ V , which captures certain network topological
information in E.

In other words, given a hypergraph 𝐻 = (V, E) and a predefined embedding dimension 𝑑 , with 𝑑 ≪ |V|, the
problem of hypergraph representation learning (a.k.a. hypergraph embedding) is to map 𝐻 into a 𝑑-dimensional vector
space (a.k.a. latent space), in which the structural properties of 𝐻 are preserved as much as possible. When features
are attached to nodes/hyperedges, the learned latent representation should also encode such additional information.
Following this definition, each hypergraph is represented as either a 𝑑-dimensional vector (for a whole hypergraph) or
a set of 𝑑-dimensional vectors, with each vector representing the embedding of part of the hypergraph such as nodes,
hyperedges, or substructures.

4.2 Problem setting

In this section, we compare existing hypergraph representation learning literature from the perspective of the problem
setting, describing different types of input/output and the specific characteristics of each setting.

4.2.1 Input setting. In this survey, we analyze the hypergraph embedding input along six axes: the nature of the high-
order relation, its directionality and size, the temporal dimension, whether nodes have attached additional information,
and whether the hypergraph is converted into a graph. Figure 6 outlines the considered input settings. Next, we
introduce each category and summarize its specific characteristics.

Input Setting

Nature of
the relation

Directionality
of the relation

Size of the
relation

Temporal
dimension Node Features

Transformation
to graph

Homogeneous

Heterogeneous

Undirected

Directed

k-uniform

Non-uniform

Static

Dynamic

Not
attributed

Attributed

Clique graph

Incidence
graph

Other

Fig. 6. Taxonomy of input settings.

Nature of the relation. As happens for graphs, hypergraphs can encode relations among nodes of one or more types.
Similarly, hyperedges may represent a single or different kinds of possible interactions.

Homogeneous hypergraphs. Homogeneous hypergraphs represent the most trivial input setting, as both nodes and
hyperedges belong to a single type. In this context, each hyperedge tells us that a given subset of nodes shares a
common property or feature. Homogeneous hypergraphs have been widely used to model the most various user-
item relations for recommendation purposes (e.g., [38, 95, 190, 206, 211]), citation networks for the link prediction
task (e.g., [10, 55, 57, 97, 195]), and other relational data for classification problems (e.g., [99, 138, 150, 193, 221]).
In the literature, it is also possible to find homogeneous hypergraphs built upon non-relational data [63],
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where, for instance, hyperedges represent vertex connections based on some notion of distance in the feature
space. In these cases, such structures are usually abstract, possibly multimodal features for object classification
(e.g., [55, 118, 134, 183, 202]), traffic or passenger flow forecast [120, 177, 178], and gas or taxi demand [202].

Homogeneous hypergraphs are often employed in their weighted version to convey information about the
importance of a relation through hyperedge weights (e.g., [55, 91, 118, 139, 153]). The intuition behind this choice
is that the weights should drive the algorithm to be more accurate in learning the embedding of nodes within
more important hyperedges.

The biggest challenge of learning a vector representation of a homogeneous hypergraph is to preserve its
connectivity patterns in the latent space as only structural information is available. Typically, embedding
methods defined over such structures are more general and can be re-used off-the-shelf without any particular
tweak as the task they are defined for has no particular constraint.

Heterogeneous hypergraphs. Hypergraphs capture the heterogeneity of the underlying hypernetwork via nodes of
different types (Figure 7c) or through nodes and hyperedges of multiple kinds (Figure 7d). In the first case, all
hyperedges semantically encode the same type of interaction among diverse entities. Most of the heterogeneous
hypergraphs belong to this category, and they are usually employed to model relations among users, items, and
domain-specific properties or actions for ranking/recommendation (e.g., [19, 38, 175, 204, 206]), link prediction
(e.g., [168, 196, 199, 200, 217]), or classification tasks (e.g., [41, 168, 225]). Hypergraphs with heterogeneous nodes
and hyperedges add further expressiveness as relations can be of more than one type. In such cases, hyperedges
can represent different types of events [42, 71, 72], documents, tags, and annotation relations [224], users,
songs, and tags interactions [105], actions on social media [159], or even components in chemical/mechanical
processes [188].

There are two major challenges when dealing with the embedding of heterogeneous hypergraphs. The first
challenge relates to how effectively encode different types of nodes and relations to preserve structural and
semantic properties. The second problem refers to a possible imbalance of objects of different types. Further, the
more complex the heterogeneous hypergraph is, the more specific the representation learning method will be.
This situation often leads to embedding algorithms that are strictly related to the application task and are tricky
to generalize.

Directionality of the relation. This feature refers to whether a direct interaction exists between (groups of) nodes in
the underlying hypernetwork. Hence, we can find both undirected and directed hypergraphs in the literature.

Undirected hypergraphs. By far, undirected hypergraphs represent the typical input setting in the task of hypergraph
representation learning. In this case, dependencies between nodes or hyperedges are not considered.

Directed hypergraphs. Conversely to graphs, there is not a standard definition of directed hypergraphs, and the
notion of direction may be either applied between hyperedges (i.e., set of nodes) [59] or between nodes within the
same hyperedge [8]. Yadati et al. [196] and Gao et al. [62] follow the first interpretation, proposing an embedding
algorithm working on directed hypergraphs based on the definition of Gallo et al. [59]. In this case, the head
and the tail of the directed relation are embodied by two hyperedges (Figure 7e). Luo et al. [120] and La Gatta
et al. [105] exploit the second interpretation, grounding their embedding technique on the definition proposed
by Ausiello et al. [8]. This time the directionality of the interaction is defined within a single hyperedge, which
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consists of two node sets (head and tail, Figure 7f). Liao et al. [112] propose a generalized definition of this
concept, in which each directed hyperedge comprises a sequence of node sets.

Regardless of the definition of directionality used, the most critical challenge of learning a latent representation
of a directed hypergraph is how to incorporate hierarchy and reachability to preserve the asymmetric transitivity
in the embedding space [20, 135].

Size of the relation. This property refers to the cardinality of each hyperedge and is strictly related to the nature of
the relations the hypergraph is modeling. Hyperedges can represent interactions either between a fixed or unbounded
number of nodes.

k-uniform. In 𝑘-uniform hypergraphs, each hyperedge has cardinality 𝑘 and usually models an existing interaction
between 𝑘 nodes of possible 𝑘 different types (Figure 7b). Put differently, each hyperedge represents an indecom-
posable relation between heterogeneous entities that cease to exist when one or more components disappear. In
this case, hyperedges represent relations between user mobility data and friendships (linking social, semantic,
temporal, and spatial information) [167, 199, 200], or interactions between users, items, and domain-specific
properties, e.g., [38, 89, 101, 168, 172]. Sometimes, a single hypergraph encodes 𝑘-way relationships of different
sizes and/or types, e.g., [167, 199, 200, 206, 224].

𝑘-uniform hypergraphs introduce more constraints regarding how the domain of interest should be modeled, but,
at the same time, they ease the definition of hyperedge-related tasks, such as link prediction (see Section 4.3).

Non-uniform. In non-uniform hypergraphs, each hyperedge encodes a relation among an arbitrary number of
homogeneous or heterogeneous nodes. In contrast with 𝑘-uniform hypergraphs, a hyperedge can continue to
exist even when one or more nodes are removed from the network.

Heterogeneous and non-uniform hypergraphs (Figure 7c) have been used to model event data [42, 71, 72], or, as in
the previous case, interactions between users, items, and domain-specific properties (e.g., [19, 52, 159, 175, 217]).
Homogeneous and non-uniform hypergraphs (Figure 7a) have been exploited to represent similarities or shared
properties of relational and non-relational data (e.g., [118, 142, 150, 221]), citation networks (e.g., [10, 55, 85, 182,
211]), and several user-item relations (e.g., [38, 95, 110, 206, 211]).

Thanks to their flexibility, non-uniform hypergraphs represent the most common input setting; however, con-
versely to 𝑘-uniform hypergraphs, they introduce further complexity to hyperedge-related tasks (see Section 4.3).

Temporal dimension.With their structure, hypergraphs can either capture a static view or the dynamicity of the
underlying hypernetwork.

Static. Static hypergraphs represent the most common input setting given the early age of this research field.
Static hypergraphs can either model existing connections at a fixed moment (e.g., [167, 168, 199, 200]), or node
interactions over time that are aggregated into a single static snapshot (e.g., [38, 72, 89, 195, 204]).

Dynamic. Real (hyper)networks are often characterized by a dynamic behavior, meaning that both nodes and
(hyper)edges can be added or removed from the system or that labels and other properties can change over
time [16]. In the literature, a dynamic hypergraph is usually represented by a sequence of static hypergraphs,
i.e., 𝐻 = ⟨𝐻 (𝑡0), . . . , 𝐻 (𝑡𝑇−1)⟩, where 𝐻 (𝑡𝑘 ) = (𝑉 (𝑡𝑘 ), 𝐸 (𝑡𝑘 )) is a static hypergraph with timestamp 𝑡𝑘 , with
𝑘 ∈ {0, ...,𝑇 − 1}, 𝑇 is the number of snapshots, 𝑉 (𝑡𝑘 ) is the node set at timestamp 𝑡𝑘 and 𝐸 (𝑡𝑘 ) is the hyperedge
set including all edges within the period [𝑡𝑘 , 𝑡𝑘+1) [110, 175].
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Temporal hypergraphs have been used to model users’ preferences over time in recommendation tasks [81, 98,
110, 175], user trust relationships for rumor detection [161], or for time series forecasting [153, 177, 178, 188, 202].

Developing an approach to embedding dynamic hypergraphs implies dealing with a series of challenges that
arise when the temporal component comes into play [16]. Such methods should consider (i) how to model the
time domain (discrete-time or continuous-time), (ii) which dynamic behaviors have to be embedded, and (iii)
which temporal granularity will be represented in the vector space.

Node features. This category refers to whether additional semantic information is associated with the nodes as input
to the embedding process.

Not attributed. In this setting, nodes convey only structural information through their connectivity patterns.

Attributed. Besides the structural patterns, nodes can carry additional information about their nature in the
form of feature vectors. These vectors may encode information related to user (e.g., [83, 98]) or item features
(e.g., [47, 81, 190]), pre-trained word embeddings [46], image spectral features (e.g., [118, 134, 162]), and values
derived from sensors (e.g., [120, 177, 178]), to name a few examples.

Although the presence of extra attributes can boost the performance of the intended task [60], this auxiliary
information may not be trivial to embed, especially if it comes in a non-vector form.

Transformation to graphs. In the literature, the most common approach to deal with the high-order nature of
hypergraphs is to split the single relation encoded by a hyperedge into a set of pairwise interactions. As described
in Section 3.2, hypergraphs can be either transformed into clique graphs, incidence graphs, or in some intermediate
representation. Considerations about the drawback of each transformation can be found in Section 3.2.

Clique graphs. Transforming a hypergraph into the corresponding clique graph means instantiating a direct
interaction between each pair of nodes in a given hyperedge. Such connections can be materialized, for instance,
when the hypergraph adjacency matrix is exploited to consider linking patterns (e.g., [26, 146, 150]), or used to
compute the pairwise similarity of two embedding vectors of nodes within the same hyperedge (e.g., [42, 72,
167, 200]). The clique graph transformation is implicitly used by most of the hypergraph convolutional methods
based on the Message Passing Framework as thoroughly described in Section 5.3.

Incidence graphs. In an incidence graph, hyperedges are represented as nodes, and the high-order relation of the
nodes within a hyperedge is mediated by these special nodes via pairwise links.

From a computational perspective, incidence graphs let the information flow from nodes to hyperedges and back.
For this reason, this graph transformation is implicitly used by the Message Passing techniques based on the
two-stage update procedure (e.g., [7, 90, 156, 166])2, in which, in a single convolutional layer, the messages pass
from nodes to the hyperedges, where they are aggregated, and then back from the hyperedges to the nodes (see
Section 5.3).

Line graphs. Line graphs capture the relationship between the edges of a hypergraph. This representation has been
used to preserve the indecomposability of the high-order relations encoded by hyperedges in Bandyopadhyay et
al. [15], which designed a hypergraph convolutional network relying on an implicit transformation to weighted
line graphs. Xia et al. [190] also introduce a hypergraph transformation to a line graph to alleviate the sparsity

2Hyper-SAGE [7] does not appear in our statistics because not peer-reviewed.
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types.
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uniform, homogeneous) hypergraph.
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Fig. 7. Types of input hypergraphs. An example of a dynamic hypergraph is not shown because it is usually represented as a sequence
of static hypergraphs.

problem in recommendation tasks. In LE [198], the line graph transformation is applied to leverage standard
graph convolutional networks.

Other transformations. Other approaches convert the hypergraph into a modified form of the transformations
described in Section 3.2 to better capture structural properties and use them as an implicit regularizer [195],
alleviate the sensitivity towards the node distribution [141], or model domain-specific characteristics [38]. For
instance, Pu and Faltings [141] construct a directed weighted line graph in which each hyperedge is replaced
with two nodes (positive and negative), and an edge is added between positive and negative node pairs based
on the same ratio of line graphs. Yadati et al. [195] propose a modified version of the classical star expansion.
Also in this case, each hyperedge is replaced by two nodes, joined by an edge, and linked to all nodes originally
contained in the corresponding hyperedge. A third example can be found in the work of Chen et al. [38], where
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the authors define a revised version of the clique graph converting each hyperedge (of a 3-uniform hypergraph)
into two pairwise interactions.

4.2.2 Output setting. The output of hypergraph embedding techniques3 is a (set of) low dimensional vector(s) represent-
ing (part of) a hypergraph. The embedding output is strictly task-driven, and finding the most suitable embedding type is
crucial to meeting the specific application’s needs. In this survey, we consider node and hyperedge as embedding output
settings. The most common embedding output is node embedding, while only a few approaches propose hyperedge
embedding. Currently, no method deals with whole-hypergraph nor hypergraph substructures embedding (see Section 7
for more details). It is worth clarifying that there is no one-to-one correspondence between the specific embedding
output setting and the addressed task since node (resp. hyperedge) embeddings can be used to evaluate hyperedge
(resp. node)-related tasks.

Node embedding. Node embedding represents each node as a vector in a low-dimensional space. The underlying idea
is to learn similar latent representations for nodes that are close in the original hypergraph. In practice, this concept of
closeness often refers to nodes included in the same hyperedge. When nodes have additional features attached, both
structural and semantic closeness are considered in the embedding process. As the most common embedding output
setting, node embeddings have been used in a variety of downstream hypergraph analytic tasks, such as clustering
(e.g., [42, 150, 221]), classification (e.g., [138, 159, 193]), regression (e.g., [153, 177, 202]), link prediction (e.g., [52, 85, 217]),
and recommendation (e.g., [175, 176, 211]). The complexity of defining a proper similarity metric heavily depends upon
the properties of the input hypergraph.

Hyperedge embedding. Hyperedge embedding methods learn low-dimensional vector representations for the hyper-
edges. In contrast to graphs where each edge encodes a pairwise relationship, in this context, the hyperedge embedding
vector needs to capture the interaction between an arbitrary number of nodes.

The most common approach is combining the embedding vectors of the nodes within the specific hyperedge,
for instance, by summing [26], averaging [72], performing more complex aggregations [42], or also by learning the
aggregation function through a (deep) neural network [46, 49, 52, 62, 69, 73, 90, 138, 156, 166]. Other approaches consist
in translating the problem of hyperedge embedding in the node domain by (i) operating on the dual hypergraph (so that
the nodes of the new hypergraph represent the hyperedges of the original one) [85, 99], or (ii) on the corresponding
bipartite graph (in which each hyperedge is modeled as an additional node) [164].

In this survey, we consider falling under this category only those techniques that explicitly learn hypergraph
embeddings. As expected, hyperedge embedding benefits edge-related tasks, such as link prediction [52, 85, 164] or link
classification [138, 156]. Nonetheless, hyperedge embedding vectors are also exploited to capture contextual information
to improve node-related tasks, like clustering [42], classification [42, 49, 72, 85, 161], and recommendation [166].

4.3 Challenges of hypergraph representation learning

Obtaining an accurate representation of a hypergraph into low dimensional spaces is not a trivial task [30, 36, 210]. As
hypergraphs are a generalization of graphs, the following challenges are directly inherited by the graph representation
learning problem. The first challenge lies in finding the optimal embedding dimension of the representation. Using a
lower dimension is more resource-efficient and may also help reduce noise in the original network; on the other hand,
critical information may be lost in the process. Conversely, a higher dimension representation tends to preserve more

3Here, we are considering the embedding outputs and not the output related to the specific task (e.g., classification, regression).
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information at the expense of storage requirement and computation time. Further, the proper dimension depends on
the input hypergraph as well as the application domain. The second issue relates to choosing the right hypergraph
property to embed, as it can be reflected by node features, link structures, or meta-data information. Again, determining
which feature is the most suitable for the task is strictly domain-dependent. Such obstacles relate to preserving both
the structure and the rich content that may be attached to the network elements [36, 210]. A third challenge resides
in the data’s nature: due to countless reasons - such as privacy or legal restrictions, among others - the problem
of data sparsity may corrupt both the structure and the additional content of a network. This condition may thus
lead to extra difficulties in discovering structural-level relatedness and semantic similarities between vertices not
directly connected [210]. In the case of heterogeneous networks, the hypergraph representation learning task is even
harder [48, 181]. In addition to the previous challenges, the core issue in this context is effectively fusing heterogeneous
information to encode different types of entities and relations into latent spaces so that both structural and semantic
properties are preserved. Capturing the inherent organization of such networks may require prior knowledge of the
application domain to be included in the embedding process (for instance, in the design of meta-paths [69, 89]). This
consideration leads to embedding techniques that are strictly application dependent and difficult to generalize and
re-use in other contexts [181]. Nonetheless, embedding hypergraphs enforce to tackle two more issues deriving from
the higher-order nature of these structures.

• Capturing group relations. Hypergraphs model many-to-many relationships among entities. Nonetheless, the
existence of a hyperedge bonding of some nodes only tells us that they share a common property and does
not necessarily imply direct interactions between them. For instance, a hypergraph can encode a character
co-occurrence (hyper)network, in which each node is a movie character and each hyperedge is a movie scene
(hence, all characters appearing in the same scene also occur in the same hyperedge) [4]. The fact that two
characters belong to the same hyperedge only tells us they have appeared in the same scene, but not that they
have interacted in some way. We can argue a similar observation for a heterogeneous and 𝑘-uniform hypergraph.
Let us consider a hypergraph modeling a Location-based Social Network (LBSN) in which each hyperedge links a
user’s presence at a point of interest (POI) at a specific time along with the semantic information about the user’s
activity there [167, 199] (i.e., each hyperedge is a four-element set). In this case, each hyperedge represents an
indecomposable relation between four types of entities, which all relate to the same real-world event. Removing a
single of these entities would cause the hyperedge to disappear. A critical challenge of hypergraph representation
learning lies in capturing such high-order relations in the embedding process. Mathematical tools able to abstract
such relationships are fundamental in achieving this goal.

• Task definition. The key feature of hypergraphs is that each hyperedge embodies a relation that can potentially
connect more than two nodes. This structural characteristic implies that all tasks defined over relations (i.e.,
formalized on the edges of a graph) - such as link prediction or network reconstruction - need to be generalized.
The critical issue is that the definition of such tasks needs to be adapted to the specific application context. For
instance, let us focus on the link prediction problem. Even for newbies, it is straightforward to think what is
the goal of this task when instantiated on a graph, namely predicting whether a given relation between two
nodes (will) exists. When dealing with hypergraphs, this problem takes on different meanings based on the
nature of the underlying hypernetwork. Heterogeneous and 𝑘-uniform hypergraphs usually model fixed-sized
relations among a specific group of entities with different types. In this case, we are interested in finding whether
a relation (a subset of nodes) linking a fixed number of different elements exists (e.g., [89, 168, 200]). In the case
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of non-uniform hypergraphs, the problem becomes harder: this time, there is no (a priori) constraint on the
size of the hyperedge to predict (e.g., [52, 90, 193]). As a consequence, the computational complexity of the
link prediction problem explodes as the number of different hyperedges is exponential (as it corresponds to the
number of all possible subsets of a set).
Another direct consequence deriving from the structural nature of hypergraphs is that these structures can be
exploited to also study problems on sets (being a hyperedge a subset of nodes). For this reason, tasks borrowed
from set theory can be easily adapted in this context. A good example is the task of hyperedge completion [156],
deriving from the set expansion task [208]. This problem involves finding one or more nodes that may fit within
an existing hyperedge, thus completing it. Clearly, there is no direct equivalence of this problem for graphs.

5 HYPERGRAPH REPRESENTATION LEARNING METHODS

Hypergraph representation learning aims to embed hypergraphs into a low-dimensional space while preserving the
original hypernetwork properties as much as possible.

We divide hypergraph embedding techniques into three macro categories: spectral learning methods, proximity
preserving methods, and (deep) neural networks-based methods. The main difference between these three families lies
in the way the representation learning problem is approached.

• The spectral learning family is the pioneer in hypergraph representation learning. Although the very first works
(e.g., [26, 146]) were not focused on the learning aspects, the basic concepts and ideas apply in most of the later
works (e.g., [221]). Basically, spectral learning approaches define the hypergraph representation learning problem
in terms of the decomposition of the Laplacian matrix (hence, the term “spectral”) of the hypergraph (Section 5.1).
The output of such decomposition (a.k.a. factorization) is the (vertex) embedding matrix, where the topological
proximity of the embedding vectors is ensured by the nature of the factorization.
• Proximity-preservingmethods rely on amore flexible approach to the problem: vertex proximity in the embedding
space is measured in terms of a similarity function (e.g., cosine similarity), and such embeddings are learned
by optimizing an objective function defined to preserve the topological proximity (i.e., close vertices should
be similar) along with other factors and constraints related to the given task. The flexibility of this family of
techniques lies in the modularity of the overall approach (i.e., similarity function → objective function →
optimization) that makes it easily adaptable to very specific tasks and/or input settings.
• (Deep) Neural network-based hypergraph embedding, as the name suggests, is a family of techniques based on
(deep) neural networks. As it will be clear later, nowadays, deep learning-based approaches are predominant
w.r.t. the other families of hypergraph learning techniques. This success is due to the well-known strengths of
Deep Neural Networks (DNNs), like automatic feature learning, scalability, and generalization, to name a few.
Akin DNN for graphs, a significant role is played by hypergraph convolutions that allow the generalization
of well-established neural models to work on arbitrarily structured hypergraphs. Arguably, (many) proximity-
preserving methods can be implemented in terms of shallow neural networks; however, in this survey, we stick
to the methodology described in the original papers, and thus we consider proximity-preserving methods not
based on neural networks.

In the following, we describe each approach proposed in our taxonomy, discussing its motivation, the most rep-
resentative methods following the given technique, and its pros and cons. Finally, we summarize and compare the
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Fig. 8. Taxonomy of hypergraph embedding methods.

hypergraph representation learning approaches. Figure 8 outlines this taxonomy. Application tasks using the methods
covered in this section are discussed in Section 6.

Figure 9 provides the temporal distribution of the papers covered in this survey divided according to their category.
The overall number of works from 2022 takes into account only the articles published by June of the same year
(see Section 2). Spectral learning methods were the first to appear in the literature (i.e., from the ‘90s). Although
the works before 2008 were primarily theoretical and did not strictly focus on learning hypergraph representations
as we mean nowadays, their theoretical findings were essential to developing the most recent approaches. Besides
rare exceptions traditionally linked to visualization tasks, spectral learning techniques fail when facing large-scale
hypergraphs. This drawback should explain their disappearance in recent years. A different consideration must be made
for the proximity-preserving family. While spectral learning methods are more mathematics-driven, we can consider
proximity-preserving techniques to be more machine learning-driven as they follow the usual machine learning pipeline.
However, the researchers’ interest in these methods started when deep neural networks were already a big deal and, as
for machine learning research in general, DNNs have stolen the show. The rise of DNN techniques began right after
the introduction of Graph Convolutional Networks by Kipf and Welling in 2017 [103]. Over the past few years, the
increase in computational power and experience working with graph convolutions has allowed a rapid escalation of
DNNs methods, currently representing the de facto technique for hypergraph representation learning.
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5.1 Spectral Representation Learning Methods

Motivation. Spectral hypergraph embedding (a.k.a. spectral representation learning) methods are historically the first
representation learning methods for hypergraphs. Interestingly, as far as we know, the very first discussion about
vector representation learning for nodes/hyperedges dates back to the 1980s [58], where the goal was to learn a 2D
representation suitable for visualization. Despite the approach to the problem being somewhat unorthodox w.r.t. today’s
standards, the work in [58] captures the essence of spectral representation learning.

Generally speaking, this methodology aims to learn a low dimensional latent representation for vertices in such a
way that “similar" vertices are close to each other in the learned (Euclidean) latent space. Although, in principle, vertices’
similarity could be modeled in several ways, the vast majority of the spectral hypergraph embedding methods define it
in terms of the number of common incident hyperedges. The name “spectral” stems from the usage of concepts related
to spectral (hyper)graph theory [32, 44], specifically, the relationships between the eigenvectors and eigenvalues of the
(hyper)graph Laplacian matrix. As we will see, the common denominator of this family of methods is the definition of
the node embeddings’ features as the eigenvectors corresponding to the minimal eigenvalues of the Laplacian matrix.

Methods. Before diving into the characteristics of each spectral embedding technique, we provide a general overview
of the methodology.

5.1.1 Overview. Let 𝐻 (V, E,W) be a weighted hypergraph, and let X ∈ R𝑛×𝑑 be the matrix where each row x𝑖 ∈ R𝑑 ,
with 𝑖 ∈ [𝑛], is the latent representation of the vertex 𝑣𝑖 ∈ V that we aim to learn. Ideally, the learned vertices’
representation should encode the structural information of the hypergraph; thus, similar vertices should be mapped
onto nearby points in the latent space. If we only consider information about the hypergraph structure, the similarity
between two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ V can be expressed as the (normalized) sum of the weights of the common incident
hyperedges. Given this notion of similarity, we can define an optimization problem whose objective is to minimize the
weighted Euclidean distance between nodes sharing the same hyperedges. Formally:

argmin
X

1
2

∑︁
𝑣𝑖 ∈V

∑︁
𝑣𝑗 ∈V

∑︁
𝑒∈E
⟦𝑣𝑖 ∈ 𝑒⟧⟦𝑣 𝑗 ∈ 𝑒⟧

𝑤 (𝑒)
𝛿 (𝑒)

 x𝑖√︁
^ (𝑣𝑖 )

−
x𝑗√︁
^ (𝑣 𝑗 )

2 = tr(X (I𝑛 − D
− 1

2
𝑣 HWD−1𝑒 H⊤D

− 1
2

𝑣 )︸                               ︷︷                               ︸
LZhou

X⊤) (1)

subject to X⊤X = I𝑑 to avoid trivial solutions or arbitrary scaling factors, and where tr(·) is the trace operator, i.e.,
tr(A) = ∑

𝑖 A(𝑖, 𝑖). According to Zhou et al. [221], formulation (1) is the relaxed version of the (NP-complete) problem
of finding the optimal normalized cut, whose minimum is obtained by setting as columns of X (i.e., the features in the
latent space) the 𝑑 orthonormal eigenvectors corresponding to the 𝑑 smallest nonzero eigenvalues of the hypergraph
Laplacian LZhou.

5.1.2 Structural-only spectral embedding. The hypergraph Laplacian plays a key role in the definition of the loss
function because it encodes the concept of “closeness" between nodes in the hypergraph. As a consequence, different
Laplacians lead to different embeddings. In fact, the main difference between the methods discussed in this section lies
in how the hypergraph Laplacians are defined. To ease the exposition of the hypergraph spectral embedding methods,
we define a unified framework for learning the optimal 𝑑-dimensional embedding X. The framework is based on the
seminal works of Bolla [26] and Zhou et al. [221], but it provides a factorized view of the hypergraph Laplacian, allowing
instantiating the different techniques by setting those factors. Formally, the framework is defined as
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argmin
X:X⊤X=I𝑑

tr(X⊤ Z (D𝑣 − S𝑣) Z⊤︸             ︷︷             ︸
L

X) = tr(X⊤LX), (2)

where L ∈ R |V |× |V | is the hypergraph Laplacian, Z ∈ R |V |× |V | is a normalization matrix, and S𝑣 ∈ R |V |× |V | can
be interpreted as a similarity matrix between nodes. When not specified differently, we assume S𝑣 = HS𝑒H⊤, where
S𝑒 ∈ R | E |× | E | is a function of the weight and/or cardinality of the hyperedges. So, the factor (D𝑣 − S𝑣) represents
a generalization of the not normalized graph Laplacian (i.e., the graph Laplacian can be obtained with S𝑣 = HH⊤).
The matrix Z acts as a Laplacian normalizer, and when it is not the identity (i.e., no normalization), it is equal to
D−1/2𝑣 . Normalized Laplacians are usually preferred because the influence of hub nodes (i.e., nodes contained in many
hyperedges) is reduced, and their definition is tied to the probability transition matrix.

By definition, L is positive semi-definite, and, as previously described, we know that the solution to (2) can be
computed using the eigendecomposition of L from standard results in linear algebra [21].

The problem (2) was first introduced by Bolla in [26], where it is instantiated to find the “minimal variance placement”
of the vertices in the latent space, leading to a formulation with an unnormalized Laplacian, i.e., Z = I |V | and S𝑒 = D−1𝑒 .
Bolla also showed that, given the optimal X∗, the optimal hyperedge embeddings can be computed as X∗HD−1𝑒 .

Zhou et al. [221] made a step forward by providing a general framework for spectral hypergraph partitioning.
The proposed normalized hypergraph Laplacian (i.e., LZhou) generalizes [26] by including hyperedge weights, i.e.,
S𝑒 = WD−1𝑒 , as well as node normalization, i.e., Z = D−1/2𝑣 . Closely related to Zhou’s Laplacian are the ones proposed
by Zhu et al. [224] (HHE [224]) and Pu et al. [141]. In HHE [224], the Laplacian corresponds to Zhou’s Laplacian without
the node normalization (Z = I |V | ), while in Pu et al. the hyperedge degree matrix is omitted in S𝑒 . Pu et al. also present
a novel Laplacian matrix (that does not fit the framework in (2)) based on the hyperedge expansion so that the learning
result is invariant to the distribution of vertices among hyperedges. This novel formulation seems to get clusters of
nodes with larger margins which could be beneficial in the case of clustering tasks.

In [142], Ren et al. state that Zhou’s Laplacian is not ideal for vision problems. Specifically, they argue that S𝑒 contains
redundant information while the normalization is empirically ineffective. For this reason, they proposed a Laplacian
analogous to the standard graph Laplacian, i.e., S𝑒 = 1

2 I | E | and Z =
√
2I |V | . Saito et al. [150] proposed a Laplacian

strongly related to Zhou’s where the node similarity matrix has the diagonal zeroed out, i.e., S𝑣 ← S𝑣 − diag(S𝑣). From
a random walk standpoint, Saito’s Laplacian is consistent with standard graph Laplacians, whereas Zhou’s setting can
be regarded as a lazy random walk with self-loops.

The direct connection with graphs is also present in Rodriguez [146], where the hypergraph Laplacian of 𝐻 (V, E)
corresponds to the Laplacian matrix of the weighted graph onV , in which two vertices 𝑣,𝑢 are adjacent if they are
adjacent in 𝐻 , and the edge-weight is the number of edges in 𝐻 containing both 𝑢 and 𝑣 , i.e., |E𝑢 ∩ E𝑣 |. According to
Rodriguez, this Laplacian has nice spectral properties; however, the impact in terms of node embeddings is unclear.

5.1.3 Spectral embedding for nodes with additional features. Despite its generality, the framework (2) assumes that
nodes only carry structural information. However, there are many applications in which additional features can be
attached to nodes. We can generalize the framework to include such cases and consider an initial node representation.
Let V ∈ R𝑛×𝑓 be the matrix containing each node (on the rows) and its features (on the columns); then, we can rewrite
(2) as

argmin
X:X⊤V⊤VX=I𝑑

tr(X⊤V⊤Z (D𝑣 − S𝑣) Z⊤VX) = tr(X⊤V⊤LVX), (3)
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where X ∈ R𝑓 ×𝑑 is the projection matrix that we want to learn. So, differently from (2), here we learn a linear
transformation rather than the embedding which is obtained as VX ∈ R𝑛×𝑑 . It is worth noticing that Equation (3)
generalizes Equation (2) and they are equivalent if V is the identity matrix with 𝑓 = 𝑛.

Both the approaches proposed by Sun et al. in [162] and [158] fall under the formulation (3), while the approaches
presented by Luo et al. in [118] and [119] are closely related to (3) but the optimized loss is different. Specifically, Lou et
al. use Zhou’s Laplacian, but embeddings are learned in a supervised fashion where the supervision is used to define an
objective function that simultaneously ensures high intra-class compactness and high inter-class separability. Very
similar approaches to Luo’s are proposed by Yuan et al. [207], and Huang et al. [91].

Method Input HG Laplacian = Z (D𝑣 − S𝑣 ) Z⊤ Learning Task Venue Year

Bolla [26] Hom, NU S𝑒 = D−1𝑒 and Z = I|V| - Discrete Mathematics 1993

Rodriguez [146] Hom, NU D𝑟 = diag(HWH⊤ − D𝑣 ) , - Linear & Multilinear Algebra 2002

Z = D−1/2𝑟 , S𝑒 = W, S𝑣 = HS𝑒H⊤ − D𝑟
Zhou et al. [221] Hom, NU S𝑒 = WD−1𝑒 and Z = D−1/2𝑣 Clustering NeurIPS 2007

Ren et al. [142] Hom, NU S𝑒 = 1
2 I|E | and Z =

√
2I|V| Clustering SSPR 2008

Sun et al. [158] Hom, NU, A Zhou’s Laplacian Classification KDD 2008

Pu et al. [141] Hom, NU S𝑒 = W and Z = D−1/2𝑣 (*) Classification ECML PKDD 2012

Yuan et al. [207] Hom, NU, A Zhou’s Laplacian (*) Classification IEEE GRSL 2015

Zhu et al. [224] Het, NU Z = I|V| and S𝑒 = WD−1𝑒 Recommendation Neurocomputing 2016

Huang et al. [91] Hom, NU, A Zhou’s Laplacian (*) Dimensionality reduction Neurocomputing 2016

Sun et al. [162] Hom, NU, A Z = I|V| and S𝑒 = WD−1𝑒 Classification Remote Sensing 2017

Saito et al. [150] Hom, NU Z = D−1/2𝑣 , S𝑒 = D−1𝑒 W, Clustering AAAI 2018

S𝑣 = A − diag(A) , A = HS𝑒H⊤

Luo et al. [118] Hom, NU, A Zhou’s Laplacian (*) Classification IEEE Trans. on Cybernetics 2019

Luo et al. [119] Hom, NU, A Zhou’s Laplacian (*) Classification JSTARS 2020

Table 2. Spectral-based methods. As tasks, we only consider those directly using the node embeddings (standard output among
these methods). All methods are transductive and work in a static and undirected input setting. Hom/Het stand for homoge-
neous/heterogeneous; NU stands for non-uniform; A stands for attributed nodes. (*) The formulation is related but does not directly fit
the framework (3).

Remarks. As demonstrated by Agarwal et al. [1], all hypergraph Laplacians introduced in this survey do not consider
the higher-order nature of the interactions encoded by hypergraphs as, in practice, those are manipulated as graphs.
Precisely, with the appropriate weighting function, [221, 224]’s Laplacians correspond to the Laplacian of the hypergraph
star expansion, while [26, 146, 150]’s Laplacians are equivalent to the Laplacian of the hypergraph clique expansion.
Agarwal et al. further showed that, in a linear setting, these two transformations are equivalent.

These embedding methods benefit from spectral theory on hypergraphs, making their definition elegant and easy to
implement since they are based on standard linear algebra operations. However, the overall spectral framework is not
flexible enough to easily handle the injection of node and hyperedge heterogeneity, and it is not designed to deal with
temporal dependencies. Such settings can be tackled in a naive way by constructing different hypergraph laplacians
based on the node/hyperedge types [224] or by building discrete hypergraph snapshots and learning node embeddings
by solving the generalized eigenproblem (as for dynamic graphs [192]), respectively. Further, as in the case of graphs,
spectral theory on hypergraphs does not straightforwardly translate to directed hypergraphs (whichever their definition
is, see Section 4.2.1), and solutions to make the adjacency matrix symmetrical would add further (computational)
complexity to an already demanding problem [219]. In addition, spectral methods scale poorly with |V| as they require
the in-memory storage of all the matrices involved in (1), even though sparse representations (of sparse hypergraphs)
may help alleviate this problem. Still, this requirement hugely hinders their applicability to very large hypergraphs.
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This scaling issue explains why most spectral embedding methods were proposed in early 2000, while nowadays, more
scalable approaches are preferred, e.g., neural network-based methods.

Table 2 provides an overview of the spectral methods described in this section. We provide the implementation of
most of these methods at https://github.com/alessant/HEE.

5.2 Proximity-Preserving Methods

Motivation. Proximity-preserving (PP) algorithms aim to design a proper similarity function able to catch various
structural and semantic information conveyed by the hypergraph. The similarity can be naturally computed in graphs
based on first-order or second-order proximity information. While the former tells how similar two nodes are based on
the weight of the link between them, the latter compares the similarity of the nodes’ neighborhood structures [30].
When it comes to hypergraphs, a desirable property of the embedding is to simultaneously retain the proximity among
the nodes in the same group, as a hyperedge encodes high-order relationships that are not necessarily meaningful when
fractured into pairwise links [204].

Methods. Proximity-preserving and spectral embedding algorithms share the idea of retaining the nodes’ topological
closeness; however, the approach to the problem is very different. PP techniques are less theoretically grounded, but
the methodology is much more flexible and easy to adapt to the specific task at hand.

Although it is impossible to provide a single sensible framework general enough to cover all the methods falling in
this category, we can highlight the concepts and ideas shared among most, if not all, of them.

Similarity as a function of the dot-product. In the case of Euclidean latent spaces, the proximity/closeness of two
vectors is commonly measured using the dot-product [30]. Based on this general idea, PP methods designed
for hypergraphs generally aim to jointly optimize the tuple-wise (or 𝑛-wise) proximity of the nodes in a hyper-
edge via the dot-product (HEBE(-PO/PE) [71, 72], FOBE and HOBE [165])), or one of its variants, like the cosine
similarity (Lbsn2Vec [199], Lbsn2Vec++ [200], and MSC-LBSN [167]).

Negative sampling. Regardless of the specific proximity function used, optimizing the similarity of related nodes
comes with the risk of overfitting. In order to avoid overfitting, PP methods need (at least) to consider negative
hyperedges (i.e., hyperedges in 2𝐸 \ E) by maximizing the distance of the incident nodes. Given the combinatorial
explosion of the number of non-existing hyperedges, negative sampling represents the most common technique
to solve this problem (Lbsn2Vec(++) [199], HGE [204], HEBE(-PE/PO) [71, 72], FOBE, and HOBE [165]).

Objective function. The objective function presents a similar structure across all PP methods. Specifically, we can
identify three primary sub-objectives:

(1) maximization of the node embeddings’ similarity for nodes that are topologically or semantically close to each
other;

(2) minimization of the node embeddings’ similarity for the negative samples (when present);
(3) maximization of a task-specific sub-objective that can be intrinsically embedded into the objective (1). An

example of such a sub-objective is the maximization of the inter-event proximity used in Event2Vec [42], which
describes the pairwise proximity between hyperedges.

No regularization. Surprisingly, most of the PP methods do not employ any kind of regularization over the learned
embeddings (with the only exceptions of MSC-LBSN [167] and HOBE [165]). For methods based on the cosine
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similarity, e.g., Lbsn2Vec(++) [199], the regularization may not be necessary since the magnitude of the embed-
ding vectors does not impact the cosine of the angle between them. However, it is unclear whether the lack of
regularization may lead to overfitting for methods based on the dot-product, like HEBE [71, 72], Event2Vec [42],
FOBE [165], and HGE [204].

Despite being similar at a higher level, each PP technique is characterized by the optimization objective, usually
optimized via Stochastic Gradient Descent, which shapes how the node/hyperedge embeddings are learned. The
optimization criterion can take different forms like similarity maximization (e.g., Lbsn2Vec(++) [199], HGE [204],
MSC-LBSN [167]), mean squared error (e.g., HOBE [165]), Kullback–Leibler divergence (e.g., FOBE [165], Event2Vec [42]),
or Bayesian Personalized Ranking [144] (e.g., HEBE(-PO/PE) [71, 72]). Clearly, the loss function takes into account the
characteristics of the task to solve.

PP methods also differ in how they transfer the high-order relation conveyed by a hyperedge and whether they
explicitly learn a representation for the hyperedge itself. Almost all methods of this family maximize the embedding
similarity of nodes within the same hyperedge by pairwise computing the cosine similarity (Lbsn2Vec(++) [199],
MSC-LBSN [167]) or the dot-product (HEBE [71], Event2Vec [42], HOBE/FOBE [165]) between two embedding vectors. An
exception is made by HGE [204], which treats a hyperedge as a single set of nodes. Specifically, HGE [204] generalizes the
standard dot-product operation between two vectors to an indefinite number of vectors for computing the similarity
score of the nodes in a hyperedge. However, this dot-product generalization, called multilinear map, is meaningful only
from an algebraic perspective while having no geometric interpretation. Among all PP methods, only HEBE-PE [71, 72]
and Event2Vec [42] also learn a latent representation for hyperedges. In HEBE-PE [71, 72], the hyperedge embedding
is learned by maximizing the similarity between the hyperedge vector and the average representation of the nodes
within that hyperedge. In Event2Vec [42], the latent hyperedge representation is given by combining via a weighted
dot-product the embedding of the nodes within it.

Another important observation is that all PP methods, but Event2vec [42], only consider the first-order proximity,
which could be sub-optimal. In particular, Event2Vec [42] captures the second-order proximity by modeling hyperedge
proximity. Inspired by FactorizationMachines [143], the authors proposed a new operation combining all the interactions
between pairs of embedding vectors in the same hyperedge. Then, hyperedge proximity is modeled with the dot-product
between the embedding and the just described combination.

Remarks. Proximity-preserving methods share the same overall design: the definition of (𝑖) a similarity measure as a
function of the embeddings and (𝑖𝑖) a criterion to optimize for preserving the node proximity and possibly task-specific
goals. This simple design makes PP methods versatile enough to adapt to peculiar tasks easily by means of specifically
crafted optimization (sub-)objectives. This elementary structure also allows to naturally handle heterogeneous, non-
uniform, and directed hypergraphs. In particular, the notion of directionality can be encoded within the objective
function. For instance, in the case of inter-hyperedge directed hypergraphs (see Figure 7f), the criterion to optimize
could enforce the embedding of the tail node(s) to have some particular characteristics (e.g., being the centroid of the
embedding of all nodes within a hyperedge). The injection of dynamic information into the latent representation via
a PP method deserves separate considerations. In this case, the dynamic setting would make the overall method’s
structure harder to design, consequently conflicting with the underlying spirit of these techniques, which tend to be
straightforward and efficient. Currently, no PP method is defined over directed or dynamic hypergraphs.

In contrast with deep representation learning (Section 5.3), we can define these methods as shallow because they
optimize a unique embedding vector (i.e., a single layer of abstraction) for each node/hyperedge. These approaches are
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inherently transductive, which prevents them from being used in inductive applications. A drawback of most of these
methods is their lack of capturing structural hypergraph information besides single-hop neighbors. Moreover, since
similarity is usually defined as a function of the dot-product, these approaches may fail to model the potential non-linear
relationship between nodes/hyperedges. Finally, PP methods on hypergraphs often treat the hypernetwork as its clique
expansion counterpart, which may lose the benefit of modeling the problem in terms of high-order interactions in the
first place. Table 3 summarizes the methods described in this section.

Method Input HG Proximity Model Learning Task Venue Year Code

HEBE [71] Het, NU Softmax of the dot-product Classification ICDM 2016 https://bitbucket.org/hgui/hebe/downloads/

HEBE-PO [72] Het, NU As HEBE Classification TKDE 2017 https://bitbucket.org/hgui/hebe/downloads/

HEBE-PE [72] Het, NU As HEBE Link prediction TKDE 2017 https://bitbucket.org/hgui/hebe/downloads/

HGE [204] Het, NU Multilinear map Recommendation CIKM 2018 https://github.com/chia-an/HGE

Event2vec [42] Het, NU Sigmoid of the weighted dot-product Clustering, Class. ICDMW 2018 -

FOBE [164] Hom, NU Sigmoid of the dot-product Link prediction, Recom. MLG 2019 https://github.com/JSybrandt/HypergraphEmbedding

HOBE [164] Hom, NU ReLU of the dot-product Link prediction, Recom. MLG 2019 https://github.com/JSybrandt/HypergraphEmbedding

LBSN2Vec [199] Het, U Cosine similarity Link prediction, Recom. WWW 2019 https://github.com/eXascaleInfolab/LBSN2Vec

LBSN2Vec++ [200] Het, U Cosine similarity Link prediction, Recom. TKDE 2020 https://github.com/eXascaleInfolab/LBSN2Vec

MSC-LBSN [167] Het, U Cosine similarity Link prediction, Recom. TKDE 2022 -

Table 3. Proximity-preserving methods. Node embedding is the standard output. All methods are transductive and work in a static
and undirected input setting. Hom/Het stand for homogeneous/heterogeneous; (N)U stands for (non-)uniform. Task: Class stands for
classification, and Recom for recommendation.

5.3 (Deep) Neural Network Models

Motivation. Deep Learning (DL) has gained remarkable impetus in speech, language, and visual detection systems [64].
This success drove the research community to either directly apply DL models from other fields on graphs or design
novel neural network models for specifically embedding graph-shaped data [30]. Hypergraph neural networks (HNNs)
stem from graph NNs (GNNs), which currently embody the state-of-the-art in graph representation learning [184]. For
this reason, the motivation and intuition behind GNNs also apply to hypergraph-like input data. (Deep) HNNs have
been utilized to capture the high-order non-linear relationships between the nodes of a hypergraph without requiring
hand-crafted features (i.e., providing end-to-end solutions). Furthermore, state-of-the-art NN frameworks (e.g., Pytorch,
Keras, TensorFlow) leverage hardware acceleration (e.g., GPUs) to speed up the computation making it possible to train
very deep, thus powerful, models efficiently.

Methods. Unlike (most of the) non-neural embedding techniques, the (deep) HNN framework requires having node
features x𝑣 ∈ R𝑑 ,∀𝑣 ∈ V (usually arranged into a feature matrix X ∈ R𝑛×𝑑 ) as input to the model. When node
features are not available, these can be initialized using a (parametric) encoding (e.g., [196, 217]), one-hot encoding (e.g.,
[46, 81, 99]), or ad hoc initializations (e.g., [39, 69, 125, 196]). Such initial representation is then fed to a (deep) neural
network that learns the node (hyperedge/hypergraph) representation either in an end-to-end fashion or in a two-step
procedure. In the former case, the learning process is guided by the specific task; thus, the embeddings are optimized
(according to the loss function) to solve the problem at hand better. In the latter case, the embeddings are learned in an
unsupervised fashion or by solving a fake task (e.g., [41, 85, 89]). Then, such embeddings are fed to another model, e.g.,
a classifier that may not be a neural network, to solve the task (e.g., [138, 217]).
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In the following, we focus our description on the parts of the NN that explicitly or implicitly learn the latent
hypergraph representation, giving less importance to the readout layers.

5.3.1 Hypergraph convolutional networks. Graph convolution networks are by far the most popular technique for
learning graph embedding. The convolution operator on (hyper)graphs generalizes the operation of convolution from
grid data to graph data [184] and can be elegantly motivated using the theory of (hyper)graph signal processing as a
generalization of Euclidean convolutions to non-Euclidean data.

In the literature, (hyper)graph convolutions are usually classified between spatial and spectral based on how the
convolution operator is defined [184, 218]. On the one hand, spectral graph convolution uses the Fourier transform to
transform the graph signal to the spectral domain, where it carries out the convolution operation. On the other hand,
spatial graph convolution aggregates the node features from the perspective of the spatial domain [213]. However, as
thoroughly shown in [13, 14], this distinction is becoming less and less clear since many graph convolutions can be
defined in both spectral and spatial domains. Based on this consideration, we prefer to avoid such a blurry categorization
in our survey in favor of a more general framework encompassing almost all convolutional methods while still giving
some space to peculiar spectral convolutions.

As Hamilton et al. [75] show, graph convolutions are a particular case of themore general and reader-friendlyMessage-
Passing framework (MPF), whose underlying intuition is straightforward. Given an initial hypergraph representation
(e.g., nodes’ feature matrix X(0) ), the MPF iteratively updates it according to the following process. At each iteration,
every node aggregates information from its local neighborhood, and, as the iterations progress, each node embedding
contains more and more information from further reaches of the hypergraph. Hence, node embeddings encode two-fold
knowledge: structural and feature-based information, both deriving from iteratively gathering neighbors’ representations
according to the hypergraph structure. Each message-passing step is represented as a layer of a (deep) hypergraph
convolutional NN (convHNN), which may act as input to the next layer.

Conversely to graphs where every edge simply connects two nodes, hyperedges in hypergraphs encode many-to-
many interactions among a set of two or more nodes. Thus, to properly harness the high-order nature of hypergraphs,
the propagation of the information over nodes should consider such richer relations. This intuition can be accomplished
using a two-stage (a.k.a. two-level or two-step) update/aggregation process [7]:

x(𝑙+1)𝑒 = 𝑓V→E
(
x(𝑙 )𝑒 , {x(𝑙 )𝑣 }𝑒∋𝑣 ;𝚯(𝑙 )

)
, x(𝑙+1)𝑣 = 𝑓E→V

(
x(𝑙 )𝑣 , {x(𝑙+1)𝑒 }𝑣∈𝑒 ;𝚽(𝑙 )

)
(4)

where x(𝑙 )𝑒 , x(𝑙 )𝑣 are the latent representations of hyperedges and nodes at layer 𝑙 , respectively; 𝑓V→E , 𝑓E→V are two
(non-linear) parametric permutation-invariant aggregation functions known as node-to-hyperedge and hyperedge-to-node
aggregation, respectively; 𝚯(𝑙 ) ∈ R𝑑𝑙×𝑑𝑙+1 and 𝚯

(𝑙 ) ∈ R𝑑
′
𝑙
×𝑑 ′

𝑙+1 are the learnable convolutional parameters. As for
standard NNs, parameters are learned via the optimization of objective functions specifically designed for the given task.
The optimization is performed using backpropagation and gradient descent-based algorithms like Stochastic Gradient
Descent (SGD) and Adam [102]. For simplicity, we omit the input argument 𝐻 and the potential set of hyper-parameters
from (4). Formulation (4) is very similar to the one proposed by Chien et al. [40] (AllSet [40]), and it generalizes many
existing works (UNIGNN [90], HyperSaR [166], HyperGAT [46], HNHN [49], HGC-RNN [202], [7]). Peculiar two-stage MP
processes are the ones proposed in [69], and [73]. In [69], Guan et al. define 𝑓V→E as a hyperedge shrinking function in
which they select the most informative (like an attention mechanism) nodes to update the hyperedge representation. In
[73], instead, one of the stages is fixed. Specifically, node embeddings are aggregated using a mean and are not updated
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in the MP phase. Node embeddings are learned beforehand using a Graph Convolutional NN, and their weighted mean
is used as the initial hyperedge representations.

A slightly different two-stage MPF is proposed by Srinivasan et al. [156], where the nodes and the hyperedges are
updated simultaneously (in (4), the updates happen sequentially) and where the aggregation functions also consider the
embeddings of the second order neighbors.

While only the few works cited above rely on the two-stage MPF, most of the hypergraph convolutional NN usually
resort to the hypergraph’s (weighted) clique-expansion; thus, reducing (4) to a single-stage MPF (as for graphs) first
introduced by Feng et al. [55] (HGNN). In this case, the 𝑡-th (single-stage) hypergraph convolutional layer can be elegantly
defined as

X(𝑙+1) =

update︷              ︸︸              ︷
𝜎 ( RX(𝑙 )︸︷︷︸

aggregate

𝚯
(𝑙 ) ), (5)

where R ∈ R𝑛×𝑛 is the so-called reference operator [66], usually instantiated as a “surrogate” of the adjacency matrix,
𝚯
(𝑙 ) ∈ R𝑑𝑙×𝑑𝑙+1 are the learnable convolutional parameters (with 𝑑𝑙 the dimension of the latent representation at layer

𝑙 ), and 𝜎 is a non-linear activation function (e.g., sigmoid). It is worth noting that although the MPF is flexible enough to
allow to send different messages across the neighbors, the convolutional layer in (5) assumes that every node sends the
same message to each of its neighbors. Moreover, since the update of the node embeddings happens directly, hyperedge
embeddings are not explicitly learned in the process. However, one can learn hyperedge embeddings by resorting to
the dual transformation and applying the MPF (EHGNN [99]). To reduce the two-section graph connectivity and speed
up the learning process, Yadati et al. [195] ((Fast)HyperGCN) proposed replacing each hyperedge with an incomplete
clique via so-called mediators.

Eq. (5) covers most of the hypergraph convolutional models (discussed later), however, there are exceptions that
may only fit in (4). For instance, H2SeqRec [110] defines an ad hoc convolutional operation in the hyperbolic space
to alleviate the sparsity issue in hypergraphs for recommendation tasks, while DHGNN [97] and KHNN [114] use a 1D
convolution and a parametric aggregation function to better model discriminative information among nodes. In [194],
Yadati et al. proposed G-MPNN [194], a generalized MPF able to handle multi-relational ordered hypergraph, and MPNN-R
to handle recursive hypergraphs.

There are also methods that use a non-parametric aggregation function just to propagate information in the
hypergraph and to initialize node representations, such as (DHCN [190] and MHCN [206]).

In the following, we discuss five convolutional design factors (i.e., reference operator, skip-connections, attention
mechanism, gated update and spectral convolution) that impact how the information is propagated and aggregated
during the learning process. These design choices may be coupled together in the same network architecture.

Reference operator. In Eq. (5), the matrix R describes how embeddings are aggregated. In its simplest form, R is exactly the
adjacency matrix of the hypergraph clique expansion, defined as HH⊤ −D𝑣 (NHP [196], SHCN [38], HHNE [19], DHCN [190]
HGNN+ [62]). In this case, the aggregation function is the sum of the representations of the neighbor nodes.

However, a not normalized adjacency matrix may hinder the optimization process as node features may be in
very different ranges and, further, feature values may increase indefinitely on deep networks. For these reasons, the
adjacency matrix is commonly normalized. The row-normalized adjacency matrix becomes Rrow = D−1𝑣 HD−1𝑒 WH⊤

(HCHA [10], HHGR [211], GC-HGNN [139] and IHGNN [39] without the hyperedge-related matrices), while it has the form

Rsym = D
− 1

2
𝑣 HD−1𝑒 WH⊤D

− 1
2

𝑣 if symmetrically normalized (HGNN [55], GC-HGNN [139], HGNNA [47], HyperCTR [81],
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DualHGNN [182], DualHGCN [193], MHGNN [9], STHAN-SR [153], AdaHGNN [183], MultiHGNN [87], STHGCN [178], F2HNN [125],
S2HCN [124], HGDD [136], HybridHGCN [88], HyperINF [98], MT-HGCN [177], HGNN+ [62], DH-HGCN [78]).

This latter formulation is usually preferred since row normalization does not consider the connectivity of the
neighbor nodes and, as such, gives the same relative importance to highly and sparsely connected nodes. It is worth
noticing that both normalized versions also consider self-loops (i.e., R has a nonzero diagonal); thus, the representation
of a given node at layer 𝑙 is transformed and included in its representation at layer 𝑙 + 1 (i.e., skip-connection). Node
level normalization is also possible, and in such a case, W (DHCF [95], HAIN [15]) and/or D−1𝑒 (HHNE [19], MGCN [37],
HyperRec [175], [188]) can be removed from the computation of Rsym/row. The set of learnable parameters is shared
among all nodes.

An interesting approach is devised by Liu et al. in HGCELM [115]. Specifically, the authors defined a single-layered
random hypergraph convolution based on (5) with Rsym, where the parameters are initialized randomly and used to
perform a random projection (inspired by extreme learning machines [84]). Such representations are then fed to a
hypergraph convolutional regression layer to predict node labels.

In both HCCF [186] and SHT [187], the hypergraph topology is not fixed but jointly learned with the embeddings. To
do so, the reference operator is parametric, and it also includes a nonlinear activation function (i.e., LeakyReLU [191]).

Skip-connections. Over-smoothing is a well-known problem of deep (hyper)graph convolutional networks [34]. Over-
smoothing occurswhen the information aggregated from the neighbors during themessage passing starts to dominate the
updated node representations. This phenomenon happens as the receptive field of the convolution grows exponentially
with respect to the model depth. A possible solution to alleviate this issue is to use skip-connections (a.k.a., residual
connections/layer), which try to directly preserve the node information from the previous round of message passing
in the update. This concept can also be generalized by including all (or some of the) previous node representations.
Hypergraph convolution can be integrated with generalized skip-connections. In this case, Eq. (5) becomes:

X(𝑙+1) = 𝜎

(
RX(𝑙 )𝚯(𝑙 ) +

𝑙∑︁
𝑗=0

X( 𝑗 )𝚽( 𝑗 )︸          ︷︷          ︸
skip-connections

)
, (6)

where 𝚽(𝑙 ) ∈ R𝑑𝑙×𝑑𝑙+1 are the skip-connection parameters.
If the skip-connection is non-parametric and involves only the last layer, i.e., 𝚽(𝑙 ) ≡ I𝑑𝑙 and 𝚽

(<𝑙 ) ≡ 0, it is called
identity mapping, and it simply “pushes forward” the representation of the nodes at layer 𝑙 (DHCF [95], HCHA [10]). If
parametric, the skip-connection can either have a different set of parameters w.r.t. the convolution (DualHGCN [193],
HAIN [15]) or share the same set of parameters, i.e., 𝚯(𝑙 ) ≡ 𝚽

(𝑙 ) with 𝚽
(<𝑙 ) ≡ 0 (SHCN [38], HHNE [19], MGCN [37],

HyperRec [175]). Note that if R has a non-zero diagonal (i.e., it considers self-loops), the skip-connection of the previous
layer with shared parameters is already included in Eq. (5) (e.g., HGNN [55]). The identity mapping can also be performed
on the aggregated messages rather than the previous node representation(s), and it can be combined with the “standard”
skip-connection as in ResHGNN and UniGCNII [90].

A particular case of the skip-connection is the initial residual connection which pushes forward only the initial
representation instead of the representation of the previous layer, i.e., 𝚽(>0) ≡ 0. For instance, in ResHGNN [87], and
HyperINF [98], the residual connection is not parametrized but weighted, specifically, 𝚽0 ≡ 𝛼𝑙 I and 𝚯

(𝑙 ) ≡ (1 − 𝛼𝑙 )I,
where 𝛼𝑙 is a hyperparameter that balances the contributions of the previous representations. An alternative to the
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additive skip-connection is the multiplicative-skip connection that aims to learn a nonlinear gate to modulate the
embeddings at a feature-wise granularity through dimension re-weighting (MHCN [206]).

Attention mechanism. The aggregation function in Eq. (5) represents the (normalized) average overall neighbor nodes.
Even though straightforward, this choice might be sub-optimal as it gives all neighbors the same importance. A natural
way to overcome this limitation is to weigh each neighbor differently. This solution is the basic idea behind the attention
mechanism, i.e., a neural network that learns how to weight the neighbor nodes, first introduced for graphs by Velickovic
et al. [171]. In a nutshell, (hyper)graph attention is a particular case of (H)GNN in which the message sent to the
neighbors is not the same.

The literature offers different types of attention mechanisms, and the most popular in hypergraphs are additive
attention (DHCN [190], DHGNN [97], DualHGNN [182], HNN [160], HGC-RNN [202]) and multiplicative attention (HyperGAT
[46], SHARE [176], [188], HGNNA [47], HGAT [33], DH-HGCN [78], [161]). Although less popular on hypergraphs, it is also
possible to add multiple attention “heads” (HCHA [10], DHAT [120], SHT [187]), where each one computes 𝑘 different
attention weights on independently parameterized attention layers. Eventually, the aggregated messages using the 𝑘
attentions are linearly combined. Attention mechanisms can also help combine node embeddings in tasks like group
recommendation (HHGR [211], HCR [96]) or handling temporal sequences (e.g., STHAN-(S)R [153], (D)STHGCN [178]).
Recently, thanks to the success of the transformer architecture [170], self-attention mechanisms are starting to appear in
convHNN (DHGNN [97], HOT [101], SSF [83], Hyper-SAGNN [217], HyperRec [175]), as widely used to combine sequential
node/hyperedge embeddings for task-specific purposes (Higashi [216], DualHGNN [182], HyperTeNet [172], DHAT [120],
H2SeqRec [110]).

Gated updates. Before the advent of transformer architectures, recurrent neural networks were the standard tool to deal
with sequential inputs. In hypergraphs, the sequential inputs can refer to (𝑖) node-level, i.e., node features change over
time, or (𝑖𝑖) structural-level, i.e., the hypergraph topology changes over time. In the node-level case, the neighbors’
information contains not only their current hidden state but also a completely new observation. In this setting, the
main mechanisms used are Gated Recurrent Units, i.e., GRU ([188], HGC-RNN [202]), Gated GNN [111] ([179]) and Gated
Linear Units, i.e., GLU, stacked on top of convolutional layers (MT-HGCN [177], (D)STHGCN [178]). As far as we know,
there are no relevant hypergraph embedding techniques dealing with structural sequential input.

Spectral convolution. Spectral hypergraph convolution relies on the spectral (hyper)graph theory, and it is the basis of the
very first convHNN method proposed by Feng et al. [55] (HGNN). As previously discussed, HGNN can also be interpreted
as a special case of the MPF (see Eq. (5)); however, it could not be straightforward to directly map a particular spectral
hypergraph convolution method in the MPF, though it could be argued that is possible [13].

The main concept behind spectral hypergraph convolution is the connection between the Fourier transform and the
Laplace operator. We can define hypergraph Fourier transforms of a hypergraph signal through the eigendecomposition
of the hypergraph Laplacian, where the eigenvalues represent hypergraph frequencies (i.e., the spectrum of the
hypergraph), and eigenvectors denote frequency components (i.e., hypergraph Fourier basis). Then the convolution in
the spectral domain is defined via point-wise products in the transformed Fourier space (HpLapGCN [57], pLapHGNN [123]).

Instead of Fourier basis, it is possible to employ Wavelet basis as in HGWNN [134], and HWNN [159]), where the
hypergraph wavelet-transform projects graph signal from the vertex domain onto the spectral domain.

5.3.2 Randomwalk-based approaches. Randomwalk (RW) is a common alternative to convolution to encode the concept
of closeness. A nice and commonly used property of an RW on a (hyper)graph is its analogy with sentences in a text: a
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path is a sequence of nodes (and hyperedges) like a phrase is a sequence of words. This similitude allows leveraging
the distributional hypothesis in linguistics, stating that words that occur in the same contexts tend to have similar
meanings [80]. Likewise, nodes sharing the same structural context should be close to each other in the latent space.
This analogy enables the application of natural language processing techniques to (hyper)graphs (DeepWalk [140]).

In this context, an established approach follows the two-steps framework introduced in DeepWalk: first, walks in the
hypernetwork capture the structural context, then node embeddings are learned via a natural language processing
model, usually Skip-gram and CBOW [129]. Finally, the so-obtained node representations can be either the input
of a readout layer (Hyper2Vec/NHNE [85, 86], Hyper-gram [89], DHHE [41], HEMR [105]) or of another neural network
module that fine-tunes the embeddings (DHE [138], Hyper-SAGNN [217]). In [225] (HRSC), the just described method
(using CBOW) is applied on the two-section graph, which, however, fails to learn the representation of the hyperedges.
Thus, to address this issue, the authors proposed a novel negative sampling-based set constraint objective function.

The nature of hypergraphs allows to inherently generalize existing graph RW approaches to these structures, but their
richer semantics requires defining hypergraph-specific strategies. For instance, resembling the exploration-exploitation
strategy proposed by node2vec [68], Hyper2Vec [86] exploits a degree biased 2nd order RW to sample paths in a
homogeneous hypergraph. A similar strategy is also proposed in Hyper-SAGNN [217]. Conversely, the hyper-path-based
RW approach of Hyper-gram [89] captures the idea that hyperedges may encode indecomposable relationships in
a heterogeneous hypergraph. On the same line, DHE [138] also proposes a new RW model to acquire co-member
information in each hyperedge.

5.3.3 Encoder-based approaches. When it comes to learning low-dimensional embeddings, the encoder-decoder archi-
tecture is the go-to approach in machine learning. However, this type of architecture may fail in capturing structural
information encoded by hypergraph-like structured data. For this reason, these networks are usually included as a
sub-module of bigger networks. For instance, Hyper-SAGNN [217] uses this approach to initialize node representations,
while DHNE [168] uses an autoencoder to learn a first latent representation for the nodes, then fine-tuned using a neural
network specifically designed to preserve the second-order proximity. More “sophisticated” approaches make use
of Variational Autoencoders (HeteHG-VAE [52]) and DeepSets (DHE [138]). In general, when coupled with specific de-
coders, these methods are mostly used in task-specific hypergraph embeddings (e.g., HeteHG-VAE [52], Event2Vec [42],
HNN-HM[112]).

Remarks. Thanks to their versatility, HNNs can be easily adapted to a broad spectrum of tasks, such as (multi-class)
classification (e.g., HpLapGCN [57], HyperGCN [195], DualHGNN [182], DHE [138]), regression (e.g., [188], HGC-RNN [202]),
link prediction (e.g., HeteHG-VAE [52], DHCF [95], DHNE [168]), and recommendation (e.g., HHGR [211], HyperRec [175],
SHARE [176]). The modularity of NN methods also eases the fusion of different input channels. For instance, using the
dual of a hypergraph makes it possible to have the same architecture designed for hypergraph node embeddings to learn
hyperedge embeddings (e.g., NHNE [85]). In general, multi-channel input can be helpful in domain-specific tasks, for
example, when dealing with heterogeneous hypergraphs (e.g., MHCN [206], DHCF [95]). HNNs can also manage dynamic
hypergraphs [188], or in general, tasks that require modeling sequential information (e.g., H2SeqRec [110]).

Moreover, HNNs allow performing transfer learning and reusing well-established architectures on various tasks by
simply designing the readout layer(s) or a task-specific loss function. The typical learning setting of HNNs is (semi-)
supervised transductive learning with only very few exceptions like DHE [138], G-MPNN [194], AllSet [40] and HGAT [33]
that can be used in inductive settings.
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Task Venue Year Code (github.com/)

DHNE [168] Het, U V ✓ Class, LP AAAI 2018 tadpole/DHNE
DHHE [41] Het, NU V ✓ Class, LP ICME 2018 -
HHNE [19] Het, NU V ✓ ✓ LP ICDM 2018 illidanlab/HHNE
HGNN [55] Hom, NU V ✓ ✓ Class AAAI 2019 iMoonLab/HGNN
Hyper2Vec [86] Hom, NU V ✓ Class DASFAA 2019 jeffhj/NHNE
DHGNN [97] Hom, NU V ✓ ✓ Class IJCAI 2019 iMoonLab/DHGNN
HpLapGCN [57] Hom, NU V ✓ Class Neurocom. 2019 -
Hyper-gram [89] Het, U V ✓ LP CIKM 2019 HKUST-KnowComp/HPHG
HyperGCN [195] Hom, NU V ✓ Class NeurIPS 2019 malllabiisc/HyperGCN
DHE [138] Hom, NU, MC V, E ✓ ✓ Class NeurIPS 2019 Josh-Payne/deep-hyperedges
Hyper-SAGNN [217] Het, NU V ✓ ✓ ✓ LP ICLR 2020 ma-compbio/Hyper-SAGNN
HyperRec [175] Het, NU, D V ✓ ✓ ✓ Recom SIGIR 2020 -
NHNE [85] Hom, NU, MC V, E ✓ Class, LP TOIS 2020 jeffhj/NHNE
HNHN [49] Hom, NU V, E ✓ Class ICMLW 2020 -
MGCN [37] Hom, NU V ✓ ✓ LP KDD 2020 -
DHCF [95] Hom, NU, MC V ✓ ✓ Recom KDD 2020 -
HGC-RNN [202] Hom, NU V ✓ ✓ ✓ Regr KDD 2020 -
NHP [196] Het, NU, Dir V ✓ LP CIKM 2020 -
AdaHGNN [183] Hom, NU V ✓ Class MM 2020 -
HyperGAT [46] Het, NU, MC V, E ✓ ✓ Class EMNLP 2020 kaize0409/HyperGAT
SHCN [38] Het, U V ✓ ✓ Recom TOIS 2020 -
G-MPNN [194] Hom, NU V ✓ Class, LP NeurIPS 2020 naganandy/G-MPNN-R
HGAT [33] Hom, NU V ✓ ✓ Class TrustCom 2020 -
HAIN [15] Hom, NU V ✓ ✓ Class IEEE BigData 2020 -
HCR [96] Het, NU V ✓ ✓ Recom ICDM 2021 -
HCHA [10] Hom, NU V ✓ ✓ ✓ Class Pat Rec 2021 -
DHCN [190] Hom, NU V ✓ ✓ Recom AAAI 2021 xiaxin1998/DHCN
HWNN [159] Het, NU, MC V ✓ Class WSDM 2021 -
STHGCN [178] Hom, NU, D, MC V ✓ ✓ Regr TITS 2021 -
HGCELM [115] Hom, NU V ✓ Class Appl Sci 2021 -
MHCN [206] Het, NU, MC V ✓ ✓ Recom TheWebConf 2021 Coder-Yu/QRec
HNN [160] Hom, NU V ✓ ✓ LP TheWebConf 2021 -
DualHGCN [193] Hom, NU, MC V ✓ ✓ Class, LP TheWebConf 2021 xuehansheng/DualHGCN
KHNN [114] Hom, NU, MC V ✓ Recom DASFAA 2021 -
SSF [83] Hom, U V ✓ ✓ LP DASFAA 2021 -
STHAN-SR [153] Hom, U, D V ✓ ✓ Regr AAAI 2021 -
SHARE [176] Hom, NU V , E ✓ ✓ Recom SDM 2021 -
[156] Hom, NU V, E ✓ LP SDM 2021 -
MHGNN[9] Hom, NU V ✓ Class TIP 2021 -
[188] Het, NU, D V ✓ ✓ ✓ Regr J IM 2021 -
HeteHG-VAE [52] Het, NU V, E ✓ ✓ LP PAMI 2021 haoyfan/HeteHG-VAE
UniGNN [90] Hom, NU V, E ✓ ✓ Class IJCAI 2021 OneForward/UniGNN
[69] Het, NU V ✓ ✓ LP WWW 2021 -
S2HCN [124] Hom, NU, MC V ✓ Class SPIE RS 2021 -
pLapHGNN* [123] Het, NU V ✓ Class TMM 2021 -
DualHGNN [182] Hom, NU, MC V ✓ ✓ Class J Kno Sys 2021 -
(Res|Multi)HGNN [87] Hom, NU V ✓ ✓ Class ICIP 2021 OneForward/ResMHGNN
HNN-HM [112] Hom, U, Dir V ✓ Class ICCV 2021 -
H2SeqRec [110] Het, NU, MC, D V ✓ Recom CIKM 2021 Abigale001/h2seqrec
HHGR [211] Hom, NU V ✓ ✓ Recom CIKM 2021 0411tony/HHGR
HyperCTR [81] Hom, NU, D V ✓ Recom CIKM 2021 -
HybridHGCN [88] Hom, NU, MC V ✓ Class PRVC 2021 -
HGDD [136] Het, NU V ✓ Class, LP ISBRA 2021 -
HGNNA [47] Hom, NU V ✓ ✓ Recom JPCS 2021 -
HGWNN [134] Hom, NU V ✓ Class Neurocom. 2021 -
EHGNN [99] Hom, NU V, E ✓ Class NeurIPS 2021 harryjo97/EHGNN
HOT [101] Hom, U V ✓ ✓ LP NeurIPS 2021 jw9730/hot
HyperTeNet [172] Het, U, MC V ✓ ✓ Recom ICDM 2021 mvijaikumar/HyperTeNet
HyperGroup [73] Hom, NU E ✓ ✓ Recom TOIS 2021 -
F2HNN [125] Hom, NU, MC V ✓ Class TGRS 2022 -
DHAT [120] Hom, NU, Dir V ✓ ✓ Regr ITS 2022 -
[179] Het, NU V ✓ ✓ Recom WWW 2022 -
HyperINF [98] Hom, NU, D, MC V ✓ ✓ Recom TSUSC 2022 -
HEMR [105] Het, NU, Dir V ✓ Recom TNNLS 2022 picuslab/HEMR
GC-HGNN [139] Hom, NU V ✓ Recom J ECRA 2022 -
HRSC [225] Het, NU V, E ✓ Class, LP Appl Sci 2022 -
IHGNN [39] Het, U V, E ✓ Recom TheWebConf 2022 CDboyOne/IHGNN
AllSet [40] Hom, NU V, E ✓ ✓ Class ICLR 2022 jianhao2016/AllSet
HyperSaR [166] Het, NU V, E ✓ Recom ECIR 2022 naver/hypersar
MT-HGCN [177] Hom, NU, D, MC V ✓ ✓ Regr TITS 2022 -
[161] Hom, NU, D V, E ✓ ✓ Class TKDE 2022 -
HCCF [186] Hom, NU V ✓ ✓ Recom SIGIR 2022 akaxlh/HCCF
HGNN+[62] Hom, NU V ✓ Class, Recom PAMI 2022 iMoonLab/DeepHypergraph
SHT [187] Hom, NU V, E ✓ ✓ ✓ Recom KDD 2022 akaxlh/SHT
DH-HGCN [78] Hom, NU V ✓ ✓ Recom SIGIR 2022 -
LE[198] Hom, NU V ✓ ✓ Class CIKM 2022 ycq091044/LEGCN

Table 4. (Deep) Neural network methods. Input HG: Hom/Het stands for homogeneous/heterogeneous, (N)U for (non-)uniform, MC for
multi-channel, D for dynamic, and Dir for directed. Task: Class stands for classification, LP for link prediction, Regr for regression, and
Recom for Recommendation. All methods can handle attributed nodes.

https://github.com/tadpole/DHNE
https://github.com/illidanlab/HHNE
https://github.com/iMoonLab/HGNN
https://github.com/jeffhj/NHNE
https://github.com/iMoonLab/DHGNN
https://github.com/HKUST-KnowComp/HPHG/
https://github.com/malllabiisc/HyperGCN
https://github.com/Josh-Payne/deep-hyperedges
https://github.com/ma-compbio/Hyper-SAGNN
https://github.com/jeffhj/NHNE
https://github.com/kaize0409/HyperGAT_TextClassification
https://github.com/naganandy/G-MPNN-R
https://github.com/xiaxin1998/DHCN
https://github.com/Coder-Yu/QRec/blob/master/model/ranking/MHCN.py
https://github.com/xuehansheng/DualHGCN
https://github.com/haoyfan/HeteHG-VAE
https://github.com/OneForward/UniGNN
https://github.com/OneForward/ResMHGNN
https://github.com/Abigale001/h2seqrec
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https://github.com/jw9730/hot
https://github.com/mvijaikumar/HyperTeNet
https://github.com/picuslab/HEMR
https://github.com/CDboyOne/IHGNN
https://github.com/jianhao2016/AllSet
https://github.com/naver/hypersar
https://github.com/akaxlh/HCCF
https://github.com/iMoonLab/DeepHypergraph
https://github.com/akaxlh/SHT
https://github.com/ycq091044/LEGCN
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As for (deep) NNs in general, HNNs require much data to be adequately trained, and the hyper-parameters tuning
can be costly. Another drawback of HNNs, especially on very deep architectures, is that the training phase may require
high computational power (e.g., GPUs, TPUs), hampering the applicability on edge devices.

Among all the HNNs techniques, convHNNs are nowadays predominant in the literature thanks to their superior
performance. This trend is evident from Table 4: both encoder-based and random-walk-based methods have almost
disappeared since 2020. The success of such a methodology is mainly due to the reuse of the knowledge coming from
the graph representation learning literature. Akin to GNNs, these approaches learn the node representations that can
then be aggregated to learn the latent representations of hyperedges (e.g., NHP [196]) or the whole hypergraph (e.g.,
[188]). Recently the trend seems to be drifting towards convolutional methods specifically designed for HGs (e.g., [156],
AllSet [40]), where the hyperedge embeddings are explicitly learned.

However, convHNNs are generally more demanding in terms of computational requirements than encoder-based and
random-walk-based methods; thus, such approaches should be preferred in case of limited computational capabilities.
Further, the clique-expansion transformation used by many convolutional approaches is a possible limitation since
the high-order nature of the relations is only indirectly exploited in the learning process. An important strength
of random-walk-based methods is the universality of the approach that can be (almost) seamlessly applied to any
hypergraphs. Encoder-based methods, instead, may require some effort in the design of the encoder/decoder architecture.
Still, when combined together, random-walk and encoder-based methods can achieve state-of-the-art performance, e.g.,
Hyper-SAGNN [217] and DHE [138].

Task-wise, we do not notice any particular trend: all (deep) neural network approaches have been applied successfully
on classification, link prediction, and recommendation tasks. Nonetheless, when dealing with dynamic or multi-channel
hypergraphs, convHNNs are preferable since they can easily be designed to handle recurrent or multi-channel inputs.

5.4 Comparison of Hypergraph Representation Learning Models

All methods discussed in the previous sections have distinctive characteristics (see Table 5), making them fit specific
application domains and constraints. In general, we can observe that spectral-based embedding algorithms have been
little used in real-world, large-scale applications due to their scalability issues. Nonetheless, these methods represent a
viable choice when dealing with small datasets. The simple design of proximity-preserving approaches makes them
particularly suitable when we aim to take advantage of prior domain knowledge that can easily embed in the learning
procedure via the design of specific similarity functions. Akin to spectral methods, PP methods work better on small
to medium-scale data sets. Currently, (Deep)NN methods embody the state-of-the-art in hypergraph representation
learning, and the vast majority of embedding methods belong to this category. This trend directly derives from the
high-quality performance these methods achieve and the possibility of performing end-to-end learning. Further, the
flexibility of the MPF allows capturing the high-order relationships encoded by each hyperedge. Hypergraph NNs scale
better than the other families of HG embedding techniques and, thus, can be applied to large-scale data sets. However,
the training of particularly deep networks may be hardware-demanding.

6 LEARNING TASKS AND APPLICATIONS

Hypergraph representation learning is functional to solve a plethora of graph analytics tasks as the learned latent
representations allow the efficient execution (in both time and space) of traditional vector-based algorithms. Based
on consolidated surveys on graph representation learning [16, 29], in this work, we classify existing applications in
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Embedding Method Pros Cons

Spectral learning (i) Consider global structure; (ii) Solid theoretical foundation; (iii) Easy to imple-
ment and parallelize.

(i) Cannot capture high-order interactions (transformation to clique graphs); (ii)
Scalability issues (in terms of computational time and storage).

Proximity-preserving (i) Simple and versatile design based on node similarity maximization; (ii) Easy to
adapt to specific tasks.

(i) May not model high-order non-linear relations beyond single-hop neighbors
(transformation to clique graphs); (ii) May suffer from scalability issues.

(Deep) Neural networks (i) Capture high-order and non-linear relations; (ii) High versatility; (iii) Can
easily embed both structural and additional information; (iv) Transfer learning
capabilities.

(i) Hardware demanding training; (ii) High-computational cost; (iii) May require
an extensive phase of hyper-parameters tuning.

Table 5. Comparison of hypergraph representation learning techniques.

which hypergraph embedding came into play according to whether they focused on nodes or hyperedges. It is worth
noting that we only match each work with the task explicitly reported in the corresponding article. Table 6 lists the
most commonly used datasets across the works reviewed. For each dataset, we detail whether it belongs to a specific
category, the link where it can be downloaded, a reference to the paper introducing it (if any), which methods have
been tested on it and for which tasks, and how it has been modeled with a hypergraph. For the sake of brevity, we only
report information about the datasets used by at least two articles and whose data are currently accessible. A complete
list can be found at the following link https://tinyurl.com/hgrl-dataset.

6.1 Node-related learning tasks and applications

In this section, we focus on describing the role of hypergraph representation learning in relation to classical learning
tasks defined on the nodes of a hypernetwork, e.g., classification, clustering, and recommendation. For each task, we
further describe the application domain(s) where it has been exploited.

6.1.1 Node classification. Node classification is a supervised task in which the goal is to assign the correct label to each
unlabeled node in the hypergraph based on the patterns learned from the other already labeled nodes (supervision).
Node classification is one of the most common tasks discussed in the hypergraph embedding literature and finds wide
application in (possibly multi-label) event (HEBE-(PE/PO) [71, 72], Event2Vec [42]), movie (e.g., DHNE [168], HRSC [225],
DualHGNN [182]), authorship (e.g., HyperGCN [195], Hyper2Vec/NHNE [85, 86], HWNN [159]), citation (e.g., DHGNN [97],
HCHA [10], UNIGNN [90], LE [198]), image (e.g., SSHGDA [118], AdaHGNN [183], HGWNN [134]), and item (e.g., DualHGCN [193],
AllSet [40], DualHGCN [193]) classification, among others (e.g., HOT [101], EHGNN [99], DHE [138]).

Node classification is applied in a (semi-)supervised setting, and, in the literature, there are two main approaches to
tackle it. The first approach consists of a three-step sequential procedure, in which (i) the embedding method first learns
the latent representation of the nodes, (ii) then an existing classifier is trained on the labeled instances, and (iii) finally, the
trained classifier predicts the class of an unlabeled node given its embedding. SVM (e.g., DHNE [168], HEBE-(PE/PO) [71,
72], SSHGDA [118]), logistic regression (e.g., HEBE-(PE/PO) [71, 72], Hyper2Vec/NHNE [85, 86], Event2Vec [42]), and
k-nearest neighbors (e.g., SSHGDA [118]) are the most commonly used classifiers. The second approach relates to (deep)
neural networks. Specifically, the task is solved in an end-to-end fashion where the first part of the network explicitly
or implicitly learns the node embeddings, while the readout layer(s) solve the specific classification (e.g., AllSet [40],
HOT [101], HNHN [49]).

6.1.2 Node clustering. The goal of node clustering is to group similar nodes together in a way that nodes in the same
cluster are more similar to each other than nodes in other groups. Node clustering is an example of an unsupervised
learning setting, and it is usually applied when no node labels are available to find affinities between groups of nodes.
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Dataset type Dataset
Link

(https://tinyurl.com/) C
la
ss
ifi
ca
ti
on

C
lu
st
er
in
g

Li
nk

Pr
ed

ic
ti
on

R
ec
om

m
en

da
ti
on

Input setting Used by

Categorical 20newsgroup [100] 20newsgroup ✓ ✓ Hom, NU [10, 40, 141, 150, 175, 198]
Cancer [157] breast-cancer-db ✓ Hom, NU [115, 150]
Zoo [56] zoo-db ✓ ✓ Hom, NU [40, 141, 150, 198, 221]

Co-authorship/ Co-
citation

DBLP* [61, 201] dblp-net | dblp-bip | aminer-dblp ✓ ✓ ✓ Hom/Het, NU, MC [15, 40, 49, 52, 69, 71, 72, 85, 86, 90, 159, 160,
164, 182, 195, 196]

Cora* [154] cora-cit-network-db | cora-coauth ✓ ✓ Hom/Het, NU, MC [10, 15, 40, 55, 62, 69, 88, 90, 97, 138, 141,
159, 160, 182, 195, 198]

Citeseer [147] citeseer ✓ Hom, NU, MC [10, 15, 40, 49, 57, 62, 88, 90, 97, 141, 182,
195, 198]

PubMed* [154] pubmed-db | pb-diabetes ✓ Hom/Het, NU, MC [10, 15, 40, 49, 55, 62, 88, 90, 138, 159, 195,
198]

Images Botswana botswana-img ✓ Hom, NU, A, MC [119, 125, 162, 207]
Houses house-img ✓ ✓ Hom, (N)U, Dir [112, 142]
Indian Pines [18] indian-pines-db ✓ Hom, NU, A, MC [118, 124, 125, 162, 207]
KSC ksc-db-img ✓ Hom, NU, A, MC [119, 124, 125]
ModelNet40 [185] modelnet40 ✓ Hom/Het, NU, MC [9, 40, 55, 62, 87, 88, 123, 134, 198]
NUS-WIDE [43] nus-wide-db ✓ ✓ Het, NU [41, 183]
NTU† [35] http://3d.csie.ntu.edu.tw ✓ Hom/Het, NU, MC [9, 40, 55, 62, 87, 88, 123, 134, 198]
Pascal VOC [50] pascal-voc-2007 ✓ ✓ Hom, (N)U, Dir [112, 183]
Pavia University pavia-uni ✓ Hom, NU, A, MC [118, 125, 162]

Miscellanea CiteULike [70, 173] citeulike-db ✓ Hom/Het, NU, MC [95, 224]
Drug drug-faers ✓ ✓ Het, (N)U [19, 89, 101, 168, 217, 225]
GPS [220] gps-ms-data ✓ ✓ Hom/Het, (N)U [89, 101, 168, 217, 225]
wordnet [27, 130] word-net ✓ ✓ Het, (N)U [89, 168, 217, 225]

Movies CAMRa2011* CAMRa2011 ✓ Hom/Het, NU [96, 211]
IMDB* imdb-movie-db ✓ ✓ Hom/Het, NU, MC [52, 85, 86, 99, 182]
MovieLens* [79] movie-lens ✓ ✓ ✓ Hom/Het, (N)U, MC, D [62, 81, 89, 95, 101, 114, 166, 168, 186, 217,

225]

Purchase Amazon* [107, 133, 201] amazon-meta | amzn-prod | amzn-rev ✓ ✓ ✓ Hom/Het, (N)U, D, MC [38, 39, 110, 141, 164, 175, 186, 193]
Diginetica diginetica ✓ Hom/Het, (N)U [39, 47, 139, 176, 190]
Tmall tmall-ijcai15 ✓ Hom/Het, NU [139, 179, 187, 196]
YooChoose [22] yoochoose ✓ Hom, U, D [47, 176]

Review Goodreads* [174, 175] goodreads-db ✓ Het, NU, D [110, 172, 175]
Yelp* yelp-db ✓ ✓ ✓ Hom/Het, NU [38, 40, 52, 69, 71–73, 78, 160, 186, 187, 206]

Social networks Foursquare [199] foursquare-net ✓ ✓ Het, U [167, 199, 200]
Douban douban-db ✓ ✓ Hom/Het, (N)U, MC [52, 73, 78, 83, 206, 211]

Songs #nowplaying [209] nowplaying-db ✓ Hom, NU [139, 190]
Last.FM last-fm-db ✓ Hom/Het, NU, MC [114, 164, 166, 206]
Spotify [24] million-songs | spotify-db ✓ Het, NU, Dir [105, 172]

Table 6. Most commonly used public datasets by the articles reviewed. Input setting: Hom/Het stands for homogeneous/heterogeneous,
(N)U for (non-)uniform, MC for multi-channel, D for dynamic, and Dir for directed. The symbol * means that the specific dataset is
available in multiple versions. † The NTU dataset is not reachable from our location. All links were accessed on the 12th of June, 2023.

The classical workflow is first to learn the low-dimensional representations of the nodes to then apply the desired
traditional clustering algorithm on the latent vectors. All works included in this survey (Zhou et al. [221], Ren et al. [142],
Saito et al. [150], Event2Vec [42]) adopt k-means as clustering algorithm. Specifically, Event2Vec [42] exploits this task
to test the expressiveness of the learned node embeddings in capturing within-event and cross-event relationships in
event data, while Ren et al. address the problem of clustering object views.

6.1.3 Node Recommendation. The task of node recommendation consists in finding the best nodes of interest (e.g.,
items) for a given node (e.g., user) based on certain criteria [51, 145]. In this context, hypergraphs embody a valuable
tool to structurally encode the inherent high-order relationships that may arise beyond the classical user-item relation.
For instance, hypergraphs can explicitly model additional information attached to the user-item interaction, such as
emotions (e.g., HGE [204], SHCN [38]), item categories or properties (e.g., HHE [224], HEMR [105], HyperCTR [81]), search
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query (e.g., HyperSAR [166], IHGNN [39]), purchase history (e.g., HyperREC [175], H2SeqRec [110]), social relationships
(e.g., MHCN [206]), user sessions (e.g., SHARE [176], DHCN [190], GC-HGNN [139]), or user/item groups (e.g., DHCF [95],
HHGR [211], HCR [96]). In general, recommender systems based on hypergraphs have been used for document/book
(e.g., HHE [224], H2SeqRec [110], KHNN [114]), movie (e.g., HGE [204], DHCF [95], HHGR [211]), product (e.g., HyperRec [175],
SHCN [38], SHARE [176]), song (e.g., FOBE/HOBE [164], MHCN [206], HEMR [105]), video (e.g., HyperCTR [81]), business/place
(e.g., HyperSAR [166], MHCN [206], HHGR [211], DH-HGCN [78]), news (e.g., DHCF [95]) recommendation, and others
(e.g., GC-HGNN [139], HCR [96], [179]).

6.2 Hyperedge related tasks and applications

Next, we discuss the role of hypergraph representation learning concerning the link prediction task, its variations, and
associated application domain(s).

6.2.1 Link prediction. In traditional graphs, the link prediction task involves inferring new relationships or still
unknown interactions between pairs of entities based on their properties and the currently observed links [113]. In
hypergraphs, the problem of hyperlink prediction involves predicting missing hyperedges from the set 2 |V | \E based on
the current set of observed hyperedges E. When dealing with𝑘-uniform hypergraphs, the size of the hyperedge to predict
is bounded by the nature of the modeled relation [101, 168, 217]. However, in the more general setting of non-uniform
hypergraphs, the variable cardinality of a hyperedge makes link prediction methods defined for graphs infeasible as
they are based on exactly two input features, i.e., those of the two vertices potentially forming a link [128, 196].

To overcome the difficulties mentioned above, all methods devised for hyperlink prediction heavily rely on negative
sampling techniques to discard not meaningful relations in both training and evaluation phases (e.g., MSC-LBSN [167],
NHP [196]). Then, the existence of a given hyperedge is based on a similarity score evaluated over pairs of embedding
vectors corresponding to the nodes that should be comprised in the relation. The similarity score can be either computed
with some similarity measures, such as euclidean distance and cosine similarity (e.g., NHNE [85], LBSN2Vec [199, 200]),
or a more complex edge classifier, such as logistic regression. In this last case, the link prediction task is treated as a
classification problem where the target class label indicates the presence or absence of a link between a pair of nodes
(e.g., G-MPNN [194], HNN [160], DualHGCN [193]).

In the literature, this task has been applied to detect ⟨user, location, activity⟩, ⟨user, movie, tag⟩, ⟨user, drug,
reaction⟩, and ⟨synset, relation type, synset⟩ relations (e.g., DHNE [168], Hyper-SAGNN [217], HRSC [225], HOT [101]).
Other application domains relate to predicting hyperlinks in non-uniform (possibly) heterogeneous collaboration
(e.g., HeteHG-VAE [52], NHP [196], NHNE [85]), user-movie interest (e.g., HeteHG-VAE [52], NHNE [85]), user-item (e.g.,
DualHGCN [193], [179], HNN [160]), and chemical/drug reaction (e.g., HHNE [19], HGDD [136]) networks.

6.2.2 Network reconstruction. The task of network reconstruction can be seen as a particular case of link prediction,
in which all hyperedges of the original hypernetwork need to be inferred (DHNE [168], Hyper-gram [89]). Another
variation of the problem, a.k.a. hyperedge expansion, has been proposed by Srinivasan et al. [156] and is based on set
theory. In this case, the task consists of predicting the missing nodes (elements) from a given hyperedge (set).

6.3 Other applications

In the following, we provide a brief description of other relevant applications.
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6.3.1 Time-series forecasting. Time series forecasting is a subclass of regression problems, and, specifically, it is the task
of fitting a model to historical, time-stamped data in order to predict future values. This umbrella term includes several
domain-specific tasks in which hypergraphs have been exploited, such as traffic prediction (MT-HGCN [177], DHAT [120]),
passenger flow prediction (STHGCN [178]), gas and taxi demand (HGC-RNN [202]), and stock selection (STHAN-SR [153]).
In this context, homogeneous and non-uniform hypergraphs model spatio-temporal information.

6.3.2 Visualization. Visualizing the outcomes of a hypergraph representation learning algorithm embodies a strong
demonstration of whether the devised embedding method is preserving the desired characteristic of the input network.
After learning the low-dimensional latent vectors, those are further projected into a two-dimensional space, usually
via t-SNE [169], the state-of-the-art tool to visualize high-dimensional data. Another way to go, common for spectral-
based methods, is to plot each node representation considering the two or three smallest eigenvectors of the Laplacian
matrix [221]. In the case of node classification or, when possible, clustering tasks, each node category is colored differently:
in this way, it is easy to grasp whether nodes belonging to the same category or sharing the same characteristics are
embedded close to each other. Some methods discussed in this survey (e.g., Event2Vec [42], HyperGCN [195], DHE [138],
HHNE [19]) use this technique to compare their computed embeddings against some baselines.

6.3.3 Knowledge Hypergraphs. When it comes to model knowledge bases (KBs), graphs are the go-to approach since
they naturally represent ternary relations, i.e., facts of the form ⟨head, relation, tail⟩, in KBs. Nonetheless, with n-ary
relations, hypergraphs could be a valid alternative [53, 197]. Knowledge hypergraph embedding techniques are strictly
interlinked to the task (usually predicting facts); hence, it is hard to transfer these methodologies to different contexts.

6.3.4 Natural sciences. Over the last decades, network science has become an established framework to analyze
interactions between biological and chemical agents [17]. In this context, the task of hypergraph representation
learning has been leveraged to predict the material removal rate in chemical-mechanical processes [188, 189], multi-
way chromatic interactions [214, 215], genome features [216], and drug-disease association [136]. Other work also
focused on medical-related issues, such as cancer tissue classification [12], autism diagnosis [126], and plant diseases
detection [152].

7 FUTURE DIRECTIONS

In the following, we discuss challenges and potential future directions related to hypergraph representation learning.

Deep hypergraph representation learning. The last years have signed the rise of (deep) neural hypergraph embed-
dings. This trend follows the trail of GNNs, which have shown outstanding performance on graphs. However, most
of the efforts have been devoted to adapting existing ideas on graphs to hypergraphs. A real challenge for the future
is developing neural models exclusively designed for hypergraphs that can exploit their peculiar characteristics. For
instance, most convHNN methods approximate each hyperedge with a clique and, hence, lose the relation’s indecom-
posable nature. A possible direction is to work toward MP functions that aggregate neighbors’ representations by
directly exploiting high-order interactions rather than pairwise connections, following the footsteps of [40, 156].

Beyond node embeddings. Most of the methods presented in this survey deal with node embeddings, with only
a few exceptions which also consider hyperedges. Nonetheless, there is a need to develop solutions able to learn
representations for whole hypergraphs or sub-structures. These methods can be useful in visualization [11], community
detection [31], and hyper knowledge-graph embedding [148] tasks. Following the spirit of the message-passing
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framework, a promising direction is learning permutation invariant functions able to aggregate the node/hyperedge
representations in a meaningful way for the task at hand.

Dynamic hypergraph embedding.Dynamicity is an essential characteristic of many networks and can manifest either
as time-varying features or structural interaction patterns [5, 16]. (Hyper)graphs may evolve in terms of node/edge
structure (addition/removal) or information. These characteristics cause the static embedding approach to fail as the
hypergraph size is not fixed, features may drift over time, and adding new nodes/edges requires efficiently updating
representations [36]. Current work on dynamic hypergraph embedding assumes a transductive setting, with a fixed
node set and a variable set of hyperedges [98] or node features [110, 175, 177, 188, 202]. Still, a more challenging
problem is predicting newly added nodes’ representations. As inductive frameworks exist, the major challenge here is
how to update the existing node representations incrementally and adapt to the concept drift of the graph structure.
Inspired by graph representation learning literature [76], a promising direction could be to learn functions that generate
embeddings by aggregating features from nodes’ neighborhoods instead of training individual node embeddings.

Interpretability. Most state-of-the-art hypergraph embedding methods are built using convolutions, usually in a
layered architecture. The complexity of such models makes them expressive enough to extract a good condensed
hypergraph representation. Yet, the highly non-linear nature of these models harms their interpretability. In general, to
interpret an embedding, we need to find an association between latent features and features of the original hypergraph.
A possible direction could be exploring the so-called disentangled representations [23]. Disentangled representation
learning [74, 109] may help to learn uncorrelated latent features, which may allow characterizing the various underlying
explanatory factors behind the learned factorized representations.

Scalability. Scalability is a critical requirement when dealing with many real-world networks. Hypergraphs add further
complexity as not only the number of nodes and hyperedges can scale to millions, but also the same hyperedges
cardinality may be huge. Currently, little work exists to improve hypergraph algorithms’ scalability (e.g., [195]); thus,
scalable computational paradigms and models are a critical challenge for future work. NetVec [127] embodies an effort
toward this direction by applying a coarsening strategy to preprocess data. In general, hypergraph coarsening or
partitioning strategies combined with parallel approaches may represent a valid approach.

Reproducibility.How to directlymeasure the quality of data representation is a long-standing problem in representation
learning [108]. Currently, the quality of the learned representation is measured by indirectly executing a given set of
relevant tasks. However, no standard benchmark is currently available in terms of data and methods. In addition to the
(not so rare) unavailability of open-source implementations, this fragmentation leads to approaches difficult to reuse
and compare. As suggested by Hamilton et al. [77] in the case of graph representation learning, effort should be put
into defining a common framework describing - for a given task - the expected network structure to encode, how we
expect the models to encode this information, and possible constraints on the learned representation to clarify which
approach should be used when in real-world applications.

8 CONCLUSION

The ever-increasing development of computational capabilities and the advancements of theoretical models demand
structures to unify and abstract real-world data with complex relations. Hypergraphs are a promising answer to this
need; yet, the overall hypergraph research and, specifically, the hypergraph representation learning field is still in its
infancy, but the body of work on the topic is growing rather quickly.
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In this survey, we presented a systematic and thorough discussion about hypergraph representation learning.
We identified in the literature three main families of approaches to the hypergraph embedding problem: spectral,
proximity-preserving, and (deep) neural network hypergraph embedding methods.

• Spectral hypergraph embedding methods represent the first efforts toward learning vectorial representations for
hypergraphs. Despite their solid theoretical foundation, spectral methods struggle with large-scale hypergraphs,
thus making them less appealing to the research community in recent years.
• Both proximity-preserving and (deep) neural network methods overcome this scalability issue offering two very
different approaches to the hypergraph representation learning problem.
– Proximity-preserving methods use a standard machine learning pipeline where the proximity of the nodes in
the latent space is preserved through a loss function defined on the distance (or similarity) between nodes.
The loss function can also be designed to embed additional constraints or information tied to the specific task
at hand. Such an easy design makes proximity-preserving methods adaptable to more disparate contexts.

– Nowadays, deep learning-based methods are predominant thanks to their flexibility, capacity, and performance.
They take advantage of the experience from the graph representation learning literature and the ever-increasing
availability of high computational power that allows training very large (i.e., deep) models. On the one hand,
this inheritance from graph representation learning has sped up the development of learning techniques for
hypergraphs. On the other hand, it has biased the researchers’ efforts toward methods for hypergraphs that are
adaptations of the ones for graphs. However, although similar, hypergraphs have inherent characteristics that
must be considered, e.g., they encode higher-order relationships. Works like Chien et al. [40] and Srinivasan et
al. [156] have opened up new avenues thanks to message-passing functions working on (multi-)sets rather
than graph structures. We believe such contributions may inspire the research community to develop novel
representation learning frameworks designed explicitly for hypergraphs.

One of the biggest challenges in hypergraph representation learning is the lack of (at least) an affirmed tool that
researchers could use as a reference to implement new embedding techniques; while, for the graph counterpart, the
community offers many alternatives like DGL4, Spektral5, and Karate Club6, just to name a few. Unluckily, there is no
equivalent for hypergraphs, and even libraries for hypernetwork analysis are not so numerous (e.g., HyperNetX7[2],
SimpleHypergraph.jl8[3, 4], Hypergraphx9[116]) and as mature as, for example, NetworkX10 for graphs.

With this survey, we aim to provide future researchers and practitioners with a comprehensive understanding of
current trends in addressing the hypergraph embedding problem and sketching some guidelines for designing novel
and practical hypergraph representation learning techniques.

4https://docs.dgl.ai
5https://graphneural.network
6https://karateclub.readthedocs.io
7https://pnnl.github.io/HyperNetX
8https://github.com/pszufe/SimpleHypergraphs.jl
9https://github.com/HGX-Team/hypergraphx
10https://networkx.org/
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