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Abstract

Hyperspectral image (HSI) classification aims at assign-
ing a unique label for every pixel to identify categories
of different land covers. Existing deep learning models
for HSIs are usually performed in a traditional learning
paradigm. Being emerging machines, quantum computers
are limited in the noisy intermediate-scale quantum (NISQ)
era. The quantum theory offers a new paradigm for de-
signing deep learning models. Motivated by the quan-
tum circuit (QC) model, we propose a quantum-inspired
spectral-spatial network (QSSN) for HSI feature extraction.
The proposed QSSN consists of a phase-prediction module
(PPM) and a measurement-like fusion module (MFM) in-
spired from quantum theory to dynamically fuse spectral
and spatial information. Specifically, QSSN uses a quantum
representation to represent an HSI cuboid and extracts joint
spectral-spatial features using MFM. An HSI cuboid and its
phases predicted by PPM are used in the quantum represen-
tation. Using QSSN as the building block, we further pro-
pose an end-to-end quantum-inspired spectral-spatial pyra-
mid network (QSSPN) for HSI feature extraction and classi-
fication. In this pyramid framework, QSSPN progressively
learns feature representations by cascading QSSN blocks
and performs classification with a softmax classifier. It is
the first attempt to introduce quantum theory in HSI pro-
cessing model design. Substantial experiments are con-
ducted on three HSI datasets to verify the superiority of the
proposed QSSPN framework over the state-of-the-art meth-
ods.

1. Introduction
Hyperspectral images (HSIs) are always represented by

three-order tensors that collected by remote sensors to
record the characteristics reflected by land covers. Each
HSI contains two spatial dimensions and one spectral di-
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Figure 1. Performance comparison between the proposed QSSPN
framework and existing methods. Average accuracies on Indian
Pines dataset are presented.

mension to reflect abundant spectral information and spatial
context, making it different from color images. HSI classifi-
cation aims to determine land-cover categories of areas rep-
resented by every pixel according to rich spatial and spectral
information [21]. It has a broad range of applications, in-
cluding target detection [42], mining [1] and agriculture [8].
Based on the recorded HSIs, samples in different categories
may be extremely imbalanced in some data sets. This makes
HSI classification very challenging [20, 49].

In recent decades, a large number of HSI classifica-
tion models have been proposed. Existing models can be
divided into traditional learning methods and deep learn-
ing methods. Traditional classification models are simply
adopted for HSIs, such as support vector machine (SVM)
[27] andK-nearest neighbours (KNN) [19]. To achieve bet-
ter results, advanced traditional learning models, e.g., ex-
tended morphological profile (EMP) [3] and extended mul-
tiattribute profile (EMAP) [7], first conduct feature extrac-
tion and then perform classification. These methods are
two-step learning models that cannot achieve satisfactory
performance. Deep learning models are promising to si-
multaneously conduct feature extraction and classification
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in an end-to-end manner [12, 34]. Benefiting from the de-
veloped technique, deep learning models for HSI classi-
fication are in blossom. A wide variety of models rely
on convolutional neural networks (CNNs). Most existing
models are designed to separately extract spatial and spec-
tral features in different branches [18, 47]. To enrich the
development of deep learning models, attention mechanic
[26, 46], graph convolution network [45] and transformer
learning [36, 43, 48] have been explored in recent works.
These works make significant improvement in architecture
design and classification performance. However, they sepa-
rately aggregate spatial and spectral information in different
modules, resulting in model redundancy and inefficient ex-
ploration of the correlation between spatial and spectral in-
formation. Besides, they are all developed from traditional
learning paradigm.

Different from traditional computers, quantum comput-
ers are emerging machines to perform quantum algorithms
[2]. Quantum computing utilizes quantum theory to process
data in quantum device [14, 28]. There are several models
of quantum computation, such as quantum circuits, quan-
tum annealing and adiabatic quantum computation. It has
been proved that quantum computers outperform classical
computers in solving certain problems [11, 33]. For ex-
ample, Shor’s algorithm can be used to solve the integer
factorization problem much faster than algorithms running
on the classical computer [33]. In the noisy intermediate-
scale quantum (NISQ) era [31], quantum computers cannot
perform complex quantum algorithms for practical appli-
cations. Fortunately, quantum computation provides a new
mathematical formalism for computing. As a new learn-
ing paradigm, quantum machine learning (QML) adopts
quantum computation to enhance classical machine learn-
ing models [4, 32]. Recently, quantum theory has been
adopted in classical algorithms and deep learning models,
with an expectation of improving computation efficiency
and outcome quality [9, 38].

Motivated by quantum theory, in this paper, we
first introduce a quantum-inspired spectral-spatial net-
work (QSSN) for HSI feature extraction. The proposed
QSSN includes a phase-prediction module (PPM) and a
measurement-like fusion module (MFM). Instead of fus-
ing spatial and spectral information in different modules,
we extract joint spatial-spectral features in the same op-
eration. A small data cuboid taken from an HSI is rep-
resented by quantum-inspired state representation, and the
amplitudes in a state vector are values in normalized input
cuboid. The corresponding phases are predicted by PPM,
dynamically modulating the spatial and spectral correla-
tions. MFM simultaneously aggregates spatial and spectral
information to generate a feature cuboid. Additionally, we
design a quantum-inspired spectral-spatial pyramid network
(QSSPN) framework with multiple cascaded QSSN blocks

and a softmax classifier for HSI classification. Deep pyra-
mid structure of QSSPN gradually decreases the channels
of feature cuboids and extracts robust and expressive fea-
tures from original data for classification. This is a simple
but efficient end-to-end framework taking advantage from
both quantum theory and deep neural network.

The contributions of this article are summarized as fol-
lows.

• As far as we know, QSSN and QSSPN are the first
proposed quantum-inspired method for HSI feature ex-
traction and classification. It shows that this quantum-
inspired framework is promising.

• Motivated by QC in quantum theory, we propose
a QSSN for HSI feature extraction. QSSN aggre-
gates spatial-spectral information simultaneously us-
ing quantum-like representations and operations.

• Based on QSSN, we develop a QSSPN for HSI classi-
fication. In QSSPN, QSSN blocks stacked in a pyra-
mid manner that can extract robust and discrimina-
tive features for classification. As shown in Fig. 1,
QSSPN achieves the best classification accuracy with
low model complexity.

The rest of this paper is organized as follows: Sec. 2
reviews the related work about deep learning-based HSI
classification and quantum-inspired deep learning methods.
Sec. 3 introduces the detailed framework of QSSN and de-
scribes the proposed QSSPN for HSI classification. Sec. 4
presents the experimental results and analysis. Finally,
Sec. 5 draws the conclusion.

2. Related Work
Deep learning-based HSI Classification. Deep learn-

ing models adapted from color image processing show
priority in HSI processing [21, 29]. Autoencoder-based
[15] models are unsupervised networks that are widely re-
searched in HSI classification [5, 6]. These methods can-
not efficiently capture the spatial-spectral correlations. In-
spired by human vision system, local connectivity allows
CNN to extract spatial information efficiently [23]. CNN-
based HSI classification methods are widely researched
[29, 44, 47]. Zhong et al. proposed 3D CNN with residual
connection to improve the network trainability and classi-
fication accuracy [47]. Attention mechanic [41] is intro-
duced for learning correlations among neighboring pixels
and bands [26, 35, 46]. Mei et al. designed two attention-
based branches to extract discriminant feature vectors from
spatial and spectral aspects [26]. Frameworks based on
graph convolution network and transformer have been also
investigated in recent years. These methods show priorities
in capturing subtle spectral discrepancies [36] and learning
structural information [45].
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Figure 2. Illustration of the proposed QSSN and QSSPN frame-
work. The yellow and blue boxes at the top are phase-prediction
module (PPM) and measurement-like fusion module (MFM), re-
spectively. The middle box shows the QSSN framework. The
QSSPN framework is presented at the bottom.

Quantum-Inspired Computation. The mathematical
formalism of quantum theory has been adopted in var-
ious tasks, including natural language processing (NLP)
[25], computer vision (CV) [38], information retrieval (IR)
[39, 40] and multimodal analysis [9, 10, 24]. Van et al.
pioneeringly exploited the quantum probability for object
representation in IR tasks [40]. To achieve better outcome
quality and interpretability, Li et al. introduced a quantum-
inspired network in NLP models for semantic matching
[25]. Quantum-motivated strategies are also exploited in
multimodal information processing. Li et al. investigated
multimodal feature fusion methods via quantum-like neu-
ral network for conversation emotion recognition [24]. Gk-
oumas et al. introduced a video semantic recognition net-
work via fusing multimodal information at the decision
level [10]. Moreover, the quantum-inspired methods are
also developed in image processing tasks. Tang’s work
utilizes the wave-like function to represent an image, us-
ing phase to model the relationship between patches [38].
The proposed wave-multilayer perceptron achieves promis-
ing performance on various vision tasks, such as image clas-
sification and objection detection.

3. Method

This section presents the QSSPN framework for HSI
classification based on QSSN. We first briefly discuss the
QC model. Then, we describe the proposed QSSN model to
extract joint spatial-spectral features. At last, using QSSN
as the building block, we introduce the proposed QSSPN
framework for HSI classification. Details of QSSN and
QSSPN are shown in Fig. 2.

3.1. Preliminaries

Most quantum computers are constructed based on the
QC model [2, 28]. The computation of QC includes state
initialization, unitary evolution and measurement. The
quantum device is first set to the initial state. Scientists
manipulate the quantum state by applying unitary operators
to quantum device. In this process, the initial state of the
system is mapped to the final state, storing processing re-
sults in quantum device. For capturing classical information
from quantum device, measurements are adopted to extract
processing results from the final state to the classical repre-
sentation. Mathematically, the state of quantum system can
be represented by a state vector in N -dimensional Hilbert
space HN . We adopt the Dirac notations in quantum theory
to denote the states of quantum system [28]. The notations
|·⟩ and ⟨·| denote a Ket to represent a complex-valued unit
vector and aBra to indicate its conjugate transpose. Specif-
ically, given a set of basis state vectors {|ϕn⟩}Nn=1, we can
represent the states of quantum system |ψ⟩ as follows*:

|ψ⟩ =
N−1∑
n=0

Ane
iθn |ϕn⟩ , (1)

where An is a probability amplitude satisfying∑
N |An|2 = 1, i is the imaginary unit and θn indi-

cates the phase. A simple example of basis state vectors for
HN is standard unit basis. Detailedly, the standard basis
of H2 is formed by column vectors |0⟩2 = [1, 0]T and
|1⟩2 = [0, 1]T . Here, we use the notation

|n⟩N , n = 0, 1, . . . , N − 1 (2)

to represent the standard basis of HN . Accordingly, ⟨n|N
denotes the conjugate transpose of |n⟩N . All components
of |n⟩N are 0 except the n-th component is 1. In quantum
theory, Eq. (1) represents the superposition of basis states.

The reversible unitary operator U describes the state’s
evolution in QC, mapping the initial states |ψinitial⟩ to fi-
nal states |ψfinal⟩. These operators manipulate the phases
θn and amplitudes An by applying specific physical oper-
ations to the quantum system. In QC, projection-valued
measure (PVM) is a function that can collapse the system
state from superposition of multiple basis states to one ba-
sis state. Mathematical formulation of PVM is a set of pro-
jection operators {Πm = |ϕm⟩⟨ϕm|}Mm=1. According to the
Born rule [28], Πm projects the state |ψfinal⟩ to the corre-
sponding basis state |ϕm⟩ with a probability:

P (|ϕm⟩) = Tr(Πmρ) = ⟨ϕm|ψfinal⟩ ⟨ψfinal|ϕm⟩, (3)

where ρ = |ψfinal⟩ ⟨ψfinal| is the density matrix represen-
tation of |ψfinal⟩ and

∑
M P (|ϕm⟩) = 1. |·⟩ ⟨·| denotes the

*Only pure states are considered in this paper.
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Figure 3. Illustration of data mapping in QSSN. The state repre-
sentation |ψ⟩ encodes data from original space to Hilbert space:
R → H. The MFM outputs a feature vector mapped from |ψ⟩ to
feature space: H → F .

outer product and ⟨·|·⟩ denotes the inner product of ⟨·| and
|·⟩. Eq. (3) can be rewritten as:

P (|ϕm⟩) = ⟨ϕm| ρ |ϕm⟩ = (⟨ψfinal|ϕm⟩)2 (4)

=

N−1∑
n1

N−1∑
n2

An1An2e
i(θn1

−θn2
)⟨ϕm|n1⟩⟨n2|ϕm⟩.

Here we neglect the subscript N of |n⟩N for simplic-
ity. In Eq. (4), the size of |n⟩ is N . For the same
measurement operator Πm ∼ |ϕm⟩, the output P (|ϕm⟩)
depends on all pairs of An1 and An2 and their cor-
relations (θn1 − θn2). PVM yields values Pres =
[P (|ϕ1⟩), P (|ϕ2⟩), . . . , P (|ϕM ⟩)] corresponding to the se-
lected projection operators {Πm}Mm=1, reflecting the state
of quantum system.

We loosely describe the quantum mechanic related to our
method. A rigorous definition of quantum computing can be
found in [28].

3.2. Quantum-Inspired Spectral-Spatial Network

Let X ∈ RH×W×B be the HSI with H pixels in height,
W pixels in width, and B spectral bands. Taking the (i, j)-
th pixel as center, information in a small cuboid xi,j ∈
RP×P×B with P × P pixels are considered for finding
the joint spectral-spatial feature representation correspond-
ing to the center pixel [21]. We padX with 0 so that we can
successfully take cuboids for edge pixels. As shown in the
middle box of Fig. 2, QSSN is composed of PPM and MFM
to learn spectral-spatial feature representations for HSI clas-
sification.

Phase-Prediction Module (PPM). For HSI analysis, it
is vital to take full advantage of spectral and spatial infor-
mation. PPM utilizes spectral and spatial information to
dynamically generate phases Θi,j ∈ RP×P×B for all ele-
ments x′i′,j′,k′ in xi,j . Phases play an important role in en-
coding data xi,j in Hilbert space. We hope that phases can
correctly model the spectral-spatial correlations of all ele-
ments. Besides, we hope that samples encoded in Hilbert
space have small intra-class distance and large inter-class

distance. Hence, PPM should be able to capture discrimi-
native information from original data and assign appropri-
ate phase θi′,j′,k′ for each element x′i′,j′,k′ . Since 2D-CNN
shows its priority in HSI analysis [29], we utilize the CNN
blocks to construct PPM. PPM is a three-layer CNN. For
predicting phase for each x′i′,j′,k′ , the shapes of input and
output of each convolution layer are the same. This means
that the kernels of each layer have B channels and zero-
padding methods are adopted in each layer. The first CNN
layer in PPM extracts features in 3× 3 pixel windows. The
following asymmetric convolution layers [37] with 3×1 and
1× 3 kernel shapes fuse the information in a smaller region
in the vertical and horizontal direction to predict the phases
Θi,j . Before we encode each HSI cuboid into complex
finite-dimensional Hilbert space HK (K = P × P × B),
we reshape the HSI cuboid xi,j and the corresponding phase
cuboid Θi,j as follow:

xvec = [x′0, . . . , x
′
i′+j′×P+k′×P×P , . . . , x

′
K−1],

Θvec = [θ0, . . . , θi′+j′×P+k′×P×P , . . . , θK−1],
(5)

where i′, j′ ∈ [0 : P − 1] and k′ ∈ [0 : B − 1]. Then
phase vector xvec and original data vector xvec are used in
the state vector representation |xi,j⟩ as follows:

|xi,j⟩ =
K−1∑
n=0

Ane
iθn |n⟩K . (6)

In Eq. (6), An can be obtained as:

An =

√
xvecn∑K−1

n∗=0 x
vec
n∗

, (7)

where xvecn indicates the n-th element in xvec. In Eq. (6),
xi,j can be represented by a complex vector |xi,j⟩ =[
A0e

iθ0 , A1e
iθ1 , . . . , AK−1e

iθK−1
]

in HK . As for classi-
fication task, we hope to encode samples in the space that
has large inter-class distance and small intra-class distance,
as shown in Fig. 3. A simple strategy to encode xi,j in |xi,j⟩
is neglecting the imaginary parts eiθ (meaning ‘no phase’)
or only using the same phases in spatial dimension (neglect-
ing ‘spectral phase’) or spectral dimension (neglecting ‘spa-
tial phase’). Based on PPM, we adopt the imaginary parts
to dynamically fuse spectral-spatial information in MFM.
Compared to these simple strategies, our strategy is able to
fully exploit the spatial and spectral correlations.

Measurement-like Fusion Module (MFM). Motivated
by PVM, we design a measurement-like operation (MO)
to generate low-dimensional feature representations [49].
Recalling that in Eq. (3), for simplicity, the mathemat-
ical formulation of measurement can be described as
PVM(Πm, ρ): using a density matrix ρ to represent the
state of quantum system ρ = |ψfinal⟩ ⟨ψfinal| and then ap-
plying the matrix manipulation (matrix product and trace)
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with operators {Πm}Mm=1. For each Πm, we get the prob-
ability P (|ϕm⟩). Motivated by quantum measurement, we
first use the density matrix representation to denote the state
vector by

Di,j = |xi,j⟩⟨xi,j | (8)

=

K−1∑
n=0

K−1∑
n′=0

AnAn′ei(θn−θn′ ) |n′⟩ ⟨n| ,

where |n′⟩⟨n| represents a square matrix with P × P × B
rows and columns that all components are 0 except the
(n, n′)-th component is 1. Each term in the density ma-
trix Di,j is the multiplication of An and An′ with a coef-
ficient ei(θn−θn′ ). Empirically, this is similar to fusing in-
formation of each pair of elements xvecn and xvecn′ . Phases
θn and θn′ are predicted by PPM. We hope the imagi-
nary part ei(θn−θn′ ) can dynamically modulate the corre-
lations between xvecn and xvecn′ . In each pair, the loca-
tion and band of xvecn and xvecn′ may be different. There-
fore, the density matrix can simultaneously fuse spatial
and spectral information. Recalling that in Eq. (3), PVM
generates numerical result P (|ϕm⟩) corresponding to Πm.
Note that PVM has corresponding operations applied on
physic devices. There are constraints of operations Πm in
their mathematical formulation in quantum theory. We use
an abstract representation of PVM as PVM (Πm, ρ) →
PVM(Operatorm, ρ). To learn a low-dimensional repre-
sentation, we design an MFM with a deep learning frame-
work to relieve the limitations and perform similar functions
in PVMs. In MFM, we use fully-connected layers FCm

with depth 3 as Operatorm. The MO generates a feature
point as follows:

feam =MO (FCm, Di,j) , (9)

where Di,j stores the fusion information of each element
pair, xvecn and xvecn′ . MO is an operation that feeds Di,j

into the operator FCm to efficiently aggregate spatial and
spectral information. Given M operators {FCm}Mm=1,
we can get an M -dimensional feature vector F vec =
[fea1, fea2, . . . , feaM ]. Aggressive dimension reduction
of feature cuboids may cause bottlenecks of deep learning
models [37]. Thus, M should be carefully designed for pre-
serving important factors in data.

Following the steps above, QSSN extracts an M -
dimensional feature vector from input cuboid xi,j with the
size of P × P × B. Furthermore, we introduce a new no-
tation N -QSSN to denote the learned vector representation
F vec with the size of (P ×P ×N)× 1. The output feature
vector F vec is reshaped into a 3-D feature cuboid F cub with
the size of P×P×N . InN -QSSN, the size ofM to denote
the number of MO is determined by

M = P × P ×N. (10)

The outcome of N -QSSN F cub has same spatial resolution
as xi,j . The input HSI cuboid xi,j has abundant band in-
formation but little spatial information. A few neighbor-
ing pixels are considered during feature extraction. Empir-
ically, models are prone to ignore the spatial correlations.
The N -QSSN preserves the spatial resolution in output, ex-
pecting QSSN to learn the location-sensitive information.
Besides, it is possible to construct deep models based on
the N -QSSN blocks.

3.3. QSSN-based Pyramid Framework

It has been proved that deep models have high-quality
outcome in theory [16, 17] and practice [12, 34]. Recalling
that QSSN consists of three convolution layers and three
fully-connected layers. It can be treated as a building block
to construct a deeper framework. To extract more robust
and discriminative features, we use QSSN to develop a hi-
erarchical framework for HSI classification, called QSSPN.
Detailedly, we can cascade multiple QSSN blocks to extract
deep features from xi,j , followed by a classifier to identify
the land-cover category of the center pixel (i.e., the (i, j)-th
pixel). An example of the framework of QSSPN is shown
in Fig. 2. The example model consists of two QSSN blocks
and a linear classifier. For the two QSSN blocks, N1-QSSN
and N2-QSSN are stacked in a hierarchical manner. Specif-
ically, for N1-QSSN, we take an original cuboid with the
size of P × P × B as input to learn the feature cuboid
with the size of P × P × N1 as output. Sequently, for
N2-QSSN, we use the feature representation with the size
of P × P ×N1 learned from N1-QSSN as input to extract
the feature cuboid with the size of P × P × N2 as output.
In our setting, B > N1 > N2, meaning that the channel of
feature maps are gradually reduced from the previous QSSN
to the latter QSSN. The reduction of the channel of feature
cuboids enables QSSPN to show the pyramid-like structure.
Empirically, extreme decrease of the dimensionality of each
QSSN may result in discarding important information [37].
Thus, we gently reduce the channels of each QSSN to find
expressive and robust representations by aggregating spatial
and spectral information.

The output feature cuboids learned from the final QSSN
are then flattened into a vector and fed into a classifier. A
linear layer with a softmax function is adopted as a classifier
in this work. Therefore, our proposed framework is end-to-
end and easy to implement. For simplicity, we use QSSPN-
L to indicate QSSPN with L QSSN layers. For example,
the model with two QSSN layers shown in Fig. 2 can be
denoted by QSSPN-2.
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Table 1. Classification results and model analysis of different methods on HSI datasets.

Datasets Metrics SSAN SSRN RvT HiT SSFTT QSSPN-1 QSSPN-2 QSSPN-3

IP

OA (%) 89.46 91.85 83.85 90.59 96.35 90.36 92.66 95.87
AA (%) 85.99 81.51 79.67 86.71 89.99 89.93 93.34 96.40
κ(%) 88.04 90.73 81.68 89.27 95.82 89.05 91.68 95.34

Params. 148.83K 735.88K 10.78M 49.60M 148.50K 910.50K 1.13M 1.17M
FLOPs 7.88M 212.48M 17.83M 345.88M 3.66M 34.54M 52.75M 55.59M

PU

OA (%) 99.15 99.63 97.37 99.43 99.52 99.38 99.44 99.71
AA (%) 98.70 99.29 95.86 99.09 99.20 98.61 98.89 99.43
κ(%) 98.87 99.51 96.52 99.24 99.36 99.17 99.25 99.61

Params. 94.63K 396.99K 9.77M 42.41M 148.03K 609.16K 666.38K 700.52K
FLOPs 5.57M 108.04M 16.83M 190.85M 3.66M 10.25M 14.89M 17.66M

SA

OA (%) 98.92 99.31 98.11 99.38 99.53 99.54 99.63 99.66
AA (%) 99.33 99.70 98.83 99.70 99.72 99.61 99.65 99.81
κ(%) 98.80 99.23 97.90 99.31 99.47 99.49 99.59 99.63

Params. 149.71K 750K 10.82M 50M 148.50K 926.90K 1.16M 1.20M
FLOPs 7.97M 216.84 17.80M 354.42M 3.66M 35.87M 54.82M 57.67M

Table 2. Settings of channel reduction in QSSPN-L

Models Bands N1 N2 N3

QSSPN-1 B 30 - -
QSSPN-2 B ⌊B/2⌋ * 30 -
QSSPN-3 B ⌊B/2⌋ 50 30
* ⌊B/2⌋ represents the greatest integer less than

or equal to B/2.

4. Experiments

4.1. Experiment Details

Datasets. We evaluate the proposed models on three HSI
datasets, including Indian Pines (IP), Pavia University (PU)
and Salinas (SA). The Indian Pines and Salinas datasets
were collected by the airborne visible and infrared imag-
ing spectrometer (AVIRIS) sensor. The Indian Pines dataset
with 145×145 pixels and 200 valid spectral bands contains
16 land-cover categories, recording a scene of the physiog-
nomy from the Indian Pines test site in Northwest Indiana.
In this dataset, samples in different classes are extremely
imbalanced. The covered area of Salinas Valley comprises
512× 217 pixels and 204 spectral signatures in the Salinas
dataset to describe 16 different ground truth categories. The
Pavia University dataset was collected by the reflective op-
tics system imaging spectrometer (ROSIS) sensor over the
University of Pavia. There are 610 × 340 pixels with 103
bands to record nine classes of ground truths.

Compared methods. To validate the effectiveness of
the proposed QSSPN framework, we utilize the following
methods for comparison. We compare our model with ad-
vanced CNN-based and transformer-based models. The se-
lected CNN-based models are spectral-spatial attention net-
work (SSAN) [26] and spectral–spatial residual network
(SSRN) [47]. As for the selected transformer-based mod-

els, there are robust vision transformer (RvT) [13], hyper-
spectral image transformer (HiT) [43] and spectral–spatial
feature tokenization transformer (SSFTT) [36].

Setup. We adopt the Adam [22] optimizer with learn-
ing rate 1e−3 to update parameters of deep learning models
in each training iteration. Models are trained through 200
epochs. The batch size is set to 64. Other settings of our
proposed models are shown in Tab. 2. To make a fair com-
parison, we use the same input patch size 9 × 9 × B for
all methods. For all datasets, we randomly select 10%, 5%
and 85% labeled samples for model training, validation and
testing, respectively. We train and test each model 10 times
and report the average results. The performance is evalu-
ated in terms of overall accuracy (OA), average accuracy
(AA) and kappa coefficients (κ). Different from OA, AA
helps to see if a model is strong or weak when classifying
specific classes. All the experiments are performed with
Pytorch [30] on NVIDIA 3090 GPU and 48GB RAM.

4.2. Classification Results

Tab. 1 reports the results of OA, AA and κ on three HSI
datasets. Our proposed QSSPN-3 achieves the best AA on
three dataset. Specifically, QSSPN-3 achieves 96.40% AA
with only 1.17M Parameters on the Indian Pines dataset.
It is much better than the existing methods. As shown in
Fig. 4 (a), samples of different classes on the Indian Pines
dataset are extremely imbalanced. Without data augmen-
tation strategies, there are a few classes that only have less
than 6 samples for training most of the time, such as ‘Grass-
pasture-mowed’ and ‘Oats’. While for some classes, such as
classes ‘Corn-notill’ and ‘Soybean-mintill’, there are hun-
dreds of samples. This makes it difficult for models to learn
from data. Our methods achieve high classification accura-
cies in each class regardless of the distribution of training
samples (96.40% AA). On the Salinas and Pavia University
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(a) Ground truth (b) RvT (c) HiT (d) SSAN (e) SSRN (f) QSSPN-1 (g) QSSPN-2 (h) QSSPN-3

Figure 4. Classification maps of different methods for the Indian Pines dataset.

(a) Ground truth (b) RvT (c) HiT (d) SSAN (e) SSRN (f) QSSPN-1 (g) QSSPN-2 (h) QSSPN-3

Figure 5. Classification maps of different methods for the Pavia University dataset.

(a) Original data (b) Spectral-spatial representation

Figure 6. Distribution of original data and representation extracted
by QSSN blocks in QSSPN-3 for the Indian Pines dataset.

datasets, our methods obtain 0.1% and 0.3% improvement
with respect to κ, respectively. QSSPN-1 with only one
QSSN block achieves competitive performance with low
computation complexity. It implies that our proposed QSSN
framework can efficiently aggregate spatial-spectral infor-
mation. Fig. 4 and Fig. 5 visualize the classification maps
of our proposed methods on the Indian Pines and Pavia Uni-
versity datasets, along with results of best CNN-based and
transformer-based models and the ground-truth maps.

To investigate the separability of data, we employ t-
Distributed Stochastic Neighbor Embedding (t-SNE) to vi-
sualize the distribution of original data and spectral-spatial
features extracted by QSSN blocks in QSSPN-3 in Fig. 6.
As shown in Fig. 6, the extracted feature embedding are
more separable. It means that QSSN can learn expressive
representations for HSI classification. To verify the learn-
ability of the proposed framework, we further evaluate the
performance of different models on the Indian Pines dataset
by varying training sizes of {15%, 20%, 25%, 30%}. Fig. 7
shows the OA values achieved by different models. All
models achieve higher performance when the training size
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Figure 7. OA of different models for the Indian Pines dataset with
different training sizes.

increases. Overall, QSSPN-3 surpasses other methods,
achieving 99.11% OA with a 30% training size. It is a
promising result, implying that our proposed framework
cannot only learn from limited data, but also extract robust
feature representations with sufficient training samples.

4.3. Ablation Study

Phases are used in representing a data cuboid by a state
vector, dynamically modulating the spatial-spectral correla-
tions between elements. To investigate the effectiveness of
the phase module, we tabulate the classification results on
the challenging Indian Pines dataset with QSSPN-2 for ab-
lation study in Tab. 3. Without the phase information (i.e.,
the no phase mode, θi′,j′,k′ = 0, i′, j′ ∈ [0 : P − 1], k′ ∈
[0 : B − 1]), the model has the worst performance com-
pared with other models. The spatial phase mode (i.e.,
θi′,j′,0 = θi′,j′,1 = · · · = θi′,j′,B−1) considers spatial
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Table 3. Effectiveness of phase on the Indian Pines dataset.

Mode Params. FLOPs OA (%) κ (%)
No phase 717.13K 18.92M 86.86 85.10
Spatial phase 708.74K 18.22M 89.18 87.74
Spectral phase 705.68K 17.97M 88.66 87.09
All 1.13M 52.75M 92.66 91.68

Table 4. Effectiveness of pyramid structure on the Indian
Pines dataset.

L Channel Params. FLOPs OA (%) κ (%)
1 10 571.18K 32.97M 82.72 80.45
1 30 910.5K 34.54M 90.36 89.05
1 50 1.26M 36.69M 91.63 90.49
2 30 1.14M 52.75M 91.93 90.84
3 30 1.17M 55.59M 92.93 91.96
* L indicates the QSSPN-L model.
* Channel indicates the dimension of the learned feature cuboid

for classification.

information and achieves better performance than the no
phase mode. This implies that spatial phase can efficiently
aggregate spatial information. However, this mode ignores
abundant band information, making it perform worse than
QSSPN. The spectral phase mode (i.e., θ0,0,k′ = θ0,1,k′ =
· · · = θP−1,P−1,k′ ) only considers the spectral correlations
and has similar performance as the spatial phase mode. The
QSSPN uses joint spatial-spectral phases, incurring the best
performance.

4.4. Parameter Sensitivity Study

To better understand the proposed QSSPN framework,
we study the parameter sensitivity of patch size for HSI
cuboid and model depth for pyramid structure. The param-
eter sensitivity studies are conducted on the Indian Pines
dataset with QSSPN-2 unless being specifically stated.

Patch size for HSI cuboid. The patch size of the cuboid
controls the size of input data. We investigate the ef-
fectiveness of patch size for classification. As shown in
Figs. 8c and 8d, QSSPN achieves better accuracies with
larger patches in most cases. We notice that the classifi-
cation accuracy decreases when the size changes from 9
to 11 in Fig. 8c. It can be explained that as patch size in-
creases, unrelated information and noise will increase. Be-
sides, there is a trade-off between computation complexity
and outcome quality. Large patches increase the computa-
tion cost with slight accuracy improvement.

Model depth for pyramid structure. The model struc-
ture plays an important role in deep learning models. We
investigate QSSPN by varying the number of QSSN blocks
and the channels of the learned feature cuboids. As shown
in Figs. 8a and 8b, with the increase of QSSN blocks,
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Figure 8. OA of QSSPN with different patch sizes and depths.

QSSPN achieves higher performance. Tab. 4 investigates
the correlations between the channels of feature cuboid and
the depth of the model. The extreme compression of feature
channels incurs poor performance (e.g. 82.72% OA with 10
channels). Large feature cuboids achieve higher classifica-
tion accuracy (e.g. 91.63% OA with 50 channels). However,
the computation complexity greatly increases from 571.18K
parameters to 1.26M parameters. With the same output fea-
ture channel, QSSPN-3 achieves higher accuracy compared
to QSSPN-1 and QSSPN-2. QSSPN decreases the feature
channels in a pyramid manner to avoid the bottleneck of
deep learning models. This indicates that QSSPN is able
to extract discriminative and robust spatial-spectral features
with a deep pyramid structure.

5. Conclusion

In this paper, motivated by quantum theory, we first
proposed a QSSN framework for HSI feature extraction.
In QSSN, phases are predicted by PPM to represent the
state representation for an HSI cuboid, and joint spatial-
spectral features are extracted from state-like representation
by MFM. Furthermore, we designed a QSSPN framework
based on QSSN for HSI classification. This pyramid frame-
work can extract expressive and robust features for classi-
fication. Extensive experiments have demonstrated the su-
periority of QSSPN. In our future work, we will investigate
effective and efficient quantum-inspired methods for other
applications.
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