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Abstract. In this paper, we consider the time integration of parabolic equations with block
implicit methods (BIM). Depending on the size of the block, high order BIM with A-stability are
designed without the need of multiple initial guesses. Similar to Runge-Kutta methods, a BIM can be
defined by a tableau including two matrices and two vectors. In addition to the general methodology
of BIM, we show a special scheme defined by a positive definite matrix and a positive diagonal
matrix; both matrix properties are desirable but not available in Runge-Kutta methods. Moreover,
we show that the traditional finite element theory for parabolic problems discretized by the backward
Euler or Crank-Nicolson schemes can also be extended to BIM. Finally, we introduce some domain
decomposition preconditioners for the linear systems of algebraic equations arising from the block
implicit discretization in time and finite element in space. Some numerical results are also reported
to show the effectiveness of BIM.
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1. Introduction. Many time-stepping methods are available for the time in-
tegration of parabolic equations [9, 23, 24, 48]. There are two families of classical
methods: one-step (multistage) methods and linear multistep (one stage) methods
(LMM). Runge-Kutta and Adams methods are examples that are widely used. The
methods can be used in their explicit form if the problem is non-stiff or in the im-
plicit form if the problem is stiff. LMM is relatively easy to implement but limited
to the Dahlquist order stability barrier [18] and start-up issues [14,22]. On the other
hand, implicit Runge-Kutta methods (IRK) possess favorable stability properties,
offer high order of accuracy, and no start-up issues. Among the varieties of IRK,
diagonally IRK (DIRK) is preferred by most researchers and is widely used in prac-
tice due to its relative ease of implementation [32]. However, DIRK may suffer from
the reduction of the order of accuracy and the stage-order is limited to two [24].
The fully IRK (FIRK) methods improve the stage-order, but a higher computational
cost is required. Other high order methods with good stability properties have also
been studied extensively, such as the general linear methods [9], Taylor Series (multi-
derivative) methods [21], boundary value methods [8], exponential time-differencing
methods [12, 13, 19, 26]. One particular class of methods that deserves further study
and has the potential for many important applications is the so-called block implicit
methods (BIM), which was developed by coupling multiple classical LMM schemes in
a single method [7,44,45,51,52]. BIM overcomes the Dahlquist stability barriers and
the start-up issues of LMM.

The idea of BIM was first proposed in [41], where the methods were used to
provide starting values for predictor-corrector schemes. A BIM with block size k can
be described by a tableau
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where A,B ∈ Rk×k and a, b ∈ Rk can be derived from the coefficients of LMM,
and in this paper we refer to them as the BIM matrices and BIM vectors. BIM
circumvents the order and stability barrier of LMM, and share some of the nice features
of IRK [2, 5–7, 42]. However, BIM is not widely used because it requires the solving
of a large and ill-conditioned algebraic system of equations at each iteration. For
example, the discretization of a linear parabolic equation by BIM in time and the
finite element in space produces a system of equations of the form

(1.1) A⊗M + τB ⊗K,

where ⊗ denotes the Kronecker tensor product, τ is the time step size, M ,K ∈ RN×N

denote the mass and the stiffness matrix, respectively. N is the number of unknowns
in space. (1.1) is larger and more difficult to deal with than the coefficients matrices
resulting from, for examples, the implicit Euler, Crank-Nicolson and LMM that are
of the form αM + βτK, where α > 0 and β > 0 are constants.

One of the goals of this paper is to continue the study of BIM initiated in [51,52].
We find the explicit relation between the BIM matrices A and B by employing the
order conditions of LMM. This is important for the theoretical analysis of BIM and
helpful for the construction of new algorithms with desirable properties. By employing
the techniques in [3, 4, 27], we construct a special type of BIM algorithms such that
the matrix B−1A is diagonally stable. In these algorithms, B is a positive diagonal
matrix and A is a positive definite matrix. As a result, the matrix (1.1) has the same
positive definiteness as the matrix αM +βτK, and the corresponding linear systems
are easier to precondition and solve. On the other hand, the FIRK matrices are dense
and positive stable; i.e., the real part of the eigenvalues are positive [31,34,39], which
makes the positive definiteness of the matrix K in (1.1) useless.

In this paper, following the idea of [10, 11, 15, 36–38], we also introduce some
parallel DD preconditioners for parabolic partial differential equations (PDEs) dis-
cretized by BIM in time and finite element in space. Similar to the implicit Euler
and Crank-Nicolson methods for parabolic PDEs [48], the uniqueness of the solution
can be proved by the Lax-Milgram theorem, and the a priori error estimates for fi-
nite element methods can also be established. Note that such analysis can not be
obtained for FIRK since the FIRK matrices are only positive stable but not positive
definite [40].

The rest of the paper is organized as follows. In Section 2, we present some
motivating examples. In Section 3, we first study BIM with A-stability and present
the matrix B−1A explicitly, then we construct BIM by selecting special A and B. In
Section 4, a comparison with FIRK is presented to show that BIM is more competitive.
Some DD preconditioners in the tensor form are introduced in Section 5 for linear
parabolic PDEs discretized with BIM in time and finite element in space. Finally,
some conclusions are given in Section 6.

2. Block implicit methods: Formulation, order of convergence and sta-
bility. In this section, we first review briefly the one-step and multistep algorithms.
Then present some motivating examples to show why BIM is important. In particu-
lar we show how to combine a few “not-so-good”methods (in terms of order, and/or
stability, and/or the requirement of multiple initial values) into a single block method
with all the desirable properties. After these interesting examples, we derive the
general form of BIM and introduce several types of stabilities.
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2.1. A brief review of time-stepping methods. We consider a one-dimensional
initial value problem

(2.1)

{
y′ = f(t, y), t ∈ (0, T ],

y(t0) = y0

discretized on a uniform temporal mesh 0 = t0 < t1 < · · · < tN = T with the time
step size τ = tn − tn−1. We denote by yn as the solution at time tn. A one-step
method for solving (2.1) can be described as

(2.2) yn+1 = R(z)yn, n = 0, 1, . . . , N − 1,

where R(z) = P (z)/Q(z) is a rational function, P (z) and Q(z) are polynomials of
degree m and j, respectively. The function R(z) is called the stability function of the
method [24], and it can be interpreted as the numerical solution after one step of the
Dahlquist test equation

(2.3) y′ = λy, y0 = 1, z = τλ.

The set S = {z ∈ C : |R(z)| ≤ 1} is called the stability domain of the method.

Definition 2.1. (Dahlquist 1963 [18]) A method, whose stability domain satisfies

S ⊃ C− = {z : Re z < 0},

is called A-stable, where C− denotes the entire left half-plane.

Suppose R(z) is an arbitrary rational approximation of order p with m zeros and
j poles. The following theorems for the A-stability of R(z) can be found in [24].

Theorem 2.2. (Crouzeix & Ruamps 1977 [17]) Suppose p ≥ 2j− 2, |R(∞)| ≤ 1,
and the coefficients of the denominator Q(z) have alternating signs. Then, R(z) is
A-stable.

Theorem 2.3. Suppose p ≥ 2j − 3, R(z) is I-stable, and the coefficients of Q(z)
have alternating signs. Then, R(z) is A-stable.

A k-step LMM is often written as

(2.4) αkyn+k + · · ·+ α1yn+1 + α0yn = τ(βkfn+k + · · ·+ β1fn+1 + β0fn),

where αk = 1, |α0| + |β0| > 0. If (2.4) is of order p, the coefficients αj and βj (j =
0, 1, · · ·, k) satisfy

(2.5)



c0 =
∑k

j=0 αj = 0,

c1 =
∑k

j=0 jαj −
∑k

j=0 βj = 0,

c2 = 1
2

∑k
j=0 j

2αj −
∑k

j=0 jβj = 0,

· · · · ··
cp = 1

p!

∑k
j=0 j

pαj − 1
(p−1)!

∑k
j=0 j

p−1βj = 0, p = 3, 4, · · ·.

(2.5) is called the order conditions. Although LMM is relatively easy to implement,
it is limited by the Dahlquist order stability barrier [18].
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2.2. Some motivating examples. We consider two simple equations.

Example 1. y′ = −3y, y(0) = 1, t ∈ (0, 2].

Example 2. y′ = −2000(y − cos(t)), y(0) = 0, t ∈ (0, 1.5].

Below we mention three methods to serve as the basis of the discussion.
Method A (second-order):

(2.6) yn+2 − yn = 2τfn+1, with given y0 and y1,

which is a two-step method often referred to as the mid-point rule.
Method B (third-order):

(2.7) yn+2 + 4yn+1 − 5yn = τ(4fn+1 + 2fn), with given y0 and y1,

which is a two-step explicit method.
Method C (third-order):

(2.8) yn+2 − 3yn+1 + 2yn =
τ

12
(7fn+2 − 8fn+1 − 11fn), with given y0 and y1,

which is a two-step implicit method.
Methods A, B and C are two-step linear methods and they are known to be

not stable, and in Figure 1, the instability can be seen clearly from the numerical
solutions obtained with several different mesh sizes and a comparison with the known
exact solution of Example 1. Because of the instability, these methods are never
used in practice. Next, we come up with some block implicit methods designed by
combining some stable and unstable methods into a system of methods. Methods D,
E and F shown below are designed by coupling two or three classical linear multistep
methods (stable or unstable), but only one given initial value y0. Since they are block
methods, the solutions at two or three time steps are obtained simultaneously. It is
interesting to note that these three methods are all stable from Figure 2. Moreover,
Table 1 shows that Methods D, E and F are second-order, fourth-order and third-
order, respectively.

Fig. 1: Numerical solutions of Example 1 computed by the Methods A (left), B
(middle) and C (right)

Method D (second-order):

(2.9)

{
yn+2 − yn = 2τfn+1,

3yn+2 − 4yn+1 + yn = 2τfn+2,
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Fig. 2: Numerical solutions of Example 1 computed by the Methods D (left), E
(middle) and F (right)

Table 1: The order and the error |y(t) − y|∞ of Methods D, E and F for solving
Example 1.

n 8 16 32 64 128 256 512 1024

Method D
3.92e-2 9.95e-3 2.20e-3 5.42e-4 1.34e-4 3.36e-5 8.42e-6 2.10e-6

1.97 2.17 2.02 2.01 1.99 1.99 2.00

Method E
4.62e-3 4.76e-4 3.88e-5 2.79e-6 1.87e-7 1.21e-8 7.71e-10 4.86e-11

3.27 3.61 3.79 3.89 3.95 3.97 3.98

Method F
1.91e-2 3.32e-3 3.89e-4 4.22e-5 5.05e-6 6.13e-7 7.53e-8 9.33e-9

2.52 3.09 3.20 3.06 3.04 3.02 3.01

which is an one-step implicit method (with initial value y0 = y(0)) obtained by cou-
pling (2.6) and the BDF2 rule.

Method E (fourth-order):

(2.10)

{
yn+2 + 4yn+1 − 5yn = τ(4fn+1 + 2fn),
yn+2 − 3yn+1 + 2yn = τ

12 (7fn+2 − 8fn+1 − 11fn),

which is an one-step implicit method (with initial value y0 = y(0)) obtained by cou-
pling (2.7) and (2.8).

Method F (third-order):
(2.11) 12yn+3 − 12yn+2 = τ(23fn+2 − 16fn+1 + 5fn),

11yn+3 − 18yn+2 + 9yn+1 − 2yn = 6τfn+3,
3yn+3 − 3yn+1 = τ(−2fn+3 + 13fn+2 − 8fn+1 + 3fn),

which is an one-step implicit method (with initial value y0 = y(0)) obtained by cou-
pling three linear 3-step methods.

It is clear that the new block methods D, E and F all have better stability than
the classical linear multistep method. The solutions at k time steps may behave
differently since the corresponding stability functions have different properties. Below
we introduce some terminologies to describe these stabilities:

Definition 2.4. Assume that yn+1, yn+2, · · · , yn+k are computed simultaneously
by employing the initial value yn. Then, the method is

(1) strong k-step stable if |yn+k| ≤ |yn+k−1| ≤ · · · ≤ |yn+1| ≤ |yn|;
5



(2) k-step stable if |yn+i| ≤ |yn| for all 1 ≤ i ≤ k;
(3) kth-step stable if |yn+k| ≤ |yn|.

Note that this definition is exactly the same as that for the classical one-step or
multistep methods when k = 1.

2.3. Derivation of block implicit methods. In this section, we derive a fam-
ily of block implicit methods based on the classical linear multistep methods.

Definition 2.5. (Block implicit method with block size k) For a given initial value
yn, the problem (2.1) is solved by the following k by k system of algebraic equations

a1kyn+k + · · ·+ a11yn+1 + a10yn = τ(b1kfn+k + · · ·+ b11fn+1 + b10fn),(2.12.1)

a2kyn+k + · · ·+ a21yn+1 + a20yn = τ(b2kfn+k + · · ·+ b21fn+1 + b20fn),(2.12.2)

...

akkyn+k + · · ·+ ak1yn+1 + ak0yn = τ(bkkfn+k + · · ·+ bk1fn+1 + bk0fn),(2.12.k)

where |ai0| + |bi0| > 0 and each formula (2.12.i) (1 ≤ i ≤ k) satisfies the order
conditions (2.5). The error is Cp+1 = (c1,p+1 c2,p+1 · · · ck,p+1)

T and ci,p+1 is the
error constant of the formula (2.12.i) (1 ≤ i ≤ k).

It is convenient to represent a BIM by a partitioned tableau of the form
A B

aT bT
,

where a = (a10 a20 · · · ak0)
T , b = (b10 b20 · · · bk0)

T , and the BIM matrices

A =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

 and B =


b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
. . .

...
bk1 bk2 · · · bkk

 .

Applying the above BIM to

y′ = 0,

we have

(2.13) Ay = −ayn,

where y = (yn+1 yn+2 · · · yn+k)
T . Since aik + · · · + ai1 + ai0 = 0 (consistency

condition of LMM), it follows from Cramer’s rule that

yn+i =
|Ai|
|A|

yn = yn, (1 ≤ i ≤ k),

whereAi is the matrixA with the ith column ai replaced by the vector−a. Therefore,
the method is stable if A is nonsingular. Now, we introduce the definition for the
stability of BIM.

Definition 2.6. (Block zero-stability) The BIM (2.12) is called k-step stable, if
the BIM matrix A is nonsingular.
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Applying the above BIM to Dahlquist test equation (2.3), we have

(2.14) C(z)y ≡ (A− zB)y = (zb− a)yn,

where z = λτ .
Define the rational functions

(2.15) Rn+i(z) =
Pn+i(z)

Qn+i(z)
, 1 ≤ i ≤ k.

Here Pn+i(z) = |Ci(z)| = |Ai − zBi| and Qn+i(z) = |Ci−1(z)| or Qn+i(z) = |C(z)|,
where C0(z) = C(z) and Bi (1 ≤ i ≤ k) is the matrix obtained by replacing column
i of B by −b. Note that if (2.12) is block k-step stable, i.e., A is nonsingular, the
polynomial |Ci(z)| is nonzero since the constant term is |A|. From (2.14), we have

yn+i =
|Ci(z)|
|C(z)| yn and yn+i =

|Ci(z)|
|Ci−1(z)|yn+i−1.

Definition 2.7. The sets

Si = {z ∈ C : |Rn+i(z)| ≤ 1}, 1 ≤ i ≤ k

are called the stability domains of the BIM.
i) If Si ⊃ C− for all 1 ≤ i ≤ k, i.e., each Rn+i(z) = |Ci(z)|/|Ci−1(z)| is

A-stable, this method is called strong block k-step A-stable;
ii) If Si ⊃ C− for all 1 ≤ i ≤ k, i.e., each Rn+i(z) = |Ci(z)|/|C(z)| is A-stable,

this method is called block k-step A-stable;
iii) If Sk ⊃ C−, i.e., Rn+k(z) = |Ck(z)|/|C(z)| is A-stable, this method is called

block kth-step A-stable;

3. Block implicit methods with A-stability. BIM with A-stability was first
studied based on the interpolatory formulas of Newton-Cotes type [51]. The coeffi-
cients of |C(z)| and |Ci(z)| can be obtained explicitly by using Newton-Cotes for-
mulas. By using Routh echeme [16], it is proved numerically that the block size of
A-stable BIM has to be less than or equal to 8. In this section, we further study BIM
with A-stability by different techniques. Based on the Lyapunov stability theorem,
we explicitly construct a type of BIM by choosing the BIM matrices A and B.

3.1. A-stability of BIM. We first show that the equation (2.14) has a unique
solution by employing the order conditions (2.5); i.e., the solution is uniquely deter-
mined by B−1A, and is independent of the individual BIM matrices A and B. Then,
we present several BIM for some k and prove their stability. Let

W =


1 1 1 · · · 1
0 1 2 · · · k
0 1 22 · · · k2

...
...

...
. . .

...
0 1 2k · · · kk

 and H =


0

1
. . .

. . .
. . .

k 0


we have the following important lemma in [1].

Lemma 3.1. The elements of the matrix W−1HW are

(W−1HW )ij =


i∑

p=1

1

p
−

k−i∑
p=1

1

p
, i = j,

(−1)j−i

j − i

Ck
i

Ck
j

, i ̸= j, i, j = 0, 1, . . . , k.
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Here Ck
i =

(
k

i

)
denotes the binomial coefficient.

Let ei be the column i of the identity matrix I ∈ Rk×k, e = (1, 1, · · · , 1)T ∈ Rk,
e0 = (0, 0, · · · , 0)T ∈ Rk, x̃ = (1, 2, · · · , k)T ∈ Rk and v = (1, 2k+1, · · · , kk+1)T .

Define b̃ ∈ Rk and N ∈ Rk×k by

(3.1) (−b̃)i =
(−1)i

Ck
i

and Nij =


i∑

p=1

1

p
−

k−i∑
p=1

1

p
+

1

i
, i = j,

(−1)i−j

i− j

i

j

Ck
j

Ck
i

, i ̸= j.

By replacing ei (i = 1, 2, . . . , k) in the identity matrix I by e and −b̃, define the
matrices Qi, Ii ∈ Rk×k as follows:

(3.2) Qi = [e1 · · · ei−1 e ei+1 · · · ek], Ii = [e1 · · · ei−1 − b̃ ei+1 · · · ek].

We obtain the following theorem.

Theorem 3.2. For BIM, the solution of (2.14) is unique, and the stability func-
tion is

Rn+i(z) =
|Ci(z)|
|C(z)|

=
|NQi − zIi|
|N − zI|

.

The error Cp+1 = (D0v − (p+ 1)N−1v)/(k + 2)!, where D0 = diag(1, 2, · · · , k).
Proof. Combining the order conditions (2.5) and (2.14), setting c2 = c3 = · · · =

ck+1 = 0, we have

(3.3) AD0C1 = BC1D1,

where

D0 =


1

2
. . .

k

 , D1 =


2

3
. . .

k + 1

 , C1 =


1 1 · · · 1
2 22 · · · 2k

...
...

. . .
...

k k2 · · · kk

 .

Clearly, D0, D1 and C1 are nonsingular. Then, we have

(3.4) B = AN−1, N = C1D1C
−1
1 D−1

0 .

Therefore,

(3.5) C(z) = (A− zB) = AN−1(N − zI).

Setting c1 = 0 in (2.5), we have
a11 + 2a12 + · · ·+ ka1k = b10 + b11 + · · ·+ b1k,
a21 + 2a22 + · · ·+ ka2k = b20 + b21 + · · ·+ b2k,

...
ak1 + 2ak2 + · · ·+ kakk = bk0 + bk1 + · · ·+ bkk.

(3.6)
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Define x̃ = (1, 2, · · · , k)T , (3.6) implies

Ax̃ = b+Be.

Hence,

(3.7) b = Ax̃−Be = AN−1(Nx̃− e).

Set b̃ = Nx̃− e, it follows from (3.4) and (3.7) that

(3.8) b̃ = C1D
−1
1 C1D

−1
0 x̃− e = C1D

−1
1 C1e− e = C1D

−1
0 C1e.

Setting c0 = 0 in (2.5), we have

(3.9) a = −Ae.

Therefore, combining (3.7), (3.8) and (3.9) we have

Ci(z) = Ai − zBi

= [a1 · · · ai−1 − a ai+1 · · · ak]− z[b1 · · · bi−1 − b bi+1 · · · bk]

= A[e1 · · · ei−1 e ei+1 · · · ek]− zB[e1 · · · ei−1 − b̃ ei+1 · · · ek]

= AN−1(NQi − zIi).(3.10)

It follows from (3.5) and (3.10) that

Rn+i(z) =
|Ci(z)|
|C(z)|

=
|NQi − zIi|
|N − zI|

.

Set

F =


0 1

. . .
. . .

. . . 1
0


(k+1)×(k+1)

.

It is clear that

W TF =

(
0 eT1
e0 D−1

0 C1

)
and HT = F

(
0 eT0
e0 D0

)
.(3.11)

Therefore,

W THTW−T = W TF

(
0 eT0
e0 D0

)
W−T =

(
1 eT0
e C1

)
F

(
0 eT0
e0 D0

)
W−T

=

(
0 eT1
e0 D−1

0 C1

)(
0 eT0
e0 D0

)(
1 eT0

−C−1
1 e C−1

1

)
=

(
−eT1 D0C

−1
1 e eT1 D0C

−1
1

−D−1
0 C1D0C

−1
1 e D−1

0 C1D0C
−1
1

)
.(3.12)
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Combining Lemma 3.1 and (3.12) we have
(3.13)

(−D−1
0 C1D0C

−1
1 e)i =

(−1)i

iCk
i

and (D−1
0 C1D0C

−1
1 )ij =


i∑

p=1

1

p
−

k−i∑
p=1

1

p
, i = j,

(−1)i−j

i− j

Ck
j

Ck
i

, i ̸= j.

Since N = D0(D
−1
0 C1D0C

−1
1 )D−1

0 + D−1
0 , it follows from (3.4), (3.8) and (3.13)

that

(−b̃)i =
(−1)i

Ck
i

and Nij =


i∑

p=1

1

p
−

k−i∑
p=1

1

p
+

1

i
, i = j,

(−1)i−j

i− j

i

j

Ck
j

Ck
i

, i ̸= j.

Let v = (1, 2k+1, · · · , kk+1)T , it follows from (2.5) and (3.4) that

Cp+1 =
1

(k + 2)!
(AD0v − (p+ 1)Bv).

By the definition of error in (2.12), letting A = I, we have B = N−1 and

Cp+1 =
1

(k + 2)!
(D0v − (p+ 1)N−1v).

This completes the proof.

From Theorem 3.2, we observe that the stability functionRn+i(z) = |Ci(z)|/|C(z)|
is unique, so the stability of BIM is independent of the individual BIM matrices A
and B. Next, we present the stability functions for the cases k = 2, 3, · · · , 8 and
discuss their stability properties in detail. For convenience of the reader, we list the
coefficients of the stability functions in Table 10 in Appendix A. Without affecting the
stability function, the coefficients of |Ci(z)| and |C(z)| are multiplied by a common
factor such that both of them are integers.

Theorem 3.3. BIM has the following stability properties.
(1) The methods are block k-step A-stable when k = 2 and k = 3.
(2) The methods are block kth-step A-stable when 4 ≤ k ≤ 8.

Proof. (1) It is clear that k + 1 ≥ 2k − 2 when k = 2 and k = 3, and

lim
z→∞

Rn+i(z) = lim
z→∞

|Ci(z)|
|C(z)|

≤ 1.

Moreover, the signs of the denominator C(z) are alternating. From Theorem 2.2, we
see that the methods are block k-step A-stable.

(2) If k = 4, since C(z) = C4(−z), we have

(3.14) En+4(y) = |C(iy)|2−|C4(iy)|2 = C(iy)C(−iy)−C4(iy)C4(−iy) = 0 ∀y ∈ R.

So Rn+4(z) is I-stable. It is clear that k+1 ≥ 2k−3 and the signs of the denominator
C(z) are alternating. From Theorem 2.3, we see that the methods are block kth-
step A-stable. Let En+i(y) = |C(iy)|2 − |Ci(iy)|2 (i = 1, 2, 3), a straightforward
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Table 2: The numerically computed roots of the function |C(z)|
k = 7 k = 8

0.2422 + 1.7552i 0.1007 +1.8078i
0.2422 − 1.7552i 0.1007 − 1.8078i
0.7759 + 1.0735i 0.6468 + 1.1811i
0.7759 − 1.0735i 0.6468 − 1.1811i
1.1000 + 0.0000i 0.9240 + 0.6841i
1.0248 + 0.5199i 0.9240 − 0.6841i
1.0248 − 0.5199i 1.0463 +0.2249i

1.0463 − 0.2249i

computation shows that En+i(y) ≥ 0 does not hold for some y ∈ R. Therefore,
Rn+i(z) (i = 1, 2, 3) is not I-stable and the methods are not block k-step A-stable.

When k = 5, 6, 7, 8, it is easy to show that Rn+k(z) is I-stable, but the above
techniques are not valid. Let z = α+ iβ, if k = 5, we have

|C(z)|2 − |Ck(z)|2

= −65760αβ8 + 120(−2192α3 − 45α)β6 + 360(−1096α5 − 2765α3 − 630α)β4

+ 120(−2192α7 − 16455α5 − 22260α3 − 6300α)β2

− 65760α9 − 984600α7 − 3826800α5 − 4644000α3 − 1296000α.

It is clear that

|C(z)|2 ≥ |Ck(z)|2

holds for all α ≤ 0. From Definition 2.1, we observe that Rn+k(z) is A-stable.
If k = 6, we obtain

|C(z)|2 − |Ck(z)|2

= −17640αβ10 + (−88200α3 + 25872α)β8 + (−176400α5 − 249312α3 − 28140α)β6

+ (−176400α7 − 903168α5 − 630420α3 − 120540α)β4

+ (−88200α9 − 954912α7 − 2386020α5 − 1863960α3 − 352800α)β2

− 17640α11 − 326928α9 − 1783740α7 − 3719100α5 − 2822400α3 − 529200α.(3.15)

To show (3.15) is non-negative for all α ≤ 0, we first consider it’s first three terms (fac-
toring out β6) denoted as f(β) = −17640αβ4+(−88200α3+25872α)β2−176400α5−
249312α3 − 28140α, we compute the discriminant of the roots of the quadratic equa-
tion (in β2),

∆ = (−88200α3 + 25872α)2 − 3× 17640α× (176400α5 + 249312α3 + 28140α)

= −4667544000α6 − 22155275520α4 − 1316198016α2

≤ 0,(3.16)

which implies f(β) ≥ 0 for all α ≤ 0. Next consider the rest of the terms in (3.15)
as a polynomial in β, we see that all coefficients are non-negative if α ≤ 0. Then,
|C(z)|2 ≥ |Ck(z)|2 holds for all α ≤ 0, and this shows that the method is block
kth-step A-stable.

When k = 7 and k = 8, it is easy to see that En+k(y) = |C(iy)|2 − |Ck(iy)|2 = 0
holds for all y ∈ R since |C(z)| = |Ck(−z)|, thus Rn+k(z) is I-stable. Unfortunately,
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we are unable to prove that Rn+k(z) is analytic by the above techniques. The roots
of the function |C(z)| are computed numerically and shown in Table 2. It is clear
that the real parts of all the roots are positive, therefore Rn+k(z) is analytic and this
method is block kth-step A-stable.

Theorem 3.3 shows that BIM is kth-step A-stable when 4 ≤ k ≤ 8, i.e., the
functions Rn+i(z) (1 ≤ i < k) are not A-stable. So it is interesting to study the
stability of Rn+i(z) (1 ≤ i < k), as an example, for the special case of k = 8,
we present the stability regions in Figure 3. It is clear that the stability region of
Rn+8(z) coincides exactly with the entire negative half-plane C−, implying that this
method is block kth-step A-stable. Moreover, the subfigures (a) to (g) show that
Rn+i(z) (1 ≤ i ≤ 7) is “nearly”A-stable. They are called A(α)-stable in [53].

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: The stability regions (gray) of BIM(k = 8), (a), (b), · · · , (h) correspond to the
stability function Rn+1(z), Rn+2(z), · · · , Rn+8(z), respectively

Remark 3.4. By employing the order conditions (2.5), we prove that the stability
functions depend on B−1A, and are independent of the individual matrices A and B.
We also present explicit matrix form of B−1A which plays an important role in the
stability analysis of BIM. From the order conditions (2.5), it is easy to see that the
order of BIM with block size k is at least k+1. It has been proven that these methods
converge at order k + 1 when k is odd and at order k + 2 when k is even [51,52].

In Theorem 3.3, we give a thorough analysis for the stability of BIM with k up to
8. When k = 9, some roots of |Ck(z)| have negative real part, which means that this
method is not block kth-step A-stable. Because the roots are computed numerically
for k > 8, we do not have a mathematically provable stability theory.
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3.2. Construction of BIM with A-stability. In this section, we explicitly
construct some BIM with A-stability. From (3.4), (3.7) and (3.9), we obtain A = BN , N = C1D1C

−1
1 D−1

0 ,
a = −Ae = −BNe,
b = Ax̃−Be = BNx̃−Be,

(3.17)

where x̃ = (1, 2, · · · , k)T , N is given explicitly in (3.1). Hence, if A (or B) is given,
then B (or A), a and b can also be fixed. The question is how to choose A and B
such that the corresponding BIM has desirable properties? In the following, we focus
on how to choose A and B in terms of the positive definiteness and sparsity.

Definition 3.5. A matrix N is said to be positive stable if all its eigenvalues
have positive real parts.

Lemma 3.6. ( [39]) N is positive stable if and only if there exists a symmetric
positive definite (SPD) matrix B such that

(3.18) BN +NTB

is positive definite.

Especially, if (3.18) is positive definite with a positive diagonal matrix B, N is
also called diagonally stable or “Lyapunov diagonally stable” [3, 25].

Lemma 3.7. ( [3]) A matrix N is diagonally stable if and only if for every nonzero
positive semidefinite matrix B, BN has a positive diagonal element.

Lemma 3.7 provides a necessary condition for a diagonally stable N such that
all the diagonal elements of N are positive. From Theorem 3.2, the matrix N for
different k (2 ≤ k ≤ 8) can be given explicitly as

N2 =

(
1 1/4
−4 2

)
, N3 =

 1/2 1/2 −1/18
−2 1 2/9
9/2 −9/2 13/6

 , N4 =


1/6 3/4 −1/6 1/48
−4/3 1/2 4/9 −1/24
3/2 −9/4 7/6 3/16

−16/3 6 −16/3 7/3

 ,

N5 =


−1/12 1 −1/3 1/12 −1/100
−1 1/6 2/3 −1/8 1/75
3/4 −3/2 2/3 3/8 −3/100
−4/3 2 −8/3 4/3 4/25
25/4 −25/3 25/3 −25/4 149/60

 ,

N6 =


−17/60 5/4 −5/9 5/24 −1/20 1/180
−4/5 −1/12 8/9 −1/4 4/75 −1/180
9/20 −9/8 1/3 9/16 −9/100 1/120
−8/15 1 −16/9 5/6 8/25 −1/45
5/4 −25/12 25/9 −25/8 89/60 5/36

−36/5 45/4 −40/3 45/4 −36/5 157/60

 ,

N7 =



−9/20 3/2 −5/6 5/12 −3/20 1/30 −1/294
−2/3 −17/60 10/9 −5/12 2/15 −1/36 2/735
3/10 −9/10 1/12 3/4 −9/50 1/30 −3/980
−4/15 3/5 −4/3 1/2 12/25 −1/15 4/735
5/12 −5/6 25/18 −25/12 59/60 5/18 −5/294
−6/5 9/4 −10/3 15/4 −18/5 97/60 6/49
49/6 −147/10 245/12 −245/12 147/10 −49/6 383/140


,
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N8 =



−83/140 7/4 −7/6 35/48 −7/20 7/60 −1/42 1/448
−4/7 −9/20 4/3 −5/8 4/15 −1/12 4/245 −1/672
3/14 −3/4 −7/60 15/16 −3/10 1/12 −3/196 3/2240

−16/105 2/5 −16/15 1/4 16/25 −2/15 16/735 −1/560
5/28 −5/12 5/6 −25/16 13/20 5/12 −5/98 5/1344

−12/35 3/4 −4/3 15/8 −12/5 67/60 12/49 −3/224
7/6 −49/20 49/12 −245/48 49/10 −49/12 243/140 7/64

−64/7 56/3 −448/15 35 −448/15 56/3 −64/7 199/70


,

respectively. For the above given N , we present three types of B and A:
(1) B is chosen as a SPD matrix such that A = BN is positive definite.
From Lemma 3.6, we see that there exists a SPD matrix B such that BN is

positive definite, but the matrix B is difficult to find for a given N .
(2) B is chosen as a positive diagonal matrix such that A = BN is positive

definite.
Generally speaking, there may not exist a positive diagonal matrix B for a given

N such that BN is positive definite. Lemma 3.7 provides a sufficient and necessary
condition, there is no obvious way to explicitly find such a positive diagonal matrix.
The theoretical characterization of the class of diagonally stable matrices is not com-
putationally effective. Some optimization-based numerical algorithms were developed
in [4, 20, 27, 33]. Below, we present some computed B by using the interior point
methods in [4]. For k = 2, 3, 4, the corresponding B are given as

B2 =

(
1 0
0 1/2

)
, B3 =

 1 0 0
0 1/2 0
0 0 1/10

 , B4 =


1 0 0 0
0 3/4 0 0
0 0 1/4 0
0 0 0 1/10

 ,

respectively. Note that when such B exists, it is not unique. From Lemma 3.7, we
see that there exists no B for the given N when 5 ≤ k ≤ 8.

(3) B is chosen as an identity matrix such that A = N .
It is trivial to choose such matrices A and B since N can be given explicitly,

however the matrix A is only positive stable but not positive definite.
Below we present some BIM with A-stability.

Algorithm 3.1 (BIM with A-stability)

Let N be defined by Nk for 2 ≤ k ≤ 8, all methods defined by the following BIM
matrices and vectors{

B = Bk, A = BNk, a = −Ae, b = Ax̃−Be, for k = 2, 3, 4,
B = I, A = BNk, a = −Ae, b = Ax̃−Be, for k = 5, 6, 7, 8,

(3.19)

are A-stable.

4. Comparisons with some fully implicit Runge-Kutta methods. The
s-stage IRK is an important class of time-integration schemes and has been studied
extensively since they can offer high order accuracy and excellent stability [9,50]. IRK
can be characterized by the Butcher tableau

ĉ Â

b̂T
,

where the Runge-Kutta matrix Â is positive stable and dense, but not positive def-
inite. When applied to PDEs, one needs to solve a large, strongly coupled linear
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Fig. 4: Exact solutions for M = 50 (left) and M = 100 (right)

Table 3: The errors of BIM(k = 2, p = 4), BIM(k = 3, p = 4) and FIRK (Gauss(2))
for solving Example 3 with M = 50, Nf is the number of function evaluations

BIM(k = 2, p = 4) BIM(k = 3, p = 4) FIRK

Nf 1/τ |ye − y| order 1/τ |ye − y| order 1/τ |ye − y| order
48 48 1.15e+0 48 1.05e+0 24 3.69e+0
96 96 6.86e-1 0.74 96 9.98e-1 0.07 48 1.09e+0 1.75
192 192 8.49e-2 3.01 192 5.63e-2 4.15 96 9.12e-2 3.57
384 384 4.68e-3 4.18 384 3.02e-3 4.22 192 7.33e-3 3.64
768 768 3.11e-4 3.91 768 1.80e-4 4.07 384 4.64e-4 3.98
1536 1536 1.99e-5 3.97 1536 1.06e-5 4.09 768 3.00e-5 3.95
3072 3072 1.24e-6 4.00 3072 6.15e-7 4.10 1536 1.87e-6 4.00
6144 6144 7.76e-8 4.00 6144 3.71e-8 4.05 3072 1.17e-7 4.00

system at every time step. Because the lack of positive definiteness of Â, the linear
system is often difficult to precondition and solve by iterative methods. On the other
hand, for BIM the stability functions are independent of the matrices A and B, so it
is possible to construct different methods with the desired order and stability prop-
erties. Algorithms 3.1 provides schemes with up to 8th order of accuracy. For these
schemes, B can be chosen as a positive diagonal matrix or an identity matrix, and A
is positive definite for A-stable algorithm with 2 ≤ k ≤ 4.

Fig. 5: FIRK (Gauss(3) (top) and BIM(k = 5, p = 6) (bottom), (T0 = t0, T1 = t3,
T2 = t6, T3 = t9, T4 = t12, T5 = t15)

15



Table 4: The errors of BIM(k = 4, p = 6), BIM(k = 5, p = 6) and FIRK(Gauss(3))
for solving Example 3 with M = 50, Nf is the number of function evaluations

BIM(k = 4, p = 6) BIM(k = 5, p = 6) FIRK

Nf 1/τ |ye − y| order 1/τ |ye − y| order 1/τ |ye − y| order

60 60 1.31e+0 60 5.64e-1 20 1.52e+0
120 120 5.41e-1 1.28 120 7.78e-1 -0.46 40 3.06e-1 2.31
240 240 2.20e-2 4.62 240 2.01e-2 5.28 80 1.29e-2 4.57
480 480 3.98e-4 5.79 480 7.82e-5 8.00 160 2.36e-4 5.77
960 960 4.53e-6 6.46 960 2.22e-6 5.14 320 3.78e-6 5.97
1920 1920 1.01e-7 5.48 1920 3.11e-8 6.16 640 5.98e-8 5.98
3840 3840 1.51e-9 6.06 3840 4.60e-10 6.08 1280 9.48e-10 5.98
7680 7680 2.39e-11 5.98 7680 6.77e-12 6.08 2560 1.48e-11 6.00

Table 5: The errors of BIM(k = 2, p = 4), BIM(k = 3, p = 4) and FIRK(Gauss(2))
for solving Example 3 with M = 100, Nf is the number of function evaluations

BIM(k = 2, p = 4) BIM(k = 3, p = 4) FIRK

Nf 1/τ |ye − y| order 1/τ |ye − y| order 1/τ |ye − y| order
48 48 3.07e+0 48 2.91e+0 24 4.19e+0
96 96 1.64e+0 0.90 96 1.45e+0 1.00 48 3.22e+0 0.38
192 192 8.77e-1 0.90 192 1.13e+0 0.36 96 4.75e-1 2.75
384 384 5.81e-2 3.92 384 5.56e-2 4.35 192 4.75e-2 3.32
768 768 3.04e-3 4.25 768 2.98e-3 4.22 384 2.80e-3 4.08
1536 1536 2.08e-4 3.87 1536 1.80e-4 4.05 768 1.71e-4 4.03
3072 3072 1.29e-5 4.01 3072 1.12e-5 4.00 1536 1.06e-5 4.00
6144 6144 8.14e-7 3.99 6144 6.99e-7 4.00 3072 6.62e-7 4.00

In this section, we compare the s-stage FIRK algorithms (Gauss-Legendre and
BIM for solving the following ODE.

Example 3. y′ = −250y + f(t), t ∈ (0, 1], y(0) = 0.

Here f(t) is chosen such that the exact solution is

y(t) =

M∑
m=1

bm sin 2mπt,

where bm = 9
2mπ (cos

mπ
2 cosmπ)+ 5

2m2π2 (sin
mπ
2 cosmπ)− 7

mπ cosmπ. Figure 4 shows
that the smoothness of the solution becomes worse when M increases. In the experi-
ments, we will use two different values of M = 50, 100.

Since the main computational costs for these two methods are the evaluations of
the functions and solving the linear systems, we compare the errors and the order of
convergence by setting the same number, denoted as Nf , of function evaluations or
the number of linear systems required to solve. In Tables 3-6, |ye − y| denotes the
maximum norm of the error between the exact solution ye and the numerical solution
y in the entire time interval. We see that none of the algorithms is able to achieve
the optimal order if the time step size τ is too large, the reason is that the solution
is not smooth in part of the interval as shown in Figure 4. When the time step size
τ decreases, it is clear that all the algorithms converge at the optimal order. Table
3 show that the errors of BIM(k = 2, p = 4) and BIM(k = 3, p = 4) are smaller
than Gauss(2). If we choose larger M = 100, the numerical results in Table 5 show
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Table 6: The errors of BIM(k = 4, p = 6), BIM(k = 5, p = 6) and FIRK(Gauss(3))
for solving Example 3 with M = 100, Nf is the number of function evaluations

BIM(k = 4, p = 6) BIM(k = 5, p = 6) FIRK

Nf 1/τ |ye − y| order 1/τ |ye − y| order 1/τ |ye − y| order

60 60 3.45e+0 60 1.53e+0 20 4.87e+0
120 120 1.13e+0 1.60 120 9.77e-1 0.64 40 5.63e-1 3.11
240 240 5.62e-1 1.01 240 7.44e-1 0.39 80 1.70e-1 1.72
480 480 2.94e-2 4.26 480 2.13e-2 5.13 160 1.03e-3 7.37
960 960 4.98e-4 5.88 960 8.02e-5 8.05 320 4.17e-5 4.63
1920 1920 7.18e-6 6.12 1920 2.02e-6 5.31 640 6.12e-7 6.09
3840 3840 1.11e-7 6.02 3840 3.26e-8 5.96 1280 9.72e-9 5.98
7680 7680 1.72e-9 6.01 7680 4.82e-10 6.08 2560 1.52e-10 6.00

that BIM are almost the same as that of FIRK in terms of the errors. From the
numerical results in Tables 4 and 6 we observe that the error of BIM(k = 5, p = 6)
is a little smaller than that of FIRK (Gauss(3)) algorithms when M = 50, and the
errors are almost the same in the case M = 100. Tables 4 and 6 also show that
Gauss(3) performs a little better than BIM(k = 4, p = 6) in the case both M = 50
and M = 100.

In Figure 5, we compare a different aspect of FIRK (Gauss(3)) and BIM(k =
5, p = 6). We observe that in a single time step Gauss(3) produces one solution at
the cost of three function evaluations at three not equally spaced temporal locations,
BIM(k = 5, p = 6) produces five solutions at five equally spaced temporal locations. It
is clear that FIRK and BIM have the same desirable properties of high order accuracy,
good stability and requiring one starting value. However, k in BIM is usually larger
than s in FIRK to achieve the same order of convergence. This means that a larger
system needs to be solved for BIM at a time, although the number of blocks of BIM is
fewer than FIRK at the final time; see Figure 5. Fortunately, the coefficient matrix of
BIM is positive definite if the matrices A and B are properly chosen, and as a result,
the systems are easier to solve. Moreover, BIM produces solutions at more temporal
locations, that might be useful for certain applications.

5. BIM for parabolic PDEs. In this section, we study the proposed BIM for
parabolic PDEs. We provide a convergence theory and some a priori error estimates
for a model problem whose discretization consisting of BIM in time and the regu-
lar finite element in space. In order to solve the large systems resulting from the
discretization, some parallel DD preconditioners are also introduced and studied.

5.1. A model problem and its finite element discretization. We consider
a model parabolic equation

(5.1)

 ut −∇ · (a(x)∇u) = f, in Ω× (0, T ],
u(x, t) = 0, on ∂Ω× (0, T ],
u(x, 0) = u0(x), in Ω,

where Ω ⊂ Rd (d = 2 or 3) is a bounded, open polygonal (or polyhedra) domain,
0 < a0 ≤ a(x) < +∞ and f(x, t) ∈ L2(Ω× (0, T ]), u0(x) ∈ L2(Ω). For simplicity, we
set a(x) ≡ 1 in some of the following discussions.

Let 0 = t0 < t1 < · · · < tm = T be a uniform temporal mesh and τ = ti − ti−1.
Suppose ui = u(x, ti) is the solution at time ti. Traditional time-stepping methods
solve (5.1) time step by time step. We consider the method outlined in (2.12) for the
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time discretization of (5.1) with block size k ≤ m at time t1, t2, · · · , tk, that is to find
ui ∈ H1

0 (Ω), i = 1, 2, · · · , k, such that

(5.2)



k∑
j=1

a1j(u
j , v1) + τ

k∑
j=1

b1j(∇uj ,∇v1) = (g1, v1),

k∑
j=1

a2j(u
j , v2) + τ

k∑
j=1

b2j(∇uj ,∇v2) = (g2, v2),

...
k∑

j=1

akj(u
j , vk) + τ

k∑
j=1

bkj(∇uj ,∇vk) = (gk, vk),

where

(gi, vi) = −ai0(u
0, vi)+τbi0(f

0, vi)−τbi0(∇u0,∇vi)+τ

k∑
j=1

bij(f
j , vi) ∀vi ∈ H1

0 (Ω).

Let u = (u1, u2, · · · , uk)T ∈ (H1
0 (Ω))

k, f = (f1, f2, · · · , fk)T ∈ (L2(Ω× [0, T ]))k. For
any v ∈ (H1

0 (Ω))
k, the equivalent variational form of (5.2) is

(5.3) aτ (u,v) ≡ (Au,v) + τ(B∇u,∇v) = (g,v),

where ∇u = (∇u1,∇u2, · · · ,∇uk)T and

(g,v) = τ(Bf ,v)− (a⊗ u0,v) + τ(b⊗ f0,v)− τ(b⊗∇u0,∇v).

Next, we present the boundedness of the bilinear form aτ (·, ·) defined in (5.3)
from above and below under the ∥ · ∥τ norm for different matrices A and B. The
estimates are summarized in the following four lemmas.

Lemma 5.1. Suppose that B is SPD and A is positive definite, there exist positive
constants C0 and c0 independent of τ such that

aτ (u,v) ≤ C0∥u∥τ∥v∥τ ∀u,v ∈ (H1
0 (Ω))

k

and

aτ (u,u) ≥ c0∥u∥2τ ∀u ∈ (H1
0 (Ω))

k,

where ∥v∥2τ = ∥v∥2 + τ∥∇v∥2.
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Proof. It follows from the Cauchy-Schwarz inequality that

aτ (u,v) = (Au,v) + τ(B∇u,∇v)

=

k∑
i,j=1

aij(u
i, vj) + τ

k∑
i,j=1

bij(∇ui,∇vj)

≤ amax

k∑
i,j=1

∥ui∥∥vj∥+ τbmax

k∑
i,j=1

∥∇ui∥∥∇vj∥

≤ C0(∥u∥∥v∥+ τ∥∇u∥∥∇v∥)

≤ C0(∥u+ τ∥∇u∥) 1
2 (∥v + τ∥∇v∥) 1

2

= C0∥u∥τ∥v∥τ ,(5.4)

where amax = maxki,j=1 |aij |, bmax = maxki,j=1 |bij | and C0 = kmax{amax, bmax}.
Further, since B is SPD and A is positive definite, we have

aτ (u,u) = (Au,u) + τ(B∇u,∇u)

≥ 1

2
λmin(A+AT )∥u∥2 + τλmin(B)∥∇u∥2

≥ c0∥u∥2τ ,(5.5)

where c0 = min{ 1
2λmin(A+AT ), λmin(B)}.

Lemma 5.2. Suppose that B is SPD and A is not positive definite, we have

aτ (u,v) ≤ C0∥u∥τ∥v∥τ ∀u,v ∈ (H1
0 (Ω))

k

and

aτ (u,u) ≥ c1τ∥u∥21 − c2∥u∥2 ∀u ∈ (H1
0 (Ω))

k,

where C0, c1 and c2 are positive constants and independent of τ .

Proof. The upper bound has been estimated in (5.4). Since B is SPD and A is
not positive definite, the smallest eigenvalue of 1

2 (A+AT ) is negative, we have

aτ (u,u) = (Au,u) + τ(B∇u,∇u)

≥ 1

2
λmin(A+AT )∥u∥2 + τλmin(B)∥∇u∥2

= c1∥u∥2τ − (c2 + c1)∥u∥2,(5.6)

where c1 = λmin(B) and c2 = − 1
2λmin(A+AT ).

Lemma 5.3. Suppose that B is positive stable and A is an identity matrix, there
exist positive constants C0 and c3 independent of τ such that

aτ (u,v) ≤ C0∥u∥τ∥v∥τ ∀u,v ∈ V

and

sup
v∈V

aτ (u,v)

∥v∥τ
≥ c3∥u∥τ ∀u ∈ V ,

where V = (L2(Ω))k+τ(H1
0 (Ω))

k. Moreover, there exists u ∈ V such that aτ (u,v) ̸=
0 for any v ∈ V .
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Proof. See Lemma 3.1 and Lemma 3.3 in [40].

Let Vh ∈ (H1
0 (Ω))

k be the piecewise linear continuous finite element space. The
finite element solution of (5.3) is to find uh ∈ Vh such that

(5.7) aτ (uh,vh) = (g,vh) ∀vh ∈ Vh.

Theorem 5.4. Suppose that B is SPD, there exists a positive constant C such
that

∥u− uh∥ ≤ Ch√
h2 + τ

∥u− uh∥τ uh ∈ Vh.

Further, (1) if A is positive definite, (5.7) has a unique solution and

∥u− uh∥τ ≤ C∥u∥τ ,

(2) if A is not positive definite, but h2/τ is sufficiently small, (5.7) has a unique
solution and

∥u− uh∥τ ≤ C∥u∥τ ,

where C > 0 is independent of h and τ .

Proof. From the a priori error estimate of the finite element method and the
definition of the τ -norm, we have

∥u− uh∥2 ≤ Ch2|u− uh|21 ≤ Ch2

τ
∥u− uh∥2τ − Ch2

τ
∥u− uh∥2,

which implies

(5.8) ∥u− uh∥ ≤ Ch√
h2 + τ

∥u− uh∥τ .

If A is positive definite, it follows from (5.4) and (5.5) that

aτ (u− uh,u) ≤ C∥u− uh∥τ∥u∥τ ,

and

aτ (u− uh,u) = aτ (u− uh,u− uh) ≥ c0∥u− uh∥2τ .

It is obvious that ∥u− u∥τ ≤ C∥uh∥τ .
If A is not positive definite, it follows from (5.6) and (5.8) that

aτ (u− uh,u) = aτ (u− uh,u− uh) ≥ c1∥u− uh∥2τ − (c1 + c2)∥u− uh∥2

≥
(
c1 −

Ch2

τ + h2

)
∥u− uh∥2τ .

Suppose h2/τ is sufficiently small, we have ∥u − uh∥τ ≤ C∥u∥τ , where C > 0 is
independent of h and τ .

20



Discretized by the finite element basis functions ϕj (1 ≤ j ≤ N), the bilinear
form (5.7) is equivalent to the following linear system of algebraic equations

(5.9) A U ≡ (A⊗M + τB ⊗K) U = F , A ∈ RkN×kN , F ∈ RkN ,

where A ∈ Rk×k and B ∈ Rk×k are the BIM matrices, M ∈ RN×N and K ∈ RN×N

denote the mass matrix and the stiffness matrix, respectively. U and F are vectors
corresponding to the nodal values of uh and g.

When BIM is used for PDEs, it results in a kN×kN linear system (5.9). In prac-
tice, N is usually large and K is highly ill-conditioned, a preconditioner is important
if the system is solved by a Krylov subspace method.

5.2. Parallel preconditioning techniques. Note that (5.9) also arises from
the classical implicit Runge-Kutta methods, in such a situation A is an identity
matrix and B is the Runge-Kutta matrix which is dense, non-symmetric and not
positive definite. Depending on how B is approximated, several preconditioners are
available [28–30, 35, 40, 43, 47]. Different from the Runge-Kutta algorithms, for BIM,
the matrix B in (5.9) is a positive diagonal matrix or an identity matrix, the matrix A
is dense and positive definite or positive stable. Now we present some preconditioners
for BIM based on the partition of the matrices M and K using an overlapping
decomposition of the spatial mesh [46,49].

Let TH be a coarse mesh covering Ω with mesh size H, and Th be a fine mesh with
mesh size h. Denote V0 and Vh as the finite element spaces consisting of continuous
piecewise linear functions associated with the meshes TH and Th, respectively. We

introduce a non-overlapping decomposition Ω =
∑Np

i=1 Ωi on Th, where each Ωi is
a union of some elements from Th, and Np is the number of subdomains. Then,
the overlapping subdomains Ω′

i can be obtained by adding some layers of fine mesh
elements from the adjacent subdomains. Denote the finite element subspace on Ω′

i as
Vi = Vh ∩H1

0 (Ω
′
i) and let Ni be the dimension of Vi, we obtain

Vh = (Vh)
k and Vi = (Vi)

k, (i = 0, 1, 2, . . . , Np),

where k is the block size of the chosen BIM. Define the single time step restriction
matrixRi ∈ RNi×N : Vh → Vi, the block restriction matrixRi ∈ RkNi×kN : Vh → Vi

can then be defined as

Ri = diag{Ri,Ri, · · · ,Ri}.

Therefore, the space Vh admits the following decomposition

(5.10) Vh =

Np∑
i=1

RT
i Vi and Vh = RT

0 V0 +

Np∑
i=1

RT
i Vi,

which are needed for the one-level and two-level methods, respectively. Here RT
i

denotes the transpose of Ri (i = 0, 1, . . . , Np). For R0 there are many choices, in
this paper, we only consider these based on the basis functions of the coarse and fine
finite element spaces. Ri (i > 0) is a sub-identity matrix whose diagonal elements
corresponding to the subdomain Ωi are one and all other elements are zero. Note that
the coarse and fine meshes don’t have to be nested. Then, we can define the following
preconditioners.
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Table 7: The condition numbers of the matrices with preconditioners P(1) and P(2)

for Algorithm 3.1 applied to Example 4

k κ(A) κ(P(1)A) κ(P(2)A)
2 2.10e+3 122.66 16.43
3 8.76e+3 128.26 17.12
4 1.18e+4 159.73 20.69
5 2.58e+3 198.29 25.77
6 3.29e+3 252.68 39.13
7 4.74e+3 366.23 71.59
8 6.83e+3 531.51 158.74

• One-level additive Schwarz preconditioner

(5.11) P(1) =

Np∑
i=1

RT
i A

−1
i Ri.

• Two-level additive Schwarz preconditioner

(5.12) P(2) = RT
0 A

−1
0 R0 +

Np∑
i=1

RT
i A

−1
i Ri,

where A0 = R0ART
0 is the restriction of A to the coarse space V0, Ai = RiART

i =
A⊗Mi+τB⊗Ki is the restriction of A to the subspaces Vi (i ≥ 1), and the matrices
Mi and Ki are defined by

Mi = RiMRT
i and Ki = RiKRT

i .

All inverses in (5.11) and (5.12) are understood as subspace inverse. In practical
applications, they are often approximated to save computational cost.

Remark 5.5. We remark that it is important to select the appropriate precondi-
tioner for each practical application. For example if the number of spatial variables
is small, such as in ODEs, then the DD method is not necessary. The one-level
DD method is useful when the number of processors is small, and the two-level DD
methods are for the situations when the number of subdomains is large.

5.3. Some numerical studies of the preconditioners. In this section, we
investigate the performance of the proposed Schwarz preconditioners in terms of the
condition number, the eigenvalue distribution and the number of GMRES iterations.
In the experiments, Ω = [0, 1] × [0, 1] is covered by a uniform coarse mesh of size
H = 1/16, and a uniform fine mesh of size h = 1/64. The spatial fine mesh is
decomposed into 4× 4 subdomains. The overlapping size is 1 and the time step size
τ is chosen as τ = h2/p (p = k + 1 when k is odd and p = k + 2 when k is even),
where p denotes the order of accuracy in time. All the preconditioners are constructed
exactly; i.e., the inverse of the submatrix and coarse matrix are computed exactly.

Example 4. We consider an advection-diffusion equation ut −∆u+ ux + uy = f, in Ω× (0, T ],
u(x, y, t) = 0, on ∂Ω× (0, T ],
u(x, y, 0) = sin(πx) sin(πy), in Ω,
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Fig. 6: All eigenvalues of the matrices A (blue) and P(2)A (red) for Algorithm 3.1,
zoom-in is for the eigenvalues of A (near 0)

where f is chosen such that the exact solution is u(x, y, t) = sin(πx) sin(πy)e−t.

We study Algorithm 3.1 for Example 4. Table 7 presents the 2-norm condition
number of the matrix A and of A preconditioned by P(1) and P(2), respectively. It
shows that the condition number of A grows firstly with k from 2 to 4, and then
there is a drop from k = 4 to k = 5, afterward, it increases again with k ranging
from 5 to 8. The reason is that the BIM matrix B is chosen as a positive diagonal
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Table 8: The number of GMRES iterations with the one-level additive Schwarz pre-

conditioner P(1) for Algorithm 3.1 applied to Example 4 with h = 1/128 and τ = h2/p

Np 16 64 256

k
δ

0 1 2 0 1 2 0 1 2

2 55 37 30 72 50 38 94 63 55
3 86 59 47 99 85 65 180 111 98
4 109 70 58 161 110 83 202 143 119
5 118 86 72 161 118 97 226 150 129
6 109 82 70 163 109 94 218 157 130
7 112 83 66 155 111 89 205 145 119
8 112 80 68 155 111 87 200 145 120

Table 9: The number of GMRES iterations with the two-level additive Schwarz pre-

conditioner P(2) for Algorithm 3.1 applied to Example 4 with H = 1/16, h = 1/128
and τ = h2/p

Np 16 64 256

k
δ

0 1 2 0 1 2 0 1 2

2 27 23 22 28 24 23 44 33 28
3 27 23 22 28 24 24 44 35 29
4 26 23 22 27 23 23 33 28 25
5 25 21 21 26 23 22 40 32 27
6 24 21 21 25 22 22 40 30 27
7 24 21 20 25 22 21 30 27 23
8 23 21 20 25 22 21 38 30 26

matrix for the cases k = 2, 3, 4 and as an identity matrix for the cases k = 5, 6, 7, 8. It
seems that the preconditioner with identity matrix B yields a lower condition number
than the preconditioner with the positive diagonal matrix B. All the preconditioners
are able to reduce the condition number, which increases with k, and the two-level
preconditioner P(2) performs better than the one-level preconditioner P(1).

When the Schwarz preconditioners are accelerated by GMRES [46, 49], the ei-
genvalue distribution of the preconditioned matrix is an important indicator for the
performance of GMRES. In Figure 6, we plot the eigenvalues of A and the precon-
ditioned matrix P(2)A for Algorithms 3.1. It is clear that some eigenvalues of A
are close to the origin and the eigenvalues of P(2)A are all away from the origin.
Moreover, it is interesting that the eigenvalues of A are clustered on a single line for
BIM with a positive diagonal matrix B and are clustered on k lines for BIM with an
identity matrix B.

Finally, we solve Example 4 using GMRES preconditioned by P(1) and P(2). In
the implementation, GMRES(30) is used with relative tolerance 10−6. In Table 8, we

report iteration counts for P(1) by varying the number of subdomians Np, overlapping
size δ and block size k, the spacial mesh size and time step size are h = 1/128 and
τ = h2/p, respectively. For a given block size k, it shows the iteration counts decrease

24



with the increase of the overlapping size, and grow with the number of subdomains.
Moreover, the iteration counts increase a little from k = 2 to k = 4, and changes
slightly from k = 4 to k = 8. For the two-level preconditioner P(2), the coarse and
fine mesh sizes are H = 1/16 and h = 1/128, respectively. The results in Table
9 show that the iteration counts decrease with the overlapping size and is bounded
independently of the number of subdomains. Further, the number of iterations doesn’t
change much with the block size k.

6. Conclusions. In this paper we developed a unified framework for the class of
BIM with A-stability for parabolic problems. Similar to IRK, BIM offers high order of
accuracy, desirable stability properties, and requires a single initial value. Because of
the flexibility in selecting the BIM matrices, the resulting large, highly ill-conditioned
linear system is easier to precondition and solve than that from IRK. For some block
sizes, we derived the matrix form of B−1A explicitly, and show that it is positive
stable, moreover, we also derived positive diagonal matrices B and positive definite
matrices A explicitly. The other important result is that, the positive definiteness of
the coupled matrix A depends only on the positive definiteness of the spatial matrix
K. Using the properties of the BIM matrices, we developed a finite element theory
which is not possible for IRK because the lack of the positive definiteness of the Runge-
Kutta matrix. We also introduced and studied numerically some DD preconditioners
that are quite effective for the system of equations arising from the BIM discretization.
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Appendix A. Coefficients of the stability functions for BIM.

Table 10: Coefficients of the stability functions for BIM(2 ≤ k ≤ 8)

z8 z7 z6 z5 z4 z3 z2 z 1

k = 2
|C1(z)| -1 0 6
|C2(z)| 2 6 6
|C(z)| 2 -6 6

k = 3

|C1(z)| 1 -1 -6 12
|C2(z)| -1 -1 6 12
|C3(z)| 3 11 18 12
|C(z)| -3 11 -18 12

k = 4

|C1(z)| -3 5 15 -60 60
|C2(z)| 2 0 -15 0 60
|C3(z)| -3 -5 15 60 60
|C4(z)| 12 50 105 120 60
|C(z)| 12 -50 105 -120 60

k = 5

|C1(z)| 12 -26 -45 300 -540 360
|C2(z)| -6 4 45 -60 -180 360
|C3(z)| 6 4 -45 -60 180 360
|C4(z)| -12 -26 45 300 540 360
|C5(z)| 60 274 675 1020 900 360
|C(z)| -60 274 -675 1020 -900 360

k = 6

|C1(z)| -60 154 147 -1680 4200 -5040 2520
|C2(z)| 24 -28 -168 420 420 -2520 2520
|C3(z)| -18 0 147 0 -840 0 2520
|C4(z)| 24 28 -168 -420 420 2520 2520
|C5(z)| -60 -154 147 1680 4200 5040 2520
|C6(z)| 360 1764 4872 8820 10500 7560 2520
|C(z)| 360 -1764 4872 -8820 10500 -7560 2520

k = 7

|C1(z)| 90 -261 -105 2667 -8400 13860 -12600 5040
|C2(z)| -30 47 189 -693 0 3780 -7560 5040
|C3(z)| 18 -9 -147 -147 840 -1260 -2520 5040
|C4(z)| -18 -9 147 147 -840 -1260 2520 5040
|C5(z)| 30 47 -189 -693 0 3780 7560 5040
|C6(z)| -90 -261 105 2667 8400 13860 12600 5040
|C7(z)| 630 3267 9849 20307 29400 28980 17640 5040
|C(z)| -630 3267 -9849 20307 -29400 28980 -17640 5040

k = 8

|C1(z)| -210 669 -16 -6363 24045 -49140 61740 -45360 15120
|C2(z)| 60 -114 -331 1638 -1155 -7560 23940 -30240 15120
|C3(z)| -30 27 236 -441 -1155 3780 1260 -15120 15120
|C4(z)| 24 0 -205 0 1365 0 -6300 0 15120
|C5(z)| -30 -27 236 441 -1155 -3780 1260 15120 15120
|C6(z)| 60 114 -331 -1368 -1155 7560 23940 30240 15120
|C7(z)| -210 -669 -16 6363 24045 49140 61740 45360 15120
|C8(z)| 1680 9132 29531 67284 112245 136080 114660 60480 15120
|C(z)| 1680 -9132 29531 -67284 112245 -136080 114660 -60480 15120
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