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Abstract. A nonlinear elimination preconditioned inexact Newton (NEPIN) algorithm is pro-
posed for problems with localized strong nonlinearities. Due to unbalanced nonlinearities (``nonlinear
stiffness""), the traditional inexact Newton method often exhibits a long plateau in the norm of the
nonlinear residual or even fails to converge. NEPIN implicitly removes the components causing trou-
ble for the global convergence through a correction based on nonlinear elimination within a subspace
that provides a modified direction for the global Newton iteration. Numerical experiments show that
NEPIN can be more robust than global inexact Newton algorithms and maintain fast convergence
even for challenging problems, such as full potential transonic flows. NEPIN complements several
previously studied nonlinear preconditioners with which it compares favorably experimentally on a
classic shocked duct flow problem considered herein. NEPIN is shown to be fairly insensitive to
mesh resolution and ``bad"" subproblem identification based on the local Mach number or the local
nonlinear residual for transonic flow over a wing.
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1. Introduction. Nonlinear preconditioning is a globalization technique for
Newton's method applied to systems of algebraic equations with unbalanced nonlin-
earities. Without a good initial iterate, the norm of the nonlinear residual may plateau
for many iterations until a domain of superlinear convergence is found, progress be-
ing limited by damping necessitated by a small number of components. Nonlinear
preconditioning is motivated by analogy to linear preconditioning. The goal of linear
preconditioning is to reduce the condition number or cluster the spectrum of a linear
system by (formal) pre- or post-multiplication by a preconditioning matrix, which
may be thought of as changing the equations or changing the unknowns, respectively.

Nonlinear preconditioning techniques handle unbalanced nonlinearities by apply-
ing a nonlinear transformation on the left- or right-hand side of the original nonlinear
function, replacing the nonlinear functions or the unknowns, respectively. Left nonlin-
ear preconditioners lead to a system with the same root as the original system, which
is solved by an outer Jacobian-free Newton method [26]. Examples include the ad-
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A1580 LIU, HWANG, LUO, CAI, AND KEYES

ditive (and multiplicative) Schwarz preconditioned inexact Newton methods ASPIN
(MSPIN) [1, 3, 5, 22, 38] and two-level ASPIN [6, 34] and MSPIN [28, 29, 30], and
the restricted nonlinear Schwarz preconditioners RASPEN [12, 16] and SRASPEN [9].
As with linear preconditioning, a left-preconditioned Jacobian is generally not formed
explicitly, it being typically much denser than the original; only the matrix-vector
multiplication is provided for Krylov subspace methods.

On the other hand, right nonlinear preconditioners are often associated with a
nonlinear elimination (NE) [27] procedure, such as that described in [10] and in nonlin-
early preconditioned inexact Newton methods [14, 20, 30, 40], which have been applied
effectively to such challenging problems as incompressible Navier--Stokes equations at
high Reynolds numbers [32], blood flow in branching arteries [33], and two-phase
flow in porous media [41]. Many variants also attract increasing attention, such as
nonlinear FETI (finite element tearing and interconnecting) [35], nonlinear FETI-DP
(FETI-dual primal) [23, 24, 25] and nonlinear BDDC (balancing domain decomposi-
tion by constraints) [23, 25].

In this paper, we propose a new left-preconditioned algorithm named NEPIN
(nonlinear elimination preconditioned inexact Newton) and demonstrate it for the
classical challenging problem of full potential transonic flow. Whereas the right non-
linear preconditioner based on NE referred to as INB-NE [19, 20, 32, 40] provides
an improved starting point for the global Newton iteration by eliminating within a
subspace, NEPIN applies nonlinear elimination on the left-hand side and provides a
modified Newton direction via a subspace correction. It can thus be regarded as a
variant of the left-preconditioned ASPIN but without its major drawback. NEPIN
overcomes the difficulty of a densified Jacobian that is defined only implicitly, thus
maintaining wide scope for favored linear preconditioning techniques in solving for
the Newton correction.

In section 2, we present implementation details of the NEPIN algorithm, as well
as an illustrative example of two scalar components, on which it is compared to a
global inexact Newton method with backtracking (INB). We discuss the relationship
between NEPIN and an NE preconditioned version of INB (INB-NE) in section 2.4,
between NEPIN and ASPIN in section 2.5, and between NEPIN and RASPEN in
section 2.6. In section 3 we consider one-dimensional and two-dimensional problems
from transonic aerodynamics, and develop physical insight on the selection of the
degrees of freedom to be eliminated. Conclusions and future directions follow in
section 4.

2. The NEPIN algorithm. Consider a nonlinear system of equations F : \^D \subset 
Rn \rightarrow Rn, where we seek a vector x\ast \in Rn such that

(2.1) F (x\ast ) = 0.

Here F (x) = [F1, F2, . . . , Fn]
T , Fi = Fi(x) = Fi(x1, . . . , xn), and x = [x1, x2, . . . , xn]

T .
Let J(x) be the Jacobian of the nonlinear system F (x). INB, as recalled in Algo-
rithm 2.1, is commonly used for solving such systems. The parameter \eta k controls how
accurately the Jacobian linear system needs to be solved. In this paper, we choose a
fixed value for \eta k. Some adaptive choices of \eta k can be found in [13]. Parameter \lambda (k)

is obtained from a standard backtracking line-search technique [11]. It determines a
step size along the inexact Newton direction d(k) such that

(2.2) \^f(x(k)  - \lambda (k)d(k)) \leqslant \^f(x(k)) - \alpha \lambda (k)F (x(k))TJ(x(k))d(k),
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NONLINEAR ELIMINATION PRECONDITIONED NEWTON A1581

Algorithm 2.1 INB.

Specify the initial guess x(0) and k = 0.
while \| F (x(k))\| > \epsilon global - nonlinear - rtol\| F (x(0))\| do
1. Find the inexact Newton direction d(k) such that

(2.3) \| F (x(k)) - F \prime (x(k))d(k)\| \leqslant \eta k\| F (x(k))\| , \eta k \in (0, 1).

2. Determine the damping parameter \lambda (k) \in (0, 1] using a backtracking line
search [11] along the direction d(k).
3. The approximate solution at the k + 1 iteration is given by

x(k+1) = x(k)  - \lambda (k)d(k),

and set k = k + 1.
end while

where the merit function \^f(x) = 1
2\| F (x)\| 2, J(x) = F \prime (x), and \alpha is a small scalar

(herein 10 - 4). As described in [5], the value of \lambda (k) is often determined by the
components with the strongest nonlinearities, and too small values for the \lambda (k) lead
to a long period of small reduction in norm of the nonlinear residual. Borrowing the
idea from NE [27], we introduce a subspace correction phase to handle these ``bad""
components in the following subsection. In contrast to the modification of the variable
x(k) in the NE algorithm, we replace d(k) by a modified Newton direction in (2.2),
thus allowing an increased step length.

2.1. The modified Newton direction. Variables are partitioned into two
groups and labeled as xb and xg, i.e., x = [xb, xg]

T , and the corresponding nonlinear
system F : Rn \rightarrow Rn is conformally split as

(2.4) F (x) = F (xb, xg) =

\biggl[ 
Fb(xb, xg)
Fg(xb, xg)

\biggr] 
, xb \in Rnb , xg \in Rng ,

where nb + ng = n and xb and xg are bad and ``good"" components, respectively.
The NE preconditioned system

(2.5) \scrF (x) = \scrF (xb, xg) =

\biggl[ 
Tb(xb, xg)
Fg(xb, xg)

\biggr] 
=

\biggl[ 
Tb(x)
Fg(x)

\biggr] 
= 0

is obtained by solving

(2.6) Fb(xb  - Tb(x), xg) = 0

for Tb(x). Taking the derivatives of (2.6) with respect to xb and xg yields

(2.7)

\biggl( 
\partial Fb

\partial ub

\biggr) \biggl( 
Ib  - 

\partial Tb

\partial xb

\biggr) 
= 0

and

(2.8)  - \partial Fb

\partial ub

\partial Tb

\partial xg
+

\partial Fb

\partial xg
= 0,

where ub = xb  - Tb(x) and Ib \in Rnb\times nb is the identity matrix that has the same
dimension as the xb block. Assuming that \partial Fb

\partial ub
is nonsingular, solving (2.7) and (2.8),

and concatenating the results columnwise, we obtain
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A1582 LIU, HWANG, LUO, CAI, AND KEYES

(2.9)
\partial Tb

\partial x
=

\biggl( 
\partial Fb

\partial ub

\biggr)  - 1 \biggl[ 
\partial Fb

\partial ub

\partial Fb

\partial xg

\biggr] 
from which it follows that the Jacobian of \scrF (x) can be written as

(2.10) \scrJ (x) =

\left[  \Bigl( \partial Fb

\partial ub

\Bigr)  - 1

Ig

\right]  \Biggl[ \partial Fb

\partial ub

\partial Fb

\partial xg

\partial Fg

\partial xb

\partial Fg

\partial xg

\Biggr] 
,

where Ig \in Rng\times ng is the identity matrix that has the same dimension as the xg

block. In a practical implementation, it is more convenient and cheaper to employ
the following approximation,

(2.11) \scrJ (x) \approx \^\scrJ (x) =

\Biggl[ 
J - 1
b

Ig

\Biggr] 
J(ub, xg), Jb = RbJ(ub, xg)R

T
b ,

where Rb is an nb \times n restriction matrix that extracts the bad components. Now we
consider the Newton direction equation associated with the preconditioned system,
namely,

(2.12) \^\scrJ (x) \^d = \scrF (x).

The coefficient matrix corresponds to the block diagonally preconditioned linear Ja-
cobian system as shown in (2.10). Generally speaking, the block matrix\biggl( 

\partial Fb

\partial ub

\biggr)  - 1
\partial Fb

\partial xg

is dense and expensive to compute and store, even when \partial Fb

\partial ub
and \partial Fb

\partial xg
are sparse. To

overcome this difficulty, we multiply (2.12) by the inverse of the block diagonal matrix
in (2.11), obtaining

(2.13) J(ub, xg) \^d =

\biggl[ 
JbTb(x)
Fg(x)

\biggr] 
, ub = xb  - Tb(x),

which is equivalent to (2.12) but invites conventional linear preconditioning techniques
of two or more levels, such as restricted additive Schwarz [8], BoomerAMG [17], and
others [39]. This differs from the Newton direction that would be obtained directly
from (2.4) in the upper portion of the right-hand side, where Fb(x) has been replaced
with JbTb(x). The extra cost per step is an elimination of the bad degrees of freedom
to obtain Tb, and a (generally) sparse matrix-vector multiplication.

Remark 2.1. In a neighborhood U of the exact solution x\ast , we assume that the
Jacobian J(x) = F \prime (x) is continuous, and J(x\ast ) and RbJ(x

\ast )RT
b are invertible. From

the Taylor expansion of the function Fb(x),

(2.14) Fb(x) = Fb(xb, xg) = Fb(xb - Tb(x), xg)+Jb(xb - Tb(x), xg)Tb(x)+o(\| Tb(x)\| ),

it follows from (2.6) that

(2.15) Fb(x) = Jb(xb  - Tb(x), xg)Tb(x) + o(\| Tb(x)\| ).
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NONLINEAR ELIMINATION PRECONDITIONED NEWTON A1583

Following [1, 29], the function Tb(x) is continuous and Tb(x
\ast ) = 0. Due to the conti-

nuity of J(x) and Tb(x), using (2.13) and (2.15), we deduce that

(2.16) J(xb  - Tb(x), xg) \rightarrow J(x),

\biggl[ 
JbTb(x)
Fg(x)

\biggr] 
\rightarrow 
\biggl[ 

Fb(x)
Fg(x)

\biggr] 
= F (x), as x \rightarrow x\ast .

Let d be the Newton direction satisfying

(2.17) J(x)d = F (x),

which implies the difference between the Newton direction and the modified Newton
direction vanishes in the neighborhood of x\ast , i.e., \^d \rightarrow d as x \rightarrow x\ast .

2.2. The basic algorithm. Algorithm 2.2 defines the NEPIN method. The key
idea is to replace the Newton direction in INB by a modification. We set x(0) as the
initial guess. At the kth iteration, the current approximate solution is denoted by
x(k) and x(k+1) is the new approximate solution.

Some practical remarks about Algorithm 2.2 follow:

(1) The subsets S
(0)
b and S

(0)
g are predetermined for the initial partition of the

index set S = \{ 1, 2, . . . , n\} . If we do not determine which components to
eliminate beforehand in the phase of the subspace correction, we can simply

Algorithm 2.2 NEPIN.

Specify the initial guess x(0) and k = 0.

Initialize the partition: S
(0)
b and S

(0)
g .

while \| F (x(k))\| > \epsilon global - nonlinear - rtol\| F (x(0))\| do

Step 1 (Subspace correction): Start from the initial guess T
(k)
b,0 = 0, i = 1, 2, . . . , N ,

find T
(k)
b by solving the following subproblems:

(2.18) Fb(x
(k)
b  - T

(k)
b , x(k)

g ) = 0,

and form the global residual

(2.19) g(k) =

\biggl[ 
J
(k)
b T

(k)
b

Fg

\biggr] 
, J

(k)
b = RbJ(x

(k)
b  - T

(k)
b , x(k)

g )RT
b .

Step 2: Find the inexact Newton direction \^d(k) by approximately solving

(2.20) J(x
(k)
b  - T

(k)
b , x(k)

g ) \^d(k) = g(k).

Step 3: Compute the new approximate solution.

(2.21) x(k+1) = x(k)  - \lambda (k) \^d(k),

where the step length \lambda (k) is determined by a backtracking line search [11] based

on the merit function \^f(x) = 1
2\| F (x)\| 2.

Set k = k + 1 and determine a new partition S = S
(k)
b

\bigcup 
S
(k)
g .

end while
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A1584 LIU, HWANG, LUO, CAI, AND KEYES

implement one-step standard Newton iteration by setting S
(0)
b = \emptyset and S

(0)
g =

S.
(2) The choice of bad components affects the quality of the preconditioning and

is crucial to success of the algorithm. As the dimension of the subspace
problem increases, it exacts more computational cost. However, if enough
bad components are not removed, the subsequent global Newton solver may
fail.

(3) The global nonlinear problem is iterated upon by INB until

(2.22) \| F (x(k))\| \leqslant \epsilon global - nonlinear - rtol\| F (x(0))\| .

The Jacobian system in (2.20) is solved by a Krylov subspace method, such
as GMRES [36], combined with the right restricted additive Schwarz (RAS)
preconditioner. The RAS preconditioner employs a full restriction operator,
but ignores the off-process values during interpolation [8]. We define the
restriction operator as R\delta 

i , where \delta is the size of overlap. The linear solver is
stopped when

\| g(k)  - J(x
(k)
b  - T

(k)
b , x(k)

g )M - 1
RAS(MRAS

\^d(k))\| \leqslant \epsilon global - linear - rtol\| g(k)\| ,

where

(2.23) M - 1
RAS =

N\sum 
i=1

(R0
i )

TJ - 1
i R\delta 

i , Ji = R\delta 
iJ(x

(k)
b  - T

(k)
b , x(k)

g )(R\delta 
i )

T .

(4) At the kth iteration, we define the subspace nonlinear problem according to
[33] as follows:

(2.24) G(z) =

\biggl[ 
Fb(z)

Rgz  - x
(k)
g

\biggr] 
= 0,

where Rg is an ng \times n restriction matrix that extracts the good components.
These subspace problems are solved by INB starting from z(0) = x(k) and the
stopping condition is set as

(2.25) \| G(z(p))\| \leqslant \epsilon sub - nonlinear - rtol\| G(z(0))\| .

The nonlinear correction T (k) is obtained from the solution z(p) of the sub-
space problem. The Jacobian systems of subspace problems are also solved
using GMRES and the right RAS preconditioner as the global Jacobian sys-
tem.

(5) From the Taylor expansion of the function F (x(k) + p(k)),

F (x(k) + p(k)) = F (x(k)) + F \prime (xk)p
(k) + o(\| p(k)\| ),(2.26)

it is easy to see that the Newton direction p(k) is reliable only when the dif-
ference between F (x(k) + p(k)) and the linear model F (x(k)) + F \prime (xk)p

(k) is
not too large. For problems with the local high nonlinearity, the high-order
terms in (2.26) dominate and the Newton direction is not a good downhill
direction, leading to slow convergence of INB. The difference between INB
and NEPIN lies in different descent directions. The modified Newton di-
rection corresponding to the nonlinearly preconditioned system in Step 2 of
Algorithm 2.2 is crucial to accomplishing fast convergence.
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Fig. 1. Contours of log(\| F (x)\| + 1) for m = 5 and the path using INB and NEPIN from the
starting point x0 = [2, 2]T . The blue circles and red stars represent the intermediate solution x(k)

corresponding to INB and NEPIN, respectively.

(6) In the linear case, Algorithm 2.2 is the same as the block Jacobi linear pre-
conditioning. If we have the linear system

(2.27) F (x) = Ax - b,

where

(2.28) A =

\biggl[ 
A11 A12

A21 A22

\biggr] 
, b =

\biggl[ 
b1
b2

\biggr] 
,

then

(2.29) \scrF NEPIN(x) = M - 1(Ax - b), M =

\biggl[ 
A11 0

I22

\biggr] 
,

where I22 is the identity matrix that has the same dimension as A22.

2.3. A simple illustrative example. Consider the system of two equations in
two unknowns with polynomial nonlinearity in the first that can be made arbitrarily
steep by increasing the exponent m.

(2.30) F (x1, x2) =

\biggl[ 
F1(x1, x2)
F2(x1, x2)

\biggr] 
=

\biggl[ 
(x1  - x3

2 + 1)m  - xm
2

x1 + 2x2  - 3

\biggr] 
= 0.

This is a test problem considered in other contexts [31, 40] to illustrate differences
between nonlinear preconditioning techniques. It is easy to verify that x\ast = [1, 1]T

is a root of this system. As shown in the left plot of Figure 1, the exact solution x\ast 

lies in a narrow valley and the contours log(\| F (x)\| + 1) near x\ast tend towards highly
eccentric ellipses. By setting

(2.31) F1(x1  - T1(x1, x2), x2) = 0,

we can solve explicitly for T1(x1, x2), because of the algebraic simplicity of the system,
and derive nonlinearly preconditioned systems as follows:

(2.32) \scrF (x1, x2) =

\biggl[ 
T1(x1, x2)
F2(x1, x2)

\biggr] 
=

\biggl[ 
x1  - x3

2 + 1 - x2

x1 + 2x2  - 3

\biggr] 
= 0.
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Table 1
The number of nonlinear iterations staring from different points. The relative tolerance for the

global Newton iterations is set to \epsilon global - nonlinear - rtol = 10 - 8.

INB NEPIN

Initial guess x0 m = 1 m = 3 m = 5 m = 1 m = 3 m = 5

x0 = [0, 0]T 5 8 10 5 6 6

x0 = [0, 2]T 5 10 12 5 5 4

x0 = [2, 0]T 5 1 7 5 6 6

x0 = [2, 2]T 5 12 13 5 5 4

Algorithm 2.3 One step of INB-NE.

Given the partitioning x(k) = [x
(k)
b , x

(k)
g ]T .

1. Compute a shifted starting point \~x(k) = G(x(k)) = [x
(k)
b  - T

(k)
b , x

(k)
g ]T by means

of a subspace correction such that Fb(x
(k)
b  - T

(k)
b , x

(k)
g ) = 0.

2. Find the inexact Newton direction d(k) such that

(2.33) \| F (\~x(k)) - F \prime (\~x(k))d(k)\| \leqslant \eta k\| F (\~x(k))\| .

3. Update x(k+1) = \~x(k)  - \lambda (k)d(k), where \lambda (k) \in (0, 1] is the damping parameter
determined by a line search along d(k).

It is noted that preconditioned functions \scrF (x1, x2) are independent of m.
In numerical tests, we choose four different initial guesses the same distance away

from the exact solution x\ast , i.e., x0 = [0, 0]T , x0 = [0, 2]T , x0 = [2, 0]T , x0 = [2, 2]T .
Corresponding to m = 1, 3, 5, Table 1 shows the number of Newton iterations for
solving INB and NEPIN, respectively. In contrast to INB, NEPIN is not very sensitive
to initial estimates and the parameter m. The right plot of Figure 1 shows the
respective paths of INB and NEPIN starting from the initial guess x0 = [2, 2]T . For
INB, the Newton direction at the first iteration is nearly parallel to the contours on
the steep hillside and then it takes 8 iterations to approach the bottom of the narrow
valley. However, it requires just 2 iterations for NEPIN, with its modified first step,
to go down the steep hill and enter the neighborhood of the exact solution x\ast .

2.4. Comparison with INB-NE. Right preconditioning changes the coordi-
nates of the solution, rather than of the residual, as in the understanding of ``right"" in
linear preconditioning; however, the switch from left to right is not as straightforward
as specifying where to apply a linear transformation in the nonlinear case. Our quick
review of the INB-NE algorithm follows [40].

Algorithm 2.3 gives details of one step of the INB-NE algorithm. Observe the
following:

(1) Step 1 of Algorithm 2.3 requires the same NE as in Step 1 of NEPIN (2.18).
For INB-NE, it is used to generate a new starting point before each global
Newton direction instead of replacing components of the right-hand side for
the Jacobian systems.

(2) Figure 2 plots the convergence histories for the example of section 2.3 zoomed
in to a consistent scale for the last few Newton steps for all four starting
guesses and both methods, together with their full residual convergence his-
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Fig. 2. Comparison between NEPIN and INB-NE for the example with m = 5 in subsection 2.3.
The left column shows the final stages of convergence using NEPIN and INB-NE, and the blue circles
and red x-marks represent the intermediate solution x(k) corresponding to NEPIN and INB-NE,
respectively. For INB-NE, the black dot represents the starting point after the subspace correction
phrase. The right column shows the norm of the Newton residuals.D
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Algorithm 2.4 One-step of ASPIN.

Given x(k).
1. Solve local problems F\Omega i

(x(k)  - g
(k)
i ) = 0, i = 1, . . . , N for g

(k)
i , starting from

the initial guess g
(k)
i = 0.

2. Let \scrF ASPIN(x(k)) =
\sum N

i=1 g
(k)
i and find the inexact Newton direction d(k) such

that

(2.34) \| \scrF ASPIN(x(k)) - \^\scrJ ASPIN(x(k))d(k)\| \leqslant \eta k\| \scrF ASPIN(x(k))\| .

3. Update x(k+1) = x(k)  - \lambda (k)d(k), where \lambda (k) \in (0, 1] is the damping parameter
determined by a line search based on the merit function f(x) = 1

2\| \scrF 
ASPIN(x)\| 2.

tories. NEPIN and INB-NE require essentially the same number of Newton
iterations for convergence starting from the same point. For a fixed number of
iterations, NEPIN reduces the norm of the nonlinear residual slightly better
in the first case, INB-NE in the third case; they perform essentially the same
from the second and fourth starting points. The zigzag dashed red lines show
how INB-NE shifts the starting vector for each Newton step to a point lower
in the valley of the merit function.

(3) The computational costs are roughly the same for each Newton iteration using
NEPIN and INB-NE since each of the three steps of elimination, global linear
solve, and line-search update have comparable cost.

2.5. Comparison with ASPIN. We consider the ASPIN version [5] of left
nonlinear preconditioning introduced for decompositions into subdomains, i.e., \Omega =\bigcup N

i=1 \Omega i. In the ASPIN algorithm, a Jacobian-free inexact Newton algorithm is used
to solve the nonlinearly preconditioned system

(2.35) \scrF ASPIN(x) =

N\sum 
i=1

gi(x) = 0,

where gi(x) is obtained by solving the local nonlinear system

(2.36) F\Omega i(x - gi(x)) = 0, i = 1, 2, . . . , N.

Following [1, 5, 38], the exact Jacobian of \scrF ASPIN can be written as

(2.37) \scrJ ASPIN(x) =

N\sum 
i=1

RT
i [RiJ(x - gi(x))R

T
i ]

 - 1RiJ(x - gi(x)),

where Ri is the restriction operator corresponding to the subdomain \Omega i. It is recom-
mended in [5] to use the following approximation:

(2.38) \^\scrJ ASPIN(x) =

N\sum 
i=1

RT
i [RiJ(x)R

T
i ]

 - 1RiJ(x).

The approximate Jacobian \^\scrJ ASPIN is never formed explicitly, but we instead provide
matrix-vector multiplications in Krylov subspace iterative methods.

Algorithm 2.4 gives details of one step of the ASPIN algorithm. Observe the
following:
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NONLINEAR ELIMINATION PRECONDITIONED NEWTON A1589

(1) The domain partition of ASPIN generally does not change during Newton
iterations, but the set of bad components may be different for NEPIN.

(2) Step 2 of Algorithm 2.4 requires the Newton direction corresponding to the
nonlinearly preconditioned system as in Step 2 of NEPIN. However, the line
search for NEPIN and ASPIN is based on different merit functions as shown
in step 3 of Algorithm 2.4 and NEPIN.

(3) For ASPIN, we consider the partition into two nonoverlapping subdomains,

i.e., \Omega = \Omega b

\bigcup 
\Omega g, x

(k) = [x
(k)
b , x

(k)
g ], g

(k)
b = [T

(k)
b ,0]T , and g

(k)
g = [0, T

(k)
g ]T .

The variables and equations can be written in the form

(2.39) Fb(x
(k)
b  - T

(k)
b , x(k)

g ) = 0, Fb(x
(k)
b , x(k)

g  - T (k)
g ) = 0,

and it is easy to get the nonlinearly preconditioned function

(2.40) \scrF ASPIN(x(k)) =

\Biggl[ 
T

(k)
b

T
(k)
g

\Biggr] 

and the approximate Jacobian

(2.41) \^\scrJ ASPIN(x(k)) =

\Biggl[ 
J - 1
b

J - 1
g

\Biggr] 
J(x(k)),

where J
(k)
b = RbJ(x

(k))RT
b and J

(k)
g = RgJ(x

(k))RT
g . In step 2 of Algo-

rithm 2.4, we can rewrite the Jacobian system into the equivalent form

(2.42) J(x(k))d(k) =

\Biggl[ 
JbT

(k)
b

JgT
(k)
g

\Biggr] 

as in Step 2 of of NEPIN (2.20), which allows the application of linear pre-
conditioning techniques.

2.6. Comparison with RASPEN. We briefly recall the restricted additive
Schwarz preconditioned exact Newton (RASPEN) version [12] of left nonlinear pre-

conditioning introduced for decompositions into subdomains, i.e., \Omega =
\bigcup N

i=1 \Omega i. Let

Ri and \~Ri be the restriction operators based on the overlapping and nonoverlap-
ping decomposition, respectively. In the RASPEN algorithm, a Jacobian-free inexact
Newton algorithm is used to solve the nonlinearly preconditioned system

(2.43) \scrF RASPEN(x) =

N\sum 
i=1

\~Eigi(x) = 0, \~Ei = \~RT
i
\~Ri \in Rn\times n,

where gi(x) is obtained by solving the local nonlinear system

(2.44) F\Omega i
(x - gi(x)) = 0, i = 1, 2, . . . , N.

Following [12], the exact Jacobian of \scrF RASPEN can be written as

(2.45) \scrJ RASPEN(x) =

N\sum 
i=1

\~RT
i [RiJ(x - gi(x))R

T
i ]

 - 1RiJ(x - gi(x)).

Algorithm 2.5 gives details of one step of the RASPEN algorithm. Observe the fol-
lowing:
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Algorithm 2.5 One-step of RASPEN.

Given x(k).
1. Solve local problems F\Omega i

(x(k)  - g
(k)
i ) = 0, i = 1, . . . , N , for g

(k)
i , starting from

the initial guess g
(k)
i = 0.

2. Let \scrF RASPEN(x(k)) =
\sum N

i=1
\~Eig

(k)
i and find the inexact Newton direction d(k)

such that

(2.46) \| \scrF RASPEN(x(k)) - \scrJ RASPEN(x(k))d(k)\| \leqslant \eta k\| \scrF RASPEN(x(k))\| .

3. Update x(k+1) = x(k)  - \lambda (k)d(k), where \lambda (k) \in (0, 1] is the damping parameter
determined by a line search based on the merit function f(x) = 1

2\| \scrF 
RASPEN(x)\| 2.

(1) As with ASPIN, the domain partition of RASPEN generally does not change
during Newton iterations, but the set of bad components may be different for
NEPIN.

(2) Step 2 of Algorithm 2.5 requires the Newton direction corresponding to the
nonlinearly preconditioned system as in Step 2 of NEPIN. However, the line
search for NEPIN and RASPEN is based on different merit functions as shown
in step 3 of Algorithm 2.5 and NEPIN.

3. Experimental results. In this section, we apply the NEPIN algorithm to
two model boundary value problems dealing with flows ranging from subsonic to tran-
sonic regimes. In the first case, we consider a compressible flow through a converging-
diverging nozzle. In the second, NEPIN is tested in a two-dimensional transonic flow
passing over an airfoil. In each case, a shock with feature size much smaller than the
domain and not present in the initial condition must be located and then sharpened
up. All the numerical experiments are done in the portable extensible toolkit for
scientific computation (PETSc) [2].

3.1. A shocked duct flow. Consider a compressible flow passing through a
straight duct with variable cross-section area [7, 19]. The quasi-one-dimensional model
problem is governed by

(A(x)\rho (u)\phi x)x = 0, 0 < x < 2,(3.1)

\phi (0) = 0, \phi (2) = \phi R,(3.2)

for velocity potential function \phi , with u = \phi x being the cross-section area-averaged
flow velocity along the x-direction. The duct area A(x) is given by the simple parabola

(3.3) A(x) = 0.4 + 0.6(x - 1)2,

and the duct has a narrow throat around x = 1, as shown in Figure 3 (left).
The dimensionless density function in (3.1) is given by

(3.4) \rho (u) = (c2)
1

\gamma  - 1 =

\biggl( 
1 +

\gamma  - 1

2
(1 - u2)

\biggr) 1
\gamma  - 1

,

where c is the sound speed and we set the ratio of specific heat \gamma = 1.4 (that of
air in the standard atmosphere) for all tests. The local Mach number is defined as
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Fig. 3. The left figure shows the flow passing through a duct with variable cross-section area.
The right figure shows the Mach distribution corresponding to different right boundary values \phi R in
( 3.2) on the uniform grid with the grid size h = 1

128
.

M = | u| /c. Figure 3 (right) shows the Mach distribution of the solution corresponding
to different values \phi R for the right boundary condition. As the value of \phi R is increased,
the Mach number in the throat becomes larger, and finally a shock sets up by the
time \phi R reaches 1.15.

Using a standard finite difference method, our goal is to obtain a discrete solution
of the governing equation (3.1) and (3.2) on a uniform mesh

0 = x0 < x1 < \cdot \cdot \cdot < xN = 2,

where the grid size is h = 2
N . As described in [7, 19], the discretized nonlinear

equations at the interior grid points are given by

(3.5) Ai+ 1
2
\~\rho i+ 1

2
(\phi i+1  - \phi i) - Ai - 1

2
\~\rho i - 1

2
(\phi i  - \phi i - 1) = 0, i = 1, 2, . . . , n - 1,

where \~\rho j is the so-called first-order density upwind biasing, i.e.,

(3.6) \~\rho j+ 1
2
= \rho j+ 1

2
 - \mu j(\rho j+ 1

2
 - \rho j - 1

2
).

Here, \mu j is a switching function given by

\mu j = max
j - 2\leqslant i\leqslant j+2

max

\Biggl\{ 
0, 1 - 

\^M2
c

M2
i

\Biggr\} 
,

where \^Mc is a given cutoff Mach number and Mi is the Mach number at the point xi.
In this paper, we choose a rather tight Mach cutoff \^Mc = 0.95 and the Mach number,
using (3.4), is

(3.7) Mi =
| ui| \sqrt{} 

1 + \gamma  - 1
2 (1 - u2

i )
.

The value of \mu j in the transonic region depends on the ratio of \^Mc and Mi over the
five-point range i = j - 2, j - 1, j, j+1, j+2. In the subsonic regions, \mu j = 0, i.e., no
upwinding is applied.

For all tests, the initial iterate is a simple linear interpolation of the boundary
conditions, i.e.,

\phi 0(x) =
1

2
x\phi R, x \in [0, 2].
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Fig. 4. For \phi R = 1.15, the left figure shows the history of the Newton residual using INB and
NEPIN on problems of different resolution with the mesh size h = 1

32
, 1
64

, 1
128

, 1
256

; the right figure
shows the convergence history of Mach number curves for INB when h = 1/128.

Table 2
Comparison of the number of nonlinear iterations corresponding to various \phi R for INB and

NEPIN. ``-"" indicates that the number of nonlinear iterations is not available due to failure of the
line search.

Its. INB Its. NEPIN
h = 1/64 1/128 1/256 1/64 1/128 1/256

\phi R = 1.10 6 6 7 5 5 5
\phi R = 1.15 30 55 156 6 6 8
\phi R = 1.18 35 71 - 6 6 7

For NEPIN, we set the initial partition as S
(0)
b = \emptyset and S

(0)
g = S, and define bad com-

ponents as unknowns whose local Mach numbers exceed a given value, hereMj > 0.45,
an evolving contiguous range around the shock as it develops. The Jacobian systems
for both global and subspace problems are solved by GMRES(30) with RAS precon-
ditioning of overlap 2. The termination tolerances are set as \epsilon global - nonlinear - rtol =
10 - 10, \epsilon global - linear - rtol = 10 - 3, \epsilon sub - nonlinear - rtol = 10 - 2, and \epsilon sub - linear - rtol =
10 - 3. The numerical tests use 4 subdomains.

We first fix \phi R = 1.15 and vary the mesh resolution. The left plot of Figure 4
shows the history of the Newton residual using INB and NEPIN on problems of mesh
width 1/32, 1/64, 1/128, and 1/256. It is observed that the convergence of the INB
method degenerates as the mesh becomes finer. In effect, the shock ``walks"" one mesh
point per Newton step towards its converged location due to the damping required
to stabilize its progress. However, the convergence of the NEPIN method is almost
mesh invariant and therefore overwhelmingly superior in the high resolution limit.
The right plot of Figure 4 shows the convergence history of Mach number curves on
a fixed mesh with h = 1/128. We note that it takes only 3 iterations for INB to
establish the weak shock but another 48 or so iterations to find the approximately
correct location and the correct shock strength, after which it achieves the desired
superlinear convergence rate.

We then vary the values of \phi R on the right boundary. Table 2 compares the
number of nonlinear iterations corresponding to the different \phi R for INB and NEPIN.
The INB method requires more Newton iterations as the value of \phi R is increased on
a fixed mesh, and it fails due to failure of the linear search for \phi R = 1.18 with the
grid size h = 1/256. In contrast, the number of NEPIN iterations is nearly parameter
independent.
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Fig. 5. For \phi R = 1.15 and h = 1/128, the figure shows the convergence history of Mach number
curves for INB-NE and NEPIN, respectively. We choose unknowns within the interval [0.5, 1.3] as
bad components and \epsilon sub - nonlinear - rtol = 10 - 2 for INB-NE and NEPIN.
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Fig. 6. For \phi R = 1.15 and \phi R = 1.18, the figure shows the convergence history of the Newton
residual using INB, INB-NE, NEPIN, ASPIN, and RASPEN on problems of different resolutions
with the grid size h = 1/128 and 1/256, respectively. For ASPIN and RASPEN, we run the test
on eight subdomains and set overlaps 5h and 10h when the grid size h = 1/128 and h = 1/256,
respectively.

In order to make a fair comparison between INB-NE and NEPIN, we fix the set
of bad components (namely, the unknowns within the interval [0.5, 1.3]) instead of a
dynamic partition of good and bad components based on local Mach numbers. For
\phi R = 1.15 and the grid size h = 1/128, INB-NE and NEPIN converge within 15 and
14 Newton iterations, respectively. Figure 5 shows the convergence history of Mach
number curves for INB-NE and NEPIN corresponding to the fixed sets Sb and Sg,
respectively. It is seen that some jumps in the Mach number curves are introduced
around the interface x = 0.5 and x = 1.3 for both INB-NE and NEPIN methods, and
NEPIN overshoots before converging.

Finally, in Figure 6, we compare the convergence history of the Newton residual
using INB, INB-NE, NEPIN, ASPIN, and RASPEN on problems of different resolu-
tions with the values \phi R = 1.15, 1.18 and the different grid sizes h = 1/128, 1/256,

respectively. For INB-NE and NEPIN, we still set the initial partition as S
(0)
b = \emptyset and

S
(0)
g = S, and choose the bad components whose local Mach numbers are larger than

0.45. We run the tests using ASPIN and RASPEN with eight subdomains, and the
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Fig. 7. For \phi R = 1.15 and h = 1/128, the figure shows the convergence history of Mach
number curves for INB-NE, NEPIN, ASPIN, and RASPEN using eight processors. For INB-NE
and NEPIN, the bad components are identified by the local Mach number (Mj > 0.45). We run the
tests using ASPIN and RASPEN with eight subdomains, and the overlaps are set to 5h.

overlaps are set to 5h and 10h when the grid size h = 1/128 and h = 1/256, respec-
tively. For ASPIN and RASPEN, local problems converge if a 10 - 2 relative reduction
of the initial residual is satisfied. Compared with INB, as shown in Figure 6, INB-
NE, NEPIN, ASPIN, and RASPEN are superior in terms of the number of Newton
iterations when \phi R = 1.15. In contrast, ASPIN and RASPEN fail to converge when
\phi R = 1.18 and h = 1/256, but the other three methods are still convergent. Figure 7
shows the convergence history of Mach number curves for INB-NE, NEPIN, ASPIN,
and RASPEN corresponding to \phi R = 1.15 and h = 1/128. For ASPIN and RASPEN,
we observe some sharp jumps near the interfaces of subdomains and the oscillations
in the interval [1, 1.25]. Obviously, the bad components are not included in a single
overlapping subdomain and it is not easy to solve the subproblem associated with the
interval [1, 1.25]. In particular, the failure of the corresponding local solver leads to
divergence of outer Newton iterations for ASPIN and RASPEN (see Figure 6), when
\phi R = 1.18 and h = 1/256.

3.2. Transonic full potential flow. We next consider a two-dimensional tran-
sonic flow over the upper half of a standard NACA 0012 airfoil at zero angle of attack,
the most standard of test cases for aerodynamics codes. The lowest fidelity and easiest
to reproduce physical model that is sufficiently difficult to illustrate the advantage of
nonlinear preconditioning is transonic full potential flow. This model, which can be
derived from the Euler equations, assumes that the flow is inviscid, isentropic, and
irrotational [4, 37]. The full potential equation in conservation form with a single
unknown function \Phi is formulated as:
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NONLINEAR ELIMINATION PRECONDITIONED NEWTON A1595

(3.8) \nabla \cdot (\rho (\Phi )\nabla \Phi ) = 0,

where \Phi is the velocity potential and \nabla \Phi = [u, v]T is the velocity field. The dimen-
sionless density \rho is here given by

(3.9) \rho (\Phi ) = \rho \infty 

\biggl( 
1 +

\gamma  - 1

2
M2

\infty 

\biggl( 
1 - \| \nabla \Phi \| 22

q2\infty 

\biggr) \biggr) 1
\gamma  - 1

,

where \gamma is the ratio of specific heats, and \rho \infty , M\infty , and q\infty represent the density, the
Mach number, and the speed referred to a uniform freestream (at \infty ), respectively.
Here we set \gamma = 1.4, \rho \infty = 1.0, M\infty = 0.8, and q\infty = 1.0 for all tests.

The problem is defined on a square domain \Omega = [0, 1] \times [0, 1] with the airfoil
occupying the middle third of the domain, with the following boundary conditions
[4]:

\bullet Along the left inflow boundary (x = 0, 0 < y < 1): \Phi (x, y) = 0.
\bullet Along the right exit boundary (x = 1, 0 < y < 1): \Phi (x, y) = q\infty .
\bullet Along the top freestream boundary (y = 1, 0 < x < 1): \Phi (x, y) = x.
\bullet Along the bottom boundary, we impose for symmetry the no-penetration
condition \partial \Phi 

\partial y = 0 (y=0, 0 < x \leqslant 1
3 , and

2
3 \leqslant x < 1) and a transpiration

boundary condition \partial \Phi 
\partial y = \partial \Phi 

\partial x f
\prime (3x  - 1) (y = 0, 1

3 < x < 2
3 ) that forces the

flow to sense the tapered airfoil geometry, while allowing the computation to
occur on a Cartesian mesh, for simplicity. The function f(z) used for the
NACA 0012 airfoil geometry is given by

f(z) = 0.17814(
\surd 
z  - z) + 0.10128(z(1 - z)) - 0.10968z2(1 - z)

+ 0.06090z3(1 - z), z \in (0, 1),

and it is scaled into the interval ( 13 ,
2
3 ) through z = 3x - 1.

The square domain \Omega is partitioned into uniform rectangular cells. A finite differ-
ence scheme [21] is used to discretize the two-dimensional full potential flow problem,
leading to large algebraic systems with respect to the unknown potential at the grid
points:

(3.10)
\rho i+ 1

2 ,j
(\Phi i+1,j  - \Phi ij) - \rho i - 1

2 ,j
(\Phi ij  - \Phi i - 1,j)

\Delta x2

+
\rho i,j+ 1

2
(\Phi i,j+1  - \Phi ij) - \rho i,j - 1

2
(\Phi ij  - \Phi i,j - 1)

\Delta y2
= 0,

where i = 1, 2, . . . , Nx and j = 1, 2 . . . , Ny. Following [4, 18, 42], we introduce a
first-order density upwinding scheme in order to capture the shock in the solution for
transonic cases, and it plays an essential role in the success of the inexact Newton
method, in terms of the convergence and finding the correct location and strength of
the shock. For example, the density coefficient \rho i+ 1

2 ,j
in (3.10) is replaced by

\^\rho i+ 1
2 ,j

= \rho i+ 1
2 ,j

 - \mu ij(\rho i+ 1
2 ,j

 - \rho i - 1
2 ,j

) \triangleq \rho  - 
i+ 1

2 ,j
, V x

i+ 1
2 ,j

> 0,(3.11)

\^\rho i+ 1
2 ,j

= \rho i+ 1
2 ,j

 - \mu i+1,j(\rho i+ 1
2 ,j

 - \rho i+ 3
2 ,j

) \triangleq \rho +
i+ 1

2 ,j
, V x

i+ 1
2 ,j

< 0,(3.12)

where V x
i+ 1

2 ,j
is the velocity component in the x-direction and \mu ij is the switching

function to control the convergence of Newton's method. Combining (3.11) and (3.12),
we write a unified formula to compute the density,

(3.13) \^\rho i+ 1
2 ,j

=
1

2

\Bigl( 
\rho  - 
i+ 1

2 ,j
+ \rho +

i+ 1
2 ,j

\Bigr) 
+

1

2
sgn(V x

i+ 1
2 ,j

)
\Bigl( 
\rho  - 
i+ 1

2 ,j
 - \rho +

i+ 1
2 ,j

\Bigr) 
,
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Fig. 8. Mach number countours (left) and the pressure coefficient Cp curve (right) obtained by
the final solution at M\infty = 0.8 on the uniform mesh 512\times 512.

where sgn(x) is the sign function. In a practical implementation, the sign function
is replaced by the hyperbolic tangent tanh(kx) (k a positive integer) to render the
upwinding differentiable. Here we choose the second-level switching function, i.e.,

\mu 
(2)
ij = max\{ 0, 1  - \^M2

c /M
2
s,t\} , where i  - 2 \leq s \leq i + 2 and j  - 2 \leq t \leq j + 2. In this

paper, we set \^M2
c = 0.95, and Ms,t is the local Mach number at (xs, yt) given by

(3.14) Ms,t =
M\infty qs,t\sqrt{} 

q2\infty + \gamma  - 1
2 M2

\infty (q2\infty  - q2s,t)
,

where qs,t = \| \nabla \Phi \| 2 is the local flow speed at (xs, yt). More details can be found in
[4, 15, 20].

Both global systems and subspace nonlinear problems are solved by INB tech-
niques. Global Jacobian systems are solved by GMRES(30) with right overlapping re-
stricted additive Schwarz preconditioners, where each individual block is solved by the
direct LU decomposition and the overlap is set to 2. Our tests set the initial guess to
be a simple interpolation of the farfield boundary condition, i.e., \Phi (x, y) = x, for both
INB and NEPIN. We set the tolerance parameters as \epsilon global - nonlinear - rtol = 10 - 10,
\epsilon global - linear - rtol = 10 - 3, \epsilon sub - linear - rtol = 10 - 2. Figure 8 shows the Mach contours
and the pressure coefficient Cp at the final solution at M\infty = 0.8 on the uniform mesh
512\times 512, where Cp is calculated using

Cp =
2

\gamma M2
\infty 

\Biggl( \biggl( 
1 +

\gamma  - 1

2
M2

\infty (1 - q2)

\biggr) \gamma 
\gamma  - 1

 - 1

\Biggr) 
.

In the NEPIN algorithm, we initialize the partition as S
(0)
b = \emptyset and S

(0)
g = S.

For the following iterations, we choose the cutoff Mach number Mc, and the bad
components are those whose local Mach numbers satisfy Ms,t > Mc, with the same
balance of considerations of cost per iteration versus robustness of the overall iteration
as in the duct flow example of the previous subsection. Table 3 shows a comparison of
the cutoff Mach number Mc using NEPIN for various mesh sizes. As Mc varies from
0.88 to 0.90, there is a substantial increase in total execution time and the number of
subspace Newton iterations in most cases. Based on Table 3, Mc = 0.82 appears to
be a suitable balance in terms of the overall execution time. Figure 9 illustrates how
the bad region evolves for Mc = 0.82 using NEPIN on the uniform mesh 512 \times 512.
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NONLINEAR ELIMINATION PRECONDITIONED NEWTON A1597

Table 3
A comparison of the cutoff Mach number Mc using NEPIN on the 256 \times 256 and 512 \times 512

meshes. We set \epsilon global - nonlinear - rtol = 10 - 10, \epsilon global - linear - rtol = 10 - 3, and \epsilon sub - linear - rtol =
10 - 2 as the stopping conditions, respectively.

Mesh size
NEPIN

Mc = 0.80 0.82 0.83 0.84 0.85 0.88 0.90
\epsilon sub - nonlinear - rtol = 10 - 1

256\times 256

Global Newton steps 8 7 7 7 7 7 9
GMRES per global Newton 23.1 22.3 22.7 23.6 21.6 22.6 23.4
Subspace Newton steps 14 13 13 14 12 13 15
Total execution time (s) 3.92 3.41 3.40 3.49 3.20 3.26 3.91

512\times 512

Global Newton steps 9 10 10 10 11 10 14
GMRES per global Newton 38.7 40.2 40.2 40.2 39.7 35.6 36.6
Subspace Newton steps 28 28 25 25 26 44 69
Total execution time (s) 27.80 27.54 25.77 25.51 26.90 34.25 49.65

\epsilon sub - nonlinear - rtol = 10 - 2

256\times 256

Global Newton steps 7 7 7 7 7 7 9
GMRES per global Newton 22.9 22.9 22.1 23.7 23.3 23.7 24
Subspace Newton steps 17 15 15 15 15 16 17
Total execution time (s) 4.05 3.65 3.61 3.61 3.57 3.60 4.12

512\times 512

Global Newton steps 9 9 10 11 12 14 11
GMRES per global Newton 39.7 40 41.2 41 41.9 40.3 38.4
Subspace Newton steps 37 35 39 36 37 35 55
Total execution time (s) 32.97 30.02 33.31 32.64 34.20 34.19 39.65

\epsilon sub - nonlinear - rtol = 10 - 3

256\times 256

Global Newton steps 6 6 6 6 7 7 8
GMRES per global Newton 24.3 23.7 22.3 23.3 23.4 24 23.1
Subspace Newton steps 19 18 18 18 17 17 22
Total execution time (s) 4.09 3.79 3.72 3.69 3.81 3.72 4.37

512\times 512

Global Newton steps 9 9 10 11 12 14 11
GMRES per global Newton 40.9 40.7 41.2 41.7 42 41.6 36.6
Subspace Newton steps 43 41 41 42 42 43 62
Total execution time (s) 37.01 33.40 34.31 35.90 36.74 38.27 42.80
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Fig. 9. For M\infty = 0.8 and Mc = 0.82, the figure shows the evolution of the distribution of
the bad components (Ms,t > Mc) using NEPIN on a uniform 512\times 512 mesh, corresponding to the
second, the fourth, and the seventh global Newton iterations. ``nz"" represents the number of bad
components, less than 10\% of the total.

It is observed from numerical experiments that the number of bad components does
not change after the seventh nonlinear iteration in this case. Moreover, we note that

the numbers of elements in S
(k)
b account for less than 10\% of the total number of

unknowns, and therefore the subspace solvers require relatively low computational
overhead.
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Fig. 10. For M\infty = 0.8 and Mc = 0.82, the figure shows the history of the Newton residual
using INB and NEPIN on 128 \times 128, 256 \times 256, and 512 \times 512 meshes. For NEPIN, we set the
tolerance \epsilon sub - nonlinear - rtol = 10 - 2 for subspace nonlinear problems.
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Fig. 11. For M\infty = 0.8 and Mc = 0.82, the figure shows the convergence history of the pressure
coefficient Cp curve on the uniform mesh 512\times 512, as well as a vertically exaggerated NACA 0012
curve (red) at the bottom.

For M\infty = 0.8 and Mc = 0.82, we run the test using INB and NEPIN for uni-
form meshes of sizes 128\times 128, 256\times 256, and 512\times 512. Here we set the tolerance
\epsilon sub - nonlinear - rtol = 10 - 2 for subspace nonlinear problem in the NEPIN algorithm.
Figure 10 shows the history of the Newton residual \| F (\Phi (k))\| for two different meth-
ods on problems of different resolutions. In contrast with the long plateau period
required by global INB, NEPIN converges within at most 9 iterations and is very
effective in reducing the total number of global Newton iterations. Figure 11 shows
the convergence history of the pressure coefficient Cp curve using INB and NEPIN
on a 512 \times 512 mesh, respectively. We note that it takes many iterations for INB
to establish the shape of the shock and move it to the exact location. INB suffers
from a period of slow evolution before the linear convergence is interrupted in Fig-
ure 10. According to the right plot of Figure 11, however, it takes only 2 iterations
for NEPIN to set up the neighborhood of the shock with an overshoot, and then it
forms the approximately exact shock without any overshoots after the fifth iteration,
which corresponds to the superlinear convergence rate in Figure 10. We remark that
the red INB convergence histories of Figure 10 motivate another common strategy
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Fig. 12. For M\infty = 0.8, the left figure shows the pressure coefficient Cp curve for different
mesh sizes; the right shows the history of the Newton residual using INB and NEPIN with different
cutoff Mach numbers Mc on the 1024\times 1024 mesh, and the INB algorithm is terminated because of
the failure of the backtracking line search after 92 iterations. \epsilon sub - nonlinear - rtol = 10 - 3.

for problems with such mesh dependences: Grid sequencing, in which a solution ob-
tained on a coarse mesh is used to initialize the iterations on the next finer mesh
until asymptotically only a ``root-polishing"" iteration or two is required. The same
motivation is drawn from the blue NEPIN curves, though the payoff is less drastic.

As observed from the left panel of Figure 12, the shock is less smeared as the
mesh is refined up to 1024\times 1024. To obtain a better resolution of the shock, we solve
the problem on the 1024 \times 1024 mesh and the nonlinear iteration of the subspace
nonlinear problem is stopped if it has a 10 - 3 relative reduction of the initial residual
or the maximum of 20 nonlinear iterations is reached. The right panel of Figure 12
shows the the history of the Newton residual using INB and NEPIN with Mc =
0.80, 0.82, 0.83, 0.84, respectively. The INB algorithm is terminated because of the
failure of the backtracking line search after 92 iterations, but the NEPIN algorithm
converges within 40 iterations. The failure of subproblems happens on the 1024\times 1024
mesh because the line search fails or the maximum number of nonlinear iterations
is reached, which results in an extremely inexact Newton direction. Interestingly,
NEPIN suffers from the stagnation of nonlinear residual norms and fails to converge
within 100 iterations when the cutoff Mach number Mc = 0.81 on the 1024 \times 1024
mesh, illustrating the fickleness of the choice of the subproblems requiring elimination.

We also show some parallel scaling results on a Cray X40 with dual socket com-
pute nodes based on 16-core Intel Haswell processors running at 2.3 GHz, each node
having 128 GB of DDR4 memory running at 2.3 GHz. We vary the number of proces-
sors and present the numerical results using INB and NEPIN with different tolerances
for the subspace nonlinear problems. For the 512\times 512 mesh, modest strong scalabil-
ity for INB and NEPIN within the PETSc framework are displayed in Table 4, using
4, 16, 64, 256, up to 1024 processors. Varying the number of subdomains results in
changes of the inexact Newton direction on a fixed mesh. As the number of proces-
sors increases, the number of global Newton iterations does not change much, but the
number of global linear iterations per global Newton increases, which is attributed to
the lack of intersubdomain communication for a one-level domain decomposition. For
the fixed subdomain partition, Table 4 tracks the number of global Newton iterations
using NEPIN, which is not sensitive as we change \epsilon sub - nonlinear - rtol. It seems that
the loose tolerance, e.g., 10 - 1, is sufficient for NEPIN on a 512\times 512 mesh, and it can
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Table 4
Different subdomain partitions with the same fine mesh 512\times 512, M\infty = 0.8, and Mc = 0.82.

We set \epsilon global - nonlinear - rtol = 10 - 10 and \epsilon global - linear - rtol = 10 - 3 as the stopping conditions
for the global Newton and GMRES iterations, respectively. Np--indicates the number of processors,
which is the same as the number of subdomains.

Np INB
NEPIN \epsilon sub - nonlinear - rtol =
10 - 1 10 - 2 10 - 3

No. of global Newton steps 37 10 9 9
No. of GMRES per global Newton 19.9 17.9 17.6 18.0

4 = 2\times 2 No. of subspace Newton steps. - 28 36 41
Execution time (s) of subspace solvers - 118.34 151.22 172.39
Total execution time (s) 372.36 246.60 266.78 288.35
No. of global Newton steps 37 10 9 9
No. of GMRES per global Newton 27.5 24.1 25.1 25.4

16 = 4\times 4 No. of subspace Newton steps. - 26 35 40
Execution time (s) of subspace solvers - 41.30 55.15 63.23
Total execution time (s) 100.15 76.68 87.31 95.48
No. of global Newton steps 37 10 9 9
No. of GMRES per global Newton 44.9 40.2 40.0 40.7

64 = 8\times 8 No. of subspace Newton steps. - 28 35 41
Execution time (s) of subspace solvers - 15.15 18.85 22.18
Total execution time (s) 35.91 27.49 29.97 33.35
No. of global Newton steps 38 10 10 10
No. of GMRES per global Newton 71.6 57.4 58.5 58.4

256 = 16\times 16 No. of subspace Newton steps. - 25 37 41
Execution time (s) of subspace solvers - 4.15 6.12 6.71
Total execution time (s) 12.95 8.08 10.17 10.67
No. of global Newton steps 37 10 10 10
No. of GMRES per global Newton 96.0 75.2 84.7 87.5

1024 = 32\times 32 No. of subspace Newton steps. - 27 38 41
Execution time (s) of subspace solvers - 1.67 2.26 2.47
Total execution time (s) 4.71 3.12 3.79 4.03

save at least 23\% time compared with INB. In addition, we note that the execution
time of subspace solvers accounts for half of the total execution time. For subspace
nonlinear problems, however, we actually do not exploit any additional techniques
(e.g., mesh sequencing) to accelerate convergence of Newton iterations. For the cur-
rent implementation, we do not improve the performance of subspace solvers in terms
of load balancing. As a result, computing costs in subdomains near the airfoil are
much higher than in other subdomains. Therefore, NEPIN is expected to be more
efficient when dynamic runtime systems remapping tasks to underutilized processors
are employed, as is routinely done with tile algorithms in direct factorization meth-
ods of linear algebra, for example. This is a general focus of future work for most
nonlinear preconditioning methods.

Figure 13 shows strong scaling behavior using INB and NEPIN on the 512\times 512
and 1024 \times 1024 meshes, respectively. In terms of the execution time, both INB
and NEPIN scale well for up to 1024 processors on the 512 \times 512 mesh. For the
1024 \times 1024 mesh, we do not show any results for INB because of the failure of the
backtracking line search on this mesh in Figure 13, and it only shows the performance
of strong scalability for NEPIN up to 4096 processors, corresponding to Mc = 0.80
and Mc = 0.82, respectively. The failure of subproblems causes drastic changes in the
number of global Newton iterations as the number of processors increases, but this
happens only in the case of the 1024\times 1024 mesh. Therefore, it is not surprising that
the scaling behavior degrades on the 1024 \times 1024 mesh compared with the coarser
mesh.
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Fig. 13. Strong scaling for the transonic full potential flow problem on the 512 \times 512 and
1024\times 1024 meshes. Execution time for INB is not shown since it fails to converge on the 1024\times 1024
mesh. \epsilon sub - nonlinear - rtol = 10 - 1.
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Fig. 14. For M\infty = 0.8 and Mc = 0.82, the figure shows the history of the Newton residual and
the damping parameter \lambda (k) using INB, INB-NE, and NEPIN on the 512\times 512 mesh. For INB-NE
and NEPIN, we set the tolerance \epsilon sub - nonlinear - rtol = 10 - 2 for subspace nonlinear problems.

ForM\infty = 0.8 andMc = 0.82, Figure 14 compares the history of Newton residuals
and the damping parameter \lambda (k) on the uniform 512\times 512 mesh using INB, INB-NE,
and NEPIN. For the left plot, INB suffers from the stagnation because of the localized
strong nonlinearities. In contrast, both INB-NE and NEPIN are effective in reducing
the number of Newton iterations. From the right plot of Figure 14, the damping
parameter \lambda (k) is forced down to the lower bound 0.1 (the default value in PETSc)
in INB, corresponding to the long plateau in the norm of the nonlinear residual.
However, INB-NE and NEPIN perform the full Newton step on most iterations, so
fast convergence is attached. We mention that reducing the number of global Newton
steps reduces global synchronization frequency and overall communication volume.
This more than compensates, in general, for a small increase in local computational
work to perform the elimination of the bad components, and it is a trade-off that
algorithm designers increasingly want to make on the path to exascale.

Finally, we consider a different elimination approach based on the residual sug-
gested in [14, 33]. Let P = \{ p1,p2, . . . ,pn\} represent the set of mesh points, and
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Fig. 15. For M\infty = 0.8, the figure shows the history of the Newton residual using NEPIN,
INB-NE, and INB-NErestrict on 256 \times 256 and 512 \times 512 meshes. For three methods, we set the
tolerance \epsilon sub - nonlinear - rtol = 10 - 2 for subspace nonlinear problems, \rho res = 10 - 3, r = 0.008, and
\varepsilon = 0.002. The bad components for the three methods are identified with residual thresholding as
shown in ( 3.15).

Fi(x) be the nonlinear residual component corresponding to the point pi. The index
set corresponding to the bad components are defined as

(3.15) Sb = \{ i \in S | \exists j, dist(pi,pj) \leqslant r and | Fj(x)| > \rho res\| F (x)\| \infty \} ,

where dist(pi,pj) is the Euclidean distance between pi and pj . The restricted version
of INB-NE, INB-NErestrict, keeps the corrected update only in the interior of the bad
region in order to avoid sharp jumps in the residual function, and the corresponding
restricted index set of bad components is defined as

(3.16) S\varepsilon 
b = \{ i \in S | \exists j, dist(pi,pj) \leqslant r  - \varepsilon and | Fj(x)| > \rho res\| F (x)\| \infty \} .

In numerical tests, the parameters are set as \rho res = 10 - 3, r = 0.008, and \varepsilon = 0.002,

and we initialize the partition as S
(0)
b = \emptyset and S

(0)
g = S. We restrict the size of

subproblems to be less than 15\% of the total degrees of freedom, otherwise INB is
implemented for the current iteration. For M\infty = 0.8, Figure 15 shows the history
of the Newton residual using NEPIN, INB-NE, and INB-NErestrict, respectively. All
three algorithms converge within at most seven iterations on the 256\times 256 mesh. In
contrast, it is observed that INB-NE requires nearly twice as much as the number of
nonlinear iterations using NEPIN or INB-NErestrict on the 512\times 512 mesh. Figure 16
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Fig. 16. For M\infty = 0.8, the figure shows the history of the pressure coefficient Cp using NEPIN,
INB-NE, and INB-NErestrict, respectively. We set the parameters as \rho res = 10 - 3, r = 0.008, and
\varepsilon = 0.002.
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shows the corresponding history of the pressure coefficient Cp using NEPIN, INB-NE,
and INB-NErestrict on the 512 \times 512 mesh. From the plots, it takes more than 10
iterations for INB-NE to establish the shape of the shock and move it to the exact
location, which corresponds to the slow evolution before the superlinear convergence
rate is achieved in Figure 15.

4. Conclusions and future directions. A new algorithm for problems with
unbalanced nonlinearities, namely, a left-preconditioned NE method, NEPIN, a com-
panion to INB-NE, is presented. Numerical results illustrate that NEPIN is effective
in improving the performance of global Newton iterations. NEPIN requires addi-
tional computational cost for the solution of subspace nonlinear problems in inner
iterations. Furthermore, identification of the degrees of freedom to be eliminated is
problem dependent and the algorithm can be sensitive to this heuristic. The partition
into bad and good degrees of freedom can be learned over a production history of a
given application. To improve the trade-off between the extra overhead and the fast
robust convergence, the adaptive nonlinear preconditioning framework of [31] may
be useful in turning NEPIN on and iterations on and off in the course of the outer
Newton iterations, in particular, in turning it off as the domain of convergence of the
global Newton iteration is detected. NE in a subspace is a sequential step that pro-
duces a work imbalance in bulk-synchronous implementations of implicit PDE solvers.
In commonly encountered examples, its size is small compared to that of the global
Newton steps that it saves. However, dynamic runtime systems using directed acyclic
graphs to control data dependences can be employed in future implementations with
more highly heterogeneous imbalances of load.
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