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Abstract. Nonlinearly preconditioned inexact Newton methods have been applied successfully
for some difficult nonlinear systems of algebraic equations arising from the discretization of partial
differential equations. The preconditioning step involves identifying and balancing the nonlineari-
ties in the system. One of the challenging tasks when applying the methods is to accurately and
efficiently identify the unbalanced nonlinearities. In this work, we propose an unsupervised learning
strategy based on the classical principal component analysis that learns the bad behavior of a New-
ton solver in the nonlinear residual subspace of a training problem. A new initial guess is produced
by the nonlinear preconditioner where a projected low dimensional Jacobian system corresponding
to the slow subspace of the current residuals is solved for the Newton correction vector. Numerical
experiments for high Reynolds number incompressible flow problems show that the proposed method
is more robust and efficient compared with existing nonlinear solvers.
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1. Introduction. Nonlinear preconditioning is a technique to enhance the ro-
bustness and efficiency of Newton-type methods for solving a nonlinearly difficult
system of algebraic equations arising from the discretization of nonlinear partial dif-
ferential equations [7, 8, 22, 23]. The technique aims to balance the nonlinearities of
the system by changing the function or the variable of the system without changing
the solution, similar to linear preconditioning of linear systems [12]. A left nonlinear
preconditioner changes the function of the original system and then solves the new
system by a Jacobian-free Newton method [7, 10, 14, 18, 25, 30, 31, 32]. On the
other hand, a right nonlinear preconditioner changes the unknown variables of the
original system [8, 17, 19, 24, 34, 35, 36, 43, 44, 45]. For most applications considered
so far, the right preconditioner is easier to implement than the left version since it
is less invasive to the standard software for inexact Newton methods. The key as-
sumption needed in the design of a right preconditioner is that the components of the
nonlinear system can be decomposed into two subspaces: a good subspace to be kept
for further Newton iterations, and a bad subspace to be eliminated approximately
using inner subspace Newton iterations. The method is often regarded as a nonlin-
ear extension of Gaussian elimination; therefore, in the rest of the paper we refer to
the method as nonlinear elimination (NE) preconditioning. The ability to identify
the components that slow down the convergence is essential to the success of the NE
preconditioner. Though the NE preconditioned inexact Newton method (PIN-NE)
has been quite successful in many applications, there are challenges when using the
method in practice:
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A850 LI LUO AND XIAO-CHUAN CAI

1. The existing strategies identify the slow components by using knowledge of the
physics or feedback from the intermediate solution, which generally require
extra analysis of the numerical results. For example, for the transonic flow
problems, the physics-based approach requires detecting the region where the
shock occurs [19]. The field-based approach requires determining which field
variable is responsible for the dominant part of the residual norm [36, 43, 44].

2. In some of the existing approaches such as the pointwise approach [17, 35,
45], the region-based approach [34], and the subdomain-based approach [8],
the number of slow components to be eliminated depends sensitively on the
preselected parameters, which has a significant impact on the effectiveness
and efficiency of the preconditioner.

3. For domain-based approaches [8, 24, 34, 35, 45], new jumps may be produced
in the residual across the interface between the good and bad regions or the
subdomains, and this may lead to the relocation of unbalanced nonlinearities.
Such interfacial jumps are often not easy to remove.

In this paper, we propose and study a novel nonlinear preconditioning method based
on unsupervised learning to circumvent these obstacles.

Recent advances in machine learning and data analysis have shed light on devising
new numerical methods with learning capability. With the explosive growth of avail-
able data and computing resources, a series of learning-based approaches emerged in
the past decade for various scientific applications, i.e., image recognition [28], weather
prediction [5], fluid mechanics [6], and, particularly, the solve of general partial dif-
ferential equations [20, 40]. The goal of this work is to develop a new paradigm in
integrating learning capability into the class of preconditioned inexact Newton meth-
ods for nonlinear system of equations. We consider an unsupervised learning algo-
rithm based on the classical principal component analysis (PCA), which is also known
as the proper orthogonal decomposition (POD) method [11]. PCA was designed to
find a low dimensional subspace of the given (high dimensional) data that keeps its
most statistically descriptive factors, which has been successfully used in a variety of
fields including data compression [33], computational fluid dynamics [26], structural
mechanics [21], and reservoir simulation [37]. For the purpose of reduced order mod-
eling, the algorithm has been applied to improve the convergence of linear solvers.
In [9], the authors proposed a class of POD-augmented Krylov-subspace recycling
methods. In [38], a reduced order model based preconditioner was introduced for the
solution of transient diffusion equations. The preconditioners in both references [9,
38] are obtained by nesting appropriate POD projection into the classical conjugate
gradient method. In [3], the authors combined POD with a two-stage constrained
pressure residual solver for the solution of a two-phase reservoir model.

In this work, we associate the bad behavior of a Newton solver with the prin-
cipal components of the nonlinear system and apply PCA to find a reduced order
approximation of the residuals with the projection operators learned from a training
problem. Such an approximation is regarded as the low frequency components of the
nonlinearity and is then reduced by a nonlinear preconditioning step. In the non-
linear preconditioner, a subspace Newton iteration with a projected low dimensional
Jacobian system corresponding to the slow subspace of the residuals is introduced to
obtain a new initial guess for the global Newton iteration. In contrast to common
reduced order models, the training problem may differ from the original problem in
size and complexity. Moreover, the proposed nonlinear preconditioner features a low
computational cost since the projected Jacobian system generally has a very small
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PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A851

size. We test the proposed method with two high Reynolds number incompress-
ible flow problems including the lid-driven cavity flows and the backward-facing step
flows. For such problems, the classical inexact Newton method often suffers from slow
convergence or does not converge at all, even with a good initial guess provided by
some continuation techniques, such as parameter continuation [1] and mesh sequenc-
ing [27]. Numerical results show that the proposed method outperforms the classical
inexact Newton method and other preconditioned inexact Newton methods in terms
of robustness and efficiency.

The paper is organized as follows. In section 2, the proposed preconditioned
inexact Newton method with learning capability is presented. The algorithm of PCA
and the process of the proposed method are described in detail. In section 3, numerical
experiments for high Reynolds number incompressible flow problems are provided,
including validation with benchmark results, the study of robustness and efficiency
of the algorithm, and a comparison with other nonlinear solvers. Some concluding
remarks are given in section 4.

2. Preconditioned inexact Newton methods with learning capability.
Consider a nonlinear system of algebraic equations F : Rn \rightarrow Rn. We seek X\ast \in Rn

such that

F (X\ast ) = 0,(2.1)

starting from an initial guess X0 \in Rn, where F = (F1, . . . , Fn)
T , Fi = Fi(X), and

X = (X1, . . . ,Xn)
T . We first recall the inexact Newton algorithm with backtracking

(IN) [42]. Assume Xk is the current approximate solution, to a new Xk+1 can be
computed via

Xk+1 =Xk + \lambda kSk,(2.2)

where the inexact Newton direction Sk satisfies

\| F \prime (Xk)Sk + F (Xk)\| \leq \eta k\| F (Xk)\| .(2.3)

Here, \eta k \in [0,1) is a forcing term that determines how accurately the Jacobian system
needs to be solved. The step length \lambda k \in [0,1] is obtained from a standard backtrack-
ing line search technique [13]. It determines a step size along the inexact Newton
direction Sk such that

f(Xk + \lambda kSk)\leq f(Xk) + \alpha \lambda k\nabla f(Xk)TSk,(2.4)

where the merit function f = \| F\| 2/2, and the parameter \alpha is used to ensure that f
is reduced sufficiently (herein \alpha = 10 - 4). The nonlinear iteration is stopped if

\| F (Xk)\| \leq max
\bigl\{ 
\gamma a, \gamma r\| F (X0)\| 

\bigr\} 
,(2.5)

where \gamma a and \gamma r are prescribed absolute and relative tolerances, respectively.
We remark that \lambda k is a critically important parameter in IN. IN converges slowly

when the value of \lambda k is too small. In practice, the value of \lambda k is often determined
by a small number of components in the system that contribute a large percentage of
the nonlinear residual norm.

The idea of nonlinear preconditioning is to increase the value of \lambda k by balancing
the overall nonlinearities of the system so that a single search direction Sk benefits
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A852 LI LUO AND XIAO-CHUAN CAI

all components of the system. Inspired by the recent advances in unsupervised learn-
ing techniques, we present a novel nonlinear preconditioning method with learning
capability in this paper.

For the classical IN, the residual vectors computed during the Newton itera-
tions offer useful information that is currently not sufficiently utilized. For example,
there are often dominant coherent structures in the residual profile obtained at dif-
ferent Newton steps, which are associated with the slow components of F . Using the
language of multigrid methods, such structures characterize the low frequency com-
ponents of the residual space that are difficult to remove effectively by using global
Newton iterations. In this work, we propose a nonlinear preconditioning algorithm to
smooth these dominant structures by learning their patterns from the residual data.
In the rest of the paper, we refer to this method as PIN\scrL : preconditioned inexact
Newton method with learning capability.

2.1. Unsupervised learning based on principal component analysis. In
this section, we consider the widely used PCA to characterize a low dimensional
approximation to the residuals produced by inexact Newton iterations. PCA first
centers the dataset by a mean subtraction, then represents the dataset with a new
coordinate system determined by the principal components that are uncorrelated
(orthogonal) to each other, but have maximal correlation.

Suppose a dataset of s residual vectors \{ F (Xk)\in \BbbR n, k= 0, . . . , s - 1\} is generated
by the Newton iterations of a training problem, which can be assembled as a residual
matrix

F=
\bigl[ 
F (X0), F (X1), . . . , F (Xs - 1)

\bigr] 
\in \BbbR n\times s.(2.6)

PCA is used to find an orthonormal matrix P \in \BbbR n\times d, where d is an integer much
smaller than n such that \{ yk = PTF (Xk) \in \BbbR d, k = 0, . . . , s  - 1\} forms a reduced
dimensional subspace that keeps important features of F and the variance of the
projected vectors is maximized. We define the space

Hn\times d =
\bigl\{ 
P | P\in \BbbR n\times d, PTP= Id\times d

\bigr\} 
,

where Id\times d is a d\times d identity matrix, and the variance

\scrV (P) =
s - 1\sum 

k=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| y
k  - 1

s

s - 1\sum 

l=0

yl

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

=

s - 1\sum 

k=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| P
T

\Biggl( 
F (Xk) - 1

s

s - 1\sum 

l=0

F (X l)

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

,(2.7)

then P is obtained by solving the optimization problem

max
P\in Hn\times d

\scrV (P).(2.8)

Let the mean of the residual vectors be \=F = 1
s

\sum s - 1
l=0 F (X l) \in \BbbR n. We denote

the centered residual vector as \^F k = F (Xk)  - \=F and the centered residual matrix
\^F = [ \^F 0, \^F 1, . . . , \^F s - 1]. To obtain the residual subspace projector P, we perform the
singular value decomposition (SVD) of \^F as follows:

\^F= \^UF
\^\Sigma F

\^V
T

F ,(2.9)

where \^UF is an n\times n orthogonal matrix, \^\Sigma F is an n\times s diagonal matrix of singular
values \sigma 0

F , \sigma 
1
F , . . . , \sigma 

s - 1
F arranged in a decreasing order, and \^VF is an s\times s orthogonal
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PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A853

matrix. The solution to the optimization problem (2.8) is given as P= \^U
d

F , consisting
of the first d columns of \^UF that form a new coordinate system of F, which is regarded
as the slow subspace of the nonlinear residuals. Therefore, P can be used to construct
a PCA projection of F (X), i.e.,

\scrF (X) = PPT (F (X) - \=F ) + \=F .(2.10)

Using this approximation, we can define an approximate nonlinear system

\scrF (Y ) = 0,(2.11)

whose solution Y will play the main role in the preconditioning algorithm to be
introduced later.

Corresponding to the residual matrix (2.6), we define the following approximate
solution matrix:

X=
\bigl[ 
X0,X1, . . . ,Xs - 1

\bigr] 
\in \BbbR n\times s.(2.12)

Similar to the residual subspace projector, we also introduce a solution subspace
projector Q such that

max
Q\in Hn\times d

\scrJ (Q),(2.13)

where

\scrJ (Q) =

s - 1\sum 

k=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Q
T

\Biggl( 
Xk  - 1

s

s - 1\sum 

l=0

X l

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

.(2.14)

Let the mean of the solution vectors be \=X = 1
s

\sum s - 1
l=0 X l \in \BbbR n. We denote the

centered solution vector as \^Xk = Xk  - \=X and the centered solution matrix \^X =
[ \^X0, \^X1, . . . , \^Xs - 1]. To obtain Q, we perform the SVD

\^X= \^UX
\^\Sigma X

\^V
T

X ;(2.15)

then Q can be formed by the first d columns of \^UX . Note that for standard problems
in, for example, image processing [29], a single PCA is performed, but here we need
a pair of PCA projections. Because d is often a small value, the cost of calculating
the SVDs is usually small.

2.2. The PIN\scrL algorithm. In this section, we describe the main steps of the
proposed PIN\scrL algorithm:

Step 1. (The training step) Choose a suitable training problem, and run the classical
IN to generate the training dataset. Compute P and Q by PCA based on the
training dataset.

Step 2. (The nonlinear preconditioning step) Solve the approximated nonlinear sys-
tem \scrF (Y ) = 0 by a subspace Newton method to be discussed below with the
initial guess Y 0 =X0. The intermediate solution Y \ast is accepted as an output
when \| \scrF (Y \ast )\| is sufficiently small.

Step 3. (The global IN step) Solve the original nonlinear system F (X) = 0 by using
IN with a corrected initial solution X(0) = Y \ast .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A854 LI LUO AND XIAO-CHUAN CAI

Steps 1 and 3 have been discussed in the previous section; here we focus on Step 2.
The approximate nonlinear system \scrF (Y ) = 0 is intended to capture the low frequency
components of the original nonlinear system but its dimension is still n, and moreover
its definition involves an n \times n matrix PPT which is generally dense. It is often
computationally intensive to solve the resulting algebraic system directly using a
Newton--Krylov method. We thus introduce a subspace Newton iteration with a
projected low dimensional Jacobian system corresponding to the slow subspace of the
residuals to correct the Newton solution. Starting from the initial guess Y 0 =X0, we
proceed with the following steps for j = 0,1, . . .:

1. Compute the dimension-reduced PCA projection

\scrF p =PT\scrF (Y j) = PTF (Y j)\in \BbbR d.(2.16)

2. Compute the low dimensional Newton correction Sj
p \in \BbbR d by solving

JpS
j
p = - \scrF p,(2.17)

where

Jp =PTF \prime (Y j)Q(2.18)

is the projected Jacobian of size d\times d.
3. Compute the new approximate solution

Y j+1 = Y j +QSj
p.(2.19)

The resulting Y \ast is accepted as a corrected solution if the stopping condition

\| \scrF (Y \ast )\| \leq \gamma s
r\| \scrF (Y 0)\| 

is satisfied, where \gamma s
r is a relative tolerance.

In the subspace Newton iteration, we use an exact Newton method without line
search because the system is small. From an algebraic point of view, this process
can be regarded as restricting the space \BbbR n to a subspace of dimension d, finding
the exact solution in \BbbR d, and prolongating the reduced solution back to \BbbR n. This is
similar to a two-level multigrid method used to correct the low frequency components
in the residual space. A detailed description of the overall method is presented in
Algorithm 2.1.

Remark 2.1. In Step 2 of Algorithm 2.1, the solve of \scrF (Y ) = 0 is considered as a
nonlinear preconditioner of F , that is, Y = G(X). Hence, the nonlinear system can
be written as

F (G(X)) = 0(2.20)

and is called a right-preconditioned nonlinear system.

Remark 2.2. The dimension of the subspace Jacobian system is determined by
the number of principal components d, which is often small, thus the solve of the
subspace Jacobian system is almost trivial. This is one key advantage of the proposed
algorithm.

Remark 2.3. The learning-based preconditioner identifies the slow components by
using an algebraic method for the residual space; by nature, it does not require extra
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PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A855

Algorithm 2.1 PIN\scrL : Preconditioned inexact Newton methods with learning capa-
bility.

Step 1. The training step:

(1) Collect s nonlinear residual vectors F (Xk) and s approximate solution
vectors Xk from a training problem solved by IN, k= 0, . . . , s - 1.

(2) Form the centered residual matrix \^F= [ \^F 0, \^F 1, . . . , \^F s - 1] and the
centered solution matrix \^X= [ \^X0, \^X1, . . . , \^Xs - 1] by a mean subtraction.

(3) Compute the SVD for the centered residual matrix \^F= \^UF
\^\Sigma F

\^V
T

F and

for the centered solution matrix \^X= \^UX
\^\Sigma X

\^V
T

X .

(4) Form the residual subspace projector P= \^U
d

F and the solution subspace

projector Q= \^U
d

X .
Step 2. The nonlinear preconditioning step:

Start from the initial guess Y 0 =X0 for j = 0,1, . . . .

(1) Compute the approximated residual vector \scrF (Y j) = PPT (F (Y j) - \=F ) +
\=F .

(2) If the stopping condition \| \scrF (Y j)\| \leq \gamma s
r\| \scrF (Y 0)\| is satisfied, set Y \ast =

Y j , go to Step 3.
(3) Project \scrF (Y j) to a dimension-reduced vector \scrF p =PT\scrF (Y j).
(4) Compute the projected Jacobian Jp =PTF \prime (Y j)Q.
(5) Exactly solve JpS

j
p = - \scrF p.

(6) Update Y j+1 = Y j +QSj
p.

Step 3. The global IN step:
Start from the initial guess X(0) = Y \ast for i= 0,1, . . . .

(1) Form the nonlinear residual F (X(i)).
(2) If the global stopping condition \| F (X(i))\| \leq max\{ \gamma a, \gamma r\| F (X0)\| \} is

satisfied, set X\ast =X(i), stop.
(3) Form the Jacobian J = F \prime (X(i)).
(4) Inexactly solve JS(i) = - F (X(i)).
(5) Compute \lambda (i) using the cubic backtracking line search.
(6) Update X(i+1) =X(i) + \lambda (i)S(i).

analysis of the physics behind the partial differential equations. For the incompressible
flow problems to be studied in section 3, we will not separate the field variables
or apply any prior knowledge of the solution or the intermediate solutions when
performing the training step and the nonlinear preconditioning step.

Remark 2.4. Compared to the domain-based NE preconditioners [8, 24, 34, 35,
45], the proposed method does not partition the domain into different parts and treat
them differently, thus avoiding the potential interfacial jumps.

Remark 2.5. In contrast to the adaptive NE preconditioner [17, 19, 32, 34, 35,
45], the learning-based nonlinear preconditioner is applied only once before the global
Newton iteration, saving considerable compute time.

2.3. Other training methods. Since the training step of Algorithm 2.1 is for
the construction of a preconditioner which does not need to be very precise, in this
section, we propose several possible approximations of the training step without going
into details:
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A856 LI LUO AND XIAO-CHUAN CAI

\bullet Training with a different problem. In the previous section we assumed the
training datasets (2.6) and (2.12) are from the original problem (2.1). In
practical applications, it is not necessary for the training problem to be iden-
tical to the original problem. Similar to the idea of transfer learning, one
may choose a training problem with certain parameters so that it is easier to
solve than the original problem.

\bullet Training on a different mesh. The algorithm introduced in the previous sec-
tion is for nonlinear algebraic systems without requiring any mesh informa-
tion. For problems defined on a mesh, the robustness of the nonlinear solver
often degrades when the mesh is fine because more delicate physics are re-
solved, such as the small eddies of a driven cavity flow considered in the
numerical experiments of this paper. When applying PIN\scrL directly on a fine
mesh, the computational cost of the training step and the preconditioning
step could be high. In order to reduce the computational cost, one possible
strategy is to move the training step and the preconditioning step to a coarser
mesh and interpolate the solution to the fine mesh.

\bullet Training data generated by a different method. Besides the classical IN, a
variety of nonlinear solvers can be used to generate the training dataset, such
as PIN-NE and other nonlinear preconditioned Newton methods. In partic-
ular, one can use PIN\scrL to generate a new dataset for further training and
preconditioning by another PIN\scrL applied to even more difficult problems.
The idea of retraining is similar to the continuation approaches utilizing re-
sults of prior problems [1, 27], but applied in a learning procedure. We will
show in numerical tests that the proposed method is more powerful than the
continuation approaches for solving highly nonlinear problems.

3. Numerical experiments. To evaluate the performance of the proposed algo-
rithm, we consider two steady-state incompressible flow problems with high Reynolds
numbers: the lid-driven cavity flows and the backward-facing step flows. Let \Omega =
(a, b)\times (c, d) be a bounded domain in \BbbR 2. These flow problems can be modeled by
the Navier--Stokes equations in the velocity-vorticity formulation:

(3.1)

\left\{ 
      
      

 - \Delta u - \partial \omega 

\partial y
= 0 in \Omega ,

 - \Delta v+
\partial \omega 

\partial x
= 0 in \Omega ,

 - 1

Re
\Delta \omega + u

\partial \omega 

\partial x
+ v

\partial \omega 

\partial y
= 0 in \Omega ,

where u and v are the velocity fields in the x- and y-directions, respectively, and

\omega =
\partial v

\partial x
 - \partial u

\partial y
(3.2)

is the vorticity normal to the xy-plane. The Reynolds number Re quantifies the rela-
tive importance of inertial forces to viscous forces. Suitable boundary conditions are
needed to close the system, which will be given later in the two problems respectively.

A standard central second-order finite difference scheme is used for the discretiza-
tion of both the Laplacian operators and the first-order partial derivatives in (3.1).
Let \Omega be covered by an M \times N mesh; then each point pij = (xi, yj) is located at the
position xi = a+ (i - 1)hx with i= 1, . . . ,M and yj = c+ (j  - 1)hy with j = 1, . . . ,N ,
hx = (b - a)/(M  - 1), and hy = (d - c)/(N  - 1). In this work, we consider the point-
block ordering to build up the large sparse nonlinear system of algebraic equations
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(2.1), in which the unknown variables uij , vij , \omega ij associated with a mesh point pij
are always together in a 3\times 3 block, i.e.,

X = (u11, v11, \omega 11, u21, v21, \omega 21, . . . , uMN , vMN , \omega MN )
T
,

and the corresponding functions are in the order of

F = (Fu
11, F

v
11, F

\omega 
11, F

u
21, F

v
21, F

\omega 
21, . . . , F

u
MN , F v

MN , F\omega 
MN )

T
,

where Fu
ij , F

v
ij , F

\omega 
ij are the components of F corresponding to the variables u, v, \omega ,

respectively.
The numerical experiments are carried out on a computer with an Intel Xeon

6248 2.50GHz CPU. A zero vector is used as the initial guess, i.e., X0 = 0. GMRES
[41] is used for solving the Jacobian systems in both the global and subspace Newton
iterations where the Jacobian matrices are computed analytically. The nonlinear
solver is implemented using PETSc [4] and the SVD is calculated using the LAPACK
dgesvd routine [2]. We use the following parameters in our solvers if they are not
specifically stated. The restart value of GMRES is fixed at 50. A point-block ILU
factorization with three fill-in levels is used for preconditioning the GMRES solver.
The relative and absolute tolerances of the global nonlinear solver are \gamma r = 10 - 12 and
\gamma a = 10 - 8, respectively. To enhance the robustness of inexact Newton, the forcing
term \eta (i) is computed based on norms that are by-products of the iteration. For
i= 1,2, . . ., we choose

(3.3) \eta (i) =

\left\{ 
 
 

\eta 0, \| F (X(i))\| \geq \beta ,
\bigm| \bigm| \| F (X(i))\|  - \| F \prime 

(X(i - 1))S(i - 1)+F (X(i - 1)))\| 
\bigm| \bigm| 

\| F (X(i - 1))\| , \| F (X(i))\| <\beta ,

where \eta 0 \in [0,1) and \beta are given constants. By default we use \beta = \infty , which corre-
sponds to the Eisenstat--Walker method [15].

In the rest of this paper, ``NIg"" denotes the number of global Newton iterations;
``LIg"" denotes the averaged number of GMRES iterations per global Newton iteration;
``NIs"" refers to the averaged number of subspace Newton iterations in the nonlinear
preconditioning step; ``LIs"" is the averaged number of GMRES iterations per subspace
Newton; ``Ttotal(s)"" is the total compute time in seconds for the overall algorithm;
``Tprecon(s)"" is the compute time in seconds for the nonlinear preconditioning step;
and ``Ttrain(s)"" is the compute time in seconds for PCA in the training step, in which
the time needed for solving with IN to collect the datasets for PCA is not included.

3.1. The lid-driven cavity flow problem. In this section, we consider flows
confined in the unit domain \Omega = (0,1) \times (0,1), as depicted in Figure 1. The top
boundary \Gamma lid represents a lid moving with velocity u= 1 in the positive x-direction.
On all walls we impose a no-slip and no-penetration boundary condition, specifically,

(3.4)

\left\{ 
     
     

u= 1 on \Gamma lid,

u= 0 on \partial \Omega /\Gamma lid,

v= 0 on \partial \Omega ,

\omega = \partial v
\partial x  - \partial u

\partial y on \partial \Omega .

The boundary condition for the vorticity is discretized with a second-order approxi-
mation using mesh points adjacent to the boundary [39].
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Fig. 1. The computational domain for the lid-driven cavity flow problem.

The boundary condition for the vorticity is discretized with a second-order approxi-
mation using mesh points adjacent to the boundary [39].

3.1.1. Validation of the proposed numerical method. We first validate the
finite difference discretization and the proposed algorithm by comparing the velocity
profiles of the cavity flow with benchmark results. A sequence of refined meshes
ranging from 129 \times 129 to 513 \times 513 are used for the tests. Figure 2 shows the two
velocity components u and v along the vertical and horizontal centerlines of the cavity
for cases Re = 103, 3.2 \times 103, 5 \times 103, 7.5 \times 103, and 104. The computed velocity
profiles converge as the mesh is refined, and show good agreement with the published
benchmark solutions in [16].
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Fig. 2. Velocity profiles of the cavity flow at different Reynolds numbers. Note that the profiles
are shifted for visual comparison. (a) u, from left to right: Re = 103, 3.2\times 103, 5\times 103, 7.5\times 103,
and 104. (b) v, from bottom to top: Re = 103, 3.2\times 103, 5\times 103, 7.5\times 103, and 104.

Figure 3 and Figure 4 show the streamlines and vorticity contours for the cavity
flow with Re = 600, 103, 5\times 103, and 104, respectively. The mesh size is 513\times 513. As
Re increases, a sequence of eddies with diminishing size are observed at the corners
of the cavity. The patterns of streamlines and the vorticity contours match well with
the results in the earlier studies [16, 18, 45].

Fig. 1. The computational domain for the lid-driven cavity flow problem.
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Fig. 1. The computational domain for the lid-driven cavity flow problem.

The boundary condition for the vorticity is discretized with a second-order approxi-
mation using mesh points adjacent to the boundary [39].

3.1.1. Validation of the proposed numerical method. We first validate the
finite difference discretization and the proposed algorithm by comparing the velocity
profiles of the cavity flow with benchmark results. A sequence of refined meshes
ranging from 129 \times 129 to 513 \times 513 are used for the tests. Figure 2 shows the two
velocity components u and v along the vertical and horizontal centerlines of the cavity
for cases Re = 103, 3.2 \times 103, 5 \times 103, 7.5 \times 103, and 104. The computed velocity
profiles converge as the mesh is refined, and show good agreement with the published
benchmark solutions in [16].
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Fig. 2. Velocity profiles of the cavity flow at different Reynolds numbers. Note that the profiles
are shifted for visual comparison. (a) u, from left to right: Re = 103, 3.2\times 103, 5\times 103, 7.5\times 103,
and 104. (b) v, from bottom to top: Re = 103, 3.2\times 103, 5\times 103, 7.5\times 103, and 104.

Figure 3 and Figure 4 show the streamlines and vorticity contours for the cavity
flow with Re = 600, 103, 5\times 103, and 104, respectively. The mesh size is 513\times 513. As
Re increases, a sequence of eddies with diminishing size are observed at the corners
of the cavity. The patterns of streamlines and the vorticity contours match well with
the results in the earlier studies [16, 18, 45].

Fig. 2. Velocity profiles of the cavity flow at different Reynolds numbers. Note that the profiles
are shifted for visual comparison. (a) u, from left to right: Re= 103, 3.2\times 103, 5\times 103, 7.5\times 103,
and 104. (b) v, from bottom to top: Re= 103, 3.2\times 103, 5\times 103, 7.5\times 103, and 104.

3.1.1. Validation of the proposed numerical method. We first validate the
finite difference discretization and the proposed algorithm by comparing the velocity
profiles of the cavity flow with benchmark results. A sequence of refined meshes
ranging from 129\times 129 to 513\times 513 are used for the tests. Figure 2 shows the two
velocity components u and v along the vertical and horizontal centerlines of the cavity
for cases Re = 103, 3.2 \times 103, 5 \times 103, 7.5 \times 103, and 104. The computed velocity
profiles converge as the mesh is refined and show good agreement with the published
benchmark solutions in [16].

Figures 3 and 4 show the streamlines and vorticity contours for the cavity flow
with Re= 600, 103, 5\times 103, and 104, respectively. The mesh size is 513\times 513. As Re
increases, a sequence of eddies with diminishing size is observed at the corners of the
cavity. The patterns of streamlines and the vorticity contours match well with the
results in the earlier studies [16, 18, 45].

3.1.2. Comparison of IN and PIN\scrL . In this section, we study how PIN\scrL im-
proves the convergence of the classical IN. Figure 5 displays the history of nonlinear
residuals obtained using IN and PIN\scrL for the cavity flow with Re= 600 on a 257\times 257
mesh. For the classical IN, it is observed that the residual norm stagnates around
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PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A11

(a) Re = 600 (b) Re = 103

(c) Re = 5\times 103 (d) Re = 104

Fig. 3. Streamlines for the cavity flow with different Reynolds numbers. The mesh size is
513\times 513.

3.1.2. Comparison of IN and PIN\scrL . In this section, we study how PIN\scrL im-
proves the convergence of the classical IN. Figure 5 displays the history of nonlinear
residuals obtained using IN and PIN\scrL for the cavity flow with Re = 600 on a 257\times 257
mesh. For the classical IN, it is observed that the residual norm stagnates around
10 - 2 and the method requires 20 Newton steps to converge. We collect the resulting
residuals to form the residual matrix F and learn the slow subspace by PCA. The
singular values of \^F and \^X are plotted in Figure 6. Observed from Figure 6, d = 5
is a suitable choice for PCA to capture the principal components of the problem.
The corresponding singular vectors that characterize the dominant patterns of non-
linearities are shown in Figure 7. In PIN\scrL , the relative tolerance for the subspace
Newton is set to be \gamma s

r = 10 - 3, and the parameters for the forcing term are given as
(\eta 0, \beta ) = (0.1, 10 - 3). The numbers of iterations and compute time obtained using IN
and PIN\scrL for this test are presented in Table 1. It can be seen in Figure 5 that with
only 3 subspace Newton steps the residual norm reaches O(10 - 3), providing a bet-
ter initial guess for the global Newton iteration. Then, the global Newton converges
quickly without any stagnation.

Fig. 3. Streamlines for the cavity flow with different Reynolds numbers. The mesh size is
513\times 513.

10 - 2 and the method requires 20Newton steps to converge. We collect the resulting
residuals to form the residual matrix F and learn the slow subspace by PCA. The
singular values of \^F and \^X are plotted in Figure 6. Observed from Figure 6, d = 5
is a suitable choice for PCA to capture the principal components of the problem.
The corresponding singular vectors that characterize the dominant patterns of non-
linearities are shown in Figure 7. In PIN\scrL , the relative tolerance for the subspace
Newton is set to be \gamma s

r = 10 - 3, and the parameters for the forcing term are given
as (\eta 0, \beta ) = (0.1,10 - 3). The numbers of iterations and compute time obtained using
IN and PIN\scrL for this test are presented in Table 1. It can be seen in Figure 5 that
with only three subspace Newton steps the residual norm reaches O(10 - 3), provid-
ing a better initial guess for the global Newton iteration. Then, the global Newton
converges quickly without any stagnation.

To see how the proposed preconditioner smooths out the nonlinearities of the
system, we show in Figure 8 the residual of components u and \omega at different subspace
Newton steps (j = 0,1,2). Note that the nonlinear function \scrF = PPT (F  - \=F ) + \=F is
an approximation of F that characterizes its low frequency components. We can see
from the figure that \scrF captures the main features of F very well though a small value
of d is used (d= 5), while the difference F  - \scrF shows the high frequency components.
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A12 LI LUO AND XIAO-CHUAN CAI

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

-5

-3

-1

1

3

5

(a) Re = 600

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

-5

-3

-1

1

3

5

(b) Re = 103
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(c) Re = 5\times 103
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(d) Re = 104

Fig. 4. Vorticity contours for the cavity flow with different Reynolds numbers. The mesh size
is 513\times 513.

To see how the proposed preconditioner smoothes out the nonlinearities of the
system, we show in Figure 8 the residual of components u and \omega at different subspace
Newton steps (j = 0, 1, 2). Note that the nonlinear function \scrF = PPT (F  - \=F ) + \=F is
an approximation of F that characterizes its low frequency components. We can see
from the figure that \scrF captures the main features of F very well though a small value
of d is used (d = 5), while the difference F  - \scrF shows the high frequency components.
It is also seen that the subspace Newton effectively reduces the magnitude of the
residuals, which leads to the fast convergence of PIN\scrL .

As Re increases, the nonlinear system becomes harder to solve. On a 257 \times 257
mesh, the classical IN fails to converge when Re is greater than 700, resulting in a
series of residuals that can hardly be reduced. With such a dataset, PCA is not able
to identify the slow subspace effectively. In this work, we perform the training step on

Fig. 4. Vorticity contours for the cavity flow with different Reynolds numbers. The mesh size
is 513\times 513.
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Fig. 5. Nonlinear residual history obtained using IN and PIN\scrL for the cavity flow with Re =
600. The mesh size is 257\times 257. d = 5, \gamma s

r = 10 - 3.
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Fig. 6. Singular values obtained using PCA for the residual dataset (a) and the solution dataset
(b).

the dataset obtained from a low Reynolds number problem, i.e., Re = 600, and use
the resulting subspace projectors for preconditioning the nonlinear solver for a high
Reynolds number problem, i.e., Re \geq 103. Figure 9(a) shows the nonlinear residual
history obtained using IN and PIN\scrL for the cavity flow problem with different Re.
For PIN\scrL , we choose d = 10 and \gamma s

r = 10 - 4. For comparison, the results obtained
using the Reynolds number continuation approach [1] are also presented in which the
solution for case Re = 600 is used as the initial guess for cases with a larger Re. The
continuation approach converges when Re \leq 5\times 103 but fails for cases Re \geq 7.5\times 103.
In contrast, PIN\scrL converges well for all cases with Re = 103 \sim 104. Figure 9(b) shows
the step length \lambda (i) with respect to the global Newton step for case Re = 104. PIN\scrL 

results in \lambda (i) = 1 for almost every Newton step. The ability to restore the full step
length along the Newton direction implies fast convergence of the Newton iteration.

A detailed comparison for the numbers of iterations and the total compute times
between the two methods are summarized in Table 2. When Re > 103, PIN\scrL per-
forms better than the Re continuation approach in terms of the numbers of global
iterations and the total compute time. This shows that the proposed preconditioning

Fig. 5. Nonlinear residual history obtained using IN and PIN\scrL for the cavity flow with Re =
600. The mesh size is 257\times 257. d= 5, \gamma s

r = 10 - 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

2/
23

 to
 2

02
.1

75
.6

7.
23

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A861

PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A13

0 5 10 15 20

Newton iteration

10-8

10-6

10-4

10-2

1

10

R
e
s
id

u
a
l 
n
o
rm

IN

PIN
L
: subspace Newton

PIN
L
: global Newton

Fig. 5. Nonlinear residual history obtained using IN and PIN\scrL for the cavity flow with Re =
600. The mesh size is 257\times 257. d = 5, \gamma s
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0 5 10 15 20

k

0

5

10

15

S
in

g
u

la
r 

v
a

lu
e

s

(a) \sigma k
F

0 5 10 15 20

k

0

500

1000

1500

2000

S
in

g
u

la
r 

v
a

lu
e

s

(b) \sigma k
X

Fig. 6. Singular values obtained using PCA for the residual dataset (a) and the solution dataset
(b).

the dataset obtained from a low Reynolds number problem, i.e., Re = 600, and use
the resulting subspace projectors for preconditioning the nonlinear solver for a high
Reynolds number problem, i.e., Re \geq 103. Figure 9(a) shows the nonlinear residual
history obtained using IN and PIN\scrL for the cavity flow problem with different Re.
For PIN\scrL , we choose d = 10 and \gamma s

r = 10 - 4. For comparison, the results obtained
using the Reynolds number continuation approach [1] are also presented in which the
solution for case Re = 600 is used as the initial guess for cases with a larger Re. The
continuation approach converges when Re \leq 5\times 103 but fails for cases Re \geq 7.5\times 103.
In contrast, PIN\scrL converges well for all cases with Re = 103 \sim 104. Figure 9(b) shows
the step length \lambda (i) with respect to the global Newton step for case Re = 104. PIN\scrL 

results in \lambda (i) = 1 for almost every Newton step. The ability to restore the full step
length along the Newton direction implies fast convergence of the Newton iteration.

A detailed comparison for the numbers of iterations and the total compute times
between the two methods are summarized in Table 2. When Re > 103, PIN\scrL per-
forms better than the Re continuation approach in terms of the numbers of global
iterations and the total compute time. This shows that the proposed preconditioning

Fig. 6. Singular values obtained using PCA for (a) the residual dataset and (b) the solution
dataset.
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(a) Component u of P(:, 1) (b) Component \omega of P(:, 2) (c) Component \omega of P(:, 3)

(d) Component \omega of P(:, 4) (e) Component \omega of P(:, 5)

Fig. 7. Surface plot of the first five singular vectors of \^F (columns of the residual subspace

projector P). \^F is obtained by using IN for the cavity flow with Re = 600 on a 257\times 257 mesh.

Table 1
The results obtained using IN and PIN\scrL for the cavity flow with Re = 600. The mesh size is

257\times 257, d = 5, and \gamma s
r = 10 - 3. ``NI"" denotes the number of Newton iterations, ``LI"" denotes the

averaged number of GMRES iterations per Newton iteration, ``T(s)"" denotes the compute time in
seconds.

IN PIN\scrL 

Training Subspace Newton Global IN

NI 20 3 4
LI 23.6 1 36.8
T(s) 45.7 0.7 1.2 19.3

technique is superior to the continuation approach provided with the same solution
of the training problem. We also note that the compute time for the training step
and the preconditioning step take a small percentage of the total compute time of
PIN\scrL . On one hand, since the dataset F and X consist of a small number of residual
and solution vectors obtained from a low Re problem, the application of PCA can
be done efficiently. On the other hand, because the projected Jacobian system in the
subspace Newton iteration has only d dimensions, one iteration is often sufficient for
the linear solve.

3.1.3. The impact of preselected parameters and datasets. To under-
stand the impact of the parameters on the performance of PIN\scrL , we test the case
Re = 103 using different values of d and \gamma s

r . The mesh size is 257\times 257. The dataset
collected for PCA is obtained by using IN for case Re = 600. The resulting num-
bers of Newton iterations and the compute times are shown in Table 3. The relative

Fig. 7. Surface plot of the first five singular vectors of \^F (columns of the residual subspace

projector P). \^F is obtained by using IN for the cavity flow with Re= 600 on a 257\times 257 mesh.

Table 1
The results obtained using IN and PIN\scrL for the cavity flow with Re = 600. The mesh size is

257\times 257, d= 5, and \gamma s
r = 10 - 3. ``NI"" denotes the number of Newton iterations, ``LI"" denotes the

averaged number of GMRES iterations per Newton iteration, ``T(s)"" denotes the compute time in
seconds.

IN PIN\scrL 

Training Subspace Newton Global IN

NI 20 3 4

LI 23.6 1 36.8
T(s) 45.7 0.7 1.2 19.3
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Table 2
The numbers of iterations and compute times obtained using IN with the Reynolds number

continuation approach and PIN\scrL for the cavity flow problem. The mesh size is 257\times 257, d = 10,
and \gamma s

r = 10 - 4.

Re Ttrain(s) NIs LIs Tprecon(s) NIg LIg Ttotal(s)

IN (Re continuation)
103 7 39.6 20.1

3.2\times 103 12 24.2 24.8

5\times 103 17 31.4 43.7

PIN\scrL 

103 0.8 5 1 2.4 9 23.1 23.7

3.2\times 103 0.8 3 1 1.5 10 24.8 24.4

5\times 103 0.8 3 1 1.4 10 25.7 26.5
7.5\times 103 0.8 3 1 1.4 11 21.3 22.8

104 0.8 3 1 1.4 14 22.1 30.5

It is also seen that the subspace Newton effectively reduces the magnitude of the
residuals, which leads to the fast convergence of PIN\scrL .

As Re increases, the nonlinear system becomes harder to solve. On a 257\times 257
mesh, the classical IN fails to converge when Re is greater than 700, resulting in a
series of residuals that can hardly be reduced. With such a dataset, PCA is not able
to identify the slow subspace effectively. In this work, we perform the training step
on the dataset obtained from a low Reynolds number problem, i.e., Re= 600, and use
the resulting subspace projectors for preconditioning the nonlinear solver for a high
Reynolds number problem, i.e., Re \geq 103. Figure 9(a) shows the nonlinear residual
history obtained using IN and PIN\scrL for the cavity flow problem with different Re.
For PIN\scrL , we choose d = 10 and \gamma s

r = 10 - 4. For comparison, the results obtained
using the Reynolds number continuation approach [1] are also presented in which the
solution for case Re= 600 is used as the initial guess for cases with a larger Re. The
continuation approach converges when Re\leq 5\times 103 but fails for cases Re\geq 7.5\times 103.
In contrast, PIN\scrL converges well for all cases with Re= 103 \sim 104. Figure 9(b) shows
the step length \lambda (i) with respect to the global Newton step for case Re= 104. PIN\scrL 

results in \lambda (i) = 1 for almost every Newton step. The ability to restore the full step
length along the Newton direction implies fast convergence of the Newton iteration.

A detailed comparison for the numbers of iterations and the total compute times
between the two methods are summarized in Table 2. When Re > 103, PIN\scrL per-
forms better than the Re continuation approach in terms of the numbers of global
iterations and the total compute time. This shows that the proposed preconditioning
technique is superior to the continuation approach provided with the same solution
of the training problem. We also note that the compute time for the training step
and the preconditioning step take a small percentage of the total compute time of
PIN\scrL . On one hand, since the dataset F and X consist of a small number of residual
and solution vectors obtained from a low Re problem, the application of PCA can
be done efficiently. On the other hand, because the projected Jacobian system in the
subspace Newton iteration has only d dimensions, one iteration is often sufficient for
the linear solve.

3.1.3. The impact of preselected parameters and datasets. To under-
stand the impact of the parameters on the performance of PIN\scrL , we test the case
Re= 103 using different values of d and \gamma s

r . The mesh size is 257\times 257. The dataset
collected for PCA is obtained by using IN for case Re= 600. The resulting numbers

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

2/
23

 to
 2

02
.1

75
.6

7.
23

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A863
PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A15

(a) Fu(Y 0) (b) \scrF u(Y 0) (c) Fu(Y 0)-\scrF u(Y 0)

(d) Fu(Y 1) (e) \scrF u(Y 1) (f) Fu(Y 1)-\scrF u(Y 1)

(g) F\omega (Y 1) (h) \scrF \omega (Y 1) (i) F\omega (Y 1)-\scrF \omega (Y 1)

(j) F\omega (Y 2) (k) \scrF \omega (Y 2) (l) F\omega (Y 2)-\scrF \omega (Y 2)

Fig. 8. The residual of components u and \omega at different subspace Newton steps (j = 0, 1, 2)
obtained using PIN\scrL for the cavity flow with Re = 600. The mesh size is 257\times 257, d = 5, \gamma s

r = 10 - 3.
(a),(d),(g),(j) are the residuals computed using the original nonlinear function F . (b),(e),(h),(k) are
the residuals computed using the approximated function \scrF . (c),(f),(i),(l) are the difference between
F (Y j) and \scrF (Y j).

Fig. 8. The residual of components u and \omega at different subspace Newton steps (j = 0,1,2)
obtained using PIN\scrL for the cavity flow with Re= 600. The mesh size is 257\times 257, d= 5, \gamma s

r = 10 - 3.
(a), (d), (g), (j) are the residuals computed using the original nonlinear function F . (b), (e), (h),
(k) are the residuals computed using the approximated function \scrF . (c), (f), (i), (l) are the difference
between F (Y j) and \scrF (Y j).
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A16 LI LUO AND XIAO-CHUAN CAI
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Fig. 9. (a) Nonlinear residual history obtained using IN, the Reynolds number continuation
approach, and PIN\scrL for the cavity flow problem. (b) The step length \lambda (i) in the global Newton
iteration for the case with Re = 104. The mesh size is 257\times 257, d = 10, and \gamma s

r = 10 - 4.

Table 2
The numbers of iterations and compute times obtained using IN with the Reynolds number

continuation approach and PIN\scrL for the cavity flow problem. The mesh size is 257 \times 257, d = 10,
and \gamma s

r = 10 - 4.

Re Ttrain(s) NIs LIs Tprecon(s) NIg LIg Ttotal(s)

IN (Re continuation)
103 7 39.6 20.1

3.2\times 103 12 24.2 24.8
5\times 103 17 31.4 43.7

PIN\scrL 

103 0.8 5 1 2.4 9 23.1 23.7
3.2\times 103 0.8 3 1 1.5 10 24.8 24.4
5\times 103 0.8 3 1 1.4 10 25.7 26.5

7.5\times 103 0.8 3 1 1.4 11 21.3 22.8
104 0.8 3 1 1.4 14 22.1 30.5

tolerance \gamma s
r is used to determine how accurately the subspace nonlinear problem is

to be solved. We find from the table that the method is robust with respect to \gamma s
r

in terms of the number of global Newton iterations. Since the output projector of
PCA is used for the purpose of nonlinear preconditioning, the selection of d should be
within a suitable range. On one hand, when d is too small, the principal components
selected may not be sufficient to figure out the slow subspace of the residuals, and
the subspace Newton may not converge when a small \gamma s

r is used. On the other hand,
when d is too large, the residual subspace may have no distinction from the original
space so that solving the system in nonlinear preconditioning is as difficult as the
original problem, which violates the purpose of preconditioning. In terms of the total
compute time, the best choice for this case is d = 10, which is half the size of the
dataset.

The dataset collected for PCA is another important factor that affects the perfor-
mance of PIN\scrL . With different datasets obtained using IN for cases Re = 300 \sim 600,
we compare the results in Table 4. For each dataset we choose a suitable d to obtain
the optimal performance. When the training problem is far from the original prob-
lem, i.e., the one obtained from Case Re = 300, the subspace projectors P and Q

Fig. 9. (a) Nonlinear residual history obtained using IN, the Reynolds number continuation
approach, and PIN\scrL for the cavity flow problem. (b) The step length \lambda (i) in the global Newton
iteration for the case with Re= 104. The mesh size is 257\times 257, d= 10, and \gamma s

r = 10 - 4.

Table 3
The impact of parameters d and \gamma s

r on the performance of PIN\scrL for the cavity flow problem
with Re= 103. The mesh size is 257\times 257. ``*"" means the subspace Newton does not converge and
returns the intermediate solution at this step.

\gamma s
r = 10 - 3 \gamma s

r = 10 - 4 \gamma s
r = 10 - 5

d NIs NIg Ttotal(s) NIs NIg Ttotal(s) NIs NIg Ttotal(s)

5 3 19 40.8 6* 19 45.6 6* 19 45.1
7 6 11 28.5 9* 10 29.7 9* 10 28.1

10 4 9 21.2 5 9 23.7 7* 9 26.6

12 5 11 29.6 7 10 26.6 7 10 27.0

of Newton iterations and the compute times are shown in Table 3. The relative toler-
ance \gamma s

r is used to determine how accurately the subspace nonlinear problem is to be
solved. We find from the table that the method is robust with respect to \gamma s

r in terms
of the number of global Newton iterations. Since the output projector of PCA is used
for the purpose of nonlinear preconditioning, the selection of d should be within a
suitable range. On one hand, when d is too small, the principal components selected
may not be sufficient to figure out the slow subspace of the residuals, and the subspace
Newton may not converge when a small \gamma s

r is used. On the other hand, when d is too
large, the residual subspace may have no distinction from the original space so that
solving the system in nonlinear preconditioning is as difficult as the original problem,
which violates the purpose of preconditioning. In terms of the total compute time,
the best choice for this case is d= 10, which is half the size of the dataset.

The dataset collected for PCA is another important factor that affects the perfor-
mance of PIN\scrL . With different datasets obtained using IN for cases Re= 300\sim 600,
we compare the results in Table 4. For each dataset we choose a suitable d to obtain
the optimal performance. When the training problem is far from the original problem,
i.e., the one obtained from case Re = 300, the subspace projectors P and Q learned
from this dataset are considered not good enough for preconditioning. With such
preconditioning PIN\scrL needs more global Newton iterations and more compute time
to converge, or not converge at all for the difficult case Re= 104. We remark that the
classical IN fails for Re> 700 and the resulting dataset does not work well. One way
to provide a useful dataset for preconditioning high Re problems is by using PIN\scrL in-
stead of IN. For example, with the dataset obtained using PIN\scrL for case Re= 5\times 103,
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Table 4
The impact of dataset on the performance of PIN\scrL for the cavity flow problem. The mesh size

is 257\times 257. ``s"" refers to the number of vectors (samples) in the dataset. ``--"" indicates that the
case fails to converge.

Re Data collection method s d \gamma s
r Ttrain(s) NIg Ttotal(s)

5\times 103 IN for Re= 300 18 5 10 - 4 0.6 14 31.2

IN for Re= 400 17 7 10 - 4 0.6 11 27.6
IN for Re= 600 20 10 10 - 4 0.8 10 26.5

104 IN for Re= 300 18 5 10 - 4 0.6 -- --

IN for Re= 400 17 7 10 - 4 0.6 19 49.9

IN for Re= 600 20 10 10 - 4 0.8 14 30.5

104 PIN\scrL for Re= 5\times 103 10 1 10 - 1 0.2 9 21.7
1.5\times 104 PIN\scrL for Re= 5\times 103 10 2 10 - 2 0.3 10 24.8

2\times 104 PIN\scrL for Re= 5\times 103 10 4 10 - 2 0.3 14 32.3

choosing only one principal component (d = 1) in the nonlinear preconditioning is
sufficient for case Re= 104 to converge. With a suitable choice of d and \gamma s

r , a solution
of more difficult cases with Re= 104 \sim 2\times 104 can be obtained by the proposed PIN\scrL ,
as shown in the table.

3.1.4. Performance of training and preconditioning on a coarser mesh.
We next study the convergence of the proposed method using a fine mesh 513\times 513
for the cavity flow problem. As discussed in section 2.3, we perform the training step
and the nonlinear preconditioning step on a coarser mesh 257\times 257 and project the
corrected initial guess to the fine mesh using a standard linear interpolation. We use
the same dataset and parameters as in the convergence test on the coarse mesh (Table
2), except for selecting a larger restart value 100 for GMRES and (\eta 0, \beta ) = (0.25,10 - 3)
for the forcing term. We compare the convergence of PIN\scrL with the mesh sequencing
approach [27] in which the solution obtained for case Re= 600 on the coarse mesh is
interpolated to the fine mesh as an initial guess. Figure 10 shows the nonlinear residual
history and the step length. It is observed that PIN\scrL with the proposed coarse mesh
preconditioning converges well for Re= 103 \sim 104 within 12 global Newton steps. In
contrast, the mesh sequencing approach fails to converge for almost all cases except
using \beta =\infty for case Re= 103. The results show that PIN\scrL yields better convergence
and robustness compared with the mesh sequencing approach for problems with a
large Re defined on a fine mesh.

3.2. The backward-facing step flow problem. In this section, we consider
the backward-facing step flow problem defined on a channel \Omega = (0,6) \times (0,1) as
shown in Figure 11. A fully developed parabolic velocity profile is specified at the
inlet boundary \Gamma in : x = 0,0.5 \leq y \leq 1; an outflow boundary condition is given on
the right boundary \Gamma out : x= 6; on the other boundaries \partial \Omega \setminus (\Gamma in \cup \Gamma out) we impose
no-slip and no-penetration conditions, specifically,

(3.5)\left\{ 
   
   

u= 8(0.5 - y)(y - 1), v= 0, \omega = \partial v
\partial x + 16y - 12 on \Gamma in,

u= - y(y - 1), v= 0, \omega = \partial v
\partial x + 2y - 1 on \Gamma out,

u= 0, v= 0, \omega = \partial v
\partial x  - \partial u

\partial y on \partial \Omega \setminus (\Gamma in \cup \Gamma out).

The boundary condition for the vorticity on \Gamma in and \Gamma out is discretized with a second-
order central finite difference method. For the boundary condition on \partial \Omega \setminus (\Gamma in\cup \Gamma out)
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A18 LI LUO AND XIAO-CHUAN CAI

PIN\scrL yields better convergence and robustness compared with the mesh sequencing
approach for problems with a large Re defined on a fine mesh.
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Fig. 10. (a) Nonlinear residual history and (b) step length for the cavity flow problem obtained
using the mesh sequencing approach and PIN\scrL with training and preconditioning on a coarser mesh.
The size of the fine mesh is 513\times 513, the size of the coarse mesh is 257\times 257. d = 10, and \gamma s

r = 10 - 4.

Fig. 11. The computational domain for the backward-facing step flow problem.

3.2. The backward-facing step flow problem. In this section, we consider
the backward-facing step flow problem defined on a channel \Omega = (0, 6) \times (0, 1) as
shown in Figure 11. A fully developed parabolic velocity profile is specified at the
inlet boundary \Gamma in : x = 0, 0.5 \leq y \leq 1; an outflow boundary condition is given on
the right boundary \Gamma out : x = 6; on the other boundaries \partial \Omega \setminus (\Gamma in \cup \Gamma out) we impose
no-slip and no-penetration conditions, specifically,
(3.5)\left\{ 
   
   

u = 8(0.5 - y)(y  - 1), v = 0, \omega = \partial v
\partial x + 16y  - 12, on \Gamma in,

u =  - y(y  - 1), v = 0, \omega = \partial v
\partial x + 2y  - 1, on \Gamma out,

u = 0, v = 0, \omega = \partial v
\partial x  - \partial u

\partial y , on \partial \Omega \setminus (\Gamma in \cup \Gamma out).

The boundary condition for the vorticity on \Gamma in and \Gamma out is discretized with a second-
order central finite difference method. For the boundary condition on \partial \Omega \setminus (\Gamma in\cup \Gamma out)
we use the same discretization as in the driven cavity flow problem. The mesh size
used for this case is 481 \times 81. Figure 12 shows the streamlines for the backward-
facing step flow with Re = 50, 200, and 1.2 \times 103, respectively. A vortex appears at

Fig. 10. (a) Nonlinear residual history and (b) step length for the cavity flow problem obtained
using the mesh sequencing approach and PIN\scrL with training and preconditioning on a coarser mesh.
The size of the fine mesh is 513\times 513, the size of the coarse mesh is 257\times 257. d= 10, and \gamma s

r = 10 - 4.
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PIN\scrL yields better convergence and robustness compared with the mesh sequencing
approach for problems with a large Re defined on a fine mesh.
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Fig. 10. (a) Nonlinear residual history and (b) step length for the cavity flow problem obtained
using the mesh sequencing approach and PIN\scrL with training and preconditioning on a coarser mesh.
The size of the fine mesh is 513\times 513, the size of the coarse mesh is 257\times 257. d = 10, and \gamma s

r = 10 - 4.

Fig. 11. The computational domain for the backward-facing step flow problem.

3.2. The backward-facing step flow problem. In this section, we consider
the backward-facing step flow problem defined on a channel \Omega = (0, 6) \times (0, 1) as
shown in Figure 11. A fully developed parabolic velocity profile is specified at the
inlet boundary \Gamma in : x = 0, 0.5 \leq y \leq 1; an outflow boundary condition is given on
the right boundary \Gamma out : x = 6; on the other boundaries \partial \Omega \setminus (\Gamma in \cup \Gamma out) we impose
no-slip and no-penetration conditions, specifically,
(3.5)\left\{ 
   
   

u = 8(0.5 - y)(y  - 1), v = 0, \omega = \partial v
\partial x + 16y  - 12, on \Gamma in,

u =  - y(y  - 1), v = 0, \omega = \partial v
\partial x + 2y  - 1, on \Gamma out,

u = 0, v = 0, \omega = \partial v
\partial x  - \partial u

\partial y , on \partial \Omega \setminus (\Gamma in \cup \Gamma out).

The boundary condition for the vorticity on \Gamma in and \Gamma out is discretized with a second-
order central finite difference method. For the boundary condition on \partial \Omega \setminus (\Gamma in\cup \Gamma out)
we use the same discretization as in the driven cavity flow problem. The mesh size
used for this case is 481 \times 81. Figure 12 shows the streamlines for the backward-
facing step flow with Re = 50, 200, and 1.2 \times 103, respectively. A vortex appears at

Fig. 11. The computational domain for the backward-facing step flow problem.

we use the same discretization as in the driven cavity flow problem. The mesh size
used for this case is 481 \times 81. Figure 12 shows the streamlines for the backward-
facing step flow with Re = 50, 200, and 1.2\times 103, respectively. A vortex appears at
the bottom left region caused by the flow separation, and its size develops with the
increase of Re.

For this problem, the classical IN fails to converge when Re\geq 800. We compare
the performance of the proposed method with a multilayer pointwise PIN-NE ap-
proach that is efficient for solving incompressible flows with high Reynolds numbers
[35]. At the kth global Newton step, the components corresponding to a mesh point
(i, j) are eliminated if \| F (Xk)\| /\| F (Xk - 1)\| \geq 0.9 and

max\{ | Fu
ij(X

k)| , | F v
ij(X

k)| , | F\omega 
ij(X

k)| \} >\rho l\| F (Xk)\| \infty ,(3.6)

where \rho l is a preselected parameter used for determining the number of the to-be-
eliminated components on the lth layer. We refer to [35] for more details of this
approach. In the test, we consider a single-layer approach with \rho 1 = 10 - 2 and a
two-layer approach with (\rho 1, \rho 2) = (10 - 2,10 - 3). For PIN\scrL , the dataset collected
for PCA is obtained by using IN for case Re = 200, consisting of seven vectors in
F and X. The number of principal components used is d = 4. We use the same
relative tolerance \gamma s

r = 10 - 3 for all methods in the test. Figure 13 shows the nonlin-
ear residual history obtained using IN, the single-layer PIN-NE, the two-layer PIN-
NE, and PIN\scrL for cases with Re = 800, 103, and 1.2 \times 103. A detailed compari-
son for the numbers of iterations and the total compute times is shown in Table 5.
As Re increases, both the single-layer PIN-NE and the two-layer PIN-NE result in
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PRECONDITIONED NEWTON WITH LEARNING CAPABILITY A19

the bottom left region caused by the flow separation, and its size develops with the
increase of Re.

(a) Re = 50

(b) Re = 200

(c) Re = 1.2\times 103

Fig. 12. Streamlines for the backward-facing step flows with different Reynolds numbers. The
mesh size is 481\times 81.

For this problem, the classical IN fails to converge when Re \geq 800. We com-
pare the performance of the proposed method with a multilayer pointwise PIN-NE
approach that is efficient for solving incompressible flows with high Reynolds numbers
[35]. At the kth global Newton step, the components corresponding to a mesh point
(i, j) are eliminated if \| F (Xk)\| /\| F (Xk - 1)\| \geq 0.9 and

max\{ | Fu
ij(X

k)| , | F v
ij(X

k)| , | F\omega 
ij(X

k)| \} > \rho l\| F (Xk)\| \infty ,(3.6)

where \rho l is a preselected parameter used for determining the number of the to-be-
eliminated components on the lth layer. We refer to [35] for more details of this
approach. In the test, we consider a single-layer approach with \rho 1 = 10 - 2 and a
two-layer approach with (\rho 1, \rho 2) = (10 - 2, 10 - 3). For PIN\scrL , the dataset collected for
PCA is obtained by using IN for case Re = 200, consisting of 7 vectors in F and
X. The number of principal components used is d = 4. We use the same relative
tolerance \gamma s

r = 10 - 3 for all methods in the test. Figure 13 shows the nonlinear
residual history obtained using IN, the single-layer PIN-NE, the two-layer PIN-NE,
and PIN\scrL for cases with Re = 800, 103, and 1.2 \times 103. A detailed comparison

Fig. 12. Streamlines for the backward-facing step flows with different Reynolds numbers. The
mesh size is 481\times 81.

A20 LI LUO AND XIAO-CHUAN CAI

for the numbers of iterations and the total compute times is shown in Table 5. As
Re increases, both the single-layer PIN-NE and the two-layer PIN-NE result in more
global Newton iterations. Note that the single-layer PIN-NE fails in line search for case
Re = 1.2\times 103. The two-layer approach significantly improves the convergence of the
single-layer approach. Compared to PIN-NE, PIN\scrL saves more than half of the global
Newton steps and half of the total compute time for the difficult case Re = 1.2\times 103.
We summarize the observations as follows: (1) In PIN\scrL , the subspace Newton is
performed only once before the global Newton is called, in contrast to the PIN-NE
methods that usually perform subspace Newton multiple times when NE is activated
adaptively. (2) The compute time spent for the subspace Newton iteration in PIN\scrL is
much smaller than the NE approaches since the dimension of the subspace Jacobian
problem (d-dimensions) is rather smaller compared to the dimension controlled by
\rho l in PIN-NE. (3) PIN\scrL results in a fixed number of global Newton iteration that
is independent of Re for this problem, which shows the robustness of the proposed
method for nonlinearly difficult problems.
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Fig. 13. Nonlinear residual history obtained using IN, single-layer PIN-NE, two-layer PIN-NE,
and PIN\scrL for the backward-facing step flow problem.

Table 5
The numbers of iterations and compute times obtained using the single-layer PIN-NE, the two-

layer PIN-NE, and PIN\scrL for the backward-facing step flow problem. ``Nne"" is the number of NE
applications in PIN-NE.

Re Ttrain(s) Nne NIs LIs Tprecon(s) NIg LIg Ttotal(s)

Single-layer PIN-NE
800 2 3 19.2 6.3 21 12.0 25.3
103 6 8 22.7 50.8 31 9.9 80.6

Two-layer PIN-NE
800 1 2.5 1.2 1.1 10 16.1 10.5
103 1 2.5 1.2 1.1 12 17.1 12.3

1.2\times 103 1 2.5 1.2 1.1 20 17.6 20.7

PIN\scrL 

800 0.1 1 1 0.2 9 14.7 8.7
103 0.1 1 1 0.2 9 16.2 9.1

1.2\times 103 0.1 1 1 0.2 9 16.6 9.5

To explore how PIN\scrL improves the convergence, we show in Figure 14 the resid-

Fig. 13. Nonlinear residual history obtained using IN, single-layer PIN-NE, two-layer PIN-NE,
and PIN\scrL for the backward-facing step flow problem.
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Table 5
The numbers of iterations and compute times obtained using the single-layer PIN-NE, the two-

layer PIN-NE, and PIN\scrL for the backward-facing step flow problem. ``Nne"" is the number of NE
applications in PIN-NE.

Re Ttrain(s) Nne NIs LIs Tprecon(s) NIg LIg Ttotal(s)

Single-layer PIN-NE

800 2 3 19.2 6.3 21 12.0 25.3

103 6 8 22.7 50.8 31 9.9 80.6

Two-layer PIN-NE
800 1 2.5 1.2 1.1 10 16.1 10.5

103 1 2.5 1.2 1.1 12 17.1 12.3
1.2\times 103 1 2.5 1.2 1.1 20 17.6 20.7

PIN\scrL 

800 0.1 1 1 0.2 9 14.7 8.7

103 0.1 1 1 0.2 9 16.2 9.1
1.2\times 103 0.1 1 1 0.2 9 16.6 9.5

more global Newton iterations. Note that the single-layer PIN-NE fails in line search
for case Re = 1.2 \times 103. The two-layer approach significantly improves the conver-
gence of the single-layer approach. Compared to PIN-NE, PIN\scrL saves more than half
of the global Newton steps and half of the total compute time for the difficult case
Re= 1.2\times 103. We summarize the observations as follows: (1) In PIN\scrL , the subspace
Newton is performed only once before the global Newton is called, in contrast to the
PIN-NE methods that usually perform subspace Newton multiple times when NE is
activated adaptively. (2) The compute time spent for the subspace Newton iteration
in PIN\scrL is much smaller than the NE approaches since the dimension of the sub-
space Jacobian problem (d-dimensions) is rather smaller compared to the dimension
controlled by \rho l in PIN-NE. (3) PIN\scrL results in a fixed number of global Newton
iteration that is independent of Re for this problem, which shows the robustness of
the proposed method for nonlinearly difficult problems.

To explore how PIN\scrL improves the convergence, we show in Figure 14 the resid-
ual of components u and \omega before and after the nonlinear preconditioning for the
backward-facing step flow with Re = 1.2 \times 103. From Figure 14(a) and (d) we ob-
serve that the local high nonlinearities cluster around the inlet and outlet boundaries.
After the two-layer NE preconditioning, such nonlinearities are reduced by a factor
of 10. In comparison, the learning-based preconditioning reduces the nonlinearities
by a factor of 104 and returns a better initial guess for the global Newton iteration.
The comparison results indicate that the learning-based approach is more powerful to
identify and balance the nonlinearities of the system compared to the NE approach.

4. Concluding remarks. We propose and study a novel nonlinearly precondi-
tioned inexact Newton method with learning capability for solving a nonlinear system
of algebraic equations. The preconditioner is constructed by a decomposition of the
nonlinear residual space into two subspaces; one corresponds to the low frequency sub-
space and the other corresponds to the high frequency subspace. Such a decomposition
is obtained by a PCA based unsupervised learning method from a training problem.
The nonlinear preconditioner is applied to produce a better initial guess for the global
Newton iteration, within which a projected low dimensional Jacobian system is con-
structed and solved at each subspace Newton iteration. The new method features
a low computational cost and is capable of balancing the overall nonlinearity effec-
tively. We test the algorithm with extensive numerical experiments for high Reynolds
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ual of components u and \omega before and after the nonlinear preconditioning for the
backward-facing step flow with Re = 1.2 \times 103. From Figure 14 (a) and (d) we ob-
serve that the local high nonlinearities cluster around the inlet and outlet boundaries.
After the two-layer NE preconditioning, such nonlinearities are reduced by a factor
of 10. In comparison, the learning-based preconditioning reduces the nonlinearities
by a factor of 104 and returns a better initial guess for the global Newton iteration.
The comparison results indicate that the learning-based approach is more powerful to
identify and balance the nonlinearities of the system compared to the NE approach.

(a) Fu before preconditioning (b) Fu after the two-layer NE
preconditioning

(c) Fu after the learning-based
preconditioning

(d) F\omega before preconditioning (e) F\omega after the two-layer NE
preconditioning

(f) F\omega after the learning-based
preconditioning

Fig. 14. The residual of components u and \omega before and after the two-layer NE preconditioning
and the learning-based preconditioning for the backward-facing step flow problem with Re = 1.2\times 103.

4. Concluding remarks. We propose and study a novel nonlinearly precondi-
tioned inexact Newton method with learning capability for solving nonlinear system
of algebraic equations. The preconditioner is constructed by a decomposition of the
nonlinear residual space into two subspaces; one corresponds to the low frequency sub-
space and the other corresponds to the high frequency subspace. Such a decomposition
is obtained by a PCA based unsupervised learning method from a training problem.
The nonlinear preconditioner is applied to produce a better initial guess for the global
Newton iteration, within which a projected low dimensional Jacobian system is con-
structed and solved at each subspace Newton iteration. The new method features
a low computational cost and is capable of balancing the overall nonlinearity effec-
tively. We test the algorithm with extensive numerical experiments for high Reynolds
number incompressible flow problems. Results show that the proposed method is

Fig. 14. The residual of components u and \omega before and after the two-layer NE preconditioning
and the learning-based preconditioning for the backward-facing step flow problem with Re= 1.2\times 103.

number incompressible flow problems. Results show that the proposed method is
more robust and faster than other popular nonlinear solvers, such as PIN-NE and the
classical IN with globalization techniques such as parameter continuation and mesh
sequencing. The focus of the paper was on the incompressible flow problems, but the
algorithm is algebraic and is expected to work for other highly nonlinear problems.
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