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1 Introduction

Violent respiratory events such as coughing and sneezing can contribute to the
transmission of infectious diseases from host to host. The dynamics of droplet
transfer between individuals and the range of contamination are extremely complex
and remain unclear [3]. Studying the fluid dynamics of pathogen-laden droplets is
critically important to controlling the pandemic.
Fluid dynamics studies of violent ejections are presented in [1, 4]. These studies

focus on analytical modeling of the puff evolution or the transport of inertial spher-
ical droplets to understand the available quantitative relationships. CFD simulation
has been conducted to investigate the dispersion of airborne particles by using a
Lagrangian-based model for particle motion [10] or by coupling the Navier-Stokes
equations with an additional transport equation for a scalar concentration field [9].
Although the transport of particles in a crowd are detailed in these studies, the travel-
ling process of an individual droplet and its dynamics subject to the combined effect
of size, gravitational settling, surface tension, and aerodynamic forces are not given
particular attention. To address these issues, incorporating multi-phase flow physics
in the modeling is necessary [3].
In this work, we study the process of a deformable droplet travelling over a long

distance based on two-phase flow simulation, with focus on the two-way coupling
between the droplet dynamics and the ambient airflow through advection and surface
tension, in order to provide some numerical understanding of the transmission of
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covid19. A phase-field model consisting of the coupled Cahn-Hilliard-Navier-Stokes
equations with appropriate boundary conditions is used to describe the two-phase
flow. Due to the vast difference between the size of the droplets and the long trajec-
tories they travel (over 1000 times), the problem is computationally very expensive
and rarely addressed by previous studies of phase-field methods. To tackle this issue,
we develop an efficient adaptive finite element method based on a posterior error
estimate to refine elements near the interface, while using coarse elements elsewhere
to save computation. In the numerical experiments, we are mainly concerned with:
1) the influence of the droplet size on its shape dynamics and travelling path; 2) the
influence of the droplet motion on the surrounding airflow; and 3) the lift and drag
forces acting on the droplet through the trajectory.

2 A mathematical model based on the
Cahn-Hilliard-Navier-Stokes equations

In a bounded domain Ω ⊂ R𝑑 (𝑑 = 2, 3), the system of two immiscible incompress-
ible fluids can be described by the coupled Cahn-Hilliard-Navier-Stokes equations:

𝜕𝜑

𝜕𝑡
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= ∇ · 𝝈 − 𝑅𝑒𝜌

𝐹𝑟2 e𝑔 , ∇ · u = 0. (2)

Here, a phase field variable 𝜑 is introduced to describe the transition between
the two homogeneous equilibrium phases 𝜑± = ±1. ` is the chemical potential,
𝜖 is the ratio between the interface thickness and the characteristic length. 𝝈 =
−𝑝I + [𝐷 (u) − 𝐵𝜖 (∇𝜑 ⊗ ∇𝜑) is the total stress tensor, where 𝑝 is the pressure,
u is the fluid velocity field, and 𝐷 (u) = ∇u + (∇u)𝑇 is the rate of strain tensor.
The term 𝜖 (∇𝜑 ⊗ ∇𝜑) represents the capillary force. The mass density 𝜌 and the
dynamic viscosity [ are interpolation functions of 𝜑 between fluid 1 and fluid
2, i.e. 𝜌 = 1+𝜑

2 + _𝜌
1−𝜑

2 , [ = 1+𝜑
2 + _[

1−𝜑
2 , where _𝜌 = 𝜌2/𝜌1 is the ratio of

density between the two fluids and _[ = [2/[1 is the ratio of viscosity. e𝑔 is the
unit gravitational vector and 𝐹𝑟 is the Froude number. 𝐿𝑑 is the phenomenological
mobility coefficient, 𝑅𝑒 is the Reynolds number, and 𝐵 measures the strength of the
capillary force compared to the Newtonian fluid stress.
We assume 𝜕Ω = Γ𝑖∪Γ𝑜∪Γ𝑤 , where Γ𝑖 denotes the inflow boundary, Γ𝑜 denotes

the outflow boundary, and Γ𝑤 denotes the solid surface. Given functions 𝜑𝑖 and u𝑖 ,
the boundary conditions on Γ𝑖 are stated as

𝜑 = 𝜑𝑖 , ` = 0, u = u𝑖 , on Γ𝑖 . (3)

On Γ𝑜, we consider the following outflow boundary conditions [5],

𝜕𝑛𝜑 = 0, 𝜕𝑛` = 0, on Γ𝑜 , (4)

− (𝑝 + 𝐵𝐹 (𝜑))n + [n · 𝐷 (u) − 𝑅𝑒𝜌
2
|u |2𝜒 (u · n)n = 0, on Γ𝑜 , (5)
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where 𝐹 (𝜑) = 𝜖
2 |∇𝜑 |2 + 1

4𝜖 (𝜑2 − 1)2 is the free energy of the two-phase system.
𝜒(u · n) = 1

2
(
1 − tanh u·n

𝑈𝛿

)
is a smoothed step function, where 𝑈 is a characteristic

velocity scale (here 𝑈 = 1), and 𝛿 > 0 is a non-dimensional constant that is
sufficiently small. As 𝛿 → 0, 𝜒 takes a unit value in regions where u · n < 0
and vanishes elsewhere.
On Γ𝑤 , we consider the generalized Navier boundary conditions [6]:

𝜕𝜑

𝜕𝑡
+ u𝜏 · ∇𝜏𝜑 = −𝑉𝑠𝐿 (𝜑) , 𝜕𝑛` = 0, u · n = 0, on Γ𝑤 , (6)(

(𝐿𝑠𝑙𝑠)−1u𝜏 − 𝐵𝐿 (𝜑) ∇𝜏𝜑/[ + n · 𝐷 (u)
)
× n = 0, on Γ𝑤 , (7)

where n is the unit outward normal vector and 𝜏 is the unit tangential vector of the
boundary. u𝜏 = u− (n ·u)n, ∇𝜏 = ∇− (n · ∇)n.𝑉𝑠 is a phenomenological parameter,
𝐿 (𝜑) = 𝜖𝜕𝑛𝜑 + 𝜕𝛾𝑤 𝑓 (𝜑)/𝜕𝜑, and 𝛾𝑤 𝑓 (𝜑) = −

√
2

3 cos \𝑠 sin( 𝜋2 𝜑), where \𝑠 is the
static contact angle. 𝐿𝑠 is the slip length of liquid, 𝑙𝑠 = 1+𝜑

2 +_𝑙𝑠
1−𝜑

2 , and _𝑙𝑠 = 𝑙2/𝑙1.

3 A parallel, semi-implicit solution algorithm based on an
adaptive finite element discretization, and an overlapping
Schwarz preconditioned GMRES

We apply a second-order semi-implicit time discretization scheme to decouple 𝜑,
u, and 𝑝 at each time step [6]. Specifically, we apply a convex-splitting of the free
energy functional and treat the nonlinear term explicitly so that the resulting matrix
has constant coefficients. In addition, we consider a pressure-stabilized method
to decouple the Navier-Stokes equations into a convection-diffusion equation for
velocity and a Poisson equation for pressure. Then, the pressure equation results in
a constant matrix and can be solved efficiently.
The resulting decoupled systems are discretized by a finite element method on

unstructured meshes. We use P1-P1 finite element spaces for the Cahn-Hilliard
equation and P2-P1 for the Navier-Stokes equations. Let 𝑇ℎ be a triangulation of
Ω with ℎ be the mesh size of an element 𝑇 . We denote by 𝜑𝑛ℎ, `

𝑛
ℎ, u𝑛ℎ, 𝑝𝑛ℎ the

finite element interpolations of 𝜑, `, u, 𝑝 at the 𝑛th time step, respectively. In this
work, we use the adaptive mesh refinement (AMR) method to accurately capture the
phase field variable 𝜑 within the thin interface between the two phases. The AMR
procedure is performed in an iterative manner. At each adaptive step, we introduce a
physics-informed approach to refine the elements repeatedly if they are fully inside
the interface region (i.e., −0.9 ≤ 𝜑𝑛+1ℎ |𝑇 ≤ 0.9) and their sizes are considered to be
large (i.e., max

𝑒∈𝜕𝑇
|𝑒 | > 𝑒, where 𝑒 is a given scale). Meanwhile, we merge adjacent

elements if they are divided from the same “parent” and their error indicator Θ𝑇 is
sufficiently small, i.e.,

Θ𝑇 < 𝛾𝑐 max
𝑇∈𝑇ℎ
{Θ𝑇 }, where Θ𝑇 =

©«
∑︁
𝑒∈𝜕𝑇

∫
𝑒

|𝑒 |
24

[
∇𝜑𝑛+1ℎ · n𝑒

2

]2
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Here, Θ𝑇 is the gradient jump of 𝜑𝑛+1ℎ on the interface of adjacent elements [7]. [·]
denotes the jump on the element boundary, n𝑒 is the unit outward normal vector on
𝑒, and 𝛾𝑐 is a given parameter. The iteration of refinement and coarsening is stopped
when the maximum error indicator max

𝑇 ∈𝑇ℎ
{Θ𝑇 } < 𝑡𝑜𝑙, where 𝑡𝑜𝑙 is a prescribed toler-

ance. Combining the above techniques, we present the overall numerical algorithm
as follows:

Algorithm 2 A decoupled solution algorithm based on an adaptive finite element
method

Set initial values 𝜑0
ℎ (= 𝜑−1

ℎ ) , u0
ℎ (= u−1

ℎ ) , 𝑝0
ℎ, and 𝑡 = 0.

Loop in time for 𝑛 = 0, · · ·
1 Solve the Cahn-Hilliard system to update 𝜑𝑛+1ℎ and `𝑛+1ℎ .
2 Loop in AMR for 𝑘 = 0, · · ·
(a) Compute Θ𝑇 for all 𝑇 ∈ 𝑇ℎ, if max

𝑇∈𝑇ℎ
{Θ𝑇 } < 𝑡𝑜𝑙, go to step 3.

(b) Refine the elements repeatedly if 𝜑𝑛+1ℎ |𝑇 ∈ [−0.9, 0.9] and max
𝑒∈𝜕𝑇

|𝑒 | > �̄�.
(c) Merge the adjacent elements if each of them yields Θ𝑇 < 𝛾𝑐 max

𝑇∈𝑇ℎ
{Θ𝑇 }.

(d) Update 𝜑𝑛−1
ℎ , 𝜑𝑛ℎ , u𝑛−1

ℎ , u𝑛ℎ, and 𝑝𝑛ℎ on the new mesh.
(e) Solve the Cahn-Hilliard system to update 𝜑𝑛+1ℎ and `𝑛+1ℎ .

3 Compute 𝜌𝑛+1ℎ , [𝑛+1ℎ , 𝑙𝑠𝑛+1ℎ using 𝜑𝑛+1ℎ .
4 Solve the velocity system to update u𝑛+1ℎ .
5 Solve the pressure system to update 𝑝𝑛+1ℎ .

End time loop

For the purpose of efficiency, we perform the AMR method every 𝑛skip time
steps, and terminate the AMR loop in step 2 when max

𝑇 ∈𝑇ℎ
{Θ𝑇 } does not decrease

any more. Because the matrices arising from the discretization of the Cahn-Hilliard
equation and the pressure equation involve only constant coefficients, they need
to be rebuilt only when refinement or coarsening occurs. The decoupled solution
algorithm requires to solve three linear systems at each time step. We employ a
restricted additive Schwarz preconditioned GMRES method to solve the Cahn-
Hilliard system and the velocity system. For the pressure Poisson equation, we use
an aggregation-based algebraic multigrid preconditioned GMRES method. As far as
we know, no existing combination of the above algorithms has been presented for
the concerned problem.

4 Numerical experiments

The proposed algorithm is implemented using libMesh [8] for the generation of finite
element stiffness matrices, and PETSc [2] for the preconditioned Krylov subspace
solvers. The overall algorithm is implemented on a parallel computer with distributed
memory.
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In this section, we present 2D numerical experiments for a droplet travelling in
a scenario when two people begin to talk face to face at 𝑡 = 0, and an airflow is
expelled horizontally from one’s mouth (Γ𝑖: 𝑥 = 10, 𝑦 ∈ [62.536, 64]). The airflow
has a parabolic profile with initial speed 𝑉 = 5 m/s. The computational domain is
[0, 35] × [50, 80] and the unit is 2.5 cm, as shown in Fig. 1. A nonuniform triangular
mesh is generated such that the mesh is finer between the two people. The initial
mesh has 56,568 elements and 28,285 vertices. The densities for the droplet (𝜑 = −1)
and air (𝜑 = 1) are 103 kg/m3 and 1.2 kg/m3, the viscosities for the droplet and air
are 10−3 Pa·s and 1.8 × 10−5 Pa·s. The interfacial tension is 0.072 N/m. The gravity
constant is 9.8 m/s2. By taking 𝑉 as the characteristic velocity and the opening size
of mouth 2.5 cm as the characteristic length, we obtain the following dimensionless
numbers: _𝜌 = 830, _[ = 55, 𝑅𝑒 = 8333.25, B = 707.2, and 𝐹𝑟 = 10.1. The thickness
of the interface is 𝜖 = 0.002. The static contact angle is taken as 90◦. Other physical
parameters are taken as in [6]. For the numerical parameters, we choose 𝛿 = 0.05,
𝑒 = 0.002, 𝛾𝑐 = 0.01, 𝑡𝑜𝑙 = 0.01, 𝑛skip = 15, and the time step sizeΔ𝑡 = 5×10−4. For
the inflow boundary condition, we consider a droplet that is ejected from Γ𝑖 along
with the airflow at 𝑡𝑠 = 0.05ms, and its initial size is determined by the ejection time
𝛿𝑡𝑒, that is, 𝜑 = −1 if 𝑥 = 10, 𝑦 ∈ [63.238, 63.298] and 𝑡 ∈ [𝑡𝑠 , 𝑡𝑠 + 𝛿𝑡𝑒] whereas
𝜑 = 1 on Γ𝑖 . We consider three cases of ejection time: 𝑎. 𝛿𝑡𝑒 = 1 ms, 𝑏. 𝛿𝑡𝑒 = 0.5
ms, and 𝑐. 𝛿𝑡𝑒 = 0.1 ms.

Fig. 1: (left) Computational domain and (right) a sample partition of the computational domain
into 16 subdomains for the Schwarz preconditioning.

Fig. 2 shows the streamlines colored by velocity magnitude at 1.25 ms and 75
ms for case b. At the early stage, the parabolic velocity profile leads to a natural
expansion of airflow. As the flow evolves, it is angled down due to the gravitational
pull and generates two primary vortices, one on either side.
From Fig. 3 we see that the droplets travel ballistically subject to inertia and

gravity. They overshoot the airflow stream and can reach the recipients’ mucosa
directly or settle on surfaces to be later picked up by the recipients. While all
droplets evolve to a circle shape with the effect of surface tension, the large droplets
undergo a more obvious topological change than the smaller droplets. The bottom
row of the figure shows the effectiveness of the AMRmethod in tracking the moving
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Fig. 2: Streamlines colored by velocity magnitude at (left) 1.25 ms and (right) 75 ms for case b.

interface. For these cases, usually 3 or 4 adaptive iterations are needed for each
application of AMR.

Fig. 3: (top left) Trajectory of the droplets, (top right) snapshot of droplets at 12.5 ms and 25 ms,
(bottom left) adaptive mesh refinement for case 𝑏 at 1.25 ms, 2.5 ms, and 3.75 ms, and (bottom
right) enlarged view of the mesh at 1.25 ms for case b.

In the presented two-way coupling model, the airflow is affected by the motion
of the droplet due to the viscosity contrast and surface tension, especially when the
droplet is large. This is evidenced by the streamlines near the droplet 𝑎 in Fig. 4
(left), one can observe a vortex street generated behind the droplet. In contrast, a
smaller droplet does not influence the airflow much as shown in Fig. 4 (right).
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Fig. 4: Streamlines colored by velocity magnitude at 75 ms for (left) case a and (right) case c.

In Fig. 5, we show the time histories of the lift coefficient𝐶𝑙 = 2𝐹𝑙
𝜌1𝑈2𝐴

and the drag
coefficient 𝐶𝑑 = 2𝐹𝑑

𝜌1𝑈2𝐴
which evaluate the combined effect of surface tension and

aerodynamic forces acting on the droplets. Here 𝜌1 = 1, 𝑈 = 1 are dimensionless
constants. 𝐹𝑙 , 𝐹𝑑 , and 𝐴 can be computed using the integral transformation with the
surface delta function 𝑑 = 1−𝜑

2 :

𝐹𝛼 = − 1
𝑅𝑒

∫
Ω
𝝈 · ∇𝑑 · e𝛼dΩ, and 𝐴 = −

∫
Ω
∇𝑑 · n𝜑dΩ,

where 𝛼 = 𝑙, 𝑑, e𝑑 = i, e𝑙 = j, and n𝜑 = ∇𝜑
|∇𝜑 | . The forces exerted on the droplets

exhibit a oscillatory nature similar to the case of flow around a stationary circular
cylinder, but with more irregular patterns here because of the shape dynamics of
the droplets and the instability of the high Reynolds flows. The magnitude of the
oscillation generally decreases as the size of the droplet becomes smaller.
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Fig. 5: Time histories of (left) lift coefficient 𝐶𝑙 and (right) drag coefficient 𝐶𝑑 .
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5 Conclusions

Wepresent a parallel adaptive finite elementmethod for themodeling of a deformable
droplet travelling in air. The problem is described by theCahn-Hilliard-Navier-Stokes
equations that account for the two-way coupling between the airflow and the droplet
through advection and surface tension. The parallelization is realized via a Schwarz
type overlapping domain decomposition method. Our results show that the size of
the droplet has a significant impact on its travelling path, shape dynamics, and the
ambient airflow behavior.
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