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The numerical simulation of blood flows in the human body with a certain level of 
clinical accuracy is important for the understanding of the human physiology. The success 
of the modeling relies on a robust numerical method with the corresponding software 
that can handle the complex geometry, the complex fluid flows and run efficiently on a 
supercomputer. In this work, we introduce a highly parallel domain decomposition method 
to solve the three-dimensional incompressible Navier-Stokes equations on a patient-specific 
artery at the full-body scale from neck to feet with 222 outlets and a minimum diameter 
around 1.0 mm. A locally refined, unstructured mesh is used to resolve the complex fluid 
flow. Moreover, a two-level method is introduced to determine the model parameters in 
the Windkessel outlet boundary condition to guarantee clinically correct flow distributions 
to 14 major regions. A fully implicit Newton-Krylov-Schwarz method is used to solve 
the nonlinear algebraic system at each time step and numerical experiments show that 
the proposed method is robust with respect to the complex geometry, the graph-based 
partition of the complex mesh, the ill-conditioned sparse systems with locally dense blocks, 
and different model parameters and is scalable with up to 15,360 processor cores. With the 
proposed method, one simulation of the blood flow in a full-body arterial network can be 
obtained in about 8 hours per cardiac cycle, which enables its potential use in a wide range 
of clinical scenarios.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Image-based numerical simulations of the human hemodynamics have now been widely recognized as a potentially 
useful tool for the assessment and management of various cardiovascular diseases, including, for example, the hypertension, 
the atherosclerosis and the aortic aneurysm and dissection [1–3]. In terms of the complexity of the geometrical models, the 
simulation of blood flows has progressed from a single bifurcation to multiple junctions and then to the arterial tree over the 
past few decades [4]. More recently, the advances of the medical imaging technology and the computational capability have 
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made it possible for the simulation of blood flows in a full-body arterial network, which has a wide range of application 
scenarios such as the estimation of several important hemodynamic metrics including the central artery pulse pressure and 
augmentation index [5], the understanding of the multi-organ interactions [6] and the delivery of oxygen, drugs or other 
substances [7].

Due to the low computational costs, the reduced-dimensional (zero or one-dimensional) models are preferred when the 
concern is about the blood pressure and the flow waveform, and therefore they are frequently used in the analysis of the 
wave intensity and the pulse wave velocity [8–10]. We are interested in the full three-dimensional (3D) model since it can 
capture the details of the local fluid patterns, such as the helix and vortex flows [11,12]. Simulations are carried out on the 
vascular system consisting of arteries to all the major regions with low-dimensional models imposed on the outlets as the 
boundary condition to consider the influence of the peripheral flows [13–15]. This multi-scale model is a direct reflection 
of the multi-scale nature of the arterial tree, which is composed of arteries, arterioles and capillaries. The main challenges 
of the 3D blood flow simulation are its high computational cost and difficult to resolve flow fields, which requires the use 
of supercomputers with a properly designed parallel algorithm that is scalable to a large number of processor cores and 
robust with respect to different model parameters and spatiotemporal mesh sizes.

We first provide a brief literature review of large-scale 3D blood flow simulations, with focus on their numerical methods 
and computational capabilities. Grinberg et al. introduced a spectral/hp element method to simulate the blood flow in 
a cranial arterial network that has 65 branch vessels. By using 3265 processor cores of a Cray XT3 supercomputer, the 
simulation took 80 hours per cardiac cycle based on a mesh with 459,250 spectral elements [4]. Zhou et al. adopted a 
finite element package PHASTA to solve the Navier-Stokes equtions for blood flow simulations in a whole-body arterial 
tree that has 78 outlets. Using 2,048 processor cores of a Cray XT5 supercomputer, it takes 1.5 hours for one cardiac 
cycle simulation based on a mesh with 42.8 million elements [16]. Xiao et al. simulated the blood flow in a whole-body 
artery with 82 outlets. For a mesh with 14,438,720 tetrahedral elements, the calculation took 48 hours per cardiac cycle by 
using 384 processor cores of the Ranger supercomputer at the Texas Advanced Computing Center [17]. Based on a regular 
Cartesian grid, Randles et al. adopted a lattice Boltzmann method to simulate the hemodynamics in a systemic arterial 
tree by using 1.57 million cores of the Sequoia Blue Gene/Q supercomputer [18]. Liu et al. applied a three-level nested block 
preconditioner to solve the discretized governing equation and simulate the hemodynamics in a pulmonary artery consisting 
of 722 branches. By using 720 processor cores of the Stampede2 supercomputer, the simulation took 4 hours for one cardiac 
cycle based on a mesh with 26.1 million tetrahedral elements [19]. In short, existing researches have showed the feasibility 
of blood flow simulations in a large arterial network, however, parallel simulations that can maintain high scalability while 
providing clinically meaningful hemodynamic results are still scarce.

In our previous work, we investigated a parallel Newton-Krylov-Schwarz (NKS) method for the study of hemodynamics 
in the abdominal aorta [20]. In the present work, we push the limit to include a full-body artery from neck to feet that 
includes 222 outlet branches. In order to carry out a simulation with clinically meaningful flow distributions to specific 
regions, the mesh generation is a very important step. With a sufficiently fine surface mesh, it is not too difficult to obtain 
a mesh that captures all the geometrical features of the artery, but to obtain the correct flow field, more refinements are 
necessary and mesh independence studies should be performed, especially at sites with acute geometrical changes where 
complex flows are usually developed, such as the aortic arch and arterial branching. Another important issue to consider 
is the choice of the outlet boundary condition. In this work, the three-element Windkessel model is applied to all outlets, 
which is physiologically more accurate than the constant pressure and the resistive boundary conditions [13], but nontrivial 
to calibrate the model parameters to achieve correct blood flow distributions. Iterative methods are often used to convert 
this problem into an optimization problem for adjusting values for the terminal model parameters. Such methods have been 
used, for example, by Blanco et al. to obtain target blood flow distributions for 16 and 144 regions in the 1D arm and 
full-body blood flow simulations respectively [21,22]; and by Xiao et al. to guarantee correct blood flow distributions for 
9 regions during a 3D full-body blood flow simulation [17]. The method needs to solve the governing equation repeatedly 
and therefore significantly increases the total computing time. Based on a relationship between the resistance and the flow 
rate introduced in [23], we propose a two-level method to obtain clinically measured blood flow distributions to 14 regions, 
including the head, heart, liver, stomach, spleen, intestine, kidneys, adrenal glands, arms and legs. This method requires no 
additional computation since it predetermines the values of the terminal parameters by two steps, namely splitting the total 
resistance and compliance to each region based on the clinical measurements, and from each region to individual outlets 
based on the cross-sectional area of the outlets. The aim of the present work is to apply a robust and scalable numerical 
method for the blood flow simulation at the full-body scale and investigate the numerical accuracy in terms of mesh sizes 
and the clinical accuracy in providing correct blood flow distributions to various regions.

The rest of this paper is organized as follows. In section 2, we first describe the procedures adopted for the image 
segmentation and mesh generation, and then introduce the governing equations and its finite element discretization with 
an emphasis on the outlet boundary condition and NKS solver. In section 3, we validate our method by solving a benchmark 
problem and then apply it to investigate the hemodynamics in a full-body artery, where regional blood flow distributions 
are investigated. We also show the robustness and scalability of the proposed algorithm. Finally, we draw some conclusions 
in section 4.
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Fig. 1. Geometrical model of a full-body artery from neck to feet with 1 inlet (marked in green) and 222 outlets (marked in blue) recon-
structed from the CT image. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2. Methods

2.1. Geometry reconstruction

As shown in the left figure of Fig. 1, the computed tomography (CT) angiography image of a person with a slight 
abdominal aneurysm is used to reconstruct the geometrical model of a full-body artery from neck to feet by using a 
commercial software package. The image consists of 512 × 512 × 1995 voxels with a resolution of 0.98 × 0.98 × 0.75 mm. 
The preliminary segmentation and reconstruction consist of the following basic steps:

1. Adjust the image contrast and highlight the vascular anatomy with threshold values 259 and 3071 so that the entire 
artery is included;

2. Segment the artery by using a dynamic region-growing method [24];
3. Check the vascular network connectivity and make manual corrections guided by the human anatomical atlases in [25];
4. Repeat steps 2 and 3 until a preliminary arterial network is obtained;
5. Reconstruct the rough 3D geometrical model from the segmentation obtained from step 4 and export the arterial 

geometry.

After the above steps of reconstruction, some manual adjusting and connecting are often necessary for the small arteries 
of the geometrical model. Then, a smoothing step is required to remove obvious defects and sharp angles without seriously 
altering the original features of the artery. Furthermore, blood vessels are truncated and identified at the proximal and distal 
ends for the prescription of inlet and outlet boundary conditions, respectively. After these steps, we obtain a geometrical 
model that contains all the primary arteries in the body, as shown in the middle figure of Fig. 1. It includes 1 inlet with a 
diameter of 38.03 mm and 222 outlets with the minimum and maximum diameters of 0.93 and 7.15 mm, respectively. We 
remark that this geometrical model includes a more complex and realistic full-body artery comparing with the 78-outlet 
case in [16] and the 82-outlet case in [17], both of which have a minimum outlet diameter 2 mm. In the right figure of 
Fig. 1, we show the arterial network against a background of the human skeleton along with some of the primary regions, 
to which the blood supplies will be considered in the simulation.
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Fig. 2. (a) a global vision of the entire mesh; (b-e) the close-up views to display the change of mesh sizes in the right coronary artery and 
a small portion of the artery in the left leg; (f) the three-element Windkessel model for outlet boundary conditions and (g) the hepatic 
artery that supplies blood to the liver.

2.2. Mesh generation

Mesh generation plays a critical role in obtaining numerically accurate results, especially for such a complex geometry 
that involves branch vessels of diameters ranging from 0.93 to 38.03 mm, as shown in Fig. 2. To balance the computational 
cost and the solution accuracy, non-uniform meshes with adjusted local mesh densities are required and generated by using 
some commercial software packages to cover the computational domain of the arterial network. Our meshing strategy is 
two-fold:

1. Geometry preservation by controlling the surface mesh size. Specifically, the surface mesh is non-uniformly generated with 
its size depending on the equivalent diameter of the artery. For example, in Fig. 2 of a mesh with 21,168,339 elements, 
the mean edge length of the surface mesh is 0.63 mm for large arteries with diameters >4 mm, which ensures at least 
20 elements placed around the perimeter of the artery with a diameter about 4 mm. The mean edge length decreases to 
0.31 mm for small arteries with diameters between 1-4 mm, which ensures 10 elements for the perimeter of the artery 
with a diameter about 1 mm. Fig. 2 b and c show the use of different surface mesh sizes to describe the geometrical 
details of the right coronary artery and its branches. With this method, the generated surface mesh can preserve the 
multi-scale nature of the arterial geometry and also limit the total number of elements to control the overall cost of 
the computation. Meanwhile, since the inlet and outlet surfaces are identified before the mesh generation, the sizes of 
their meshes can be adjusted individually. For example, for a small branch of the right coronary artery shown in Fig. 2e, 
we create 71 triangles for the outlet surface with an area of 0.93 mm2 by using a mean edge length of 0.17 mm.

2. Flow resolving by adjusting the interior volume mesh size. Generally, the size of the interior volume mesh is controlled 
to be larger than the size of the surface mesh to limit the total number of elements. This can be shown in a small 
portion of the artery in Fig. 2d, where edge lengths of the representative volume and surface elements are 1.62 and 
0.64 mm respectively. However, for regions where flow patterns are interested, mesh independence studies should be 
carried out to resolve the complex fluid flow. In this case, local mesh refinements are considered since it is virtually 
impossible to refine the mesh globally due to the prohibitive computational cost. For example, the locally isotropic mesh 
refinement with a mean edge length of 0.31 mm is applied on the mesh of a branch vessel in Fig. 2d. In the numerical 
experiments, we investigate results obtained by using several different meshes since different quantities of interests at 
different locations require different mesh sizes to resolve.
4
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Fig. 3. (a) a sample coarse mesh of the artery partitioned into 8 sub-meshes represented by different colors; (b) the enlarged view of two 
sub-meshes, where the green one contains two pieces of the artery that are not directly connected and (c) the overlaps between the 
adjacent sub-meshes to be used by the preconditioning algorithm.

We mention that the image segmentation and the mesh generation steps are quite time consuming. For the purpose of 
parallel processing, ParMETIS [26] is adopted to partition the global mesh into a number of sub-meshes with roughly the 
same number of elements to ensure the load balance and the partition also tries to minimize the size of the interfaces 
between the sub-meshes to minimize the inter-processor communication cost. The sub-meshes are then distributed to the 
same number of processor cores for the computation. Fig. 3 shows a sample of the mesh partitioning, where a small mesh 
is partitioned into 8 overlapping sub-meshes indicated by 8 different colors. It should be pointed out that sub-meshes may 
contain some pieces of the artery that are not directly connected which is not desirable but difficult to avoid.

2.3. Mathematical model of the blood flow

In large arteries, where the velocity and the shear rate are high, the blood flow can be considered as a Newtonian flow 
and described by the following incompressible Navier-Stokes equations⎧⎪⎨

⎪⎩
ρ

(
∂uuu

∂t
+ (uuu · ∇)uuu

)
− ∇ ·σσσ = 0, in � × (0, T ],

∇ · uuu = 0, in � × (0, T ],
(1)

where � ∈ R3 is the arterial domain shown in Fig. 1, T is the time period of the simulation which is a cardiac cycle, 
σσσ = −pIII + 2μεεε(uuu) is the stress tensor with εεε(uuu) = (∇uuu + ∇uuuT )/2 and I is a 3 × 3 identity matrix, ρ is the fluid density, 
μ is the fluid dynamic viscosity, and p = p(xxx, t) and uuu = uuu(xxx, t) = (u1, u2, u3)

T are the pressure and velocity vector to be 
computed approximately.

To solve (1), proper initial and boundary conditions should be specified. Since the physiologically correct initial conditions 
are impossible to obtain, we produce the initial conditions by running the simulation with zero velocity and pressure for 
a few time steps, and the resulting initial conditions are quite reasonable. � = ∂� is the boundary of the computational 
domain, and we label �I , �W and �i

O as the boundaries at the inlet, the wall and the ith outlet, respectively. The boundary 
conditions have a great influence on the computational results. In this work, we impose the following boundary conditions 
on the surfaces of the computational domain:

uuu(xxx, t) = vvv I (t), on �I × (0, T ], (2)

uuu(xxx, t) = 0, on �W × (0, T ], (3)
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pi(t) =
(

pi(0) − R1
i Q i(0)

)
e−t/τi + R1

i Q i(t) +
t∫

0

e−(t−s)/τi

Ci
Q i(s)ds

=
(

pi(0) − R1
i

∫
�i

O

uuu(xxx,0) ·nnni
O

d�
)

e−t/τi + R1
i

∫
�i

O

uuu(xxx, t) ·nnni
O

d�

+
t∫

0

(e−(t−s)/τi

Ci

∫
�i

O

uuu(xxx, s) ·nnni
O

d�
)

ds, where τi = R2
i Ci,

on �i
O

× (0, T ], (i = 1,2, · · · , M), (4)

where M is the total number of outlets. Specifically, (2) is a Dirichlet boundary condition on the inlet �I with vvv I (t) being 
a plug flow velocity [27] and can be calculated by vvv I (t) = Q (t) ·nnnI /S , where Q (t) is a clinically measured flow rate at the 
inlet, S is the inlet area and nnnI is the inward unit normal vector to the inlet surface. (3) is a no-slip boundary condition on 
the wall �W . To account for the effect of the truncated downstream vasculature on the region of interests, we use (4) as the 
boundary condition for each outlet �i

O
, which relates the pressure pi(t) with the flow rate Q i(t) at the ith outlet surface, 

where Q i(t) =
∫
�i

O
uuu(xxx, t) · nnni

O
d� with nnni

O
being the outward unit normal vector at the ith outlet surface. (4) is derived 

from the three-element Windkessel model shown in Fig. 2f, where a proximal resistance R1
i is in series with a component 

consisting of a capacitance Ci and a distal resistance R2
i [13,28]. In this Windkessel model, we assume the distal pressure is 

0.

2.4. Parameters in outlet boundary conditions

At the beginning of the simulation, a total resistance RT and a total compliance CT are determined by the patient-
specific systolic and diastolic pressures at the inlet [29]. After obtaining RT and CT , we compute the values of the resistance 
Ri and the compliance Ci of the ith (i = 1, 2, · · · , M) outlet from RT and CT . For an artery with multiple outlets, the way 
to split RT greatly impacts the blood flow distribution to different parts of the body. Therefore, we introduce the concept 
of a region, which is defined as a specific organ (including the heart, the liver, the stomach, the spleen, the intestine, the 
kidneys and the suprarenal glands) or an anatomical territory (including the head, the arms and the legs). A region receives 
the blood from one or more arterial vessels. For example, the liver is regarded as a region supplied by the hepatic artery, as 
shown in Fig. 2g. To achieve correct blood flow distributions to specific regions, we define the blood flow fraction F k

region as 
follows,

F k
region = Q

k
region

Q T
, (5)

where Q T and Q
k
region are the mean flow rates of the inlet and the kth region over one cardiac cycle respectively. [23]

showed that the flow rate through a vessel is approximately inverse to the terminal resistance. In this work, we generalize 
this idea by introducing the regional resistance Rk

region and compliance Ck
region and adopt a two-level method for the split of 

RT and CT as follows:
In the first level, we split RT and CT for the kth regional resistance Rk

region and compliance Ck
region according to the given 

blood flow fraction F k
region ,

Rk
region = RT

F k
region

, (6)

Ck
region = CT F k

region. (7)

In the second level, we distribute the computed Rk
region and Ck

region into each outlet for Ri and Ci within this region 
according to the effective radius of the branch outlet surface,

Ri = Rk
region(r

3
i )−1

mk∑
l=1

r3
l , (8)

Ci = Ck
regionr3

i

( mk∑
l=1

r3
l

)−1
, (9)
6
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where mk is the total number of outlets in the kth region, and ri and rl are the effective radii of the ith and lth branch outlet 
surfaces within this region. After obtaining Ri , R1

i and R2
i (marked in Fig. 2) of the ith outlet are calculated according to 

Ri = R1
i + R2

i and R1
i = 66R2

i /1200 [17].

2.5. A fully implicit finite element discretization and a parallel domain decomposition solver

We define the trial and weighting function spaces as follows,

V = {uuu ∈ [H1(�)]3 : uuu|�I
= vvv I (t) and uuu|�W

= 0}, (10)

V0 = {uuu ∈ [H1(�)]3 : uuu|∂� = 0}, (11)

P = {p ∈ L2(�)}. (12)

Then the weak form of (1) reads: find uuu ∈ V and p ∈P , such that for ∀ φφφ ∈ V0 and ψ ∈P ,

A
(
{uuu, p}, {φφφ,ψ}

)
= 0, (13)

with

A
(
{uuu, p}, {φφφ,ψ}

)
= ρ

(∫
�

∂uuu

∂t
·φφφd� +

∫
�

(uuu · ∇)uuu ·φφφd�
)

−
∫
�

p∇ ·φφφd�

+ 2μ

∫
�

εεε(uuu) : εεε(φφφ)d� +
∫
�

(∇ · uuu)ψd� (14)

−
∫

�i
O

(
− pIII + 2μεεε(uuu)

)
·nnni

O
·φφφd�.

Due to the use of the Windkessel boundary condition on the outlets, the last term in (14) can be written as∫
�i

O

(
− pIII + 2μεεε(uuu)

)
·nnni

O
·φφφd�

=
M∑

i=1

∫
�i

O

{
−

[(
pi(0) − R1

i

∫
�i

O

uuu(xxx,0) ·nnni
O

d�
)

e−t/τi + R1
i

∫
�i

O

uuu(xxx, t) ·nnni
O

d�

+
t∫

0

(e−(t−s)/τi

Ci

∫
�i

O

uuu(xxx, s) ·nnni
O

d�
)

ds

]
III + 2μεεε(uuu)

}
·nnni

O
·φφφd�. (15)

To discretize (13) in the space, we cover the computational domain � with an unstructure tetrahedral mesh �h = {K} and 
define the P1-P1 finite element spaces Vh , Vh

0 and Ph corresponding to their infinite dimensional subspaces. Then the 
semi-discretization of (13) reads: find uuuh ∈ Vh and ph ∈Ph , such that for ∀ φφφh ∈ Vh

0 and ψh ∈Ph ,

B
(
{uuuh, ph}, {φφφh,ψh}

)
= 0, (16)

with

B
(
{uuuh, ph}, {φφφh,ψh}

)
= A

(
{uuuh, ph}, {φφφh,ψh}

)
−

∑
K∈�h

(
∇ · uuuh, τc∇ ·φφφh

)
K

−
∑
K∈�h

(∂uuuh

∂t
+

(
uuuh · ∇

)
uuuh + ∇ph, τm(uuuh · ∇φφφh + ∇ψh)

)
K

, (17)

where the underlined terms are the stabilization terms with parameters τc and τm given in reference [30].
7
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The spatial discretization leads to a semi-discretized system that can be rewritten as

dX (t)

dt
= S

(
X (t)

)
, (18)

where X (t) = (uuuh, ph) represents the time-dependent solution vector of the pressure and velocity at the nodal points; and 
S is a nonlinear function of X (t). For the temporal discretization of (18), we adopt the following fully implicit backward 
Euler method

X n −X n−1

�t
= S(X n), (19)

where X n =X (tn) represents the pressure and velocity at the nth time step and �t is the time-step size. This fully implicit 
scheme is unconditionally stable and allows the use of larger time-step sizes than an explicit one, but is more computation-
ally expensive due to the requirement of solving the following large and nonlinear system at each time step

F(X n) = 0. (20)

The nonlinear function is mostly sparse, except the nodes on the outlets because of the integral nature of the Windkessel 
boundary condition. To solve (20), we adopt a parallel NKS method, which consists of an inexact Newton method for solving 
the nonlinear problem and a preconditioned Krylov subspace method for solving the linear Jacobian problem within each 
Newton iteration [31,32]. Specifically, NKS performs the following steps to find the solution at each time step:

Step 1: Set the convergence tolerances ξ and η for the linear and nonlinear solvers respectively;
Step 2: Use the solution of the previous time step as the initial guess X n

0 =X n−1;
Step 3: For each Newton step k = 1, 2, · · · ,

• Compute the Jacobian matrix analytically Jn
k = ∇F(X n

k ) and construct the restricted additive Schwarz (RAS) 
preconditioner (Mn

k )−1;
• Find the inexact Newton direction δX n

k by approximately solving the following preconditioned Jacobian system

‖ Jn
k (Mn

k )−1Mn
kδX n

k +F(X n
k )‖ ≤ ξ‖F(X n

k )‖; (21)

• Find the step length τn
k via a cubic linesearch method and update the solution by X n

k+1 =X n
k + τn

k δX n
k ;

• Store X n
k+1 as the solution of the current time step if ‖F(X n

k )‖ or 
‖F(X n

k+1)‖
‖F(X n

0 )
< η and go to Step 2 with n = n +1.

Here, we provide some details of the computation of the Jacobian matrix in Appendix A. Moreover, we omit the scripts 
k and n for notational simplicity and rewrite the RAS preconditioner (Mn

k )−1 as M−1 with its definition given as follows,

M−1 =
np∑

l=1

(R0
l )T B−1

l Rδ
l , (22)

where np is the number of subdomains (also equals to the number of processor cores used for the computation), Bl is the 
subdomian Jacobian matrix and R0

l and Rδ
l are the restriction operators defined on the non-overlapping and overlapping 

subdomains.

3. Results and discussions

In this section, we first validate our numerical method by comparing its results with that obtained from a popular soft-
ware package. Then, we simulate the hemodynamics of a full-body artery with a focus on the regional flow distribution. 
Besides, the robustness and the parallel scalability of the proposed algorithm are investigated. The algorithm is imple-
mented on the Portable Extensible Toolkit for Scientific computing (PETSc) library [33]. All simulations are carried out on 
a supercomputer, whose compute node consists of two 12-core CPUs and 64 GB shared memory. If it is not specifically 
mentioned, we claim that the nonlinear algorithm converges when either the relative or absolute residual is smaller than 
η = 1 × 10−6. For the Jacobian solver we use a relative residual of ξ = 1 × 10−3. The blood is characterized with a density 
of ρ = 1.06 g/cm3 and a dynamic viscosity of μ = 3.5 × 10−2 g/(cm · s).

3.1. Blood flow in a tube with one bifurcation

In this subsection, we verify the correctness of the proposed numerical method by comparing it with the results obtained 
with the software package SimVascular [34] for the simulation of a transient blood flow in a tube with one bifurcation. As 
shown in Fig. 4a, the configuration consists of a parent tube of diameter 4 cm with its left end serving as the inlet, and 
its right end connecting to a hemisphere of radius 2.0 cm. Two daughter branches intersect the hemisphere with “Outlet 
8
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Fig. 4. (a) the geometry of a benchmark problem; (b) the pulsatile flow rate imposed on the inlet boundary and (c) the comparison of the 
flow rates at outlet 1 computed with SimVascular and NKS by using different time-step sizes �t = 1 × 10−2, 10−3 and 10−4 s.

1” of diameter 2.4 cm and “Outlet 2” of diameter 1.6 cm. The coordinates in Fig. 4a provide the length of the tubes. As 
shown in Fig. 4b, a pulsatile volumetric flow rate is prescribed to the inlet with an axisymmetric parabolic profile. In the 
computation, the flow rate is obtained by a 10-term Fourier series approximation of 100 sin(πt/T ), where t ∈ [0, T ] with a 
total time T = 1 s. For SimVascular, the simulation is performed by using a mesh with 505, 381 linear tetrahedral elements 
on a computer with 16 GB RAM. The residual convergence criteria for the linear and nonlinear solvers are both 1 × 10−3. 
For NKS, the simulation is carried out on a mesh with 506, 642 elements on a parallel computer with 120 processor 
cores. The Windkessel boundary condition is imposed on each outlet with the values of the proximal resistance, the distal 
resistance and the capacitance being 8.99 × 101 dyn · s/cm5, 1.64 × 103 dyn · s/cm5 and 1.16 × 10−5 cm5/dyn at outlet 1 
and 3.06 × 102 dyn · s/cm5, 5.56 × 103 dyn · s/cm5 and 3.41 × 10−6 cm5/dyn at outlet 2.

For SimVascular, the choice of the time-step size �t is restricted by the CFL number [13]. Let h be the mesh size and v
the velocity, then according to �t = h/‖v‖, a time step-size of 2 × 10−3 s is needed such that the CFL number is around 1 
for the present problem, since the minimum h is about 0.06 cm and the maximum speed is about 30 cm/s. Therefore, as 
shown in Fig. 4c, a time-step size of 1 × 10−2 s fails to give a convergent flow rate for outlet 1. A decrease of the time-step 
size to 1 × 10−3 s increases the accuracy but is still not accurate enough and a further reduction to 1 × 10−4 s yields a 
convergent solution. Because of a fully implicit temporal scheme, NKS is not restricted by the CFL condition and a time-step 
size of 1 × 10−2 s is enough to give a convergent solution. It can be seen that the convergent solutions from both methods 
are consistent of each other. Note that the ratio of the mean flow rate Q 1/Q 2 = 49.23/14.49 = 3.40 nearly equals to the 
ratio of the resistance R2/R1 = 5.86 × 103/1.73 × 103 = 3.39, where Q 1 and Q 2 are the mean flow rates through outlets 1 
and 2 for a cardiac cycle, respectively, and R1 and R2 are the values of the outlet resistances assigned to outlets 1 and 2, 
respectively. Overall, the proposed numerical method is validated by its agreement with SimVascular.

3.2. Blood flow in a full-body artery

In this subsection, we discuss the simulation of blood flow in the patient-specific-full-body artery given in Fig. 1. For the 
inlet boundary condition, we prescribe a representative flow rate profile given in Fig. 5, which is extracted from [35] and 
scaled to an average cardiac output of a resting person 5 L/min with the cardiac cycle T = 1.0 s. Hemodynamic analysis 
is carried out at a characteristic time t = 0.12 s during the peak systole, as marked by a circle in Fig. 5. The values of 
the total resistance and compliance are chosen as RT = 1.57 × 103 dyn · s/cm5 and CT = 8.49 × 10−4 cm5/dyn so that the 
computed systolic and diastolic pressures are within physiologically normal ranges. The initial pressure of the outlet pi(0)

in the Windkessel model is set to be 76 mmHg.

3.2.1. Local mesh refinement
Before analyzing the simulated results, it is necessary to conduct a mesh independence study to evaluate the accuracy 

of the solution for such a large and complex geometry. As shown in Fig. 7, local mesh refinements are performed at four 
different regions: A (the ascending aorta), B (the hepatic artery), C (the right ulnar artery) and D (the left posterior tibial 
artery). Note that position B is located at the right hepatic artery before a bifurcation, as shown in a close-up view in Fig. 8n. 
9
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Fig. 5. The flow rate profile for a cardiac cycle imposed at the inlet with the peak systole t = 1.2 s marked by a circle.

Fig. 6. Slices of four meshes at four different locations where local mesh refinements are performed: A (the ascending aorta), B (the hepatic 
artery), C (the right ulnar artery) and D (the left posterior tibial artery). The monitoring nodal points are labeled by red dots in Mesh 1. 
The maximum edge sizes of the highlighted elements are listed to show the refinement of the mesh.

The refinement results in four meshes with Mesh 1 with 10,072,134, Mesh 2 with 10,250,197, Mesh 3 with 11,924,493 and 
Mesh 4 with 25,640,395 tetrahedral elements. Fig. 6 shows some slices of the meshes at the four locally refined regions. 
Point-wise solutions of the pressure and velocity are monitored at the nodal points marked by red dots in Mesh 1. We 
see that the refinement leads to a decrease about a half of the maximum edge size of the highlighted element near these 
nodal points. For example, the maximum edge sizes are 3.80 mm in Mesh 1, 1.90 mm in Mesh 2, 0.95 mm in Mesh 3 and 
0.48 mm in Mesh 4 in region A. Comparing with the other three interested regions, the refinement in region A begins with 
a larger element size 3.80 mm due to its large vessel size 37.38 mm. It is noted that, for Mesh 1, the geometrical shape 
of the vessel is changed at regions B, C and D due to the use of coarse meshes, but is well maintained in region A where 
the surface mesh is controlled to be smaller than the volume mesh. All simulations are carried out by using 720 processor 
cores with a time-step size 1 ms.

Fig. 7 shows the influence of the mesh refinement on the temporal changes of the pressure and the velocity at the 
four monitoring nodal points within the locally refined regions. For the pressure, we see that even the coarsest Mesh 1 
can yield converged results for all the monitoring points comparing with the results of the finest Mesh 4. To see it more 
clearly, pressures during a systolic period are shown in the enlarged images. We quantify the difference by calculating the 
maximum error and obtain values of 0.03 mmHg, 0.56 mmHg, 0.06 mmHg and 0.22 mmHg for the monitoring points in 
regions A, B, C and D respectively, which are quite small comparing to the value of the systolic pressure. However, for 
the velocity, the influence of the mesh size is quite significant. We find that Mesh 1 can provide general trends but not 
accurate enough values for the velocity. For example, it produces a maximum relative error 64.70% for the velocity at the 
monitoring point in region B and fails to characterize the curvature of the velocity profile during the diastolic period at the 
10
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Fig. 7. The influence of the mesh refinement on the temporal changes of the pressure and the velocity at the four monitoring nodal points 
within the locally refined regions: A (the ascending aorta), B (the hepatic artery), C (the right ulnar artery) and D (the left posterior tibial 
artery).

monitoring point in region C. By reducing the mesh size, Mesh 2 improves the accuracy of the velocity, but not as accurate 
as Mesh 3. A further refinement of the mesh to Mesh 4 can not improve much on the accuracy of the velocity. Therefore, 
Mesh 3 is accurate enough to provide physiological realistic waveforms for the pressure and the velocity, as shown by the 
experimental data in [36]. Overall, the pressure is not, but the velocity is, sensitive to the mesh size. To resolve the locally 
interested flow field, we need of a mesh size about 1 mm for large arteries with a diameter of 30 − 40 mm and 0.2 mm
for small arteries with a diameter of 3 − 5 mm.

3.2.2. Distribution of regional blood flows
To understand the two-level method for the model parameters selection, we estimate the blood flow distributions to 

14 regions based on the results of Mesh 4 to reduce the influence of the mesh size. As shown in Fig. 8, branch vessels 
that deliver the blood to the same region are grouped together, including 7 to the head, 21 to the heart, 16 to the liver, 
7 to the stomach, 9 to the spleen, 49 to the intestine, 4 to each of the left and right kidneys, 4 to each of the left and 
right suprarenal glands, 7 to the left and 5 to the right arms, and 26 to the left and 31 to the right legs. Other 28 branch 
vessels that do not belong to any interested region are classified into one group. To quantify the flow distribution to specific 
regions, we calculate the blood flow fraction F k

region with its definition given in (5). The following relative error is used to 
evaluate the discrepancy between the computed and measured results

e = |F k
region(measured) − F k

region(computed)|
F k

region(measured)
, (23)

where F k
region(computed) is the computed blood flow fraction and F k

region(measured) is the corresponding measured data 
reported in [17,22,37]. As listed in Table 1, regional resistances Rk and compliances Ck are calculated based on the 
region region

11
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Fig. 8. The close-up views of the arteries that supply the blood to different regions of the body, including (a) the right arm, (b) the head, 
(c) the left arm, (d) the left leg, (e) the heart, (f) the right leg, (g) the right suprarenal gland, (h) the stomach, (i) the left suprarenal gland, 
(j) the spleen, (k) the left kidney, (l) the intestine, (m) the right kidney and (n) the liver. The enlarged view in the red box shows the 
arteries that branch from the abdominal aorta.

Table 1
Comparison between the computed regional blood flow fractions and the reported data from the literature. “No. ves-
sel” is the number of branch vessels supplying the target regions. Rk

region and Ck
region are the regional resistance and 

compliance respectively. F k
region is the blood flow fraction and e is the relative error.

Regions No. vessels Measured Rk
region Ck

region Computed

F k
region References (dyn · s/cm5) (cm5/dyn) F k

region e

Head 7 18.30% [17] 8.55E+03 1.55E-04 19.24% 4.75%
Heart 21 4.00% [22,37] 3.91E+04 3.40E-05 4.29% 7.25%
Liver 16 6.50% [22,37] 2.41E+04 5.52E-05 6.35% 2.31%
Stomach 7 1.00% [22,37] 1.57E+05 8.49E-06 1.02% 2.00%
Spleen 9 3.00% [22,37] 5.22E+04 2.55E-05 3.05% 1.67%
Intestine 49 13.25% [22,37] 1.18E+04 1.13E-04 13.34% 0.68%
Left kidney 4 9.50% [22,37] 1.65E+04 8.07E-05 9.39% 1.16%
Right kidney 4 9.50% [22,37] 1.65E+04 8.07E-05 8.96% 5.68%
Left adrenal gland 4 0.15% [22,37] 1.04E+06 1.27E-06 0.15% 0.00%
Right adrenal gland 4 0.15% [22,37] 1.04E+06 1.27E-06 0.16% 6.67%
Left arm 7 5.60% [17] 2.79E+04 4.76E-05 5.39% 3.75%
Right arm 5 5.60% [17] 2.79E+04 4.76E-05 5.23% 6.61%
Left leg 26 11.20% [17] 1.40E+04 9.51E-05 11.27% 0.63%
Right leg 31 11.20% [17] 1.40E+04 9.51E-05 11.41% 1.88%
Others 28 − − 1.49E+05 8.92E-06 1.11% −
Total 222 − − 1.57E+03 8.49E-04 100.36% −

measured blood flow fraction F k
region(measured). By introducing the regional resistances and compliances, the computed 

blood flow fraction matches quite well with the measured values, with maximum and minimum relative errors 7.25% in the 
heart and 0.00% in the left adrenal gland. The accuracy of the solution can also be reflected by the total output 100.36%, 
which is quite close to 100.00% for the satisfaction of the mass conservation. We remark that the error of the blood flow 
fraction can be reduced by using finer meshes. Thus, we show that our two-level method for determining the terminal 
parameters is useful in obtaining target regional blood flow distributions.

3.2.3. Distribution of hemodynamic parameters
Fig. 9 presents the spatial distributions of the pressure and velocity at the peak systole t = 0.12 s in the whole body and 

the four cross sections shown in Fig. 7. In the whole body, the calculated systolic pressure reaches 155.70 mmHg at the 
aortic root and drops gradually from proximal to distal, which is similar to the results in [16]. The velocity and streamline 
distributions show generally lower values in the ascending aorta and higher values in the descending aorta. This trend is 
12



S. Qin, R. Chen, B. Wu et al. Journal of Computational Physics 472 (2023) 111730
Fig. 9. The spatial distributions of the pressure and velocity at the peak systole t = 0.12 s in the whole body and the four cross sections 
in Fig. 7.

similar to the results in [17] but different in the region of the abdominal aorta because of a slight aneurysm enlargement 
in our case. In the cross section, pressures are displayed in a color-encoded form with a scale of 2 mmHg. We see clear 
pressure gradients in the cross sections A and B but not in C and D, since the ascending aorta bends in A and the right 
hepatic artery bifurcates in B, while arteries in C and D are relatively straight without apparent curvatures. The profile of 
the velocity is closely related to the pressure gradient. Therefore, skewed flows are observed in A and B, where pressure 
gradients exist in both the radial and axial directions. In contrast, the flow is relatively symmetric in C and D, where it 
predominantly drives by the axial pressure gradient. To study the local flow pattern, we generate the 2D streamlines by 
projecting the velocity vector onto the 2D plane. As shown in the enlarged view of the cross section A, curved streamlines 
are observed in the vicinity of the aortic wall, which are helical flows developed due to the curvature of the ascending 
aorta, as has been shown experimentally by the 4D flow MRI in [12,38]. In the enlarged view of the cross section B, vortical 
flows are developed due to the flow separation induced by the bifurcation of the artery geometry, as also reported by the 
numerical study in [39].

Based on the computed pressure and velocity, one can derive many clinically important hemodynamic parameters, such 
as the wall shear stress (WSS). The definition of WSS is described as the difference between the overall shear stress and its 
normal projection [30],

WSS =σσσnnnp − (σσσnnnp ·nnnp)nnnp, (24)

where σσσ is the stress tensor and nnnp is the normal vector at a nodal point on the wall. Fig. 10 presents the spatial distri-
butions of WSS at the peak systole t = 0.12 s for the whole body and the local disease-prone regions, including the right 
coronary artery and the abdominal aorta. Comparing to the results in [16,17], our results generally show a similar trend 
of the WSS distribution in the arterial network, with relative low values in the thoracic aorta and high values in part of 
the abdominal aortic branches, for example, the intestine. WSS has been associated with many different vascular diseases. 
In the coronary artery, low WSS patches appear in regions of arterial bifurcations and bends, as marked in the boxes of 
Fig. 10, where plaques are usually developed [40]. In the abdominal aorta, low WSS patches emerge in the lumen wall of 
the aneurysm and has been extensively associated with the thrombus deposition and the aneurysmal rupture [41]. Note 
13
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Fig. 10. The spatial distributions of the wall shear stress at the peak systole t = 0.12 s for the whole body and the close-up views of the 
right coronary artery and the abdominal aorta.

that the distribution of the hemodynamic parameters changes due to the pulsatile nature of the blood flow and becomes 
more complex in the period of diastole, as shown in our previous work [42].

3.3. Robustness and scalability

In this subsection, we investigate the robustness and parallel scalability of the proposed algorithm for the simulation of 
blood flows in the full-body artery shown in Fig. 1. In the following tables, “Newton” is the average number of nonlinear 
iterations per time step, “GMRES” is the average number of linear iterations in each Newton step, “Time” is the average 
compute time spent on each time step. All results are collected based on the first 20 time steps. To measure the parallel 
performance of our algorithm, we use the speedup and the parallel efficiency defined as follows,

Speedup = tN0

tN
, (25)

Efficiency = tN0 × N0

tN × N
, (26)

where tN0 and tN are the compute times using N0 and N (N0 ≤ N) processor cores respectively. N0 is the minimum number 
of processor cores that can solve the problem.

Table 2 shows the robustness of the proposed algorithm with respect to several important parameters, including the 
time-step size �t , the viscosity μ, the total resistance RT and the total capacitance CT . The influence of the parameters 
are tested by changing one parameter each time while keeping others fixed with default values �t = 1 × 10−3 s, μ =
4 × 10−2 g/cm · s, RT = 1.57 × 103 dyn · s/cm5 and CT = 8.49 × 10−4 cm5/dyn. All tests are carried out on a mesh with 
1.45 × 107 elements using 960 processor cores. Firstly, we study the impact of the time-step size on the performance of 
our algorithm. Four time-step sizes 2 × 10−4, 5 × 10−4, 1 × 10−3 and 2 × 10−3 s are considered. We see that due to the use 
of a fully implicit scheme in time, our algorithm converges and is stable for all the tested time-step sizes, which are much 
larger than 5 × 10−5 s used in [17]. However, as the time-step size increases from 2 × 10−4 to 2 × 10−3 s, the numbers of 
Newton and GMRES iterations increase, which results in a longer compute time at each time step. This is mainly due to the 
fact that the initial guess of the Newton’s method becomes less accurate when the time-step size becomes larger. From the 
table, we see that the choice of a time-step size 1 × 10−3 is reasonable in terms of the total computing time.

Then, we investigate the impact of the viscosity μ on the algorithm. The viscosity is variant depending on the hemo-
dynamic conditions and closely related to the Reynolds number by the relationship Re ∝ 1/μ [43]. Therefore, with the 
decrease of the viscosity, the Reynolds number increases and the problem becomes more difficult to solve. This explains 
the slight increase of the numbers of Newton and GMRES iterations and the compute time as well, as the viscosity 
14
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Table 2
The robustness of the proposed algorithm with respect to the time-step 
size �t , the viscosity μ, the total resistance RT and the total capaci-
tance CT .

Newton GMRES Time (s)

�t
(s)

2 × 10−4 2.0 104.9 23.9
5 × 10−4 2.1 128.8 27.4
1 × 10−3 2.6 203.4 46.4
2 × 10−3 4.1 271.9 90.5

μ
(g/cm·s)

1 × 10−2 2.7 214.1 49.3
4 × 10−2 2.6 211.9 48.3
7 × 10−2 2.6 206.4 46.5
1 × 10−1 2.4 190.6 40.4

RT

(dyn · s/cm5)

7.85 × 102 2.6 195.7 43.6
1.57 × 103 2.6 203.4 46.4
3.14 × 103 2.7 252.7 55.1
6.28 × 103 2.9 306.8 69.8

CT

(cm5/dyn)

4.25 × 10−4 2.6 199.4 44.6
8.49 × 10−4 2.6 203.4 46.4
1.70 × 10−3 2.6 215.6 47.4
3.40 × 10−3 2.6 218.4 49.0

Table 3
Parallel performance of the proposed algorithm tested on two meshes with 1.45 × 107

and 2.45 × 107 elements.

Mesh np Newton GMRES Time (s) Speedup Efficiency

1.45 × 107

480 2.6 201.4 86.5 1.0 100%
960 2.6 203.4 46.4 1.9 93%
1920 2.7 248.9 31.2 2.8 69%
3840 2.6 400.7 27.6 3.1 39%
7680 2.6 657.0 25.4 3.4 21%

2.45 × 107

720 2.9 306.5 151.0 1.0 100%
1440 2.9 288.2 78.2 1.9 96%
2880 2.9 374.1 54.0 2.8 70%
5760 3.0 571.9 46.7 3.2 40%
11520 3.0 687.3 37.2 4.1 25%
15360 2.7 756.9 34.4 4.4 21%

decreases from 1 × 10−1 to 1 × 10−2 g/cm · s. Overall, the convergence of our algorithm implies its robustness to the 
viscosity.

Finally, we explore the influence of the model parameters in the Windkessel boundary condition, namely the total re-
sistance RT and the total compliance CT , whose values can be changing due to the alterations in the morphology and 
composition of the artery caused by the disease and age [44]. Results show that our algorithm is robust to RT and CT since 
the numbers of Newton iterations and GMRES iterations are almost stable for all the tests, especially for CT .

Table 3 shows the parallel scalability tested on two meshes: a coarse mesh with 1.45 × 107 elements and a fine mesh 
with 2.45 × 107 elements. For both meshes, as the number of processor core increases, the number of Newton iterations 
stays almost as a constant. However, the number of GMRES iterations grows slowly. This is consistent with the classical 
convergence theory of the RAS perconditioner, which holds that the condition number increases with the increase of the 
number of subdomains [45]. Moreover, our results show a low parallel efficiency of 21% for the coarse mesh with 7,680 cores 
and the fine mesh with 15,360 cores. The main reason for the low efficiency is the heavy burden of the communication 
between processor cores, which can be improved by increasing the overall size of the problem. For the sake of clarity, we 
plot the compute time vs. the number of processor cores in Fig. 11, with the percentage showing the corresponding parallel 
efficiencies. As we can see, the compute time drops quickly at first and then slowly when the number of processor cores 
reaches 3,840 for the coarse mesh and 5,760 for the fine mesh, where both of the parallel efficiencies are about 40%. Overall, 
our algorithm can be scalable to 15,360 processor cores and still maintains about 20% parallel efficiency. With this highly 
scalable method, the average compute time per time step can be reduced to about 30 seconds, which means the blood flow 
simulation of a full-body artery from neck to feet can be as short as 8 hours per cardiac cycle.

4. Concluding remarks

In this work, we investigate a parallel domain decomposition method to solve the unsteady incompressible Navier-Stokes 
equations for the simulation of blood flows in a full-body arterial network with 222 outlet branches. For this complex 
arterial network, it is a mandatory requirement to consider the regional blood flow distribution. Therefore, we introduce a 
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Fig. 11. The average compute time vs. the number of processor cores for the two meshes of 1.45 × 107 (left) and 2.45 × 107 (right) 
elements. The percentages are the corresponding parallel efficiencies.

two-level method to determine the model parameters in the Windkessel outlet boundary condition, which guarantees the 
correct amount of blood supply to 14 regions. We validate the proposed numerical method by comparing its results with 
that obtained from the software package SimVascular on a benchmark problem and show our superiority in choosing large 
time-step sizes due to the use of a fully implicit time scheme. Moreover, local mesh refinements are performed and found 
to be an effective way to study the influence of the mesh size on the accuracy of the solution and results indicate that the 
pressure is not, but the velocity is, sensitive to the mesh size. Numerical experiments show that the proposed method is 
scalable with up to 15,360 processor cores and robust with respect to different model parameters, which makes it possible 
for a comprehensive study of a vascular disease under the system of a whole-body arterial network.
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Appendix A. Construction of the Jacobian

There are many ways to construct the Jacobian matrix. In this work, we construct the Jacobian analytically instead of 
approximately to enhance the efficiency and accuracy of the nonlinear solver. The Jacobian matrix of (20) can be obtained 
by taking the first order partial derivatives with respect to each of the unknowns. The details of the linear and nonlinear 
terms in the Jacobian matrix of (20) without the consideration of the Windkessel boundary condition can refer to [31,46]. 
Here, we only introduce what the Windkessel boundary condition, namely (15), brings to the Jacobian matrix.

First, we introduce some notations. We write the velocity vector of the nth time step in the form uuun = (un
1, u

n
2, u

n
3)

T

and the outward unit normal vector at the ith outlet surface nnni
O

= (ni
1, n

i
2, n

i
3)

T . We also approximate un
1, un

2 and un
3 in the 

finite-dimensional space as follows,

un
1 =

NT∑
k′=1

un
1,k′ϕk′ , un

2 =
NT∑

k′=1

un
2,k′ϕk′ and un

3 =
NT∑

k′=1

un
3,k′ϕk′ , (27)
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where k′ is the k′th nodal points, ϕk′ denotes the corresponding nodal basis and NT represents the total number of mesh 
nodes. Then, in the x direction, we obtain the following function from (15) that contributes to the Jacobian matrix of (20)
due to the use of the Windkessel boundary condition,

F̃ (x)
i′ =

M∑
i=1

∫
�i

O

[(
2μ

NT∑
k′=1

un
1,k′

∂ϕk′
∂x

− C −D
)

ni
1 + μ

( NT∑
k′=1

un
1,k′

∂ϕk′
∂ y

+
NT∑

k′=1

un
2,k′

∂ϕk′
∂x

)
ni

2

+ μ
( NT∑

k′=1

un
1,k′

∂ϕk′
∂z

+
NT∑

k′=1

un
3,k′

∂ϕk′
∂x

)
ni

3

]
ϕi′d�, (28)

where i′ = 1, 2, · · · , NT and we have

C = R1
i

∫
�i

O

3∑
q=1

NT∑
k′=1

un
q,k′ϕk′ni

qd�, (29)

D = �t
n∑

m=1

e−(tn−tm)/τi

Ci

∫
�i

O

3∑
q=1

NT∑
k′=1

um
q,k′ϕk′ni

qd�. (30)

Taking the derivatives of (28) with respect to un
1, j′ , u

n
2, j′ and un

3, j′ , we obtain

∂F̃ (x)
i′

∂un
1, j′

=
M∑

i=1

∫
�i

O

[(
2μ

∂ϕ j′

∂x
ϕi′ − R1

i �1ϕi′ −
�t

Ci
�1ϕi′

)
ni

1 + μ
∂ϕ j′

∂ y
ϕi′n

i
2 + μ

∂ϕ j′

∂z
ϕi′n

i
3

]
d�, (31)

∂F̃ (x)
i′

∂un
2, j′

=
M∑

i=1

∫
�i

O

[(
− R1

i �2ϕi′ −
�t

Ci
�2ϕi′

)
ni

1 + μ
∂ϕ j′

∂x
ϕi′n

i
2

]
d�, (32)

∂F̃ (x)
i′

∂un
3, j′

=
M∑

i=1

∫
�i

O

[(
− R1

i �3ϕi′ −
�t

Ci
�3ϕi′

)
ni

1 + μ
∂ϕ j′

∂x
ϕi′n

i
3

]
d�, (33)

where i′, j′ = 1, 2, · · · , NT and �q = ∫
�i

O
ϕ j′n

i
qd� (q = 1, 2 and 3). We see that �q involves the integration over the 

boundary, which makes the Jacobian system difficult to solve since it produces a dense block in the Jacobian matrix. The 
equivalents of (28) in the y and z directions can be used to compute the derivatives for the Jacobian similarly.
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