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We develop a parallel two-level domain decomposition method for the 3D unsteady source identification problem 
governed by a parabolic partial differential equation (PDE). The domain of the PDE is firstly decomposed into 
several overlapping subdomains and the original inverse source identification problem is then transformed 
into smaller independent subproblems defined on these subdomains. Each subproblem is formulated as a 
PDE-constrained optimization problem with appropriate conditions prescribed on the inner boundaries and 
discretized by finite element method. The resulting coupled algebraic systems are solved simultaneously by 
restarted GMRES method with a space-time restricted additive Schwarz preconditioner. When forming the 
preconditioner, a second level of domain decomposition is introduced for each subdomain. The solutions of these 
subproblems are combined together to form an approximated global solution to the original inverse problem by 
discarding the overlapping parts of the solution. Since all the subproblems are solved independently, the two-

level domain decomposition method provides higher degree of parallelism and saves much computing time. 
Numerical experiments conducted on a supercomputer with thousands of processor cores validate the efficiency 
and robustness of the proposed approach.
1. Introduction

The parabolic convection-diffusion equation describes how the phys-

ical quantities such as mass, energy, momentum and concentration are 
transferred with the convection and diffusion processes of the fluid. 
It is widely used in the simulation of hydrodynamics, heat transfer, 
chemical reaction, environmental pollution or viral aerosol transmis-

sion, etc. The canonical form of the convection-diffusion equation is 
𝜕𝑢

𝜕𝑡
−∇ ⋅ (𝑎∇𝑢) +∇ ⋅ (𝐯𝑢) = 𝑓 , where 𝑎 is the diffusion parameter, the vec-

tor 𝐯 denotes the convection velocity, and 𝑓 is the source term. The 
direct or forward problem for the convection-diffusion equation is well 
understood. The concentration distribution of the physical quantity (i.e. 
𝑢) in space and time can be computed numerically by methods such as 
the finite difference method or the finite element method. However, the 
corresponding inverse problems, which include the parameter identifi-

cation, source identification, boundary control and backward inverse 
problem, etc., are usually more difficult and expensive to solve than the 
forward problem for their ill-posedness in the sense of Hadamard [1,2]. 
The lack of stability with respect to the measurement data is a major 
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issue, which means that small noises in the data may lead to signifi-

cant changes in the reconstructed target. We shall focus on the inverse 
problem of space-time dependent source identification problem by us-

ing some given noisy measurement data of 𝑢. Several works have been 
devoted to the existence, uniqueness and stability estimates of a solu-

tion to this parabolic-type inverse problem. Mathematical properties of 
reconstructing a space-dependent source in the parabolic equation are 
found in [3] using a final moment measurement. Stability estimates are 
provided in [4] for recovering a space-time variable separable source 
term. Convergence analysis of the finite element approximation to the 
solution of an inverse source problem for parabolic equations is demon-

strated in [5] with boundary observations and in [6] with inner integral 
observations respectively. In [7] the existence of the optimal solution 
to the regularized system for simultaneously reconstructing both the 
convection velocity and source strength in a convection-diffusion equa-

tion is proved and rigorous convergence analysis of the finite element 
method is established. Overall speaking, the mathematical analysis is 
problem dependent, regarding what observation data or overdeter-

mined condition given for the inverse problem and depending on the 
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specific form of the source function. For surveys on the subject, we re-

fer the reader to the papers [3–10] and the references therein.

Source identification problems govern by the convection-diffusion 
equation arise in many applications including environmental problems, 
such as the detection and monitoring of indoor [11] and outdoor [12]

air pollution, pollutant source tracking in underground water [13]

or surface water [14], etc. The algorithms for inverse source prob-

lems have been investigated extensively [7,15–19]. The degree of 
ill-posedness of the inverse source problem for the convection-diffusion 
equation is investigated numerically using singular value decomposition 
of the input-output operators in [20]. The inverse problem is usually 
reformulated into a least-square optimization problem complemented 
with a regularization term, and classical optimization methods such 
as regression methods [21], linear and nonlinear programming meth-

ods [21], linear and nonlinear conjugate gradient methods [17,22,23], 
Newton type methods [24], can be used to obtain the approximate so-

lutions.

Recent developments for inverse source identification problems can 
be summarized in three areas. The first one focuses on more sophisti-

cated mathematical models, such as the time-fractional diffusion equa-

tion, which has gained increasing interests for its applications to de-

scribe the anomalous diffusion phenomena in highly heterogeneous me-

dia [25–27]. For instance, the space component of the source term for a 
time-fractional convection-diffusion equation was reconstructed by an 
iterative threshold algorithm in [25]. Secondly, the machine learning 
methods are increasingly applied as well as the traditional numerical 
methods in scientific computing. For example, a least-squares support-

vector machines regression method is used for recovering the separable 
variable source function, where the solution of the 1D convection-

diffusion system and the unknown source term are expressed using a 
kernel function over the training set [28]. A parallel genetic algorithm 
is employed to initialize the Nelder-Mead simplex method to estimate 
the source term of the atmospheric release [29]. Lastly, parallel algo-

rithms with high efficiency and accuracy are in great need by large-scale 
applications, in pace with the rapid development of high performance 
supercomputers. Since the inverse source identification problem is usu-

ally reformulated as an optimization problem constrained with PDEs, 
sequential quadratic programming (SQP) methods are widely used, 
where the state variable, the adjoint variable and the source vari-

able are iteratively updated in a sequential order [15]. SQP methods 
require low memory, but the number of iterations for a specified ac-

curacy grows quickly with the increase of the optimization variables. 
Recently, parallel methods for solving the fully coupled Karush-Kuhn-

Tucker (KKT) system become popular for its high efficiency in obtaining 
all the unknown variables all-at-once. For recovering space-time depen-

dent sources, a space-time parallel Krylov-Schwarz method is developed 
in [30,31], in which the spatial and temporal variables are treated 
equally in a four-dimensional domain. The fully coupled KKT system 
is solved with a Krylov subspace method preconditioned by an additive 
Schwarz preconditioner in parallel. The space-time domain decompo-

sition method offers higher degree of parallelism, shortens the total 
computing time at the expense of more memory.

In this paper, we develop a two-level domain decomposition method 
to further improve the efficiency of the parallel space-time domain 
decomposition method. Based on the idea of “divide and conquer”, 
we firstly divide the original inverse problem for tracking the global 
source into smaller subproblems by partitioning the computational do-

main into several overlapping subdomains, and the sources defined on 
these subdomains are reconstructed by solving these subproblems in-

dependently. As will show in the paper, by introducing the domain 
decomposition, the space-time coupled large-scale KKT system is decou-

pled into several smaller-scale KKT systems. These subsystems can be 
solved simultaneously by a parallel space-time Krylov-Schwarz method, 
where a second level of domain decomposition on each subdomain is 
performed when applying the Schwarz preconditioner. Finally the solu-
99
tions of all subsystems are appropriately glued together to form a global 
solution of the inverse source problem.

The rest of the paper is arranged as follows: Section 2 describes the 
mathematical formulation of the inverse problem. Section 3 proposes 
the two-level domain decomposition method. Three numerical exam-

ples are shown in Section 4 to test the reconstruction effect and the 
algorithm efficiency. Some conclusions are drawn in Section 5.

2. Mathematical formulation of the inverse source problem

We consider the following convection-diffusion equation in a open 
bounded and simply connected domain Ω ∈ℝ3:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑢

𝜕𝑡
−∇ ⋅ (𝑎∇𝑢(𝐱, 𝑡)) + ∇ ⋅ (𝐯𝑢(𝐱, 𝑡)) = 𝑓 (𝐱, 𝑡), 𝐱 ∈Ω, 𝑡 ∈ (0, 𝑇 ],

𝑢(𝐱, 𝑡) = 𝑝(𝐱), 𝐱 ∈ Γ1,
𝜕𝑢

𝜕𝐧
= 0, 𝐱 ∈ Γ2,

𝑢(𝐱,0) = 𝑢0(𝐱),

(1)

where the Dirichlet boundary condition and homogeneous Neumann 
boundary condition are imposed on Γ1 and Γ2 respectively, with 
Γ1 ∪ Γ2 = 𝜕Ω. The initial condition is denoted as 𝑢0(𝐱). The general 
source function 𝑓 (𝐱, 𝑡) denotes the intensity of the moving source at 
each moment, which is the target to be recovered from the noisy mea-

surement data of the concentration 𝑢(𝐱, 𝑡).
Defining the space-time domain Ω𝑇 = Ω × [0, 𝑇 ], suppose 𝑓 (𝐱, 𝑡) ∈

𝐿2(Ω𝑇 ), 𝑝(𝐱) ∈ 𝐿2(Γ1) and 𝑢0(𝐱) ∈ 𝐿2(Ω), then from the standard 
parabolic theory [32], there exists a unique weak solution to (1). 
Denoting (⋅, ⋅) as the 𝐿2 inner product, then 𝑢 satisfies the following 
variational equation:

(
𝜕𝑢

𝜕𝑡
,𝜙

)
+ (𝑎∇𝑢,∇𝜙) − (𝐯𝑢,∇𝜙) = (𝑓, 𝜙) , (2)

∀𝜙 ∈𝐿2(0, 𝑇 ; 𝐻1
Γ1
(Ω)), with 𝐻1

Γ1
(Ω) defined by

𝐻1
Γ1
(Ω) = {𝜑|𝜑 ∈𝐻1(Ω), the trace of 𝜑 vanishes on Γ1.}

Furthermore 𝑢 has the following regularity:

𝑢 ∈𝐿2(0, 𝑇 ;𝐻1(Ω)) ∩𝐻1(0, 𝑇 ;𝐿2(Ω)). (3)

We are interested in how the solution of the parabolic equation is af-

fected by the variation of the Dirichlet boundary condition. Suppose 𝑢1
satisfies the same equation (1) with only a different Dirichlet boundary 
condition 𝑝1(𝐱) given on Γ1. Defining �̃� = 𝑢1 − 𝑢 and �̃�(𝐱) = 𝑝1(𝐱) − 𝑝(𝐱), 
then �̃� satisfies the following equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕�̃�

𝜕𝑡
−∇ ⋅ (𝑎∇�̃�(𝐱, 𝑡)) + ∇ ⋅ (𝐯�̃�(𝐱, 𝑡)) = 0, 𝐱 ∈Ω, 𝑡 ∈ (0, 𝑇 ],

�̃�(𝐱, 𝑡) = �̃�(𝐱), 𝐱 ∈ Γ1,
𝜕�̃�

𝜕𝐧
= 0, 𝐱 ∈ Γ2,

�̃�(𝐱,0) = 0.

(4)

By performing the energy estimate [32], there exists a constant 𝐶 such 
that:

‖�̃�‖𝐿2(0,𝑇 ;𝐻1(Ω)) ≤ 𝐶‖�̃�‖𝐿2(Γ1), (5)

i.e.,

‖𝑢1 − 𝑢‖𝐿2(0,𝑇 ;𝐻1(Ω)) ≤ 𝐶‖𝑝1 − 𝑝‖𝐿2(Γ1). (6)

From (6) we see that if there is a sequence 𝑝𝑛 → 𝑝 strongly in 𝐿2(Γ1), 
the corresponding weak solution 𝑢𝑛 → 𝑢 strongly in 𝐿2(0, 𝑇 ; 𝐻1(Ω)).
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2.1. The Tikhonov regularization method

Denoting the measurement data by 𝑢𝜖(𝐱, 𝑡), with 𝜖 being the noise 
level, the inverse source problem is reformulated into an output least-

square optimization problem. The objective functional, consisting of a 
data-fitting term and a regularization term to ensure the well-posedness 
of the optimization problem [33], can be described as:

𝐽 (𝑓 ) = 1
2

𝑇

∫
0

∫
Ω

𝐴(𝐱)(𝑢(𝐱, 𝑡) − 𝑢𝜖(𝐱, 𝑡))2 𝑑𝐱𝑑𝑡+𝑁𝛽 (𝑓 ), (7)

where 𝐴(𝐱) is the data range indicator function to specify the mea-

surement locations. 𝑁𝛽 (𝑓 ) in (7) is chosen as the following 𝐻1 − 𝐻1

Tikhonov regularization in both space and time:

𝑁𝛽 (𝑓 ) =
𝛽1
2

𝑇

∫
0

∫
Ω

| ̇𝑓 |𝑑𝐱𝑑𝑡+ 𝛽2
2

𝑇

∫
0

∫
Ω

|∇𝐱𝑓 |2𝑑𝐱𝑑𝑡, (8)

where 𝛽1 and 𝛽2 are two regularization parameters. Other regulariza-

tions, such as 𝐻1 −𝐿2, 𝐿2 −𝐿2 may be used, depending on the availabil-

ity of prior information of the source function. Now the inverse source 
problem is equivalent to solving the following constrained optimization 
problem  :

 ∶ min
𝑓∈𝐿2(Ω𝑇 )

𝐽 (𝑓 ), subject to (𝑢, 𝑓 ) satisfying (1) in Ω𝑇 . (9)

By introducing a Lagrange multiplier or an adjoint variable 𝑣, the 
optimization problem (9) is transformed into an unconstrained mini-

mization problem with the objective functional revised as:

 (𝑢, 𝑓 , 𝑣) = 𝐽 (𝑓 ) + (𝑣,𝐿(𝑢, 𝑓 )), (10)

where 𝐿(𝑢, 𝑓 ) denotes the convection-diffusion operator in (1) and 
(𝑣, 𝐿(𝑢, 𝑓 )) stands for their 𝐿2 inner product. The necessary condition 
satisfied by the minima of (10) is the first-order optimality conditions, 
the so-called KKT system. The weak formulation of the KKT system is 
obtained by taking variations with respect to 𝑣, 𝑢 and 𝑓 and computing 
the corresponding Fréchet derivatives as

⎧⎪⎨⎪⎩
𝑣(𝑢, 𝑓 , 𝑣)𝜙 = 0,
𝑢(𝑢, 𝑓 , 𝑣)𝜓 = 0,
𝑓 (𝑢, 𝑓 , 𝑣)𝜁 = 0,

(11)

for all test functions 𝜙, 𝜓 and 𝜁 . Then using integration-by-part, we 
obtain the following weak-form of the KKT system:

⎧⎪⎪⎨⎪⎪⎩

(
𝜕𝑢

𝜕𝑡
,𝜙

)
+ (𝑎∇𝑢,∇𝜙) − (𝐯𝑢,∇𝜙) = (𝑓, 𝜙) ,

−
(
𝜕𝑣

𝜕𝑡
,𝜓

)
+ (𝑎∇𝑣,∇𝜓) + (∇ ⋅ (𝐯𝜓), 𝑣) = (𝐴(𝐱)(𝑢𝜖 − 𝑢), 𝜓) ,

−(𝑣, 𝜁 ) + 𝛽1
(
̇𝑓 , �̇�

)
+ 𝛽2(∇𝑓,∇𝜁 ) = 0,

(12)

∀𝜙, 𝜓 ∈ 𝐿2(0, 𝑇 ; 𝐻1
Γ1
(Ω)), and 𝜁 ∈ 𝐻1(0, 𝑇 ; 𝐻1(Ω)). The three equations 

of (12) are called the state, the adjoint and the source equation respec-

tively. As we observe, the state and the adjoint equations are standard 
parabolic PDEs, we use a second-order Crank-Nicolson finite difference 
scheme in time and a piecewise linear finite element method in space 
to discretize both equations. Since the source equation is elliptic in the 
space-time coupled domain Ω𝑇 , a 4D piecewise linear finite element in 
both space (three dimensions) and time (one dimension) is applied with 
a uniform partition in Ω𝑇 [30]. Consider a regular triangulation  ℎ of 
Ω and a uniform time partition 𝜏 in [0, 𝑇 ]: 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑀 = 𝑇 , 
with 𝑡𝑘 = 𝑘𝜏 , 𝜏 = 𝑇 ∕𝑀 .  ℎ × 𝜏 is applied to generate the partition in 
the space-time domain Ω𝑇 =Ω ×[0, 𝑇 ]. Then we introduce the piecewise 
linear finite element space 𝑉 ℎ on  ℎ and 𝑊 𝜏

ℎ
on  ℎ ×𝜏 . Denoting the 

difference quotient and the averaging of a function 𝑔(𝐱, 𝑡) as:
100
Fig. 1. The overlapping domain decomposition of a cubic domain Ω into Ω′
𝑖
, 

𝑖 = 1, ⋯ , 𝑛𝑑.

𝜕𝜏𝑔
𝑘(𝐱) = 𝑔𝑘(𝐱) − 𝑔𝑘−1(𝐱)

𝜏
, �̄�𝑘(𝐱) = 1

𝜏

𝑡𝑘

∫
𝑡𝑘−1

𝑔(𝐱, 𝑡)𝑑𝑡,

the discrete finite element system of (12) can be formulated as: Find the 
sequence of approximations 𝑢𝑘

ℎ
, 𝑣𝑘

ℎ
∈ 𝑉 ℎ and 𝑓𝑘

ℎ
∈𝑊 𝜏

ℎ
such that

⎧⎪⎪⎨⎪⎪⎩

(
𝜕𝜏𝑢

𝑘
ℎ
,𝜙ℎ

)
+
(
𝑎∇�̄�𝑘

ℎ
,∇𝜙ℎ

)
−
(
𝐯�̄�𝑘

ℎ
,∇𝜙ℎ

)
=
(
𝑓𝑘
ℎ
, 𝜙ℎ

)
,

−
(
𝜕𝜏𝑣

𝑘
ℎ
,𝜓ℎ

)
+
(
𝑎∇�̄�𝑘

ℎ
,∇𝜓ℎ

)
+
(
∇ ⋅

(
𝐯𝜓ℎ

)
, �̄�𝑘

ℎ

)
=
(
𝐴(𝐱)

(
�̄�
𝜖,𝑘

ℎ
− �̄�𝑘

ℎ

)
, 𝜓ℎ

)
,

−
(
𝑣𝑘
ℎ
, 𝜁𝑘

ℎ

)
+ 𝛽1

(
𝜕𝜏𝑓

𝑘
ℎ
, 𝜕𝜏𝜁

𝑘
ℎ

)
+ 𝛽2

(
∇𝑓𝑘

ℎ
,∇𝜁𝑘

ℎ

)
= 0,

(13)

∀𝜙ℎ, 𝜓ℎ ∈ �̊� ℎ, and 𝜁𝑘
ℎ
∈𝑊 𝜏

ℎ
, where �̊� ℎ denotes the subspace of 𝑉 ℎ with 

zero trace on Γ1. We remark that the computational cost of solving the 
fully-coupled KKT system (13) can be tremendous.

3. The two-level domain decomposition method

To avoid solving such a large linear system (13), we propose a two-

level domain decomposition method for solving the optimization prob-

lem (9). Firstly, we decompose the optimization problem into smaller-

scale subproblems by dividing the domain Ω into 𝑛𝑑 non-overlapping 
subdomains Ω1, Ω2, ⋯, Ω𝑛𝑑 , see Fig. 1 for a demonstration of the do-

main decomposition of a cubic domain, with the black lines and the 
blue lines to differentiate the actual boundary of Ω and the artificial 
boundary of the subdomains. From the additivity of the integral, the 
objective functional (7) can be reformulated as

𝐽 (𝑓 ) =
𝑛𝑑∑
𝑖=1

1
2

𝑇

∫
0

∫
Ω𝑖

𝐴(𝐱)(𝑢(𝐱, 𝑡) − 𝑢𝜖(𝐱), 𝑡)2 𝑑𝐱𝑑𝑡+𝑁𝛽 (𝑓𝑖) , (14)

with 𝑓𝑖 being the source 𝑓 restricted in Ω𝑖. Defining the objective func-

tional 𝐽 (𝑓𝑖) on Ω𝑖 as

𝐽 (𝑓𝑖) =
1
2

𝑇

∫
0

∫
Ω𝑖

𝐴(𝐱)(𝑢(𝐱, 𝑡) − 𝑢𝜖(𝐱, 𝑡))2 𝑑𝐱𝑑𝑡+𝑁𝛽 (𝑓𝑖), (15)

then 𝐽 (𝑓 ) =∑𝑛𝑑
𝑖=1 𝐽 (𝑓𝑖). As a result, instead of solving (9), we focus on 

solving the following subproblems 𝑖, 𝑖 = 1, ⋯ , 𝑛𝑑:

𝑖 ∶ min
𝑓𝑖∈𝐿2(Ω𝑖×[0, 𝑇 ])

𝐽 (𝑓𝑖), subject to (𝑢, 𝑓𝑖) satisfying (1) in Ω𝑖 × [0, 𝑇 ].

(16)

For the subproblem (16), appropriate boundary conditions are needed 
on the artificial boundaries. It is observed from (6) that changes in 
the solution of the convection-diffusion equation are bounded by the 
variety of the Dirichlet boundary condition. If simple homogeneous 
Dirichlet boundary conditions are imposed, the solution around these 
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Fig. 2. The interpolation and communication process between neighboring subdomains for correcting the artificial boundary condition.
artificial boundaries can be quite different from the true solution, which 
can be regarded as a forward model error.

To overcome this difficulty, we revise the domain decomposition 
into an overlapping one {Ω′

𝑖
}, 𝑖 = 1, ⋯ , 𝑛𝑑. As shown in Fig. 1, the sub-

domain edge is marked as dotted gray lines. On each subdomain Ω′
𝑖
, 

similarly by using the Lagrange multiplier method, we obtain the KKT 
system for 𝐱 ∈Ω′

𝑖
, and 𝑡 ∈ (0, 𝑇 ):

⎧⎪⎪⎨⎪⎪⎩

(
𝜕𝑢

𝜕𝑡
,𝜙

)
+ (𝑎∇𝑢,∇𝜙) − (𝐯𝑢,∇𝜙) =

(
𝑓𝑖, 𝜙

)
,

−
(
𝜕𝑣

𝜕𝑡
,𝜓

)
+ (𝑎∇𝑣,∇𝜓) + (∇ ⋅ (𝐯𝜓), 𝑣) = (𝐴(𝐱)(𝑢𝜖 − 𝑢), 𝜓) ,

−(𝑣, 𝜁 ) + 𝛽1
(
̇𝑓𝑖, �̇�

)
+ 𝛽2(∇𝑓𝑖,∇𝜁 ) = 0,

(17)

∀𝜙, 𝜓 ∈ 𝐿2(0, 𝑇 ; 𝐻1
Γ̃𝑖
(Ω′

𝑖
)) and 𝜁 ∈ 𝐻1(0, 𝑇 ; 𝐻1(Ω′

𝑖
)). The boundary of 

each subdomain Ω′
𝑖
, denoted by 𝜕Ω′

𝑖
may consist of three parts: the 

actual boundary shared with Γ1 and Γ2, as well as the artificial bound-

ary generated by the decomposition, denoted by Γ′
𝑖
. Here we denote 

Γ̃𝑖 = (𝜕Ω′
𝑖
∩ Γ1) ∪ Γ′

𝑖
as the Dirichlet part of 𝜕Ω′

𝑖
. The boundary, initial 

and terminal conditions for 𝑢, 𝑣 and 𝑓𝑖 are determined by two steps.

Firstly, the state variable, i.e., the concentration 𝑢 maintain the same 
boundary conditions on 𝜕Ω′

𝑖
∖Γ′

𝑖
and the same initial condition given by 

(1) as

⎧⎪⎨⎪⎩
𝑢(𝐱, 𝑡) = 𝑝(𝐱), 𝐱 ∈

(
𝜕Ω′

𝑖
∩ Γ1

)
,

𝜕𝑢

𝜕𝐧
= 0, 𝐱 ∈

(
𝜕Ω′

𝑖
∩ Γ2

)
,

𝑢(𝐱,0) = 𝑢0(𝐱), 𝐱 ∈Ω′
𝑖
.

(18)

And by the arbitrariness of 𝜓 , the boundary conditions on 𝜕Ω′
𝑖
∖Γ′

𝑖
and 

the terminal condition for 𝑣 are derived as:

⎧⎪⎨⎪⎩
𝑣(𝐱, 𝑡) = 0, 𝐱 ∈

(
𝜕Ω′

𝑖
∩ Γ1

)
,

𝜕𝑣

𝜕𝐧
+ (𝐯 ⋅ 𝐧)𝑣 = 0, 𝐱 ∈

(
𝜕Ω′

𝑖
∩ Γ2

)
,

𝑣(𝐱, 𝑇 ) = 0, 𝐱 ∈Ω′
𝑖
.

(19)

Similarly using the arbitrariness of 𝜁 , we obtain the boundary condi-

tions on 𝜕Ω′
𝑖
∖Γ′

𝑖
, the initial and terminal conditions for 𝑓𝑖 as:

⎧⎪⎨⎪⎩
𝜕𝑓𝑖

𝜕𝐧
= 0 for 𝐱 ∈

(
𝜕Ω′

𝑖
∩ 𝜕Ω

)
,

𝜕𝑓𝑖

𝜕𝑡
= 0 for 𝑡 = 0, 𝑇 , 𝐱 ∈Ω′

𝑖
.

(20)

Secondly, on the artificial boundary Γ′
𝑖
, we propose two kinds of 

boundary conditions: one is to give the homogeneous boundary condi-

tions for 𝑢, 𝑣 and 𝑓𝑖 manually as follows:

⎧⎪⎪⎨⎪⎪⎩

𝑢(𝐱, 𝑡) = 0, 𝐱 ∈ Γ′
𝑖
,

𝑣(𝐱, 𝑡) = 0, 𝐱 ∈ Γ′
𝑖
,

𝜕𝑓𝑖

𝜕𝐧
= 0, 𝐱 ∈ Γ′

𝑖
.

(21)

Since the realistic values of 𝑢 on the artificial boundary are usually not 
zero, (21) gives only a rough approximation. However, we know from 
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(6) that the difference of the solutions with different Dirichlet boundary 
conditions for the parabolic equation is in the same magnitude of the 
difference of the Dirichlet boundary conditions, it can be expected that 
the reconstruction error of the inverse problem would decrease as the 
increase of the overlapping size among the subdomains [34]. On the 
other hand, a more accurate setting of the artificial Dirichlet bound-

ary is using solutions of the relevant neighboring subdomains from the 
last iteration, as in [35]. Considering the communication cost in par-

allel computing, instead of updating the boundary values after each 
iterative step of the linear solver, in our algorithm we use an estimation-

correction approach for obtaining the values of 𝑢(𝐱, 𝑡) on Γ′
𝑖
. On the first 

stage, homogeneous boundary conditions as in (21) are imposed, and 
by solving the KKT system (17) an estimation of the boundary value 
�̃�(𝐱𝑙 , 𝑡) on Γ′

𝑖
is obtained by interpolation from some neighboring sub-

domain Ω′
𝑗

where 𝐱𝑙 ∈ Ω𝑗 . It is noted that each 𝐱𝑙 belongs to only one 
adjacent subdomain Ω𝑗 . Then the revised value �̃�(𝐱𝑙 , 𝑡) is sent from Ω′

𝑗

to Ω′
𝑖

to correct the corresponding boundary value on Γ′
𝑖
. As long as all 

the boundary values on Γ′
𝑖
are received and revised by their correspond-

ing neighboring subdomains, the KKT system (17) is solved once again 
with the corrected boundary conditions to obtain an improved solution 
for the unknown source function. Taking two neighboring subdomains 
for example in Fig. 2, two groups of 𝑛 processor cores (“Group 1” and 
“Group 2”) are in charge of computing the subproblems on Ω′

1 and Ω′
2

respectively. Inside Group 1, the processor cores are sorted and the first 
processor core (“CORE 0”) takes the responsibility of collecting the co-

ordinates of all inner boundary nodes (black circles) on Ω′
1 and the node 

sets is denoted by “𝐏𝟏”. The same operations are performed in Group 2 
and the inner boundary node set “𝐏𝟐” is collected. Then “CORE 0” of 
Group 1 and “CORE 0” of Group 2 exchange their node sets by MPI com-

munications. For those nodes of 𝐏𝟏 in the non-overlapping region of Ω′
2, 

“CORE 0” of Group 2 interpolates from the solution values of its own 
group to obtain the updated boundary values �̃�(𝐏𝟏, 𝑡), and does nothing 
for those nodes in the overlapping region of Ω′

2. The same operations 
are performed in Group 1 to get the updated boundary values �̃�(𝐏𝟐, 𝑡). 
Two-way communications are established again to exchange �̃�(𝐏𝟏, 𝑡) and 
�̃�(𝐏𝟐, 𝑡). Finally “CORE 0” of both groups send all the updated values to 
the other processor cores in their own Group (denoted by “CORE 1”, 
“CORE 2”, ⋯, “CORE 𝑛 − 1”) to correct the previously stored boundary 
values.

The subproblems (17) on Ω′
𝑖
, 𝑖 = 1, ⋯ , 𝑛𝑑 are discretized similarly as 

in (13) and solved in parallel by a space-time Krylov-Schwarz method. 
To form the additive Schwarz preconditioner, a second level of over-

lapping space-time domain decomposition is performed inside each 
subdomain Ω′

𝑖
× [0, 𝑇 ], 𝑖 = 1, 2, ⋯ , 𝑛𝑑. The left of Fig. 3 provides an 

example of the space decomposition inside Ω′
𝑖

and the right of Fig. 3

demonstrates the space-time overlapping decomposition. For the detail 
of the space-time domain decomposition method, we refer to [30]. By 
choosing appropriate overlapping size, we cut out all solutions corre-

sponding to the overlapping region between neighboring subdomains, 
i.e. Ω′

𝑖
∖Ω𝑖, 𝑖 = 1, ⋯ , 𝑛𝑑, then the solutions in ⋃𝑛𝑑

𝑖=1 Ω𝑖 consist an approx-

imate solution to the original problem  . The algorithm is described as 

follows:
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Fig. 3. Left: the overlapping domain decomposition of the subdomain Ω′
𝑖

(𝑖 = 1, ⋯ , 𝑛𝑑) into Ω′
𝑖𝑗

, (𝑗 = 1, ⋯ , 𝑛). Right: the space-time domain decomposition in the 
subdomain Ω′

𝑖
× [0, 𝑇 ].
Algorithm 1 A two-level domain decomposition method.

1: Decompose Ω into overlapping subdomains Ω′
1 , Ω′

2 , ⋯, Ω′
𝑛𝑑

;

2: For each subdomain Ω′
𝑖
, 𝑖 = 1, ⋯, 𝑛𝑑 (in parallel):

2.1) Decompose Ω′
𝑖

into overlapping subdomains Ω′
𝑖1 , Ω′

𝑖2 , ⋯, Ω′
𝑖𝑛

;

2.2) Apply the space-time Krylov-Schwarz method to solve the optimization problem 
(16) (in parallel) with homogeneous boundary conditions in (21) imposed on Γ′

𝑖
or 

perform an estimation-correction process in Fig. 2 and obtain 𝑓𝑖 ;

3: Cut off the parts of 𝑓𝑖 , 𝑖 = 1, ⋯ , 𝑛𝑑 in the region Ω′
𝑖
∖Ω𝑖 and put the non-overlapping 

parts together to obtain 𝑓 .

4. Numerical experiments

In this section several numerical experiments are given to study 
the accuracy, robustness and parallel efficiency of the proposed algo-

rithm. In our computations, the computational domain is taken to be 
Ω = [−𝐿, 𝐿] × [−𝑆, 𝑆] × [−𝐻, 𝐻] with 𝐿 = 𝑆 =𝐻 = 2, the terminal time 
is 𝑇 = 1 unless otherwise specified and the initial condition is 𝑢0(𝐱) = 0. 
The boundary is decomposed into Γ1 ∶ {𝐱 = (𝑥1, 𝑥2, 𝑥3)||𝑥1| =𝐿 or |𝑥2| =
𝑆} and Γ2 ∶ {𝐱 = (𝑥1, 𝑥2, 𝑥3)||𝑥3| =𝐻}. The Dirichlet boundary condition 
on Γ1 is 𝑝(𝐱) = 0. The diffusion and convection coefficients are set to be 
𝑎 = 1.0 and 𝐯 = (1.0, 1.0, 1.0)𝑇 .

In order to generate the observation data, we solve the convection-

diffusion equation (1) on a very fine mesh to obtain the numerical 
solution 𝑢𝜏

ℎ
(𝐱, 𝑡). The data range indicator function 𝐴(𝐱) is chosen as:

𝐴(𝐱) =
𝑛𝑑∑
𝑖=1

𝑁𝑖∑
𝑗=1

𝛿(𝐱 − 𝐱𝑖𝑗 ),

where 𝐱𝑖𝑗 , 𝑗 = 1, ⋯ , 𝑁𝑖 specify the measurement locations on a uniform 
sparse mesh of each subdomain Ω′

𝑖
, and 𝛿(𝐱 − 𝐱𝑖𝑗 ) is the Dirac delta 

function. The values of 𝑢(𝐱𝑖𝑗 , 𝑡) are obtained by applying a linear in-

terpolation operator  to the simulated solution 𝑢𝜏
ℎ
(𝐱, 𝑡). Then the data 

noise is generated by adding Gaussian noises to the resulting approxi-

mate solution 𝑢(𝐱𝑖𝑗 , 𝑡) as follows:

𝑢𝜖(𝐱𝑖𝑗 , 𝑡) = 𝑢(𝐱𝑖𝑗 , 𝑡) + 𝜖 𝜎 𝑢(𝐱𝑖𝑗 , 𝑡), 𝑖 = 1,⋯ , 𝑛𝑑, 𝑗 = 1,⋯ ,𝑁𝑖,

where 𝜎 is a random function satisfying the standard normal distribu-

tion and 𝜖 is the noise level, 𝜖 = 1% if not otherwise specified.

We test the following three examples of source functions:

Example 1.

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑡) = sin
(
𝜋𝑥1𝑥2𝑥3𝑡

𝐿𝑆𝐻

)
cos

(
𝜋𝑥1𝑥2𝑥3𝑡

𝐿𝑆𝐻

)
+ 1.0,

Example 2.

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑡) = (𝐿− (1.0 − 𝑡)𝑥1) + (𝑆 − 𝑥2𝑡) + (𝐻 − 𝑥3)𝑡2,
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Example 3.

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩

3.0, if
(

𝑥1+0.5𝐿 sin(1.5𝜋𝑡)
0.4𝐿

)2
+
(

𝑥2+0.5𝑆 cos(1.5𝜋𝑡)
0.4𝑆

)2

+
(

𝑥3−0.5𝐻(1−2𝑡)
0.2𝐻

)2 ≤ 1,

1.0, otherwise.

For the above three examples, we show the reconstructed source 
profiles and test their solution accuracy with respect to different noise 
levels, terminal time and iteration stopping criterion. Furthermore we 
compare the results with the two kinds of artificial boundary conditions 
by modifying the amount of measurement data and the overlapping 
size between neighboring subdomains. Finally, the parallel efficiency 
is indicated by scalability test with different number of subdomains. 
The numerical experiments are implemented by PETSc (the Portable, 
Extensible Toolkit for Scientific Computation) [36]. All programs are 
run on “Tianhe-2A” which is a 61.44-petaflops supercomputer located 
in the National Supercomputer Center in Guangzhou, China.

4.1. Numerical reconstruction with noise level test

We divide the cubic domain uniformly into 𝑛𝑑 = 8 subdomains, each 
subdomain is of length 2.0, width 2.0 and height 2.0. Then the subdo-

mains are revised into overlapping ones with an overlap ratio 𝛾 that 
defined by the overlapping size over the subdomain edge width. In this 
numerical experiment we set 𝛾 = 0.5, i.e., the overlapping sizes between 
neighboring subdomains are equally 1.0 in 𝑥1, 𝑥2 and 𝑥3 dimension. 
The mesh used for inversion on each subdomain is 33 × 33 × 33, and 
the number of time step is 𝑀 = 33. Homogeneous boundary conditions 
are imposed on the artificial boundaries. 27 processor cores are used 
to solve each subproblem and the total number of processor cores is 
𝑛𝑝 = 216. The ratio of choosing the measurement data is 𝑟 = 1∕2, i.e., 
16 × 16 × 16 at each subdomain. The discrete KKT systems are solved 
by a restarted GMRES method (restart at 50). The stopping criterion for 
GMRES iteration is the relative convergence tolerance 𝑟𝑡𝑜𝑙, i.e., the de-

crease of the residual norm relative to the norm of the right hand side 
(in 𝑙2 norm), and the tolerance is set as 𝑟𝑡𝑜𝑙 = 10−6 if not otherwise spec-

ified. When applying the space-time additive Schwarz preconditioner, a 
second level of overlapping domain decomposition is performed inside 
each subdomain. The overlapping sizes are set as 2ℎ in space dimen-

sions and 2𝜏 in time dimension, where ℎ and 𝜏 are denoted as the mesh 
size and the time step size respectively. The initial guesses for 𝑢, 𝑣 and 
𝑓𝑖 (𝑖 = 1, ⋯ , 𝑛𝑑) are uniformly zero. The true solution and the numeri-

cal solution are shown in Fig. 4 - 6. To better compare the numerical 
solution and the exact solution in the space-time 4D domain, these fig-

ures are presented in three different ways. We show the distribution of 
the source function at three moments 𝑡 = 0, 0.5 and 1.0 and at three 
slices 𝑥 = −2, 0 and 2 in Fig. 4 for Example 1. It is observed that the 
numerical results at 𝑡 = 0.5 and 𝑡 = 1.0 are quite accurate, while the 
numerical solution for the initial moment 𝑡 = 0 is less satisfactory, the 
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Fig. 4. Example 1: Comparison of the slices of the exact source profile (top) at 𝑥 = −2, 0, 2 and the numerical ones (bottom) at the moments 𝑡 = 0 (left), 0.5 (middle) 
and 1.0 (right).

Fig. 5. Example 2: Comparison of the exact source profile (top) at the domain surfaces and the numerical ones (bottom) at the moments 𝑡 = 0 (left), 0.5 (middle) 
and 1.0 (right).
corners of the slices 𝑥 = −2 and 2 are contaminated by accumulated 
numerical errors. For Example 2, we plot the numerical results on the 
six domain surfaces at three moments 𝑡 = 0, 0.5 and 1.0 in Fig. 5. It is 
shown that both the distribution and intensity of the source are accu-

rately reconstructed. Since Example 3 is a piecewise constant ellipsoid 
source, the isosurfaces at three moments 𝑡 = 0, 0.5 and 1.0 are plot-

ted in Fig. 6. Both the location and the scale of the source are well 
found.

To show the numerical error, we define the following error func-

tion
103
𝐸 =

√√√√√∑𝑁
𝑖=1

∑𝑀
𝑗=1

(
𝑓 (𝐱𝑖, 𝑡𝑗 ) − 𝑓 ∗(𝐱𝑖, 𝑡𝑗 )

)2
∑𝑁

𝑖=1
∑𝑀

𝑗=1
(
𝑓 ∗(𝐱𝑖, 𝑡𝑗 )

)2 ,

where 𝑁 denotes the summation number of mesh nodes in the non-

overlapping region of all subdomains and 𝑀 is the number of time 
steps. Then we test the numerical errors with different noise levels 
𝜖 = 0%, 1%, 3%, 5% respectively. The regularization parameters 𝛽1 and 𝛽2
in the computation for each case are selected heuristically. 𝛽1 and 𝛽2
are set with a same value 𝛽, and the best fit of the parameter is cho-

sen from six candidates 𝛽 = 10−1, 10−2, 10−3, 10−4, 10−5, 10−6. We show 
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Fig. 6. Example 3: Comparison of the isosurfaces of the exact source profile (top) and the numerical ones (bottom) at the moments 𝑡 = 0 (left), 0.5 (middle) and 1.0 
(right).

Table 1

The computing performance with increasing noise levels for Example 1-3.

𝜖 Ex1 Ex2 Ex3

𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸

0% 10−5 46 13.97 0.021 10−5 45 13.96 0.017 10−5 46 13.98 0.085

1% 10−4 73 19.69 0.065 10−5 46 14.08 0.049 10−5 46 14.04 0.105

3% 10−3 119 29.38 0.081 10−3 120 29.50 0.063 10−4 73 19.72 0.125

5% 10−3 120 29.47 0.104 10−3 121 29.67 0.074 10−3 121 29.67 0.157

Fig. 7. The reconstruction errors (left) and the GMRES iteration numbers (right) with different terminal time.
the average number of GMRES iterations denoted by 𝑁𝑖𝑡𝑠, the average 
computing time denoted by 𝑇GMRES (in sec), and the summation error 
𝐸 in Table 1. It is observed that the summation errors increase with the 
noise level, and the error of Example 3 is relatively larger than those of 
Example 1 and Example 2.

Next, we shall investigate how the reconstruction errors and the 
GMRES iterations vary with larger terminal time. The computational 
domain is also uniformly decomposed into 𝑛𝑑 = 8 subdomains. The 
space mesh for each subdomain is set as 37 × 37 × 37. The noise level 
is 𝜖 = 1% and according to the numerical tests, the regularization pa-

rameter is set as 𝛽 = 10−4 for all the three examples. The terminal time 
104
is extended from 𝑇 = 1 to 2, ⋯ , 10 respectively and the time step size 
is set as 𝜏 = 0.05 for all test cases. Correspondingly the number of time 
steps are 𝑀 = 21, 41, ⋯ , 201, and the number of processor cores used for 
the computation are 𝑛𝑝 = 216, 432, ⋯ , 2160 respectively. The reconstruc-

tion errors and the average number of GMRES iterations are drawn in 
Fig. 7. As shown in Fig. 7, the reconstruction error of the trigonomet-

ric function sources (Example 1) increases faster than the polynomial 
(Example 2) and the piecewise constant (Example 3) sources when the 
simulation duration gets larger, while the iteration number of GMRES 
method grows quite slowly with increasing terminal time for all three 
examples.
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Table 2

The stopping criterion test with 𝑛𝑑 = 8 and 𝑛𝑑 = 1.

𝑟𝑡𝑜𝑙 Ex1 (𝑛𝑑 = 8) Ex1 (𝑛𝑑 = 1)

𝑁𝑖𝑡𝑠 𝑇GMRES 𝑇PRE 𝐸 𝑁𝑖𝑡𝑠 𝑇GMRES 𝑇PRE 𝐸

10−6 67 14.69 9.82 0.044 89 19.82 46.87 0.057

10−5 49 11.70 7.87 0.049 71 16.25 44.99 0.072

10−4 35 9.17 6.49 0.041 45 11.57 42.05 0.064

10−3 21 6.80 5.03 0.087 26 7.99 40.23 0.140

10−2 11 5.27 4.19 0.672 11 5.43 38.67 1.413

𝑟𝑡𝑜𝑙 Ex2 (𝑛𝑑 = 8) Ex2 (𝑛𝑑 = 1)

𝑁𝑖𝑡𝑠 𝑇GMRES 𝑇PRE 𝐸 𝑁𝑖𝑡𝑠 𝑇GMRES 𝑇PRE 𝐸

10−6 68 14.78 9.77 0.042 90 19.57 46.41 0.054

10−5 50 11.80 8.16 0.040 70 15.94 44.28 0.041

10−4 35 9.17 6.43 0.054 45 11.48 41.73 0.044

10−3 22 7.00 5.19 0.078 25 7.96 39.86 0.117

10−2 11 5.29 4.14 0.626 11 5.39 38.60 1.408

𝑟𝑡𝑜𝑙 Ex3 (𝑛𝑑 = 8) Ex3 (𝑛𝑑 = 1)

𝑁𝑖𝑡𝑠 𝑇GMRES 𝑇PRE 𝐸 𝑁𝑖𝑡𝑠 𝑇GMRES 𝑇PRE 𝐸

10−6 68 14.75 9.75 0.099 91 19.43 45.76 0.113

10−5 49 11.67 7.81 0.103 70 15.62 44.11 0.116

10−4 35 9.11 6.38 0.103 47 11.86 41.17 0.112

10−3 22 6.93 5.13 0.138 26 8.00 39.52 0.159

10−2 11 5.27 4.17 0.698 11 5.43 37.68 1.459
4.2. Comparison of computing performance with 𝑛𝑑 = 1 and 𝑛𝑑 = 8

In this section we perturb the stopping criterion 𝑟𝑡𝑜𝑙 of GMRES 
method to compare the computing performance of the proposed algo-

rithm with 𝑛𝑑 = 8 and the classical algorithm without domain decom-

position at the first level, i.e. 𝑛𝑑 = 1. The time step 𝑀 is set as 21 and 
the total number of processor cores is 𝑛𝑝 = 216 for both algorithms. The 
space mesh of each subdomain for 𝑛𝑑 = 8 is set as 37 ×37 ×37; to keep the 
same problem size, the space mesh for 𝑛𝑑 = 1 is set as 73 ×73 ×73. Other 
parameters remain the same as the large terminal time test. Then we 
increase the stopping criterion 𝑟𝑡𝑜𝑙 from 10−6 to 10−5, 10−4, 10−3, 10−2, 
and compare the number of GMRES iterations, the solving time 𝑇GMRES

(in sec), the preconditioning time 𝑇PRE (in sec) and the reconstruction 
error 𝐸 in Table 2. As observed from Table 2, the reconstruction er-

rors are satisfying for 𝑟𝑡𝑜𝑙 = 10−6, 10−5 and 10−4, then deteriorate for 
𝑟𝑡𝑜𝑙 = 10−3, and become unreasonable for 𝑟𝑡𝑜𝑙 = 10−2. Furthermore, the 
reconstruction errors are compatible for the cases of 𝑛𝑑 = 8 and 𝑛𝑑 = 1; 
the errors for 𝑛𝑑 = 1 seem much more sensitive to 𝑟𝑡𝑜𝑙 than the case 
of 𝑛𝑑 = 8. Regarding to the solving time and the preconditioning time, 
they both reduce accordingly with increasing 𝑟𝑡𝑜𝑙 as expected. For the 
case of 𝑛𝑑 = 1, we find that the preconditioning time is dominant as it 
is several times of the solving time; for the case of 𝑛𝑑 = 8, the ratio of 
the time spending on the preconditioning stage versus the solving stage 
reduces significantly, and as a result both 𝑇GMRES and 𝑇PRE are much 
shorter than the case of 𝑛𝑑 = 1 (for 𝑟𝑡𝑜𝑙 < 10−2). Thus an obvious advan-

tage of the proposed algorithm lies in that it can effectively relieve the 
burden of forming the global preconditioner, and the computing effort 
is much reduced when constructing eight subdomain preconditioners.

4.3. Comparison with two artificial boundary conditions

Next we compare the results of using the two different artificial 
boundary conditions, namely the homogeneous boundary condition and 
the estimation-correction boundary condition. The domain decomposi-

tion of Ω, the overlap ratio and the total number of processor cores 
are the same as the noise level test, i.e., 𝑛𝑑 = 8, 𝛾 = 0.5 and 𝑛𝑝 = 216. 
The mesh for computation is 37 × 37 × 37 in space and 𝑀 = 37 in time. 
The measurement data ratio is set as 𝑟 = 1∕2, 1∕3 and 1∕4 respectively, 
which means the measurements on each subdomain are 18 × 18 × 18, 
12 ×12 ×12 and 9 ×9 ×9. The noise level is fixed at 1% for all examples. 
The regularization parameters are also chosen heuristically. Homoge-

neous boundary condition in (21) or the estimation-correction bound-

ary condition in Fig. 2 are applied on the artificial boundaries. The 
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numerical results with the homogeneous and the estimation-correction 
boundary conditions are denoted by “S1” and “S2” respectively. For the 
estimation-correction process, the maximum GMRES iteration number 
for estimation and correction stage are 30 and 200 respectively.

The average number of GMRES iterations, the average computing 
time, and the reconstruction errors are summarized in Table 3. It is 
noted that for the estimation-correction process, the GMRES iteration 
number is the sum of both the estimation stage and the correction 
stage, the computing time consists of three parts: the solving time for 
the above two stages, as well as the communication and interpolation 
time for correcting the artificial boundary conditions. It is shown that 
the number of GMRES iterations, the computing time and the error 
increase accordingly with the decreases of measurement data. The it-
eration number and the computing time of “S2” are slightly larger than 
those of “S1” for measurement data ratio 𝑟 = 1∕2, but significantly out-

performs the results of “S1” for 𝑟 = 1∕3 and 1∕4. The summation error 
of “S2” keeps at almost the same level as that of “S1” for 𝑟 = 1∕2; nev-

ertheless for 𝑟 = 1∕3 and 1∕4 the error reduces as much as about 0.02 
comparing to that of “S1”. In our numerical experiments the commu-

nication and interpolation for correcting the artificial boundary con-

ditions cost about 0.3 sec for Example 1-3, which is quite a small 
proportion less than 1% to the total computing time of “S2”. There-

fore one can conclude that when the measurement data is sufficient, 
the estimation-correction process has little advantage than the homo-

geneous boundary condition; however when the measurement data is 
insufficient, the estimation-correction process can significantly improve 
the reconstruction accuracy and achieve faster convergence with a little 
extra computation cost.

For the second part, we intend to figure out how the reconstruction 
error changes with the overlapping size between neighboring subdo-

mains when applying the above two boundary conditions. Ω is still 
partitioned into 𝑛𝑑 = 8 subdomains, the mesh on each subdomain is 
refined to 41 ×41 ×41 and the time step 𝑀 = 41. The measurement data 
ratio is 𝑟 = 1∕4. The total number of processor cores is 𝑛𝑝 = 512, which 
implies each subproblem is solved by 64 processor cores. We set the 
overlap ratio as 𝛾 = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, and plot the cor-

responding summation error 𝐸 in Fig. 8. As observed from Fig. 8, when 
the overlap ratio increases from 0.2 to 0.5, the errors decrease signifi-

cantly for Example 1-3; then the errors reduce slightly for 𝛾 enlarging 
from 0.5 to 0.7 and keep steady for 𝛾 ≥ 0.7. These results show that the 
appropriate overlap ratio is around 0.5. Furthermore we notice that the 
errors for the estimation-correction process (denoted by blue star line) 
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Table 3

Measurement data test with homogeneous boundary condition (denoted by “S1”) and the estimation-correction boundary condition (denoted by “S2”).

𝑟 Ex1-S1 Ex1-S2

𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸

1
2

10−4 81 30.64 0.040 10−4 83 31.19 0.038

1
3

10−4 111 39.73 0.057 10−4 89 33.15 0.044

1
4

10−4 142 48.92 0.069 10−4 106 38.10 0.049

𝑟 Ex2-S1 Ex2-S2

𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸

1
2

10−4 82 30.85 0.035 10−4 83 31.33 0.035

1
3

10−4 111 39.82 0.048 10−4 89 33.24 0.035

1
4

10−4 142 48.97 0.058 10−4 106 38.20 0.040

𝑟 Ex3-S1 Ex3-S2

𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 𝛽 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸

1
2

10−5 51 21.58 0.106 10−5 54 22.45 0.103

1
3

10−4 111 39.59 0.123 10−5 88 32.91 0.116

1
4

10−4 142 48.83 0.136 10−4 106 37.89 0.126

Fig. 8. Overlapping size test with two different artificial boundary conditions. The red circle line stands for the results with the homogeneous boundary condition, 
and the blue star line stands for the results with the estimation-correction boundary condition. (Left: Example 1; middle: Example 2; right: Example 3.)

Table 4

The parallel performance with fixed total mesh and different number of subdomains 𝑛𝑑. The number of processor cores used in the computation is 𝑛𝑝 = 2048. “Sp.” 
stands for the speedup.

𝑛𝑑 Ex1 Ex2 Ex3

𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Sp. 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Sp. 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Sp.

1 140 21.85 0.062 1 139 19.18 0.069 1 141 20.70 0.110 1

8 106 14.50 0.070 1.51 107 14.47 0.055 1.33 105 14.20 0.119 1.46

64 70 9.62 0.064 2.27 71 9.60 0.062 2.00 53 7.84 0.113 2.64
are always smaller than those of the homogeneous boundary conditions 
(denoted by red circle line) for 𝛾 ≤ 0.6 and have no evident difference 
when 𝛾 > 0.6. It indicates that when the overlap is insufficiently small, 
the estimation-correction process can substantially reduce the recon-

struction error.

4.4. Parallel efficiency test

In this section we show the computing efficiency with different num-

ber of subdomains 𝑛𝑑 in the first-level domain decomposition. Ω is 
divided into 𝑛𝑑 = 1, 8 or 64 subdomains of equal volume. The mesh 
on each subdomain is 97 × 97 × 97 for 𝑛𝑑 = 1, 49 × 49 × 49 for 𝑛𝑑 = 8 and 
25 × 25 × 25 for 𝑛𝑑 = 64 respectively, the time step 𝑀 = 41. As observed 
the total problem size for the three cases is fixed to a total space mesh 
97 ×97 ×97 and 𝑛𝑝 = 2048 processor cores are used for computing all ex-

amples. The noise level is 𝜖 = 1% and the measurement ratio is 𝑟 = 1∕2. 
The summation error, the average GMRES iteration number, the aver-
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age computing time and the speedup (denoted by Sp.) of 𝑛𝑑 = 8 and 64 
are compared with the case of 𝑛𝑑 = 1, i.e., the inverse source problem is 
solved traditionally without domain decomposition at the first level. As 
observed from Table 4, the iteration number and the computing time 
reduce significantly as the number of subdomains increases, and the re-

construction errors are still satisfactory. For the same problem size and 
the same number of processor cores, the computing time for the cases 
of 𝑛𝑑 = 8 and 𝑛𝑑 = 64 are 1.43 and 2.30 times respectively faster than 
that of 𝑛𝑑 = 1 in average. As all the KKT subsystems are solved in paral-

lel and independently, faster convergence is achieved than solving the 
all-at-once large system.

Furthermore we compare the weak scalability of the proposed 
two-level domain decomposition method with the traditional method. 
Firstly we divide Ω into 𝑛𝑑 = 1, 8, 27 or 64 subdomains, on each sub-

domain the mesh is set as 41 × 41 × 41 and the time step 𝑀 = 41. Here 
the problem size of each subdomain is the same and 64 processor cores 
are used for the computation of each subproblem, thus the total num-
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Table 5

Weak scalability test with 𝑛𝑑 ≥ 1 and 𝑛𝑑 = 1, “Eff.” stands for the parallel efficiency.

𝑛𝑝 Ex1 (𝑛𝑑 ≥ 1) Ex1 (𝑛𝑑 = 1)

𝑛𝑑 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Eff. 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Eff.

64 1 71 19.14 0.040 100% 71 19.14 0.040 100%

512 8 84 22.49 0.042 85.11% 123 32.33 0.040 59.21%

1728 27 100 26.06 0.047 73.46% 218 59.52 0.046 32.17%

4096 64 155 37.66 0.047 50.83% - - - -

𝑛𝑝 Ex2 (𝑛𝑑 ≥ 1) Ex2 (𝑛𝑑 = 1)

𝑛𝑑 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Eff. 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Eff.

64 1 72 19.38 0.032 100% 72 19.38 0.032 100%

512 8 84 22.46 0.036 86.31% 124 33.38 0.038 58.07%

1728 27 102 26.37 0.043 73.51% 220 60.01 0.039 32.31%

4096 64 130 32.36 0.047 59.91% - - - -

𝑛𝑝 Ex3 (𝑛𝑑 ≥ 1) Ex3 (𝑛𝑑 = 1)

𝑛𝑑 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Eff. 𝑁𝑖𝑡𝑠 𝑇GMRES 𝐸 Eff.

64 1 46 14.02 0.110 100% 46 14.02 0.110 100%

512 8 52 15.84 0.103 88.47% 124 32.77 0.103 42.78%

1728 27 62 17.79 0.102 78.81% 222 59.48 0.104 23.57%

4096 64 80 21.47 0.093 65.28% - - - -

Fig. 9. Performance comparison of each subproblem versus the mean values (𝑛𝑑 = 64). Left: Iteration number, right: Computing time.
ber of processor cores used for 𝑛𝑑 = 1, 8, 27 and 64 are 𝑛𝑝 = 64, 512, 
1728 and 4096 respectively. Then for demonstrating the weak scalabil-

ity of the traditional method, we solve the problem with refined meshes 
81 ×81 ×81, 121 ×121 ×121 and 161 ×161 ×161 without the first-level do-

main decomposition, and 𝑛𝑝 = 512, 1728 and 4096 processor cores are 
used respectively. The problem scale and the number of processor cores 
are correspondingly the same with the cases for 𝑛𝑑 = 8, 27 and 64. It is 
noted that we tune the GMRES stopping criterion 𝑟𝑡𝑜𝑙 and the regular-

ization parameters so as to make sure the reconstruction errors do not 
raise significantly for increasing problem size and maintain at almost 
the same level for all experiments. The number of GMRES iterations, 
the computing time, the summation error and the parallel efficiency 
(denoted by Eff.) are shown in Table 5.

It is observed from Table 5 that for the proposed two-level domain 
decomposition method (𝑛𝑑 ≥ 1), the average number of GMRES itera-

tions grows with 𝑛𝑑, meanwhile the computing time increases mildly, 
the parallel efficiency is about 58.67% in average comparing 𝑛𝑑 = 64
to 𝑛𝑑 = 1. For the classical method without domain decomposition at 
the first level (𝑛𝑑 = 1), when the mesh is refined from 41 × 41 × 41 to 
121 × 121 × 121, the parallel efficiency is reduced rapidly to 32.17%, 
32.31% and 23.57% respectively for Example 1, 2 and 3. In comparison 
the corresponding efficiency for the two-level domain decomposition 
method is 73.46%, 73.51% and 78.81% respectively (see Table 5 for 
the rows with 𝑛𝑝 = 1728). When the problem size is enlarged to the 
mesh 161 × 161 × 161 with 𝑛𝑑 = 1, system errors prompt and the clus-

ter fails to solve the system of about 5.13 × 108 unknowns, while the 
proposed two-level algorithm scales weakly to the same mesh with rea-

sonable results obtained (see Table 5 for the rows with 𝑛𝑝 = 4096). In 
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this situation dividing the problem into smaller subproblems is neces-

sary. In summary, we see that better weak scalability is achieved with 
the proposed method.

Finally, to investigate the performance balance between subdo-

mains, for the case of 𝑛𝑑 = 64, we compare the iteration number of 
each subproblem versus the average iteration number and the individ-

ual computing time versus the average computing time in Fig. 9. Taking 
the average GMRES iteration number and the average computing time 
as benchmarks, the results show that the iteration number variates in 
the ranges [−14.75%, 13.66%], [−15.17%, 13.36%] and [−14.83%, 11.47%], 
and the computing time variates in the ranges [−13.42%, 11.44%], 
[−13.03%, 11.56%] and [−12.05%, 12.32%] for Example 1, 2 and 3 respec-

tively. The variance of the computing time is slightly smaller than that 
of the iteration number, and the computing performance differences 
among subproblems are acceptable.

5. Some final remarks

We develop a two-level domain decomposition method for the 3D 
unsteady source identification problem. When the original inverse prob-

lem is transformed into smaller independent subproblems defined on 
overlapping subdomains, forward model errors arise from unknown 
inner boundary conditions. To overcome this difficulty, appropriate 
overlap is necessary and two types of Dirichlet conditions are imposed 
on the artificial boundaries for the forward parabolic equation. Instead 
of solving the space-time fully coupled KKT system, the resulting KKT 
subsystems are efficiently solved in parallel by a preconditioned GM-

RES method with faster convergence achieved. Numerical tests show 
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that the proposed algorithm is robust with different noise level, large 
terminal time, the amount of measurement data, the overlapping size 
and the number of subdomains. Moreover the reconstruction accuracy 
is comparable with the classical approach without decomposition at the 
optimization level, especially when the artificial boundary conditions 
are decided by an estimation-correction process. Computing efficiency 
tests show that the first-level domain decomposition can speedup the 
computation for fixed problem size, and lead to a much better weak 
scalability with up to 4096 processor cores. The two-level domain de-

composition method is quite adaptable to large-scale problems and it 
has the potential to do fast and reliable simulations for space-time de-

pendent inverse problems.
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