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In this paper, we propose a recycling preconditioning method with auxiliary tip subspace 
for solving a sequence of highly ill-conditioned linear systems of equations of different 
sizes arising from elastic crack propagation problems discretized by the extended finite 
element method. To construct a Schwarz type preconditioner, the finite element mesh is 
decomposed into crack tip subdomains, which contain all the degrees of freedom (DOFs) 
of the branch enrichment functions, and regular subdomains, which contain the standard 
DOFs and the DOFs of the Heaviside and the Junction enrichment functions. As cracks 
propagate these subdomains are modified accordingly, and the subdomain matrices are 
constructed as the restriction of the global matrix to the subdomains. In the overlapping 
Schwarz preconditioners, the crack tip subproblems are solved exactly and the regular 
subproblems are solved by some inexact solvers, such as ILU. We consider problems 
with and without crack intersections and develop a simple scheme to update, instead 
of re-computing, the subdomain problems as cracks propagate, in which only crack tip 
subdomains are updated around the new crack tips and all the regular subdomains remain 
unchanged. Therefore, no extra search is required, and the sizes of crack tip subproblems 
do not increase as cracks propagate, which greatly saves the computational cost. Moreover, 
starting from the second system, the Krylov subspace method uses a nontrivial initial guess 
constructed using the solution of the previous system with a modification around the new 
crack tips. The strategy accelerates the convergence remarkably. Numerical experiments 
demonstrate the efficiency of the proposed algorithms applied to problems with several 
types of cracks.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The extended finite element method (XFEM) [1,2,12] is a powerful technique for solving fracture problems with discon-
tinuities, singularities and localized deformations. When modeling cracks with the standard finite element method (FEM), 
one often requires special meshes whose element edges coincide with the crack surface and nodes be placed on each side 
of the crack to allow material separations along the crack line. Moreover, the mesh refinement is often needed in order to 
simulate crack propagations, that may significantly increase the complexity of the topologies and the computational cost 
each time new cracks generate. The key idea of XFEM is that the mesh is independent of the crack geometry, which means 
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that structured meshes can be adopted to resolve the crack problems. The discontinuities along the crack interfaces and 
singularities near crack tips are captured through some additional enrichment functions, which satisfy a partition of unity. 
Therefore, special elements or mesh refinements are not required in XFEM.

A major drawback of XFEM is that the linear system arising from such discretization is very ill-conditioned and requires 
robust iterative solvers, see [3]. For example, consider the linear elasticity problem, the condition number of the stiffness 
matrix in XFEM is O (h−4) (h is the mesh size), even if a single, non-polynomial enrichment function is used, while the 
condition number of the stiffness matrix in FEM is only O (h−2). One way to reduce the condition number is to modify the 
enrichment functions, such as the stable generalized finite element methods [3,5,15,21,22] and the improved XFEM [18,20]. 
The other way to reduce the condition number of XFEM is through preconditioning, which is the main focus of this paper. 
As cracks grow, multiple linear systems of different sizes need to be solved. In stead of recompute, we introduce some 
strategies to reuse certain information from solving the previous system.

Among the well-known preconditioners leading to fast convergence are the multigrid methods and domain decomposi-
tion methods (DDM)). There are two types of XFEM, namely topological XFEM and geometric XFEM. For topological XFEM, 
there are several preconditioning techniques. In [13], a DDM is employed, and the condition number of the preconditioned 
system is close to that of FEM without any enrichments. In [8], a simple and efficient preconditioner is proposed for XFEM 
involving only the Heaviside enrichment function. A smoothed aggregation algebraic multigrid (AMG) preconditioner is 
studied in [16] and an adaptive domain decomposition preconditioner is studied in [19], respectively. In [4], a multiplica-
tive Schwarz domain decomposition preconditioner is proposed, where the physical domain is decomposed into cracked 
subdomains and healthy subdomains. The cracked subproblems, which contain both the DOFs of the Heaviside enrichment 
function and the branch enrichment functions, are solved exactly. The healthy subproblems, which contain only the standard 
DOFs, are solved approximately by one AMG V-cycle. This domain decomposition approach is extended to multiple propa-
gating cracks in [29], in which two adaptive search algorithms are developed to update the subdomains. One is the level 
set update scheme and the other is the neighbor search scheme. No matter which search algorithm is adopted, the size of 
cracked subproblems become larger and larger, and this increases the computational cost considerably. Note that the cases 
of crack intersections, which are more complex and difficult but more important for realistic applications, are not considered 
in [29]. For geometric XFEM, we introduced some effective one- and two-level domain decomposition preconditioners for 
stationary elastic crack problems in [30], in which we discovered that the main contributor to the large condition number 
is the crack tip, not the crack line. The physical domain is decomposed into the crack tip subdomain, which contains all 
the DOFs of the branch enrichment functions, and the regular subdomains, which contain the standard DOFs and the DOFs 
of the Heaviside enrichment function. In the one-level additive Schwarz and restricted additive Schwarz preconditioners, 
the crack tip subproblem is solved directly and the regular subproblems are solved by some inexact solvers, such as ILU. 
Moreover, an unconventional coarse problem is proposed to accelerate the convergence in the two-level method. As an ex-
tension of [30], in the present paper, we construct a recycling preconditioning method with auxiliary tip subspace for crack 
propagation problems modeled by the geometric XFEM, in which different types of crack intersections are considered.

The outline of this paper is as follows. As cracks develop, a new system of algebraic equations needs to be constructed 
and solved. However, existing recycling Krylov subspace algorithms [28] for solving a sequence of systems can’t be used 
since the systems all have different sizes. We introduce a strategy based on the auxiliary tip subspace to start the itera-
tion using a modified solution from the previous system (i.e., previous crack) when solving a new system corresponding to 
the new crack and numerical experiments show that this approach is quite efficient. The XFEM discretization for a model 
problem is explained in Section 2, including a description of crack intersection. In Section 3, we focus on the crack propa-
gation. In Section 4, some domain decomposition techniques are discussed for solving algebraic systems arising from crack 
propagation problems. Some effective Schwarz preconditioners and a new way to construct the initial guess for GREMS is 
introduced and studied. Numerical experiments are shown in Section 5, followed by some concluding remarks in Section 6.

2. XFEM for elastic crack propagation problems

In this section, we first give a description of the governing equations for elasto-statics and their associated weak form. 
Then, we consider situations when cracks are disjoint or intersecting.

2.1. A model problem without crack intersection

Consider the domain � ⊂ R2 with the boundary � = �u ∪ �t . We assume a prescribed displacement is imposed on �u

and a Neumann boundary condition is imposed on �t . The crack line �c is traction-free, p+ is the crack pressure above 
the crack line, p− is the crack pressure below the crack line, as shown in Fig. 1. The equilibrium equations and boundary 
conditions are given as
2
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Fig. 1. A two-dimensional domain subjecting to loads and with a crack.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ + b = 0 in �,

u = ū on �u,

σ · n = t on �t ,

σ · n = 0 on �+
c ,

σ · n = 0 on �−
c ,

(1)

where u is the displacement, ū is the fixed boundary displacement, n is the unit outward normal, �+
c is the upper crack 

line, �−
c is the lower crack line, σ is the Cauchy stress, and b is the body force per unit volume.

We assume that the strain and the displacement are small, therefore the kinematical equations consist of the strain-
displacement relation

ε = ε(u) = ∇su,

where ∇s is the symmetric part of the gradient operator, and the constitutive relation is given by the Hooke’s law

σ = C : ε,

where C is the Hooke tensor.
The space of admissible displacement fields is defined by

U = {v ∈ V : v = ū on �u, v is discontinuous on �c},
where the space V is related to the regularity of the solution. A detailed description for the domain with an internal 
boundary can be found in [14]. We note that the space V allows for discontinuous functions across the crack line. The test 
function space is defined similarly as

U0 = {v ∈ V : v = 0 on �u, v is discontinuous on �c}.
The weak form of the equilibrium equations (1) is to find u ∈ U such that∫

�

ε(u) : C : ε(v)d� =
∫
�

b · vd� +
∫
�t

t · uds +
∫
�c

p · wds, ∀v ∈ U0, (2)

where the crack pressure p = p+ = −p− , the crack width w = u+ − u− , u+ denotes the displacement above the crack line 
and u− denotes the displacement below the crack line. It is shown in Belytschko and Black [1] that the above weak form is 
equivalent to the strong form (1), including the traction-free condition on the crack line.

To discretize (2), we apply XFEM which uses level set functions to detect the locations of the nodes around the crack 
and its tips. There are two types of typical enrichment functions, see [1,12].

Heaviside enrichment function: all the nodes along the crack line, excluding those at the tips, are enriched by the 
Heaviside function to incorporate a strong discontinuity

H(x) =
{−1 above the crack line,

1 below the crack line.
(3)
3
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Fig. 2. Crack located on a structured mesh. Blue circled nodes are enriched with the Heaviside function while red squared nodes are enriched by branch 
functions. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Branch enrichment functions: nodes of the elements containing or near crack tips are enriched with a set of four func-
tions, that model the near-tip analytical solution by incorporating the tip singularities; i.e., for l = 1, · · · , 4,

Fl(r(x), θ(x)) =
{√

rsin

(
θ

2

)
,
√

rcos

(
θ

2

)
,
√

rsin

(
θ

2

)
sinθ,

√
rcos

(
θ

2

)
sinθ

}
, (4)

where (r(x), θ(x)) is a polar coordinate system centered at the crack tip x.
It is known that the above four branch enrichment functions (4) are ideal for the linear elastic fracture problems of 

a straight crack, but the use of them results in a very singular coefficient matrix. There are some remedies to avoid the 
singularity, such as reduce the set of branch enrichment functions. Since the first function 

√
rsin 

(
θ
2

)
is discontinuous, it can 

not be omitted. The authors in [26] studied many possibilities, and find that the drop of the fourth function 
√

rcos 
(

θ
2

)
sinθ

does not influence the computational accuracy. Moreover, dropping the fourth function leads to a significant improvement 
on the number of iterations and the computational time. Therefore, in the rest of the paper we only use three of the 
functions in (4).

The general expression of the XFEM solution is then written as

uh(x) =
∑
i∈I

uiϕi(x) +
∑
j∈S H

b jϕ j H(x) +
∑
k∈SC

ϕk

(
3∑

l=1

cl
k Fl(x)

)
, (5)

where {ϕi} are the standard finite element shape functions associated with the degrees of freedom ui . b j and cl
k are the 

degrees of freedom associated with the enriched nodes, I is the set of nodes, S H is the set of nodes enriched with the 
Heaviside function along the crack line, and SC is the set of nodes enriched with the branch functions. The enrichment 
strategy is illustrated in Fig. 2.

Two types of tip enrichments are shown in Fig. 2. At the crack tip “B”, only the nodes of the element containing the 
crack tip are enriched with the branch functions, and this method is commonly referred to as the topological XFEM. At the 
crack tip “A”, the nodes of several elements containing or near the crack tip are enriched, and this method is referred to as 
the geometric XFEM. As is known, the accuracy of the geometric XFEM is satisfactory, but the condition number is much 
larger than that of the topological FEM, see [15]. In this paper, we focus on preconditioning techniques for the geometric 
XFEM, which is much more difficult than that of the topological XFEM.

It is known [2] that the order of accuracy of the geometric XFEM is O (h), where h is the mesh size. The condition 
number of the stiffness matrix is O (h−4); see [1,3,12] for details.

2.2. A crack intersection problem

In this section, we describe a XFEM for the crack intersection problem. In Fig. 3, we mark the nodes of an element 
containing the intersection of two crack lines, and the element is enriched by a Junction enrichment function J (x) to 
incorporate the strong discontinuity. We use ±1 to indicate the location of the Junction enriched nodes. Three different 
elements involving the intersection of two cracks as shown in Fig. 4. Fig. 4(a) shows a second crack joins the main crack, in 
this case the Junction function in different regions are defined as

J A = 1, J B = 1, JC = −1. (6)

Fig. 4(b) shows a second crack that is generated from the main crack, in this case the Junction function in different regions 
are defined as

J A = 1, J B = −1, JC = 1. (7)
4
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Fig. 3. The schematic diagram of a crack intersection. The green line denotes the main crack, the red line denotes the branch crack. The black nodes are 
enriched by the Heaviside function, the red nodes are enriched by branch functions, and the green nodes are enriched by the Junction function.

Fig. 4. Different types of crack intersections. The red line denotes the main crack, the green/blue lines denote the branch cracks. The blue node inside the 
element is the crack intersecting point, and the red vertices are enriched by the Junction function.

Fig. 4(c) shows two cracks crossing each other, in this case the Junction function in different regions are defined as

J branch I
A = 1, J branch I

B = −1, J branch I
C = −1, J branch I

D = −1,

J branch I I
A = 1, J branch I I

B = 1, J branch I I
C = 1, J branch I I

D = −1.
(8)

Then, the interpolation function of the displacement uh(x), restricting to the elements in Fig. 4(a) and (b), can be written 
as

uh(x) =
4∑

i=1

uiϕi(x) +
4∑

j=1

ϕ j(x)H(x)qI
j +

4∑
k=1

ϕk(x) J (x)qI I
k , (9)

where qI
j, q

I I
k denote the degrees of freedom associated with the Heaviside enriched node and the Junction enriched nodes, 

respectively. J (x) is defined in (6) and (7).
The interpolation function of the displacement uh(x), restricting to the element in Fig. 4(c), can be written as

uh(x) =
4∑

i=1

uiϕi(x) +
4∑

j=1

ϕ j(x)H(x)qI
j +

4∑
k=1

ϕk(x) J 1(x)c1
k +

4∑
k=1

ϕk(x) J 2(x)c2
k , (10)

where qI
j denotes DOFs associated with the Heaviside enriched nodes. c1

k , c2
k denote the DOFs associated with the Junction 

enriched nodes related to the branch crack I and the branch crack II, respectively. J (x) is defined in (8).

3. Crack propagation

In classical fracture mechanics, the crack propagation is usually determined by three steps, and each step may be ob-
tained with different techniques or criterions. In this paper we choose one of the popular methods.
5
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• Step 1: Computation of the stress intensity factors (or strain energy release rates), e.g., by the J-integral method.
We utilize a variant of the J-integral method, known as the interaction integral, to extract the mixed-mode SIFs (Stress 
Intensity Factors). The interaction integral I is defined as

I =
∫
�

qi P aux
i j n jd� −

∫
�

qi, j P aux
i j d� −

∫
�

qi P aux
i j, j d�,

with

P aux
i j = 1

2
σklε

aux
kl δi j + 1

2
σ aux

kl εklδi j − σ aux
kj uk,i − σkju

aux
k,i ,

where uaux , εaux and σ aux are auxiliary displacements, strains and stresses computed from analytical solutions of linear 
elastic fracture mechanics. See [25,27] for the details.

• Step 2: Verification of the crack stability (whether the crack will propagate or not), determined by the fracture toughness 
or fracture energy criterions.
The stability criteria is written as{

G < Gc, crack is stable(will not propagate),

G ≥ Gc, crack is unstable(will propagate),

where Gc is the critical energy release rate of materials, and G is the Strain Energy Release Rates (SERR) computed from 
the finite element analysis. Note that G can be conveniently expressed as a function of the SIFs as follows

G = 1 + ν2

E
(K 2

I + K 2
I I ),

where ν is the Poisson’s ratio, E is the Young’s modulus. K I , K I I denote the SIFs of mode I and mode II, respectively. 
Hence, the computation of SIFs at step 1 is also used to determine the SEER which governs the stability of cracks.

• Step 3: Computation of the direction of the crack propagation, e.g., based on the maximum circumferential (hoop) stress 
criterion.
In this work, we employ the classical theory of Erdogan and Sih [23] for isotropic materials to determine the angle of 
the crack propagation. The expression for the angle by which the crack kinks is

θc = 2arctan

⎛
⎝1

4

⎡
⎣ K I

K I I
+

√(
K I

K I I

)2

+ 8

⎤
⎦

⎞
⎠ .

We refer to [24] for more details.

To simulate the crack propagation, we start from a problem with a static crack and denote the corresponding linear 
system of equations as A0u0 = b0 where A0 is an n0 × n0 matrix, u0 consists of the regular DOF and the enriched DOF, and 
b0 is the right-hand side. Based on u0, and Steps 1-3, a new crack line is computed and the corresponding displacement u1

is obtained by solving a new linear system of equations A1u1 = b1 where A1 is an n1 × n1 matrix. Here n1 is larger than n0

when the crack grows, but n1 is not too much larger than n0 since the crack grows by at most one grid point at a time. As 
the crack continues to grow, we construct and solve a sequence of linear system of equations

Akuk = bk, k = 0,1, ... (11)

As we know, the recycling Krylov subspace methods are very efficient to solve a sequence of linear systems. In [28], 
a method based on cohesive elements is used to solve some crack propagation problems, in which the size of the global 
stiffness matrix remains the same in each propagation step. Therefore, the recycling GMRES solver, GCRO-DR, can be used 
to solve the linear systems. However, in the present paper, since the enriched functions are used to simulate cracks, the size 
of the global stiffness matrix Ak increases in (11) as cracks propagate, as a result, the recycling GMRES approach can not be 
applied. In [13], a robust preconditioning technique, which uses several Cholesky decompositions and a LQ decomposition 
of the global stiffness matrices, is adopted in the MINRES iterative solver. In [29], a domain decomposition algorithm is 
proposed, in which an inexact multiplicative Schwarz method is used as the preconditioner for the global GMRES solver in 
each propagation step.

In the rest of the paper, we introduce a “reuse” strategy for solving the sequence of linear systems based on a domain 
decomposition method in which many subdomain proconditioners can be reused and a Krylov subspace method whose 
initial vector is constructed by a “crack-extension” of the solution of the previous linear system.
6
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Fig. 5. Illustration of the domain decomposition approach. A healthy subdomain only contains the standard nodes, while cracked subdomains contain the 
enriched nodes. (a) Initial phase - each crack is contained in a subdomain. (b) Final phase - cracks propagate and the subdomains that contain the cracks 
are adaptively updated.

4. Recycling domain decomposition preconditioners and a Krylov subspace method with estimated initial guess

To apply DDM for the linear systems arising from crack propagation problems discretized by geometrical XFEM, it is 
important to choose a suitable strategy to decompose the degrees of freedom into subsets. In [4], the domain is partitioned 
into cracked subdomains and a healthy subdomain for the topological XFEM. In this partition, the whole crack line is 
involved in a cracked subdomain, see Fig. 5(a). In [29], two adaptive subdomain updating techniques (the level set based 
technique and the neighbors-based technique) are used to generate new cracked subdomains at each time step. In this 
domain decomposition approach, not only extra search algorithms are needed, but also the sizes of cracked subdomains 
become larger and larger, that increases the computational cost considerably, see Fig. 5(b).

In this paper, we apply a decomposition strategy for crack propagations, which separates the DOFs of the branch func-
tions and the remaining DOFs, including the DOFs of standard basis functions, the Heaviside function and the Junction 
function.

4.1. A crack-tip decomposition

As discovered in [30], the tip enhancement has a huge impact on the eigenvalue distribution of the stiffness matrix near 
zero, and the small eigenvalues of the stiffness matrix are all associated with the crack tips. In our DOF decomposition, we 
separate all DOFs associated with the crack tips from other DOFs, but the DOFs associated with the crack lines are treated 
the same as the other nodes in the finite element mesh. It means that we need some crack tip subdomains covering the tip 
regions; only the tip, not the whole crack line.

The domain decomposition strategy is described as follows; see also Fig. 6.

• The crack tip subdomains. Suppose there are M crack tips. For the jth tip, we introduce a subdomain � j consisting of 
all the DOFs of the branch enrichment functions, i.e., the blue boxes in Fig. 6.

• To obtain the regular subdomains, we partition the global domain in a checker-board fashion into subdomains 
�1, . . . , �N , and each subdomain consists of the standard DOFs, the DOFs of the Heaviside and the Junction enrich-
ment functions together, but not the DOFs of the branch enrichment functions, i.e., the black subdomains in Fig. 6.

• In order to apply the overlapping domain decomposition method, all the subdomains are extended outward to include 
δ layers of nodes from neighboring subdomains to obtain the overlapping subdomains �δ

i (i = 1, . . . , N) and �δ
j( j =

1, . . . , M). Here δ is an integer ≥ 0. The overlapping crack tip subdomains �δ
j include not only all the DOFs in � j , but 

also the standard DOFs and some Heaviside enriched DOFs in the δ layer. In other words, the computational mesh �h , 
together with all DOFs defined on it, is decomposed into overlapping subdomains

�h =
N∑

i=1

�δ
i ∪

M∑
j=1

�δ
j .

It should be pointed out that when cracks propagate, we still keep the original regular subdomains unchanged, even 
though more element nodes are enriched with the Heaviside and possibly the Junction functions. We only need to modify 
the crack tip subdomains around the new crack tips, no extra search is needed. Moreover, the sizes of crack tip subproblems 
do not increase as the cracks propagate, which saves greatly the computational cost.
7



X. Chen and X.-C. Cai Journal of Computational Physics 452 (2022) 110910
Fig. 6. The domain decomposition strategy. The red lines denote the cracks. The DOFs are decomposed into some regular subdomains (black subdomains) 
and crack tip subdomains (blue subdomains). There is no special treatment for the crack lines (not including the tips). (a) Uniaxial tensile boundary crack, 
(b) Central inclined crack, (c) T-type crack, and (d) Crosscut crack.

The authors of [29] constructed a Schwarz-AMG preconditioner for crack propagations modeled by the topological XFEM, 
in which kinks that occur within an element due to the propagation are smoothed out and the element is considered as 
fully fractured (straight crack). Here, we adopt the geometrical XFEM to discretize problems with or without kinks.

4.2. Additive and restricted additive Schwarz preconditioners

Based on the above-mentioned decomposition of the mesh, we present a additive Schwarz (AS) and a restricted additive 
Schwarz (RAS) preconditioner for the Krylov subspace method GMRES [17] for solving the sequence of linear systems (11).

Algorithm 1 Additive Schwarz preconditioned Krylov subspace method.
Solve a sequence of systems of varying sizes

Ak(Mk
A S )

−1ũk = bk, uk = (Mk
A S )

−1ũk, k = 0,1, · · ·
by a Krylov subspace method with an initial guess uk

0 obtained by a modified uk−1 (except u0
0 = 0), where the preconditioner at the kth propagation step 

is defined by

(Mk
A S )

−1 =
N∑

i=1

Rδ
i (Ak

i )
−1 Rδ

i +
M∑

j=1

Rδ
j(Ak

j)
−1 Rδ

j ,

where (Ak
i )

−1(i = 1, · · · , N) is a subspace inverse of Ak
i and is solved inexactly as usual (such as ILU or multigrid), but the subdomain systems corresponding 

to Ak
j( j = 1, · · · , M) are solved exactly.

Let δ ≥ 0 be an integer denoting the level of overlap, δ = 0 means that there is no overlap between the neighboring 
subdomains. We first define the subdomain restriction matrix Rδ

i which is a sub-identity matrix whose diagonal entries 
are one or zero, and Rδuk keeps the components of uk in �δ

i unchanged, and zeros out all other components. The regular 
subdomain stiffness matrix Ak

i (Ak
i = Ak|�δ

i
, i = 1, · · · , N) and the crack tip subdomain stiffness matrix Ak

j (Ak
j = Ak|�δ

i
, j =

1, · · · , M) at the kth propagation step are defined as follows:

Ak
i = Rδ

i Ak Rδ
i , Ak

j = Rδ
j Ak Rδ

j .

The AS and RAS preconditioners are described in Algorithm 1 and Algorithm 2, respectively; see [6,7] for details.
8
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Algorithm 2 Restricted additive Schwarz preconditioned Krylov subspace method.
Solve a sequence of systems of varying sizes

Ak(Mk
R A S )

−1ũk = bk, uk = (Mk
R A S )

−1ũk, k = 0,1, · · ·
by a Krylov subspace method with an initial guess uk

0 obtained by a modified uk−1 (except u0
0 = 0), where the preconditioner at the kth propagation step 

is defined by

(Mk
R A S )

−1 =
N∑

i=1

R0
i (Ak

i )
−1 Rδ

i +
M∑

j=1

R0
j (Ak

j)
−1 Rδ

j ,

where (Ak
i )

−1(i = 1, · · · , N) is a subspace inverse of Ak
i and is solved inexactly as usual (such as ILU or multigrid), but the subdomain systems corresponding 

to Ak
j( j = 1, · · · , M) are solved exactly.

Remark 1. Note that there are several ways to apply a preconditioner to a linear system including left, right, and also 
double-sided preconditioning when two preconditioners can be applied to a system. In this paper, we only consider the 
right-preconditioned GMRES because the right-preconditioned residual is the same as the residual of the original problem 
without preconditioning. See chapter 9 of [17] for details.

We should point out that when cracks propagate, some of the subdomain matrices do not change, which can be reused 
in the next propagation steps.

Remark 2. One may argue that the use of a direct solver on the crack tip subdomain may be computationally too expensive, 
we point out that the crack tip subdomain is relatively small compared with the overall problem, and therefore, this step 
is fairly inexpensive. Our experiments indicate, unfortunately, inexact solvers such as ILU are not appropriate for the crack 
tip problem as they will increase the number of iterations drastically. Furthermore, only a very small number of elements 
surrounding the crack tips are enriched by the branch functions, the scales of the crack tip subproblems are still small in 
3D simulations, and our method would also be applicable.

4.3. GMRES with estimated initial guesses

As mentioned earlier, the linear systems in the sequence (11) are of difference sizes that makes it is impossible to use 
the recycling GMRES, however, the systems have certain inner connections in the sense that the solutions of two consecutive 
systems are not too far from each other.

Consider two algebraic systems at the kth and (k + 1)th propagation steps,

Akuk = bk, Ak+1uk+1 = bk+1,

and the second one is the further crack of the first one. uk+1 is larger than uk in terms of the dimensions. uk+1 can be 
written as uk+1 = (zk+1

1 , zk+1
2 ), here zk+1

1 is associated with old cracks and has the same dimension as uk . It is reasonable 
to guess that most components of zk+1

1 are close to the corresponding components of uk . Below we present some simple 
ways to extract some useful information from the solution of the first system to be used as the initial guess when solving 
the second system.

In XFEM, the DOF of the numerical solution uk includes two parts, the standard FEM solution uk
F E M and the enhanced 

solution uk
Enr

uk = [uk
F E M uk

Enr]
The usual initial guess uk+1

0 at the (k + 1)th propagation step may be chosen as

uk+1
0 = [0 0 0], (12)

where the first two zero vectors correspond to the DOF of uk
F E M and uk

Enr , and the third zero vector corresponds to the new 
DOFs from the growth of the cracks. However, based on the observation that the solution of the system is related to the 
solution of the previous system, we may want to consider the second choice of the initial guess as

uk+1
0 = [uk

F E M uk
Enr 0]. (13)

In addition to (12) and (13), we propose a more sophisticated initial guess. For this purpose, we introduce an auxiliary 
crack tip subproblem at the kth propagation step to construct uk+1

0 , which can be described as follows. For each crack tip 
ktip , the auxiliary subdomain �i

k,Auxil includes part of the Heaviside enriched nodes at the kth and (k + 1)th propagation 
step, and all the branch enriched nodes around the crack tips ktip and (k + 1)tip , see the blue boxes in Fig. 7.
9



Fig. 7. The auxiliary crack tip subdomains �i
k,Auxil(i = 1, · · · , 4). The green circles denote the crack tips at the (k + 1)th propagation step. (a) an uniaxial 

tensile boundary crack propagation, (b) a central inclined crack propagation, (c) a T-type crack propagation and (d) a crosscut crack propagation.

The auxiliary subdomain stiffness matrix Ai
k,Auxil is defined as

Ai
k,Auxil = Ak|�̄i

k,Auxil
,

where �̄i
k,Auxil = �i

k,Auxil ∪ ∂�̄i
k,Auxil and Ak is the global stiffness matrix at the kth propagation step. Although �i

k,Auxil

involves the next crack tip (k + 1)tip , the enriched DOFs of the (k + 1)th propagation step are not included in Ai
k,Auxil .

Set

bi
k,Auxil = bk|�̄i

k,Auxil
,

where bk is the right-hand side at the kth propagation step. We solve the following auxiliary crack tip subproblem

Ai
k,Auxilu

i
k,Auxil = bi

k,Auxil.

Note that, the above auxiliary crack tip subproblem is relatively small compared with the overall problem, and a direct solver 
is used here, which is fairly inexpensive. Then, we extract the Heaviside DOFs from ui

k,Auxil , and denote it as uk,Auxil,Heav . 
Then, we introduce the third choice of the initial guess uk+1

0 as

uk+1
0 = [uk

F E M 0 uk,Auxil,Heav 0]. (14)

The efficiency of different initial guesses uk+1
0 will be studied in the following section on numerical experiments. The 

flow chart of the entire process for the proposed crack propagation simulation shown in Fig. 8.
X. Chen and X.-C. Cai Journal of Computational Physics 452 (2022) 110910
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Fig. 8. Flow chart of the process for the proposed crack propagations.
11
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Fig. 9. The initial geometry (a) and the mesh (b) for the uniaxial tensile boundary crack problem. In (b), the squares � represent tip enriched nodes and 
the circles ◦ represent heaviside enriched nodes.

Fig. 10. The uniaxial tensile boundary crack propagation. The black line denotes the crack. The red circle ◦ represents the starting point of the crack, the 
white circles ◦ represent the propagation points and the green circle ◦ represents the propagation point at istep=5.

Remark 3. The idea of using some previous information to accelerate the present iterations can also be found in other fields. 
For example, in fluid dynamics, people have used information of previous time steps which follow a similar idea of recycling 
information of a nearby system, e.g., by projection as proposed in P.F. Fischer [9], or by extrapolation from old values as 
proposed in section 5.1 of B. Krank et al. [11].

5. Numerical experiments

In this section, we present some numerical experiments to illustrate the performance of the proposed strategy. In the 
XFEM implementation, the level set approach is used in the crack intersection problems (see Section 2.2). To simplify the 
study, we propagate cracks by an increment of �a, which is defined as the largest element diameter in the mesh. We 
consider four examples: (i) an uniaxial tensile boundary crack growth problem, (ii) a central inclined crack propagation 
problem, (iii) a T-type crack propagation problem, and (iv) a crosscut crack propagation problem. In all the experiments, the 
preconditioner is used as a right preconditioner, GMRES is re-started at 30, and the relative stopping tolerance is chosen as 
10−7. For all the test problems, we assume the material is under the plane stress condition. All the numerical experiments 
are implemented in MATLAB.

5.1. Uniaxial tensile boundary crack propagation

We consider the classic problem of an uniaxial tensile boundary crack, in which the crack propagates from a point on the 
boundary following a mode I opening. The side length of the square plate is 10m. Its Young’s modulus is E = 60.89G Pa, and 
the Poisson’s ratio is ν = 0.3. The plate is subject to a pure tension applied on the top and bottom of the plate, σ = 1M Pa. 
The right boundary is fixed, and the left boundary is free. The length of an initial crack is 2m, see Fig. 9.

We first present a calculation obtained on a 70 × 70 mesh. The propagation of the uniaxial tensile boundary crack is 
shown in Fig. 10. Plots of the subdomains following the crack during the propagation as well as plots of the von Mises 
12
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Fig. 11. Convergence of AS and RAS preconditioners for various meshes for an uniaxial tensile boundary crack problem as a function of the propagation 
step. The domain is decomposed into 4 × 4 regular subdomains plus one crack tip subdomain.

stresses at three different propagation steps are provided as snapshots in Fig. 12, in which we can see that all the regular 
subdomains remain unchanged, and only a crack tip subdomain is added around the new crack tip as crack propagations. 
No extra search algorithm is needed to update the subdomains.

Next, we test the convergence of different preconditioners. In the AS and RAS preconditioners, the exact solver is used 
in the crack tip subdomain and an inexact solver (ILU(0) with a drop tolerance 10−3) is used in regular subdomains. For 
the iterative solver, Fig. 11 shows the number of iterations required by the different preconditioners for the convergence 
against the propagation step of the crack with the initial guess (12). We can see that the number of iterations of the RAS 
preconditioner is fewer than that of the AS preconditioner. Some comparison results of the convergence rates of AS and RAS 
can be found in [10]. Also, as expected, the slope of the curve increases when the mesh is refined.

Finally, we study the impact of different initial guesses (12)-(14). From Table 1, we see that the use of the new initial 
guess (14) can reduce the number of iterations remarkably. On the 110 × 110 mesh partitioned into 65 subdomains, the 
saving with the initial guess (14) is about 70% compared with (12). When we increase the overlap, the number of iterations 
is reduced with all three initial guesses as expected. Moreover, when we increase the number of subdomains, the number 
of iterations with the initial guesses (12) and (13) increase significantly, but the number of iterations with the initial guess 
(14) increase only slightly.

Remark 4. It should be pointed out that even for the simple uniaxial tensile boundary crack growth problem, when we 
use GMRES method with non-preconditioner or with the traditional ILU preconditioner, the convergence is very slow, and 
thousands of iterations are often needed. Therefore, we don’t list the relevant results here.

5.2. Central inclined crack propagation

The second experiment is a central inclined crack propagation problem. The side length of the square plate is 10m, its 
Young’s modulus is E = 20G Pa, and the Poisson’s ratio is ν = 0.3. The boundary of the region is subject to two tensile loads 
σ1 = 1M Pa, σ2 = 2M Pa. The length of the initial crack is 1.25m, β = π

6
; see Fig. 13.

The computed propagation of the central inclined crack is shown in Fig. 14. Plots of the subdomains following the 
crack during the propagation, as well as plots of the von Mises stresses at three different propagation steps, are provided 
as snapshots in Fig. 16, in which we can see that all the regular subdomains remain the same, and only two crack tip 
subdomains are added around new crack tips as the crack grows. There is no need to use any extra search algorithm to 
update the subdomains.

In the AS and RAS preconditioners, the same as in the previous test, exact solvers are used in the crack tip subdomains 
and an inexact solver (ILU(0) with a drop tolerance 10−5) is used in regular subdomains. Compared with the horizontal 
crack, there are more element nodes along the inclined crack that are enriched with the Heaviside enrichment function. So, 
we need to solve the regular subproblems more accurately for better performance. Fig. 15 shows the number of iterations 
required by the different solvers for each propagation step. We see clearly that the number of iterations of RAS on the 
finest mesh 110 × 110 is fewer than that of AS on the coarsest mesh 70 × 70. The results strong indicate that the RAS 
preconditioner is much more effective than the AS preconditioner in this case.

From Table 2, we see that the use of the new initial guess (14) can reduce the number of iterations remarkably. On 
the finest mesh 110 × 110, when the number of subdomains is 66, the saving with the initial guess (14) is around 77%
compared with (12). The number of iterations is reduced with all three initial guesses as the overlap is increased. Moreover, 
when we increase the number of subdomains, the number of iterations with the initial guess (14) tends to be stable.
13
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Table 1
The number of iterations for the uniaxial tensile boundary crack propagation when using the RAS preconditioner. The domain is decomposed into m × m
regular subdomains plus one crack tip subdomain, and different initial guesses (12)-(14) are used respectively. The number of iterations are presented in 
black when the mesh is 70 × 70, blue when the mesh is 90 × 90, and red when the mesh is 110 × 110. (For interpretation of the colors in the table(s), the 
reader is referred to the web version of this article.)

subdomains 4 × 4 + 1 = 17, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 70 79 103 - - - - - -
2 76 86 108 58 67 69 42 46 51
3 87 106 116 63 70 77 44 47 44
4 97 115 137 70 76 79 43 42 42
6 114 134 144 88 85 82 50 50 51
8 136 143 161 110 105 104 61 61 63

subdomains 4 × 4 + 1 = 17, overlap = 4.

istep initial guess (12) initial guess (13) initial guess (14)

1 57 68 71 - - - - - -
2 61 72 77 47 53 60 39 41 44
3 67 74 79 54 57 54 40 41 42
4 71 79 88 55 59 59 37 41 42
6 81 77 93 60 67 71 43 38 40
8 101 102 113 75 69 81 53 51 50

subdomains 6 × 6 + 1 = 37, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 106 130 135 - - - - - -
2 106 134 145 69 90 105 46 43 67
3 128 149 149 71 97 105 48 47 45
4 136 149 165 80 103 109 45 45 40
6 140 175 186 105 110 115 55 51 54
8 158 200 206 134 129 132 68 64 69

subdomains 8 × 8 + 1 = 65, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 117 142 180 - - - - - -
2 137 145 157 73 100 105 47 43 75
3 139 155 186 101 109 101 50 45 41
4 153 159 210 106 111 112 50 50 50
6 177 191 223 120 126 133 56 56 58
8 224 239 245 149 140 140 70 70 70

5.3. T-type crack propagation

The third experiment is a T-type crack propagation problem. The side length of the square plate is 10m, its Young’s 
modulus is E = 40G Pa, and the Poisson’s ratio is ν = 0.3. The top and bottom boundaries of the region are subject to the 
tensile loads σ = 1M Pa, a = 1m, b = 1m, θ = π

4
; see Fig. 17.

The computed propagation of the T-type crack is shown in Fig. 18. Plots of the subdomains following the crack during 
the propagation as well as plots of the von Mises stresses at three different propagation steps are provided as snapshots 
in Fig. 20, in which we can see that all the regular subdomains remain the same, and only three crack tip subdomains are 
added around new crack tips as the crack grows.

The same as in the previous tests, an inexact solver (ILU(0) with a drop tolerance 10−7) is used in regular subdomains. 
Fig. 19 shows the number of iterations by different solvers for each propagation step. We can see that, in the finest mesh, 
the slope of the curve is very steep in the AS preconditioner, and that of the RAS preconditioner is relatively gentle as the 
crack propagates.

Table 3 shows that the new initial guess (14) can reduce the number of iterations remarkably. On the 110 × 110 mesh 
with 67 subdomains, the saving is around 77%. When we increase the number of subdomains, although the number of 
iterations when using the new initial guess (14) changes slightly, the number of iterations decreases significantly comparing 
with the other initial guesses.
14



Fig. 12. The uniaxial tensile boundary crack propagation problem. Snapshots of subdomains (left) and von Mises stresses (right) computed at different 
propagation steps (istep=1, 2 and 3). The black line denotes the crack. The domain is decomposed into 4 × 4 regular subdomains (blue subdomains) plus 
one crack tip subdomain (the red subdomain). The mesh is 70 × 70.

5.4. Crosscut crack propagation

The last experiment is the crosscut crack propagation problem. The side length of the square plate is 10m, its Young’s 
modulus is E = 20G Pa, and the Poisson’s ratio is ν = 0.3. The boundary of the region is subject to the tensile loads 
σ = 1M Pa. The size of the crack is a = 1m, see Fig. 21.
X. Chen and X.-C. Cai Journal of Computational Physics 452 (2022) 110910
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Fig. 13. The initial geometry of the central inclined crack propagation problem.

Fig. 14. The central inclined crack propagation. The black line denotes the crack. The white circles ◦ represent the propagation points and the green circles 
◦ represent the propagation point at istep=6.

Fig. 15. Convergence of AS and RAS preconditioners for meshes of different sizes for the central inclined crack propagation problem as a function of the 
propagation step. The domain is decomposed into 4 × 4 regular subdomains plus two crack tip subdomains.
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Fig. 16. The central inclined crack propagation problem. Snapshots of subdomains (left) and von Mises stresses (right) computed at different propagation 
steps (istep=1, 2 and 3). The black line denotes the crack. The domain is decomposed into 4 × 4 regular subdomains (blue subdomains) plus two crack tip 
subdomains (the red subdomains). The mesh is 70 × 70.
17
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Table 2
The number of iterations for the central inclined crack propagation with the RAS preconditioner. The domain is decomposed into m ×m regular subdomains 
plus two crack tip subdomains, and different initial guesses (12)-(13) are used respectively. The number of iterations are presented in black when the mesh 
is 70 × 70, blue when the mesh is 90 × 90, and red when the mesh is 110 × 110.

subdomains 4 × 4 + 2 = 18, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 73 95 110 - - - - - -
2 80 111 129 63 80 100 37 47 57
3 80 128 157 59 76 98 43 49 57
4 92 137 173 62 79 115 50 59 58
5 112 159 178 65 102 115 50 67 60
6 178 165 192 85 102 128 59 59 58

subdomains 4 × 4 + 2 = 18, overlap = 4.

istep initial guess (12) initial guess (13) initial guess (14)

1 58 65 76 - - - - - -
2 63 83 99 53 58 69 31 43 50
3 63 80 114 52 57 63 34 41 51
4 70 78 119 55 59 74 43 49 51
5 69 102 119 56 68 77 44 53 51
6 98 103 132 80 75 79 46 50 52

subdomains 6 × 6 + 2 = 38, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 99 135 163 - - - - - -
2 103 171 162 85 108 119 37 45 74
3 125 161 207 81 116 135 48 57 77
4 145 165 214 84 125 137 56 73 63
5 142 200 208 89 121 137 55 75 62
6 252 223 227 171 141 156 57 66 70

subdomains 8 × 8 + 2 = 66, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 135 148 174 - - - - - -
2 156 169 236 105 120 133 39 49 78
3 157 167 270 102 125 146 55 52 76
4 167 207 285 110 134 170 59 82 67
5 172 248 296 114 143 170 61 82 63
6 326 262 300 188 150 203 60 70 67

Fig. 17. The initial geometry of the T-type crack propagation problem.
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Fig. 18. The T-type crack propagation. The black line denotes the crack. The white circles ◦ represent the propagation points and the green circles ◦
represent the propagation point at istep=4.

Fig. 19. Convergence of AS and RAS preconditioners on meshes of different sizes for a T-type crack problem as a function of the propagation step. The 
domain is decomposed into 4 × 4 regular subdomains plus three crack tip subdomains.

The computed propagation of the crosscut crack is shown in Fig. 22. Plots of the subdomains following the crack during 
the propagation as well as plots of the von Mises stresses at three different propagation steps are provided as snapshots 
in Fig. 24, in which we can see that all the regular subdomains remain the same, and only four crack tip subdomains are 
added around new crack tips as the crack grows.

In the test, an inexact solver (ILU(0) with a drop tolerance 10−3) is used in regular subdomains. Fig. 23 shows the 
number of iterations by different solvers for each propagation step. The RAS preconditioner is more effective than the AS 
preconditioner as before.

From Table 4, we show that the initial guess (14) can reduce the number of iterations by as much as 84% for a 110 ×110
mesh partitioned into 68 subdomains. When we refine the mesh or increase the number of subdomains, the number of 
iterations of the initial guess (14) is stable in this model.

Remark 5. In all simulations, an inexact solver ILU(0) with different drop tolerance is used in regular subdomains. In the 
first and forth crack propagation problems, the cracks are parallel to the coordinate axis, only the mesh nodes on the 
adjacent lines below or above the cracks are enriched by the Heaviside function. In the second and third crack propagation 
problems, the cracks are inclined, more mesh nodes around the cracks are enriched by the Heaviside function, that results 
in more ill-conditionness in the linear systems. Therefore, in order to achieve acceptable performance, we need to solve the 
subproblems in regular subdomains more accurately; i.e., using inexact ILU(0) with smaller drop tolerances.
X. Chen and X.-C. Cai Journal of Computational Physics 452 (2022) 110910
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Fig. 20. The T-type crack propagation problem. Snapshots of subdomains (left) and von Mises stresses (right) computed at different propagation steps 
(istep=1, 2 and 3). The domain is decomposed into 4 × 4 regular subdomains (blue subdomains) plus three crack tip subdomains (the red subdomains). The 
mesh is 70 × 70.
20
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Table 3
The number of iterations for the T-type crack propagation problem with the RAS preconditioner. The domain is decomposed into m ×m regular subdomains 
plus three crack tip subdomains, and different initial guesses (12)-(14) are used respectively. The number of iterations are presented in black when the 
mesh is 70 × 70, blue when the mesh is 90 × 90, and red when the mesh is 110 × 110.

subdomains 4 × 4 + 3 = 19, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 69 90 95 - - - - - -
2 71 133 137 59 83 84 43 59 45
3 82 144 202 52 86 87 39 53 51
4 81 158 222 72 86 143 48 57 57
5 87 183 257 86 120 133 41 53 55
6 119 211 261 86 149 176 43 49 60

subdomains 4 × 4 + 3 = 19, overlap = 4.

istep initial guess (12) initial guess (13) initial guess (14)

1 52 58 68 - - - - - -
2 55 85 102 46 70 73 38 49 45
3 59 82 131 44 78 76 36 46 59
4 69 86 138 54 78 88 44 50 49
5 65 115 156 57 103 109 39 46 52
6 76 120 178 58 107 126 38 46 66

subdomains 6 × 6 + 3 = 39, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 94 105 134 - - - - - -
2 105 178 178 71 116 83 46 72 49
3 100 208 236 77 123 117 41 53 81
4 111 234 258 84 111 168 49 60 57
5 112 256 292 95 169 172 42 55 57
6 135 270 300 85 201 207 42 49 82

subdomains 8 × 8 + 3 = 67, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 129 144 147 - - - - - -
2 112 207 269 80 116 142 53 78 55
3 133 217 277 79 144 148 41 51 79
4 119 247 287 82 153 207 55 58 56
5 163 293 355 95 187 181 44 63 61
6 168 292 388 107 211 268 42 47 86

Fig. 21. The initial geometry of the crosscut crack propagation problem.
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Fig. 22. The crosscut crack propagation. The black line denotes the crack. The white circles ◦ represent the propagation points and the green circles ◦
represent the propagation point at istep=3.

Fig. 23. Convergence of AS and RAS preconditioners for meshes of different sizes for a crosscut crack problem as a function of the propagation step. The 
domain is decomposed into 4 × 4 regular subdomains plus four crack tip subdomains.

6. Conclusions

In this paper, we introduced and studied some effective overlapping Schwarz preconditioners for the elastic crack prop-
agation problems discretized by the geometric XFEM. A special decomposition of the domain is employed, in which the 
crack tip subdomains are separated from the crack line, and in the domain decomposition preconditioning, the crack tip 
subproblems are solved directly and the regular subproblems are solved inexactly. When cracks propagate, all the regular 
subdomains remain the same, and only new crack tip subdomains are added around new crack tips. This scheme avoids the 
repartitioning of the domain, and no extra search is needed to update the crack tip subdomains. To solve the sequence of 
large, sparse systems of linear equations of varying sizes, a Krylov subspace method is used with an initial guess built from 
the solution of the previous system with a local modification in the crack tip subspace. This initial guess constructed with 
an auxiliary tip subspace and the use of recycled preconditioner components can accelerate the convergence remarkably. 
The numerical experiments demonstrate the efficiency of our method. As the next step, we plan to extend the methods to 
three-dimensional problems.
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Fig. 24. The crosscut crack propagation problem. Snapshots of subdomains (left) and von Mises stresses (right) computed at different propagation steps 
(istep=1, 2 and 3). The domain is decomposed into 4 × 4 regular subdomains (blue subdomains) plus four crack tip subdomains (the red subdomains). The 
mesh is 110 × 110.
23



X. Chen and X.-C. Cai Journal of Computational Physics 452 (2022) 110910
Table 4
The number of iterations of the crosscut crack propagation problem with the RAS preconditioner. The domain is decomposed into m × m + 4 subdomains, 
which means m × m regular subdomains plus four crack tip subdomains, and different initial guesses (12)-(14) are used respectively. The number of 
iterations are presented in black when the mesh is 70 × 70, blue when the mesh is 90 × 90, and red when the mesh is 110 × 110.

subdomains 4 × 4 + 4 = 20, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 80 104 153 - - - - - -
2 101 136 148 74 85 93 51 49 55
3 114 140 184 73 83 115 45 55 57
4 114 162 197 77 87 140 50 54 47
5 122 168 213 81 114 150 52 57 47
6 128 207 304 95 153 193 55 52 56

subdomains 4 × 4 + 4 = 20, overlap = 3.

istep initial guess (12) initial guess (13) initial guess (14)

1 78 102 109 - - - - - -
2 82 110 135 60 82 85 39 42 52
3 79 131 157 71 81 89 44 52 45
4 98 127 166 75 81 115 49 51 51
5 100 148 192 73 84 144 49 54 45
6 120 172 232 81 114 179 51 53 55

subdomains 6 × 6 + 4 = 40, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 111 148 183 - - - - - -
2 106 140 167 76 83 113 56 54 53
3 118 171 212 80 94 137 48 57 57
4 139 180 208 86 110 148 55 47 46
5 149 184 232 88 129 164 53 59 44
6 179 231 338 111 186 173 58 51 55

subdomains 8 × 8 + 4 = 68, overlap = 2.

istep initial guess (12) initial guess (13) initial guess (14)

1 139 180 193 - - - - - -
2 135 183 204 77 111 124 60 55 47
3 139 194 216 84 121 143 48 60 53
4 168 200 199 90 139 158 57 48 47
5 176 179 238 110 158 159 56 60 42
6 185 329 348 126 205 189 63 52 55

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China grant 
G12071469.

References

[1] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601–620.
[2] T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite element methods for material modeling, Model. Simul. Mater. Sci. Eng. 17 

(2009) 1–24.
[3] I. Babuška, U. Banerjee, Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Eng. 201 (2012) 91–111.
[4] L. Berger-Vergiat, H. Waisman, B. Hiriyur, R. Tuminaro, D. Keyes, Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by 

extended finite element methods, Int. J. Numer. Methods Eng. 90 (2012) 311–328.
[5] I. Babuška, U. Banerjee, K. Kergrene, Strongly stable generalized finite element method: application to interface problems, Comput. Methods Appl. 

Mech. Eng. 327 (2017) 58–92.
[6] X.-C. Cai, Y. Saad, Overlapping domain decomposition algorithms for general sparse matrices, Numer. Linear Algebra Appl. 3 (3) (1996) 221–237.
[7] X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput. 21 (2) (1999) 792–797.
[8] C. Lang, D. Makhija, A. Doostan, K. Maute, A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput. Mech. 54 (5) (2014) 

1357–1374.
24

http://refhub.elsevier.com/S0021-9991(21)00805-6/bibABC5C8092B64C984D8A692FE30E133EDs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib793E27B019FA650200541DA7A3DCD659s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib793E27B019FA650200541DA7A3DCD659s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib78F97C184FDEFCD7BC68E62F4A10E79Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib1586C63D5DDDF2F79FF6FA4C7BBBF20Fs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib1586C63D5DDDF2F79FF6FA4C7BBBF20Fs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibA689574F5476515B72AF5E9806369E06s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibA689574F5476515B72AF5E9806369E06s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib62784CB42135BCC8585E57EB2EA2AB3Ds1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib4699F6E5D62D353277BA0BD9066D63D0s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib12FC695F4E32D0FCC42886A7576F701Cs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib12FC695F4E32D0FCC42886A7576F701Cs1


X. Chen and X.-C. Cai Journal of Computational Physics 452 (2022) 110910
[9] P. Fischer, Projection techniques for iterative solution of with successive right-hand sides, Comput. Methods Appl. Mech. Eng. 163 (1) (1998) 193–204.
[10] A. Frommer, D.B. Szyld, An algebraic convergence theory for restricted additive schwarz methods using weighted max norms, SIAM J. Numer. Anal. 

39 (2) (2001) 463–479.
[11] B. Krank, N. Fehn, W. Wall, M. Kronbichler, A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to 

DNS and LES of turbulent channel flow, J. Comput. Phys. 348 (1) (2017) 634–659.
[12] N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131–150.
[13] A. Menk, S.P.A. Bordas, A robust preconditioning technique for the extended finite element method, Int. J. Numer. Methods Eng. 85 (2011) 1609–1632.
[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, Inc, Boston, USA, 1985.
[15] V. Gupta, C.A. Duarte, I. Babuška, U. Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput. 

Methods Appl. Mech. Eng. 266 (2013) 23–39.
[16] A. Gerstenberger, R. Tuminaro, Algebraic multigrid techniques for the extended finite element method, in: Copper Mountain Conference on Multigrid 

Methods, 2011.
[17] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.
[18] R. Tian, L. Wen, L. Wang, Three-dimensional improved XFEM (IXFEM) for static crack problems, Comput. Methods Appl. Mech. Eng. 343 (1) (2019) 

339–367.
[19] H. Waisman, L. Berger-Vergiat, An adaptive domain decomposition preconditioner for crack propagation problems modeled by XFEM, Int. J. Multiscale 

Comput. Eng. 11 (6) (2013) 633–654.
[20] L. Wang, L. Wen, J. Wang, R. Tian, Implementations of parallel software for crack analyses based on the improved XFEM, Sci. Sin. Technol. 48 (11) 

(2018) 1241–1258.
[21] Q. Zhang, I. Babuška, U. Banerjee, Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singulari-

ties, Comput. Methods Appl. Mech. Eng. 311 (2016) 476–502.
[22] Q. Zhang, I. Babuška, A stable generalized finite element method (SGFEM) of degree two for interface problems, Comput. Methods Appl. Mech. Eng. 

363 (1) (2020) 112889.
[23] F. Erdogan, G.C. Sih, On the crack extension in plate under plane loading and transverse shear, ASME J. Basic Eng. 85 (1963) 519–527.
[24] J.G. Williams, P.D. Ewing, Fracture under complex stress, the angled crack problem, Int. J. Fract. 26 (1984) 346–351.
[25] M. Gosz, J. Dolbow, B. Moran, Domain integral formulation for stress intensity factor computation along curved three dimensional interface cracks, Int. 

J. Solids Struct. 35 (15) (1998) 1763–1783.
[26] S. Loehnert, D.S. Mueller-Hoeppe, P. Wriggers, 3D corrected XFEM approach and extension to finite deformation theory, Int. J. Numer. Methods Eng. 86 

(2011) 431–452.
[27] N. Moes, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model, Int. J. Numer. 

Methods Eng. 53 (2002) 2549–2568.
[28] M.L. Parks, E. de Sturler, G. Mackey, Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput. 28 (5) (2006) 1–26.
[29] H. Waisman, L. Berger-Vergiat, An adaptive domain decomposition preconditioner for crack propagation problems modeled by XFEM, Int. J. Multiscale 

Comput. Eng. 11 (6) (2013) 633–654.
[30] X. Chen, X.-C. Cai, An effective Schwarz preconditioner for crack problems modeled by extended finite element method, Commun. Comput. Phys. 28 (4) 

(2020) 1561–1584.
25

http://refhub.elsevier.com/S0021-9991(21)00805-6/bibF4679DFDBF6AB19918FBC2B498E0D763s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib7A9316DAC9DEB7D7EE2FE63020461DAFs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib7A9316DAC9DEB7D7EE2FE63020461DAFs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib55170B885245053A66A9FA377A214702s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib55170B885245053A66A9FA377A214702s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib54F869848229D7FC3AC2C196A5B48266s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibC3F5D3C880C6E3158122FDC97AD78731s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibF35958A2C2C349E1A68679BCE10360B5s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib2F6E1F3E7D2EDD90C56277B62D689901s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib2F6E1F3E7D2EDD90C56277B62D689901s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibEB42A5283089CF13E997936FB8671B40s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibEB42A5283089CF13E997936FB8671B40s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib127DA8208F00E8B4E3D6759A419B09E0s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib75260328DF9368F7CBD96DCB1F0713B8s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib75260328DF9368F7CBD96DCB1F0713B8s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibC732DCC6595CCC10CC51B54955213F93s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibC732DCC6595CCC10CC51B54955213F93s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibEA0B2D397F4EE22F08C63FE373108C1Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibEA0B2D397F4EE22F08C63FE373108C1Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibA988ED2F409FAF2C4E1AA26E9653A4E1s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibA988ED2F409FAF2C4E1AA26E9653A4E1s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibCEA4F8E1BDAEC8160B8D6277E13D98B9s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibCEA4F8E1BDAEC8160B8D6277E13D98B9s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibA4666D394DA608F7F5CBBFBD4DC933ECs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bibAA28C10CB40EEC2F508A5739E817FF8Cs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib7859E3028E30E3746F310CDBED31175Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib7859E3028E30E3746F310CDBED31175Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib9331B0AB13ABD0F278ABEC1ABE565FEDs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib9331B0AB13ABD0F278ABEC1ABE565FEDs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib22C4EF7F37488FF63F5B20CC3C39DA0Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib22C4EF7F37488FF63F5B20CC3C39DA0Es1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib48D2F0CE3F19BB34F03923004BE1014Fs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib9591F635DF344D6ABE7EF7B7E9C28FDAs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib9591F635DF344D6ABE7EF7B7E9C28FDAs1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib1FF4C8F7F9705952EF420B5898B221A3s1
http://refhub.elsevier.com/S0021-9991(21)00805-6/bib1FF4C8F7F9705952EF420B5898B221A3s1

	A recycling preconditioning method with auxiliary tip subspace for elastic crack propagation simulation using XFEM
	1 Introduction
	2 XFEM for elastic crack propagation problems
	2.1 A model problem without crack intersection
	2.2 A crack intersection problem

	3 Crack propagation
	4 Recycling domain decomposition preconditioners and a Krylov subspace method with estimated initial guess
	4.1 A crack-tip decomposition
	4.2 Additive and restricted additive Schwarz preconditioners
	4.3 GMRES with estimated initial guesses

	5 Numerical experiments
	5.1 Uniaxial tensile boundary crack propagation
	5.2 Central inclined crack propagation
	5.3 T-type crack propagation
	5.4 Crosscut crack propagation

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


