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We consider the numerical solution of unsteady Stokes equations in patient-specific 
arterial-like domains in 3D. A Stokes-like solver is a necessary component in a more 
sophisticated nonlinear Navier-Stokes method, for which several multilevel domain decom-
position methods have been introduced recently. Because of the complex geometry, the 
construction and the solve of the coarse problem usually take a large percentage of the 
total compute time. In this paper, we introduce a parameterized one-dimensional Stokes 
solver defined along the centerline of the artery and use its stabilized finite element 
discretization to construct a coarse preconditioner. With suitable 3D-to-1D restriction 
and 1D-to-3D extension operators on fully unstructured meshes, a two-level additive 
Schwarz preconditioner can be constructed. Some numerical experiments for flows in 
realistic arteries are presented to show the efficiency and robustness of the new coarse 
preconditioner whose computational cost is considerably lower than the existing three-
dimensional coarse preconditioners.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

To understand and predict the behavior of blood flows in human body, numerical simulation is an important tool [1–8]. 
In the simulations, Navier-Stokes equations are often used to model the physics and the arterial geometry is reconstructed 
from medical images obtained with computer tomography (CT) or magnetic resonance imaging (MRI). In the Navier-Stokes 
solver, the most time consuming part of the computation is in the linear solver in which a Stokes-like system has to be 
constructed and solved at each time step. When solving such a problem on a parallel computer, a multilevel precondi-
tioner is usually necessary to guarantee the scalability. As the number of subdomains increases the coarse solver in the 
preconditioner often takes a significantly percentage of the overall compute time. In this paper, we introduce and study a 
two-level additive Schwarz preconditioner for three-dimensional unsteady Stokes flows in patient-specific arteries, where 
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the coarse preconditioner is constructed by a parameterized one-dimensional Stokes discretization on the centerline of the 
arterial domain. Comparing with existing three-dimensional coarse solvers, the cost of the one-dimensional solver is almost 
ignorable.

As the numerical computation is time-consuming for complex blood flows in three-dimensional arteries with lots of 
branches, reduced one-dimensional models [9–13] have been used for studying blood flows in arteries such as coronary 
arteries [14,15], arteries with stents or prostheses [16–18]. The one-dimensional model of the flow in an artery without bi-
furcation can be derived by integrating the continuous Navier-Stokes equations and applying certain model order reduction 
techniques across the axial section of the artery [2,11]. With reasonable bifurcation conditions, the one-dimensional model 
can be extended to bifurcating arteries [12–15]. In order to have high physical fidelity for the major arteries, A. Quarteroni 
et al. introduced a multiscale model of the entire circulatory system by coupling the three-dimensional model in the major 
arteries with zero, and one dimensional models in the minor arteries together [2,3,11,19]. We also mention another tech-
nique called hierarchical model reduction [20–23] consisting of different approximations of the dominant axial dynamics 
and the local transverse dynamics, more specifically, a piecewise-based [21] or isogeometry-based [23] approximation along 
the axial direction and a spectral approximation along the transverse direction with the Cartesian [21] or polar [22] coor-
dinates, improving the accuracy of the one-dimensional model with a small increase in the number of degrees of freedom 
by capturing the transverse component with spectral methods. The basic mathematical assumption of the one-dimensional 
model is that the blood flow is more or less uniform across the axial section. The assumption is sometimes true in part of 
the artery, but not always true. In certain part of the artery when the flow is near chaotic, highly rotational, or when there is 
stenosis or aneurysm, only three-dimensional models can offer reasonably accuracy results. Although some one-dimensional 
models were numerically verified to be the reasonable representation of the three-dimensional model in many cases such 
as the diastole of the aorta [24] and the intracranial arterial networks [25], the large differences were also observed numer-
ically in the systole of the aorta [24] and the cerebral circulation [26]. Limited by the characteristics of the one-dimensional 
model, it is usually used to study the global behavior of the spatially averaged pressure and flow waveforms such as the 
mechanisms underlying pulse wave propagation and the wave intensity analysis. For the localized hemodynamic quantities 
such as wall shear stress, and its gradient and the simulation of complex flows in, for examples, the patient-specific circle 
of Willis and the aneurysmal cerebral artery, the full three-dimensional model is essential [25,27].

For solving Stokes-like or saddle-point problems, several numerical methods were proposed such as Uzawa’s methods 
[28,29], projection methods [30–33] and preconditioned Krylov subspace methods [34–38]. Uzawa’s methods and projection 
methods split the velocity and pressure fields and solve the two subsystems individually, and solutions for the pressure and 
velocity are combined iteratively to form the solution of the original problem. Preconditioned Krylov subspace methods are 
to solve the full saddle-point system by Krylov subspace methods with a coupled or decoupled preconditioner. In [37,38], the 
fully coupled preconditioner is shown to be faster than the partially coupled and the fully decoupled preconditioners. We 
also mention there are some non-overlapping domain decomposition methods for saddle-point problems including BDDC 
methods [39,40] and dual-primal FETI methods [41,42].

In this paper, we focus on the unsteady Stokes problem defined on some realistic three-dimensional arterial domains 
and develop an effective and scalable two-level overlapping additive Schwarz preconditioner. Classical two-level methods 
with a coarse component offer good the scalability. However, due to the geometrical complexity of the artery, the coarse 
problem is often difficult to construct and time-consuming to solve, especially for arteries with many branches and for 
parallel computers with many processor cores. Although a geometry-preserving coarse mesh [43,44] is constructed and nu-
merically verified to be effective to improve the scalability, the construction is too costly in terms of the user’s time. Taking 
the advantage of cheap one-dimensional models, [45] presented a fully coupled two-level additive Schwarz preconditioner 
for the steady-state Stokes problems in two-dimensional artery-like domains. In [45] the coarse preconditioner was con-
structed by the finite element discretization of the one-dimensional Stokes model on the centerline of arterial-like domains 
and the restriction and interpolation operators were obtained based on a two-dimensional coarse mesh. In this work, we 
extend the central-line coarse preconditioner to the unsteady Stokes flows in three-dimensional realistic arteries with re-
sistance outlet boundary conditions. Moreover, in order to remove the construction of the high-dimensional coarse mesh, 
the restriction and the interpolation operators between the three-dimensional finite element space and the one-dimensional 
central-line finite element space are constructed by the piecewise linear interpolation along the centerline and the radial 
basis interpolation along the cross sections. Numerical experiments show that the central-line coarse preconditioner has a 
very low computational cost and is highly effective in controlling the scalability of the overall algorithm. We also mention 
another application of the central-line coarse preconditioner for the general nonlinear Navier-Stokes equations found in 
[46].

The rest of the paper is organized as follows. In Section 2 we describe the model problem and the stabilized finite 
element discretization. In Section 3 we introduce the corresponding one-dimensional central-line model and its stabilized 
finite element discretization. In Section 4 we present the restriction and interpolation matrices, and the two-level additive 
Schwarz preconditioner with central-line coarse preconditioner. Finally we show some numerical experiments for some 
benchmark cases and also realistic arteries.
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Fig. 1. A realistic cerebral artery with 1 inlet and 12 outlets.

2. Unsteady Stokes model and its stabilized finite element discretization

Consider the unsteady Stokes problem in an arterial domain � ∈R3 (see Fig. 1),⎧⎪⎨
⎪⎩

∂u

∂t
− ν�u + ∇p = f in � × (0, T ),

∇ · u = 0 in � × (0, T ),

u(x,0) = u0(x) in � × {0} ,

(1)

where u is the velocity, p is the pressure. Denote the boundary of the domain by ∂� = �I ∪ �O ∪ �W , where �I , �W and 
�O are the inlet boundary, the arterial wall and the outlet boundary, respectively. On the inlet boundary �I , we impose the 
Dirichlet boundary condition on the velocity field

u = u I on �I × (0, T ). (2)

On the arterial wall, we impose the no slip boundary condition on the velocity field

u = 0 on �W × (0, T ). (3)

On the outlets {�O i}m
i=1, we impose either the constant pressure boundary condition

p = pi on �O i × (0, T ), (4)

or the resistance boundary condition

p = Ri Q i on �O i × (0, T ), (5)

where pi is the constant pressure, Ri is the constant resistance and Q i = ∫
�O i

u ·n is the fluid flux at the local outlet section 
�O i . Denote by H 1

W (�) = {
v ∈ H 1(�) : v|�I = u I , v|�W = 0

}
, H 1

I W (�) = {
v ∈ H 1(�) : v|�I ∪�W = 0

}
. Then the variational 

formulation of (1) with boundary conditions (2), (3) and (4) (or (5)) is to find (u(·, t), p(·, t)) ∈ H 1
W (�) × L2(�) such that(

∂u

∂t
, v
)

+ a(u, v) + b(v, p) + c(u, v, p) = f (v),

b(u,q) = 0, u(x,0) = u0(x),

for all v ∈ H 1
I W (�), q ∈ L2(�) and t ∈ (0, T ), where a(·, ·), b(·, ·), c(·, ·, ·) and f (·) are defined as

a(u, v) =
∫
�

ν∇u : ∇vd�, b(v, p) = −
∫
�

p∇ · vd�,

c(u, v, p) = −
∫
�O

((ν∇u · n) · v − pv · n)d�O , f (v) =
∫
�

f · vd�.

Using the outlet boundary condition, c(u, v, p) can be replaced by cξ (u, v) with

cξ (u, v) = −
∫
�O

(ν∇u · n) · vd�O + ξ

m∑
i=1

Ri

∫
�O i

u · nd�O i

∫
�O i

v · nd�O i + (1 − ξ)

m∑
i=1

∫
�O i

pi v · nd�O i,
3
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where ξ = 0 corresponds to the constant pressure boundary condition (4) and ξ = 1 corresponds to the resistance boundary 
condition (5).

Denote by Th a conformal unstructured tetrahedral mesh of � and by Sh the continuous, piecewise linear polynomial 
function space on Th . Define the finite element spaces V h = [Sh]3 ∩ H 1

W (�), W h = [Sh]3 ∩ H 1
I W (�) for the velocity and Ph =

Sh ∩ L2(�) for the pressure. For the finite element discretization, a stable finite element pair is required to satisfy the inf-
sup condition or a stabilized finite element method is needed to circumvent this condition. Considering the computational 
complexity and the ease of implementation, we use a low- and equal-order stabilized finite element method [47,48] to 
spatially discretize the unsteady Stokes problem (1), that is, to find (uh(·, t), ph(·, t)) ∈ V h × Ph , such that(

∂uh

∂t
, vh

)
+ Tαβ

(
∂uh

∂t
; vh,qh

)
+ Sαβ (uh, ph; vh,qh) = Fαβ ( f ; vh,qh) ,

(uh(·,0), vh) = (u0, vh),

for all vh ∈ W h, qh ∈ Ph and t ∈ (0, T ), where

Sβ (uh, ph; vh,qh) = a(uh, vh) + b(vh, ph) + βb(uh,qh) + cξ (uh, vh) ,

Sαβ (uh, ph; vh,qh) = Sβ (uh, ph; vh,qh) − γ
∑

K∈Th

h2
K (−ν�uh + ∇ph,−α�vh + β∇qh)K ,

Tαβ

(
∂uh

∂t
; vh,qh

)
= −γ

∑
K∈Th

h2
K

(
∂uh

∂t
,−α�vh + β∇qh

)
K

,

Fαβ ( f ; vh,qh) = f (vh) − γ
∑

K∈Th

h2
K ( f ,−α�vh + β∇qh)K ,

with α ∈ {−1,0,1} , β ∈ {−1,1} and γ > 0. Here hK is the size of element K . Thanks to the linearity of uh and vh on each 
element K , the terms with �uh and �vh in Sαβ, Tα,β and Fαβ vanish.

To discretize in time, we use the backward Euler method with uniform time step size �t . Let tk = k�t and f k = f (tk). 
Given uk

h , the backward Euler step to obtain 
(

uk+1
h , pk+1

h

)
can be described as

1

�t

(
uk+1

h − uk
h, vh

)
+ Tαβ

(
uk+1

h − uk
h

�t
; vh,qh

)
+ Sαβ

(
uk+1

h , pk+1
h ; vh,qh

)
= Fαβ

(
f k+1; vh,qh

)
. (6)

Set β = −1, (6) can be rewritten as

Bξ

(
uk+1

h , pk+1
h ; vh,qh

)
= Fξ

(
uk

h; vh,qh

)
, (7)

where

Bξ

(
uk+1

h , pk+1
h ; vh,qh

)
= 1

�t

⎛
⎝(uk+1

h , vh) + γ
∑

K∈Th

h2
K (uk+1

h ,∇qh)K

⎞
⎠+ a

(
uk+1

h , vh

)
+ b

(
vh, pk+1

h

)

− b
(

uk+1
h ,qh

)
+ γ

∑
K∈Th

h2
K

(
∇pk+1

h ,∇qh

)
K

−
∫
�O

(
ν∇uk+1

h · n
)

· vhd�O

+ ξ

m∑
i=1

Ri

∫
�O i

uk+1
h · nd�O i

∫
�O i

vh · nd�O i, (8)

Fξ (uk
h; vh,qh) = 1

�t

⎛
⎝(uk

h, vh

)
+ γ

∑
K∈Th

h2
K

(
uk

h,∇qh

)
K

⎞
⎠+ ( f k+1, vh) + γ

∑
K∈Th

h2
K ( f k+1,∇qh)K

+ (ξ − 1)

m∑
i=1

∫
�O i

pi vh · nd�O i . (9)

Remark 2.1. We remark that because of the last integral term of Bξ in (8), the stiffness matrix has some dense blocks 
corresponding to the resistance boundary condition (ξ = 1) at the outlets.

Below we show that the bilinear form just defined is coercive in the finite element spaces.
4
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Theorem 2.1. For any uh ∈ W h and ph ∈ Ph, we have

Bξ (uh, ph; uh, ph) ≥
(

h2
min

C2
I

(
1

2�t
− Crν

)
+ (1 − Cr)ν

)
‖∇uh‖2

0 + γ

(
1 − γ h2

max

2�t

)
‖ph‖2

0,h , (10)

where hmin = min
K∈Th

(hK ) , hmax = max
K∈Th

(hK ) and ‖ph‖0,h =
(∑

K h2
K ‖∇ph‖2

0,K

)1/2
is a mesh-dependent norm of Ph.

Proof. From (8), we obtain

Bξ (uh, ph; uh, ph) = 1

�t

⎛
⎝‖uh‖2

0 +
∑

K∈Th

(
uh, γ h2

K ∇ph

)
K

⎞
⎠+ ν ‖∇uh‖2

0 + γ ‖ph‖2
0,h

−
∫
�O

(ν∇uh · n) · uhd�O + ξ

m∑
i=1

Ri

⎛
⎜⎝∫

�O i

uh · nd�O i

⎞
⎟⎠

2

.

Using the Cauchy-Schwarz inequality, we have

∑
K∈Th

(uh, γ h2
K ∇ph)K ≤

∑
K∈Th

(
1

2
‖uh‖2

0,K + γ 2h2
K

2
h2

K ‖∇ph‖2
0,K

)

≤ 1

2
‖uh‖2

0 + γ 2h2
max

2
‖ph‖2

0,h . (11)

Using the trace theorem [49,50], we get

∫
�O

(ν∇uh · n) · uhd�O ≤ ν ‖∇uh · n‖−1/2,�O
‖uh‖1/2,�O

≤ Crν ‖uh‖2
1 , (12)

where Cr is a constant depending on �. Combining (11) and (12) we have

Bξ (uh, ph; uh, ph) ≥
(

1

2�t
− Crν

)
‖uh‖2

0 + (ν − Crν)‖∇uh‖2
0 + γ

(
1 − γ h2

max

2�t

)
‖ph‖2

0,h .

By using the inverse inequality ‖∇uh‖0,K ≤ C I h
−1
K ‖uh‖0,K , we obtain (10). �

Remark 2.2. To satisfy the spatial stability condition for the fully discretized problem, a sufficient condition based on Theo-
rem 2.1 is to require

h2
min

C2
I

(
1

2�t
− Crν

)
+ (1 − Cr)ν ≥ C1, 1 − γ h2

max

2�t
≥ C2,

where C1, C2 > 0 should be independent of the spatial and temporal sizes, as well as γ . For sufficiently small �t , the first 
condition holds easily. For the second condition, it holds if

h2
max <

2�t

γ
. (13)

From the numerical results in [47,48], the stabilization parameter γ = 0.04 or γ = 0.05 was confirmed to be a good choice.

3. A parameterized one-dimensional Stokes model in 3D and its stabilized finite element discretization

In this section, we first recall the one-dimensional Stokes model and then introduce its stabilized finite element dis-
cretization in order to construct the central-line coarse preconditioner.
5
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3.1. Parameterized one-dimensional Stokes model

To derive the parameterized one-dimensional Stokes model, we first restrict our attention to a non-branching artery �
and assume that the artery is axial symmetric with respect to the centerline denoted by �cl . Denote L as the arc length 
of �cl , x0 as the start point corresponding to the inlet and x1 as the end point corresponding to the outlet. For any point 
x ∈ �cl , let s be the arc length of the centerline from x0 to x. For any s ∈ [0, L], let Cs(s) be the cross section of �, As(s) the 
corresponding area and r0(s) the radius of Cs(s). Further, we assume that the pressure is a constant on each cross section, 
the velocity components orthogonal to the centerline are negligible compared to the component us along the centerline, i.e., 
u ≈ usτ , where τ = (τ 1, τ 2, τ 3) is the unit tangent vector along the centerline and the component us can be expressed as

us(t, r, s) = ucl(t, s)ζ

(
r

r0(s)

)
. (14)

Here ucl(t, s) = us(t, 0, s) is the value of us on the centerline and ζ(y) = (1 − y2) (y ∈ [0, 1]) is a parabolic profile function, 

and r ≤ r0(s) is the radial coordinate with respect to Cs(s). Let ūs = A−1
s

∫
Cs

usdCs and Q =
∫
Cs

usdCs = Asūs be the mean 

velocity and the flux on Cs , respectively. Then from (14) we have ūs = ucl/2 and Q = Asucl/2. Similarly, we define pcl(t, s)
as the value of the pressure on the centerline.

Based on the above assumptions, following [2,45], we derive the parameterized 1D unsteady Stokes model from (1) in a 
single blood vessel which refers to an artery with one inlet, one outlet, and no bifurcation

⎧⎪⎪⎨
⎪⎪⎩

As

2

∂ucl

∂t
+ Kr

2
ucl + As

∂ pcl

∂s
= f cl,

∂(Asucl)

∂s
= 0, ucl(s,0) = ucl

0 (s),

(15)

where Kr = 8πν , f cl =
∫
Cs

f · τdCs and ucl
0 =

∫
Cs

u0 · τdCs . By integrating (2), (4) and (5) on the corresponding boundary, we 

obtain the inlet velocity boundary condition

ucl(0, t) = − 2

|�I |
∫
�I

u I · nd�I := ucl
I , (16)

and the outlet constant pressure boundary condition

pcl(sO i, t) = 1

|�O i |
∫

�O i

pid�O i = pi, (17)

or the outlet resistance boundary condition

pcl(sO i, t) = Ri Q i ≈ Ri As(sO i)ūs = Ri As(sO i)

2
ucl(sO i, t). (18)

For general arteries with bifurcations, we can divide it into some single vessels. For simplicity, we assume that on each 
bifurcation there is one inflow vessel and two outflow vessels connected with it (see the top-right sub-figure in Fig. 2). 
On each bifurcation, using the conservation of flux and the continuity of the pressure [13,45], we obtain the following 
bifurcation compatibility conditions

Q 1 = Q 2 + Q 3, pcl
1 = pcl

2 = pcl
3 , (19)

or

As1 ucl
1 = As2 ucl

2 + As3 ucl
3 , pcl

1 = pcl
2 = pcl

3 , (20)

by using the fact Q i = Asi

2
ucl

i , i = 1, 2, 3. For more general bifurcations involving more than two outflow vessels, similar 
bifurcation compatibility conditions can be derived.
6
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Fig. 2. Central line of an artery with cross sections at regular and bifurcating points.

3.2. Stabilized finite element discretization of parameterized one-dimensional Stokes model

Let D ⊂ R3 be a curve without branches, L(D) its arc length and assume it has two endpoints x0(D), x1(D). For any 
x ∈ D , define a bijective map XD : [0, L(D)] �→ D as

XD(s) = x,

where s is the arc length along D from x0(D) to x.
For the centerline �cl , we denote n J and ncl as the number of its bifurcations and its branches, respectively, define �cl

i
as its ith branch and C i

s as the cross section of � at s on �cl
i . Let Jk = {

J 0
k , J 1

k , J 2
k

}
be an index set where J 0

k , J 1
k and J 2

k are 
the indexes of the inflow branch and two outflow branches connected with the kth bifurcation, respectively. For simplicity, 
we denote x0

i = x0(�
cl
i ) and x1

i = x1(�
cl
i ) as the inlet and outlet of �cl

i , and s0
i = 0 and s1

i = L(�cl
i ) as the arc lengths of �cl

i
corresponding to x0

i and x1
i . Specifically, denote �cl

I and �cl
O j as the inlet and outlet branches of the centerline �cl , sI = 0

and sO j = L(�cl
O j), j = 1, . . . , m as the arc lengths corresponding to the inlet and outlet of �cl . With these definitions, for 

any x ∈ �cl
i , there exists s ∈ (0, L(�cl

i )), such that x ∈ X
�cl

i
(s). Moreover, we have �cl =

ncl⋃
i=1

�cl
i , and for any x ∈ �, there 

exists i ∈ {1, . . . ,ncl} and s ∈ (0, L(�cl
i )), such that x ∈ C i

s(s). On each branch �cl
i , denote ucl

i , pcl
i and Ai

s as the velocity, the 
pressure and the cross-sectional area. Then the velocity ucl , the pressure pcl and the cross-sectional area As in �cl can be 
piecewise defined by

ucl|
�cl

i
= ucl

i , pcl|
�cl

i
= pcl

i , As|�cl
i

= Ai
s. (i = 1, . . . ,ncl)

For the velocity field on the centerline �cl , we define

M(�cl) =
{

vcl|
�cl

i
∈ H1(�cl

i ) : vcl(sI )|�cl
I

= ucl
I , As(s1

J 0
k
)vcl(s1

J 0
k
)|

�cl
J 0
k

= As(s0
J 1
k
)vcl(s0

J 1
k
)|

�cl
J 1
k

+As(s0
J 2
k
)vcl(s0

J 2
k
)|

�cl
J 2
k

, i = 1, . . . ,ncl, k = 1, . . . ,n J

}
,

M0(�
cl) =

{
vcl|

�cl
i

∈ H1(�cl
i ) : vcl(sI )|�cl

I
= 0, vcl(s1

J 0
k
)|

�cl
J 0
k

= 0, i = 1, . . . ,ncl, k = 1, . . . ,n J

}
,

where the velocity in M(�cl) satisfies the Dirichlet boundary condition (16) at the inlet and the flux conservation condition 
of (20) at all bifurcations. The space M0(�cl) with the homogeneous boundary conditions at the inlets of the centerline and 
all bifurcations is used as the test function space. For the pressure field on the centerline �cl , we define

Q(�cl) =
{

qcl|
�cl

i
∈ L2(�cl

i ) : qcl(s0
J 1
k
)|

�cl
J 1
k

= pcl(s1
J 0
k
)|

�cl
J 0
k

, qcl(s0
J 2
k
)|

�cl
J 2
k

= pcl(s1
J 0
k
)|

�cl
J 0
k

,

qcl(sO j)|�cl
O j

= p j, i = 1, . . . ,ncl, j = 1, . . . ,m, k = 1, . . . ,n J

}
, (ξ = 0),
7
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Q0(�
cl) =

{
qcl|

�cl
i

∈ L2(�cl
i ) : qcl(s0

J 1
k
)|

�cl
J 1
k

= 0, qcl(s0
J 2
k
)|

�cl
J 2
k

= 0, qcl(sO j)|�cl
O j

= 0,

i = 1, . . . ,ncl, j = 1, . . . ,m, k = 1, . . . ,n J

}
, (ξ = 0),

for ξ = 0, where the pressure in Q(�cl) satisfies the constant pressure boundary condition (17) at the outlets and the 
pressure continuity condition of (20) at all bifurcations. The space Q0(�

cl) with the homogeneous boundary conditions at 
the outlets of the centerline and all bifurcations is used as the test function space. Similarly for ξ = 1, we define

Q(�cl) =
{

qcl|
�cl

i
∈ L2(�cl

i ) : qcl(s0
J 1
k
)|

�cl
J 1
k

= pcl(s1
J 0
k
)|

�cl
J 0
k

, qcl(s0
J 2
k
)|

�cl
J 2
k

= pcl(s1
J 0
k
)|

�cl
J 0
k

,

i = 1, . . . ,ncl, k = 1, . . . ,n J

}
, (ξ = 1),

Q0(�
cl) =

{
qcl|

�cl
i

∈ L2(�cl
i ) : qcl(s0

J 1
k
)|

�cl
J 1
k

= 0, qcl(s0
J 2
k
)|

�cl
J 2
k

= 0, i = 1, . . . ,ncl,

k = 1, . . . ,n J

}
, (ξ = 1),

where the pressure in Q(�cl) satisfies the pressure continuity condition of (20) at all bifurcations. The space Q0(�
cl) with 

the homogeneous boundary conditions at the outlets of all bifurcations is used as the test function space. As the velocity in 
M(�cl) and the pressure in Q(�cl) are not required to satisfy the resistance boundary condition (18), the condition needs 
to be added and imposed additionally in the weak formulation.

The variational formulation of the parameterized one-dimensional Stokes problem on the centerline is to find 
(ucl(·, t), pcl(·, t)) ∈ M(�cl) × Q(�cl) such that(

As

2

∂ucl

∂t
, vcl

)
+ acl(ucl, vcl) + bcl(vcl, pcl) = f cl(vcl),

bcl(ucl,qcl) − ccl(ucl,qcl) = 0, ucl(s,0) = ucl
0 (s),

for all vcl ∈ M0(�
cl), qcl ∈ Q0(�

cl) and t ∈ (0, T ), where acl(·, ·), bcl(·, ·), ccl(·, ·) and fcl(·) are defined by

acl(ucl, vcl) =
∫

�cl

Kr

2
ucl vclds, bcl(ucl,qcl) =

∫
�cl

Asucl ∂qcl

∂s
ds,

ccl(ucl,qcl) =
ncl∑
i=1

Asuclqcl
∣∣∣s1

i

s0
i

, f cl(vcl) =
∫

�cl

f cl vclds.

Using the inlet and outlet boundary conditions (16)–(18), ccl(ucl, qcl) can be rewritten as

ccl
ξ (ucl,qcl) = −As(sI )ucl

I qcl(sI )|�cl
I

+
n J∑

k=1

As(s1
J 0
k
)ucl(s1

J 0
k
)qcl(s1

J 0
k
)|

�cl
J 0
k

+ ξ

m∑
j=1

2

Ri
pcl(sO j)q

cl(sO j)|�cl
O j

,

where ξ = 0 corresponds to the constant pressure boundary condition and ξ = 1 corresponds to the resistance boundary 
condition.

We introduce a polyline mesh T cl
H with the mesh size O (H) for �cl and the corresponding continuous, piecewise linear 

polynomial function space Scl
H . We require that all end points of branches are mesh points to ensure the overall mesh is 

conformal. For each branch �cl
i , the mesh T cl,i

H and the space Scl,i
H can be derived from the restriction of the mesh T cl

H

and the space Scl
H on �cl

i , i.e., T cl,i
H = T cl

H (�cl
i ), Scl,i

H = Scl
H (�cl

i ). Define the finite element spaces V cl
H = Scl

H ∩ M(�cl), W cl
H =

Scl
H ∩ M0(�

cl) for the velocity and P cl
H = Scl

H ∩ Q(�cl), Q cl
H = Scl

H ∩ Q0(�
cl) for the pressure. A stabilized finite element method 

to spatially discretize the unsteady 1D Stokes problem can be described as: find (ucl
H (·, t), pcl

H (·, t)) ∈ V cl
H × P cl

H , such that(
As

2

∂ucl
H

∂t
, vcl

H

)
+ T cl

αβ

(
∂ucl

H

∂t
; vcl

H ,qcl
H

)
+ Scl

αβ

(
ucl

H , pcl
H ; vcl

H ,qcl
H

)
= F cl

αβ

(
vcl

H ,qcl
H

)
, (21)

(
ucl

H (·,0), vcl
H

)
=
(

ucl
0 , vcl

H

)
, (22)
8
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for all vcl
H ∈ W cl

H , qcl
H ∈ Q cl

H and t ∈ (0, T ), where

Scl
β

(
ucl

H , pcl
H ; vcl

H ,qcl
H

)
= acl

(
ucl

H , vcl
H

)
+ b

(
vcl

H , pcl
H

)
+ βb

(
ucl

H ,qcl
H

)
− βccl

ξ

(
ucl

H ,qcl
H

)
,

Scl
αβ

(
ucl

H , pcl
H ; vcl

H ,qcl
H

)
= Scl

β

(
ucl

H , pcl
H ; vcl

H ,qcl
H

)
− γ cl

∑
e∈T cl

H

H2
e

(
Kr

2
ucl

H + As
∂ pcl

H

∂s
,αvcl

H + β
∂qcl

H

∂s

)
e

,

T cl
αβ

(
∂ucl

H

∂t
; vcl

H ,qcl
H

)
= −γ cl

∑
e∈T cl

H

H2
e

(
As

2

∂ucl
H

∂t
,αvcl

H + β
∂qcl

H

∂s

)
e

,

F cl
αβ

(
vcl

H ,qcl
H

)
= f cl

(
vcl

H

)
− γ cl

∑
e∈T cl

H

H2
e

(
f cl,αvcl

H + β
∂qcl

H

∂s

)
e

with α ∈ {−1,0,1} , β ∈ {−1,1} and the stabilization parameter γ cl > 0. Set α = 0, β = −1 and use backward Euler method 
on time to obtain the fully discretized 1D Stokes scheme at tk+1 for given ucl,k

H :

Bcl
ξ

(
ucl,k+1

H , pcl,k+1
H ; vcl

H ,qcl
H

)
= F cl

ξ

(
ucl,k

H ; vcl
H ,qcl

H

)
, (23)

where

Bcl
ξ

(
ucl,k+1

H , pcl,k+1
H ; vcl

H ,qcl
H

)
= 1

�t

(
As

2
ucl,k+1

H , vcl
H

)
+ acl

(
ucl,k+1

H , vcl
H

)
+ b

(
vcl

H , pcl,k+1
H

)

− b
(

ucl,k+1
H ,qcl

H

)
+

n J∑
k=1

As(s1
J 0
k
)ucl(s1

J 0
k
)qcl(s1

J 0
k
)|

�cl
J 0
k

+ ξ

m∑
j=1

2

Ri
pcl(sO j)q

cl(sO j)|�cl
O j

+ γ cl
∑

e∈T cl
H

H2
e

(
As

2�t
ucl,k+1

H + Kr

2
ucl,k+1

H + As
∂ pcl,k+1

H

∂s
,
∂qcl

H

∂s

)
e

, (24)

F cl
ξ (ucl,k

H ; vcl
H ,qcl

H ) = 1

�t

(
As

2
ucl,k

H , vcl
H

)
+
(

f cl,k+1, vcl
H

)
+ As(sI )ucl

I (sI )q
cl
H (sI )|�cl

I

+ γ cl
∑

e∈T cl
H

H2
e

(
As

2�t
ucl,k

H + f cl,k+1,
∂qcl

H

∂s

)
e

. (25)

Remark 3.1. In (24), the last term is a stabilization term derived from the stabilized part of Scl
α,β and T cl

α,β and other terms 
come from Scl

β . For ξ = 1, the resistance boundary condition (18) is needed to replace the corresponding equations of (23)
which match the degrees of freedom of the velocity or the pressure at the outlets.

Below we show that under certain conditions on the temporal and spatial mesh sizes, the problem defined in (23) is 
solvable.

Theorem 3.1. For any ucl
H ∈ W cl

H and pcl
H ∈ Q cl

H , we have

Bcl
ξ

(
ucl

H , pcl
H ; ucl

H , pcl
H

)
≥
(

3

8�t
− �t K 2

r

8A2
min

)∥∥∥ucl
H

∥∥∥2

0,As
+ Kr

4

∥∥∥ucl
H

∥∥∥2

0
+ γ cl

(
1 − γ cl H2

max

2�t

)∥∥∥pcl
H

∥∥∥2

0,As,H
, (26)

where Hmax = max
e∈T cl

H

He, Amin = min
s∈�cl

As, 
∥∥ucl

H

∥∥
0,As

=
∥∥∥A1/2

s ucl
H

∥∥∥
0,�cl

is a geometry-dependent norm of W cl
H and 

∥∥pcl
H

∥∥
0,As,H =

(∑
e H2

e

∥∥∥∥A1/2
s

∂ pcl
H

∂s

∥∥∥∥
2

0,e

)1/2

is a mesh-dependent norm of P cl
H .

Proof. From (24), we obtain

Bcl
ξ

(
ucl

H , pcl
H ; ucl

H , pcl
H

)
= 1

�t

⎛
⎜⎝1

2

∥∥∥ucl
H

∥∥∥2

0,As
+

∑
e∈T cl

((
As

2
+ �t Kr

2

)
ucl

H , γ cl H2
e
∂ pcl

H

∂s

)
e

⎞
⎟⎠
H

9
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+ Kr

2

∥∥∥ucl
H

∥∥∥2

0
+ γ cl

∥∥∥pcl
H

∥∥∥2

0,As,H
+ ξ

m∑
j=1

2

Ri

(
pcl(sO j)|�cl

O j

)2
. (27)

Using the Cauchy-Schwarz inequality, we have

∑
e∈T cl

H

((
As

2
+ �t Kr

2

)
ucl

H , γ cl H2
e
∂ pcl

H

∂s

)
e

≤
∑

e∈T cl
H

(
1

2

((√
As

2
+ �t Kr

2
√

As

)2

ucl
H , ucl

H

)
e

+
(
γ cl

)2
H2

e

2
H2

e

(
As

∂ pcl
H

∂s
,
∂ pcl

H

∂s

)
e

)

≤ 1

8

∥∥∥ucl
H

∥∥∥2

0,As
+ �t Kr

4

∥∥∥ucl
H

∥∥∥2

0
+
(

(�t Kr)
2

8As
ucl

H , ucl
H

)
+

(
γ cl

)2
H2

max

2

∥∥∥pcl
H

∥∥∥2

0,As,H
. (28)

Combining (27) with (28), we obtain (26). �
Remark 3.2. Theorem 3.1 implies similar sufficient stability conditions for h, �t and γ cl

3

8�t
− �t K 2

r

8A2
min

≥ 0, 1 − γ cl H2
max

2�t
> C3,

where C3 > 0 is independent of h, �t and γ cl . Analogously the first inequality is easy to satisfy for a sufficiently small �t
and the second inequality requires H2

max < 2�t/γ cl .

To show roughly how the 1D model behaves, in Fig. 3, we present some computed velocity and pressure curves of (23)
with a periodic velocity boundary condition at the inlet of the centerline of a two-branch artery given in the mid figure of 
Fig. 7. The top figures in Fig. 3 correspond to the constant pressure boundary condition (p = 90 mmHg) and the bottom 
figures correspond to the resistance boundary condition (Ri = R/|�O i | with R = 24000 dyn·s/cm5) at the outlets. In the left 
sub-figures, we show that the variation of the pulsating velocity at the outlets is similar to velocity profile at the inlet and 
the velocity at the outlets are the same for the two outlet boundary conditions. In the top-right figure, we find that for the 
constant pressure boundary condition the pressure at the inlet changes around 90 mmHg and its variation is similar to that 
of the velocity, whereas from the bottom-right figure we see that for the resistance boundary condition the pressure at the 
outlets are proportional to the velocity at the outlets. Compared with corresponding results of the full three-dimensional 
model shown in Fig. 4, we see that the waveforms are similar to each other even though the difference is visible. In the 
next section, we will use the corresponding matrix to construct the central-line coarse preconditioner.

4. Multiscale two-level additive Schwarz preconditioner for unsteady Stokes flows in patient-specific arteries

In this section we introduce an overlapping multiscale additive Schwarz preconditioner for the discretized system (7). 
The multiscale additive preconditioner takes the form M−1 = M−1

s + M−1
c , where M−1

s is the sum of all the subdomain 
preconditioners and M−1

c is a one-dimensional preconditioner defined on the centerline of the artery. In the following, we 
first briefly recall the classical additive Schwarz method and then focus on the central-line coarse preconditioner.

4.1. One-level additive Schwarz preconditioner

Denote the finite element triangulation of � by Th and the collection of all mesh points by Sh . We partition the arterial 
domain � into N non-overlapping subdomains {�i}N

i=1 such that each subdomain �i consists of some elements in Th

denoted by Th,i . In practice, there are many ways to obtain the partition, a popular software package for partitioning an 
unstructured mesh is ParMETIS [51]. Extending each subdomain �i with δ layers of elements from neighboring subdomains, 
we can obtain the overlapping subdomains 

{
�δ

i

}N
i=1 (see Fig. 5). Let T δ

h,i be the mesh on �δ
i . For i = 1, . . . , N , we define the 

following local spaces

V i
h =

{
v ∈ H 1(�δ

i ) : v|K ∈ P1(K ), ∀K ∈ T δ
h,i; v|∂�δ

i \(∂�\�W ) = 0; v(x) = u I (x), ∀x ∈ Sh ∩ (
∂�δ

i ∩ �I
)}

,

P i
h =

⎧⎨
⎩
{

q ∈ L2(�δ
i ) : q|K ∈ P1(K ), ∀K ∈ T δ

h,i; q|∂�δ
i \∂� = 0; q|∂�δ

i ∩�O j
= p j, j = 1, . . . ,m

}
, ξ = 0,{

q ∈ L2(�δ
i ) : q|K ∈ P1(K ), ∀K ∈ T δ

h,i; q|∂�δ
i \∂� = 0

}
, ξ = 1.

We define Ri : V h × Ph → V i
h × P i

h as a restriction operator which returns all degrees of freedom associated with the 
subspace V i × P i and the transpose RT of Ri as the extension operator. Denote the matrix form of the bilinear form Bξ (7)
h h i

10
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Fig. 3. Velocity and pressure curves of the parameterized one-dimensional model on the centerline of a two-branch normal artery with the constant 
pressure (top) or resistance (bottom) boundary condition.

as A. The subdomain matrix Ai can be obtained as Ai = Ri ART
i or by discretizing the problem (1) on the subdomain with 

the corresponding conditions on the outer boundary and homogeneous Dirichlet conditions on the inner boundary. Now, 
the one-level additive Schwarz preconditioner in the matrix form can be described as

M−1
1s =

N∑
i=1

RT
i A−1

i Ri . (29)

Here A−1
i is the subspace inverse. In practical applications, in order to reduce the communication cost and the number 

of iterations, one usually replace RT
i in (29) by the corresponding extension matrix defined only in the non-overlapping 

subdomain, which leads to a well-known restricted additive Schwarz preconditioner [52]. Next we will introduce a central-
line coarse preconditioner to further improve the effectiveness and the scalability of the one-level preconditioner.

4.2. Central-line coarse preconditioner

Let Acl be the matrix form of bilinear form Bcl
ξ defined in (23), Rcl and Ecl the multiscale restriction and extension 

operators between the central-line coarse space V cl
H × P cl

H and the three-dimensional fine finite element space Vh × Ph , 
respectively. Then the central-line coarse preconditioner can be written as

M−1
cl = Ecl A−1

cl Rcl. (30)

Consequently combining the one-level preconditioner (29) with the central-line coarse preconditioner (30), we obtain the 
multiscale two-level additive Schwarz preconditioner

M−1
2s,cl = M−1

1s + M−1
cl =

N∑
RT

i A−1
i Ri + Ecl A−1

cl Rcl. (31)

i=1

11
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Fig. 4. Velocity magnitude and pressure of the full three-dimensional model at centers of inlet and outlets of a two-branch normal artery with the constant 
pressure (top) or resistance (bottom) boundary condition.

Fig. 5. Example of non-overlapping and overlapping partition of an arterial domain. The red elements represent the overlap elements with δ = 1. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In the rest of this subsection, we focus on the construction of the multiscale restriction and extension operators. Let 
{xi}n

i=1 and {x(si)}ncl
i=1 be the collection of mesh points of Th and T cl

H , respectively, and define the extension from (ucl
H , pcl

H )

in V cl
H × P cl

H to (uh, ph) in Vh × Ph as

uh(x j) = ucl
H (s)ζ

( |x j − x(s)|
r0(s)

)
τ (s), ph(x j) = pcl

H (s), (32)

for any x j ( j = 1, . . . , n) with s satisfying x j ∈ Cs(s). The extension operator defined in (32) from the central-line coarse 
space to the three-dimensional fine mesh space is not easily computable. We next consider the matrix form of the extension 
12
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Fig. 6. Diagram of the extension processes from central-line space to three-dimensional space by radial and piecewise linear interpolations. First obtain the 
value of the central point (blue point) of the cross section (green section) by linear interpolation and then use it to obtain the value of mesh points (black 
points) included in the cross section by radial interpolation.

operator obtained by some approximations using a piecewise linear interpolation along with the centerline and a radial basis 
interpolation across the centerline. In Fig. 6, we show graphically the extension process in two steps: (1) first for each line 
segment [si, si+1] we compute the value of the function at s ∈ [si, si+1] by the piecewise linear interpolation; (2) then we 
compute the values of the function on the cross section Cs(s) by the parabolic radial basis interpolation.

Let {φi}ncl
i=1 be the nodal basis functions of P H . For any x j , we denote by r j = |x j − x(s)|, where s satisfies x j ∈ Cs(s). For 

the single vessel, let s−1 = s0, sncl+1 = sncl , then we call

Di = {x ∈ � : x ∈ Cs(s) ∀s ∈ [si−1, si+1]} ,

as the influence region of si . For the artery with bifurcation, we can similarly define the influence region of si as Di . Now 
we define the weighting ncl × n matrices W u for the velocity and W p for the pressure as

W l =

⎛
⎜⎜⎝

wl
1,1 · · · wl

1,n
...

. . .
...

wl
ncl,1

· · · wl
ncl,n

⎞
⎟⎟⎠ (l = u, p), (33)

where the weighting coefficients 
{

wu
i, j

}ncl,n

i=1, j=1
and 

{
w p

i, j

}ncl,n

i=1, j=1
are defined as

wu
i, j =

{
ζ
(

r j
r0

)
φi(s), x j ∈ Di, x j ∈ Cs(s)

0, x j /∈ Di

, w p
i, j =

{
ψi(s), x j ∈ Di, x j ∈ Cs(s)
0, x j /∈ Di

,

and ψi(s) = φi(s) or ψi(s) = 1. We introduce ncl × ncl tangent matrices as

Tk := diag
(
τ k(s1), · · · , τ k(sncl )

)
(k = 1,2,3), (34)

where τ k(si) is the kth component of the unit tangent vector of the centerline at the mesh point si defined in Section 3. 
Finally, using (33) and (34), we obtain the 4n × 2ncl extension matrix Ecl : V cl

H × P cl
H → Vh × Ph

Ecl =
(

W u
1 W u

2 W u
3 0

0 0 0 W p

)T

, W u
k = Tk W u (k = 1,2,3), (35)

and the 2ncl × 4n restriction matrix Rcl : Vh × Ph → V cl
H × P cl

H

Rcl =
(

W u
1 W u

2 W u
3 0

0 0 0 W p

)
, (36)

where ψi(s) = φi(s) and ψi(s) = 1 in the definition of W p are used for the extension and restriction matrices, respectively.

5. Numerical experiments

In this section, we present some numerical experiments to illustrate the efficiency of the central-line coarse precondi-
tioner for unsteady Stokes flows in 3D arteries including some benchmark cases and patient-specific cases. In the simulation, 
we set the viscosity ν = 0.035 g/(cm·s) and the source function f = 0. For the inlet, we impose a pulsatile periodic flow 
velocity as the boundary condition with the parabolic velocity profile defined in Section 3. For the outlets, we impose 
the constant pressure pi = 90 mmHg for the constant pressure boundary condition or the resistance Ri = R/|�O i| with 
13
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Fig. 7. Pressure distributions on the tube (left), the two-branch normal artery (middle) and the two-branch stenotic artery (right) when at t = 0.18 s (top) 
and t = 0.5 s (bottom).

Fig. 8. Velocity distributions on the tube (left), the two-branch normal artery (middle) and the two-branch stenotic artery (right) when at t = 0.18 s (top) 
and t = 0.5 s (bottom).

R = 24000 dyn·s/cm5 for the resistance boundary condition. The backward Euler method with a fixed time step size 
�t = 0.02 s is used for the temporal discretization and the stabilized P1 − P1 finite element method with stabilization 
parameter γ = 0.05 is used for the spatial discretization. The fully discretized Stokes problem (7) is then solved at each 
time step by the right-preconditioned GMRES, which is terminated when the relative residual norm is less than or equal 
to 10−6. In all experiments, we denote by np the number of subdomains, N as the number of mesh points. For the com-
parison, we show the numerical results of three preconditioners including the one-level additive Schwarz preconditioner 
M1, the two-level additive Schwarz preconditioner M2,c whose coarse space consists of functions that are constants on 
each non-overlapping subdomain, and the newly proposed two-level additive Schwarz preconditioner with the central-line 
coarse preconditioner M2,cl . In M2,c , the piecewise constant coarse preconditioner can be written as M−1

c = RT
c A−1

c Rc , 
where Ac = Rc ART

c and Rc = diag(Rco, Rco, Rco, Rco) is a block diagonal matrix and Rco is a np × N matrix whose elements 
are either 0 or 1. More precisely, let ci, j be an element of Rco , then it takes the value 1 if the jth mesh point belongs to the 
ith non-overlapping subdomain; otherwise its value is 0. A two-dimensional version of the method was studied in [45].

5.1. Benchmark cases

In this subsection, we carry out experiments for three benchmark arteries including a straight tube, a two-branch normal 
artery and a two-branch stenotic artery to verify the proposed algorithms. For the tube, we set the radius to 0.5 cm and 
the length 5 cm. For the other two arteries, we set the inlet radius to 0.45 cm, the outlet radius 0.3 cm, the length of each 
branch 7.5 cm, and the stenotic radius 0.15 cm for the stenotic case. In the experiments, the unstructured mesh with 12542, 
14344 and 11146 mesh points are considered for the tube, the two-branch normal artery and the two-branch stenotic 
artery, respectively. First, we show the pressure and velocity distributions for t = 0.18 s (peak systole) and t = 0.50 s (early 
diastole) in Fig. 7 and Fig. 8. The pressure decreases at the systole and increases at the diastole from the inlet to the outlet 
along the centerline and is almost a constant on each cross section. The velocity distributions are nearly symmetrical with 
respect to the centerline. For the two-branch case with stenosis, the velocity reaches the maximum at the stenosis at the 
systole, whereas at the diastole the velocity is very small. The phenomenons can also be observed for general blood flows 
in [53], therefore we think the new algorithms are correctly implemented.

We next study the performance of the central-line coarse preconditioner for these arteries. Since the matrices are the 
same for different time steps, we report the results only for the first time step, where the overlapping size δ = 1, the 
central-line mesh with Ncl = 100 for the tube case and Ncl = 238 for the two-branch cases are the default. In Table 1, we 
14
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Table 1
The number of GMRES iterations with three different Schwarz preconditioners for the benchmark arteries, where ‘AS’ and ‘RAS’ mean additive and restricted 
additive Schwarz preconditioners, respectively.

Artery np AS RAS

ξ = 0 ξ = 1 ξ = 0 ξ = 1

M1 M2,c M2,cl M1 M2,c M2,cl M1 M2,c M2,cl M1 M2,c M2,cl

Tube
40 40 23 16 65 35 24 20 17 9 31 27 14
80 46 26 18 73 39 27 25 21 10 38 33 16

Normal artery
40 70 27 12 105 51 24 44 24 9 57 40 16
80 78 27 13 131 46 25 55 21 10 70 36 17

Stenotic artery
40 47 18 10 75 36 18 46 18 10 60 34 16
80 79 25 12 112 46 21 53 23 9 73 37 16

Table 2
The effect of different sizes of the central-line mesh on the number of iterations for the benchmark arteries.

Tube Normal artery Stenotic artery

Ncl ξ = 0 ξ = 1 Ncl ξ = 0 ξ = 1 Ncl ξ = 0 ξ = 1

100 10 16 238 10 17 238 9 16
51 9 16 121 10 17 121 9 16
34 10 16 82 10 17 82 10 16
26 9 16 64 10 17 64 10 16
10 10 15 28 12 19 28 11 20
6 13 17 16 20 30 16 19 31
3 20 25 10 30 45 10 32 47

Table 3
The number of iterations of restricted additive Schwarz preconditioners with different overlapping sizes for the 
benchmark arteries.

Artery δ ξ = 0 ξ = 1

M1 M2,c M2,cl M1 M2,c M2,cl

Tube
0 45 32 14 81 64 36
1 25 21 10 38 33 16
2 22 18 9 32 28 14

Normal artery
0 91 33 11 122 52 26
1 55 21 10 70 36 17
2 46 20 9 63 33 17

Stenotic artery
0 91 29 12 118 50 22
1 53 23 9 73 37 16
2 40 19 9 62 34 15

summarize the number of iterations of different Schwarz preconditioners and based on the results, we see clearly that both 
two-level preconditioners can effectively improve the convergence and scalability of the one-level preconditioner and the 
central-line coarse preconditioner is the fastest for all cases. From Table 1, we observe that the systems corresponding to 
the resistance boundary condition are more difficult to solve than the pressure boundary condition and see clearly that 
the restricted version performs better for all cases. Therefore, in the next two tables, we focus on the restricted additive 
Schwarz preconditioners.

The coarse mesh size has a significant impact on the number of iterations. By coarsening the central-line mesh, we obtain 
a series of central-line meshes with Ncl mesh points, in Table 2, we show the number of iterations by different central-line 
meshes. We find that a modest coarse central-line mesh is sufficient to keep the number of iterations small. Next we show 
results with different overlapping size δ in Table 3. Although the number of iterations decreases with increasing δ, a small 
overlap often produces a better result in terms of the computing time.

5.2. Patient-specific cases

In this subsection, we focus on some more complicated patient-specific arteries including a three-branch case and a 
twelve-branch case, as shown in Fig. 9. For the three-branch case, we consider two meshes with 331370, 1079408 mesh 
points, for the twelve-branch case we consider three meshes with 243013, 985457, 1497225 mesh points. In the following 
experiments, the overlapping size is chosen as δ = 1. We restart GMRES at 30 and the stopping condition is the same as in 
the previous section.
15



Fig. 9. Pressure distributions (top) and fluid streamlines (bottom) on the three-branch artery (left) and the twelve-branch artery (right) when t = 0.02 s.

Fig. 9 shows the computed pressure field and the streamlines of the velocity field on the finer meshes when t = 0.02 s. 
Fig. 10 shows the time history of pressure and velocity at five points (see marks on Fig. 9) for a heart beat with the constant 
pressure boundary condition. It is easy to see that the waveforms are similar at different locations, but the velocity lags 
behind the pressure to reach the peak and trough, and especially the pressure peak and trough appear near the maximum 
and minimum acceleration, respectively, which seems to be reasonable from the momentum equation when the outlet 
pressure is fixed. Table 4 shows the number of iterations for the additive Schwarz and the restricted additive Schwarz 
methods for complex arteries, where the central-line mesh with Ncl = 88 for the three-branch case and Ncl = 677 for the 
twelve-branch case are used for M2,cl . The problems are harder than the benchmark problems, and some of the methods 
converge slowly or sometime don’t converge. We observe that the number of iterations of the one-level preconditioner is 
very large (more than 500) for many cases, while both two-level preconditioners can greatly improve the convergence of the 
one-level preconditioner. For the twelve-branch artery with the resistance boundary condition, the piecewise constant coarse 
preconditioner performs poorly, especially for the finer mesh. We also find that the new central-line coarse preconditioner 
preforms well for all cases. Further in Fig. 11, we show the iteration history and the residual history. It can be seen that both 
two-level preconditioners have almost geometric convergence rates for the patient-specific artery, whereas the one-level 
method converges quickly in the first few iterations and then slowly in the later steps. We see clearly that the central-line 
preconditioner is robust with respect to the complex geometry of the artery.

In Table 5, we show the effect of the coarse mesh size of the central-line preconditioner on the number of iterations. We 
see that too many or too few mesh points both have a negative impact on the number of iterations, which may be caused by 
insufficient fitting for the smooth centerline or excessively interpolating from the central-line space to the three-dimensional 
space.

6. Conclusion

Multilevel additive Schwarz preconditioner is a useful technique in the implicit solution of the incompressible flow 
problem for simulating blood flows in three-dimensional arteries. However, as the geometry of the patient-specific arte-
rial network becomes more complex, the coarse space is harder to design. Without a good coarse space, the robustness 
and efficiency of the preconditioned Krylov subspace suffers greatly. Thanks to the effective approximation of the one-
dimensional model for blood flows in the artery, we use it to construct a simple, effective coarse preconditioner. Using the 
multiscale restriction and extension matrices obtained by piecewise linear and radial basis interpolations, we can integrate 
the central-line coarse preconditioner and the one-level additive Schwarz preconditioner into a two-level additive Schwarz 
preconditioner. Compared with other three-dimensional coarse preconditioners, the derivation of the preconditioner and 
the software implementation are more complicated, but the computational cost is much less. Note that the one-dimensional 
model with the assumption of axisymmetric profile and the coarse preconditioner are studied in the context of Stokes 
Y. Liu and X.-C. Cai Journal of Computational Physics 490 (2023) 112290
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Fig. 10. The time history of pressure and velocity at five points (A, B, C, D, E) for a heart beat. Left: the three-branch artery; right: the twelve-branch artery.
17
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Table 4
The number of GMRES iterations with three different additive Schwarz preconditioners for the patient-specific arteries, where N1 = 331370, N2 =
1079408, N3 = 243013, N4 = 985457, N5 = 1497225 and ‘-’ means the number of GMRES iterations more than 500.

Artery N np AS RAS

ξ = 0 ξ = 1 ξ = 0 ξ = 1

M1 M2,c M2,cl M1 M2,c M2,cl M1 M2,c M2,cl M1 M2,c M2,cl

Three-branch 
artery

100 - 29 14 - 47 29 275 25 15 - 36 28
N1 200 - 43 19 - 59 43 388 28 17 - 47 30

300 - 28 22 - 41 51 448 20 18 - 27 35
300 - 28 19 - 43 48 306 19 16 - 30 36

N2 500 - 36 22 - 59 55 341 24 19 - 43 39
1000 - 32 27 - 44 75 380 23 22 - 33 42

Twelve-branch 
artery

100 188 34 20 - 85 45 156 35 15 - 75 51
N3 200 - 53 23 - 135 52 237 41 16 - 82 55

300 - 58 20 - 287 53 247 51 16 - 138 56
300 - 57 22 - - 54 251 40 16 - - 52

N4 500 - 59 21 - - 61 351 38 16 - - 54
1000 - 59 29 - - 74 358 38 17 - - 58
500 - 74 20 - - 67 338 56 15 - - 57

N5 1000 - 53 25 - - 74 430 40 17 - - 68
1500 - 58 26 - - 78 451 50 18 - - 74

Fig. 11. The number of iterations of preconditioners for the patient-specific arteries (top: the three-branch artery; bottom: the twelve-branch artery) with 
the constant pressure boundary condition (left) or the resistance boundary condition (right).

equations and such a technique is useful only for artery-like domains, not for general purpose. For the general Navier-Stokes 
equations in hemodynamics, as the effect of the nonlinear term, the one-dimensional model may be less effective to approx-
imate the transverse component. Consequently the performance of the central-line coarse preconditioner might be affected 
and need to be further investigated.
18
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Table 5
The effect of different sizes of the central-line mesh on the number of iter-
ations for the patient-specific arteries.

Three-branch artery Twelve-branch artery

Ncl ξ = 0 ξ = 1 Ncl ξ = 0 ξ = 1

247 14 45 1948 17 66
128 16 38 998 16 59
88 22 42 677 17 58
69 28 54 522 18 54
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