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ABSTRACT
Knowledge graph (KG) schema, which prescribes a high-level struc-
ture and semantics of a KG, is significantly helpful for KG comple-
tion and reasoning problems. Despite its usefulness, open-domain
KGs do not practically have a unified and fixed schema. Existing
approaches usually extract schema information using entity types
from a KG where each entity 𝑒 can be associated with a set of
types {𝑇𝑒 }, by either heuristically taking one type for each en-
tity or exhaustively combining the types of all entities in a fact
(to get entity-typed tuples, (ℎ_𝑡𝑦𝑝𝑒, 𝑟, 𝑡_𝑡𝑦𝑝𝑒) for example). How-
ever, these two approaches either overlook the role of multiple
types of a single entity across different facts or introduce non-
negligible noise as not all the type combinations actually support
the fact, thus failing to capture the sophisticated schema informa-
tion. Against this background, we study the problem of model-
ing hyper-relational schema, which is formulated as mixed hyper-
relational tuples ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...) with two-fold hyper-
relations: each type set {𝑇 } may contain multiple types and each
schema tuple may contain multiple key-type set pairs (𝑘, {𝑇𝑣}).
To address this problem, we propose HELIOS, a hyper-relational
schema model designed to subtly learn from such hyper-relational
schema tuples by capturing not only the correlation between mul-
tiple types of a single entity, but also the correlation between types
of different entities and relations in a schema tuple. We evaluate
HELIOS on three real-world KG datasets in different schema pre-
diction tasks. Results show that HELIOS consistently outperforms
state-of-the-art hyper-relational link prediction techniques by 20.0-
29.7%, and is also much more robust than baselines in predicting

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612184

types and relations across different positions in a hyper-relational
schema tuple.
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1 INTRODUCTION
Knowledge Graphs (KGs) [27], such as Freebase [4], Wikidata [63]
or Google’s Knowledge Graph [20], have become a promising data
management paradigm powering a wide range of Web applications,
such as semantic search [66], question-answering [68], or recom-
mender systems [71]. Traditionally, KGs are represented as a set of
triplets; each triplet (head, relation, tail), or (h,r,t) for short, repre-
sents a fact that encodes a relation connecting a head entity to a tail
entity, such as (Apple, headquarter location, Cupertino). To better de-
scribe real-world facts, modern KGs often contain hyper-relational
facts [13, 21, 22, 36, 47, 61, 72], where a base triplet (ℎ, 𝑟, 𝑡) is fur-
ther associated with an arbitrary number of key-value1 pairs (𝑘, 𝑣)
describing additional information about the triplet, represented as
(ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...). Figure 1 shows a real-world example on Wikidata
(Apple, industry, software industry, in scope of, computer program,
in scope of, operating system) involving four entities. To effectively
make use of KGs, link prediction tasks [40, 57] have been widely
adopted to solve KG completion and reasoning problems, such as
(ℎ, 𝑟, ?) or (ℎ, ?, 𝑡, 𝑘1, 𝑣1, ...), where the question mark represents
the missing element (entity or relation) to be predicted. Existing
1Although a key-value pair indeed refers a relation-entity pair in this paper, the term
key-value is used to differ from the elements in the base triplet, as it has been shown
that the base triplet contains primary information about the KG while the key-value
pairs contain secondary information describing the triplet [22, 47].
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Figure 1: A real-world example of (hyper-relational) facts
and their associated entity types fromWikidata. Note that
entity types listed in the blue box next to each entity are not
exhaustive due to space limitation.

approaches to this problem usually learn to capture the structural
information of the KG encoded in the facts, and generate a ranking
list of all entities or relations for the missing element, where the
top ones are the most plausible answers.

To effectively solve such link prediction tasks over a KG, the
schema information of the KG, which prescribes a high-level struc-
ture and semantics that the KG follows or should follow [26], has
been shown to be significantly useful [21, 36, 38, 48, 62]. For ex-
ample, when predicting (Apple, headquarter location, ?), the corre-
sponding schema represented as an entity-typed tuple (enterprise,
headquarter location, ?) could suggest that the missing tail entity is
likely to be of type city (according to pre-extracted schema rules
such as RETA-Filter [47], for example); this can then serve as a
strong clue to further favor the entities of this type in the predic-
tion. In the current literature, such schema information can be used
as a pre-processing filter to reduce the solution space of link pre-
diction problems [48], as an additional input together with a fact
for scoring the plausibility of the fact [21, 24, 28, 36, 43, 59, 65], or
as a post-processing step to check the schema correctness of the
predicted facts [62]. Therefore, a high-quality schema of the KG
is essential to boost the performance of link prediction tasks, and
these existing work [21, 36, 48, 62] assume knowing the golden
schema of a KG. However, in practice, open-domain KGs such as
Wikidata do not have a unified and fixed schema [1, 48, 73]. Even
though some effort such as Schema.org has been made to create
unified and shared schemas for structured data on the Web, such
schemas still have a low coverage on the Web, and thus have not
been widely adopted by modern KGs.

In the background, existing methods extract schema information
using entity types from KGs [21, 24, 36, 48]. Specifically, each entity
in a KG is often associated with one or multiple types as shown in
the blue boxes in Figure 1. Existing approaches either heuristically
take one type for each entity [21, 36] (according to the type popu-
larity in the KG, for example), or exhaustively combine the types
of all entities in a fact to extract schema rules [24, 48]. However,
both approaches fail to consider the sophisticated schema informa-
tion in KGs. First, assuming one type per entity oversimplifies the
schema of the KGs and overlooks the role of multiple types of a
single entity in different facts [59]. For example, in the facts (Apple,

headquarter location, Cupertino) and (Apple, logo image, Apple logo)
as shown in Figure 1, the appropriate types for the entity Apple
should be different, i.e., enterprise and brand, respectively. Second,
the exhaustive combination of the types of all entities in a fact
faces two challenges. On one hand, it introduces non-negligible
noise to the schema, as only some of the type combinations actually
support the fact while others may make less sense. For example,
for the fact (Apple, board member, Arthur D. Levinson) in Figure 1,
exhaustive combination (of all head and tail types together with
the relation [48]) will get a tuple (brand, board member, human),
which is obviously less reasonable than (corporation, board member,
human). On the other hand, the exhaustive combination also incurs
significant computational overhead. If one entity has𝑚 types on av-
erage, we will extract𝑚𝑛 entity-typed tuples for a hyper-relational
fact, which grows exponentially with the number of entities 𝑛 (a.k.a.
arity) in the hyper-relational fact.

Against this background, we study the problem of modeling
hyper-relational schema from KGs. Instead of heuristically assum-
ing one type per entity or exhaustively combining entity typeswhen
extracting schema information, we define hyper-relational schema2
as mixed hyper-relational tuples ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...), where
{𝑇𝑒 } represents the set of types for the entity 𝑒 . The meaning of
hyper-relations here are two folds: 1) each type set could contain an
arbitrary number of entity types; and 2) each schema tuple involves
a base triplet ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }) associated with an arbitrary number
of key-(type)set pairs (𝑘, {𝑇𝑣}). Moreover, different from existing
works extracting schema information as hard rules for downstream
tasks [1, 48, 62, 70], we formulate a schema prediction problem,
predicting a missing element in a hyper-relational schema tuple,
such as (?, 𝑟 , {𝑇𝑡 }) or ({𝑇ℎ}, ?, {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }), where the missing
elements are a set of types or a relation, respectively. To solve this
problem, we propose HELIOS, a Hyper-rELatIOnal Schema model
designed to learn from such hyper-relational schema tuples. Specifi-
cally, for a hyper-relational schema tuple ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...),
it first captures the correlation between multiple types of a single
entity accounting for the specific context of the schema tuple; we
use Graph Attention Networks (GATs) to encode a type set into a
contextualized type feature vector, which can dynamically capture
the role of multiple types of the same entity across different facts
(as evidenced by our experiments and case studies below). After-
ward, it captures the correlation between types of different entities
and relations in the schema tuple, by feeding the contextualized
type features together with relations to a self-attention network
with learnable edge biases discriminating connections between
different elements in the schema tuple. HELIOS is trained using
a masked training process, being able to predict any missing ele-
ments in a hyper-relational schema tuple. Our contributions can be
summarized as follows:
• We revisit the drawbacks of existing approaches on extract-
ing and using KG schema for link prediction, and propose to
study a novel problem of modeling hyper-relational schema
which are formulated as mixed hyper-relational schema tuples
({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...).

2Note that as a triple fact/schema tuple is indeed a special case of a hyper-relational
fact/schema tuple without key-value pairs, wewill use the hyper-relational fact/schema
tuple referring to both of them unless specified otherwise.
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• We propose HELIOS to subtly model the two-fold hyper-relations
for solving schema prediction problems, capturing not only the
correlation between multiple types of a single entity, but also the
correlation between types of different entities and relations in a
hyper-relational schema tuple.

• We conduct a thorough evaluation of HELIOS compared to a siz-
able collection of baselines on three real-world KG datasets. Re-
sults show that HELIOS consistently outperforms state-of-the-art
hyper-relational link prediction techniques in both type and rela-
tion prediction tasks, yielding 29.7% and 20.0% improvement over
the best-performing baselines, respectively. Moreover, HELIOS
achieves much more robust performance than baselines in pre-
dicting types and relations at any positions in a hyper-relational
schema tuple, showing 76.6% and 72.7% smaller coefficients of
variation than the best-performing baselines, respectively.

2 RELATEDWORK
2.1 (Hyper-relational) Link Prediction over KGs
Link prediction tasks [40, 57] have been widely used to solve KG
completion and reasoning problems. Under the widely adopted
triple representation of facts (ℎ, 𝑟, 𝑡), early work resorted to rule-
and feature-based relational learning [17, 35] or using hand-crafted
features [31, 42]. Recently, KG embedding techniques [46] have been
used to learn representations of entities/relations in a KG, which can
then be effectively used for resolving link prediction tasks. These
techniques fall into two broad categories [57]. First, translational
distance models exploit distance-based scoring functions to create
the embeddings, such as TransE [6] learning from triplets (ℎ, 𝑟, 𝑡)
to preserve ℎ + 𝑟 ≈ 𝑡 . Several works further improved TransE to
capture richer KG structures, such as involving relation-specific
hyperplanes [60] or spaces [14, 29, 34]. Second, semantic matching
models exploit similarity-based scoring functions, such as RESCAL
[41] which represents each entity as a vector and each relation as
a matrix, and then uses a bilinear function to model the relation
between two entities. Several works later extended RESCAL by
reducing the complexity of the models [52, 67], by improving the
model expressiveness [3], or by modeling non-linear relations using
neural networks [2, 12, 39, 50, 54].

Some recent works have shown that the triple representation of
a KG oversimplifies the complex nature of the data stored in the
KG [23, 47], in particular for hyper-relational data where each fact
contains multiple relations and entities, as shown in Figure 1. Some
existing work adopted an n-ary representation for hyper-relational
facts, i.e., a set of key-value (relation-entity) pairs [23, 36, 61, 72].
As a typical example in [21, 23], a hyper-relational fact (ℎ, 𝑟, 𝑡)
with (𝑘, 𝑣) is transformed into {𝑟ℎ :ℎ, 𝑟𝑡 :𝑡 , 𝑘 :𝑣} by converting the
relation 𝑟 into two keys 𝑟ℎ and 𝑟𝑡 , associated with head ℎ and tail 𝑡 ,
respectively. There is also a variation of this n-ary representation
[36, 61, 72], where a hyper-relational fact (ℎ, 𝑟, 𝑡) with (𝑘, 𝑣) is asso-
ciated with a meta-relation, represented as an ordered list of keys
(relations), such as 𝑅 := (𝑟ℎ, 𝑟𝑡 , 𝑘); the fact is then represented as a
list of ordered values associated with the meta-relation {𝑅, (ℎ, 𝑡, 𝑣)}.
Using such n-ary representations, these techniques learn either the
relatedness between entity-relation pairs [21, 23], or relatedness
among all entities in a fact [36, 61, 72] for link prediction. However,
recent studies [22, 47] revealed that the base triplets (ℎ, 𝑟, 𝑡) serve

as the fundamental data structure in the KGs and preserve the es-
sential information for link prediction (which should not be treated
identically as key-value pairs (𝑘, 𝑣)), and suggested learning directly
from hyper-relational facts. Following this fashion, HINGE [47] and
NeuInfer [22] use two different feature extraction pipelines for the
base triplets and key-value pairs, respectively, and then merge the
two feature vectors for link prediction; StarE [18], Hy-Transformer
[69], GRAN [58], and QUAD [53] design Graph Neural Networks
(GNNs) to encode the base triplets together with key-value pairs
using transformer [55] for link prediction.

Our work differs from these hyper-relational link prediction
techniques by focusing on hyper-relational schema tuples (with the
two-fold hyper-relations) instead of hyper-relational facts. We show
in our experiments that existing hyper-relational link prediction
techniques fail to capture the sophisticated correlation of entity
types in a hyper-relational schema tuple, resulting in suboptimal
performance.

2.2 Schema of KGs
The schema of a KG prescribes a high-level structure and semantics
that the KG follows or should follow [26]. For domain-specific KGs,
their schema is usually manually defined and usually has a small
scale. For example, the medical KG in [32] defines 9 entity types
and 9 relations. Note that in traditional KGs, a relation is manu-
ally defined to connect two specific entity types only. However,
open-domain KGs (e.g., Wikidata [63] and Freebase [4]) usually do
not have a unified and fixed schema [1, 48, 73]; for some dynamic
KGs, relevant and irrelevant entity types can even change over
time [73]. Subsequently, KG schema (or ontology) extraction has
been investigated (a.k.a., ontology learning, taxonomy extraction,
or ontology population), for purposes including refining and com-
pleting an existing ontology [33, 64], adapting a known ontology to
a new KG [16], or building an ontology from scratch [44, 45], from
either a given KG [24] or text corpora [8]. Traditional ontology
population approaches mostly require extensive manual efforts,
extracting ontology rules from large annotated text corpora [19],
which is significantly different from our problem settings. Recent
solutions resort to graph embedding techniques for link prediction
on ontology-level graphs [7] or on fact- and ontology-level graphs
jointly [24]. These studies assume to have a golden ontology-level
graph (i.e., schema) such as [10] and focus on the triple represen-
tation. In this paper, we study the schema modeling problem on
fact-level KGs under the hyper-relational representation.

In the background of link prediction over KGs, schema informa-
tion has been shown to be significantly helpful [21, 24, 36, 48, 62].
Existing approaches use such schema information in different stages
of link prediction tasks: 1) as a pre-processing filter to reduce the
solution space before link prediction [48]; 2) as an additional input
together with a fact fed to link prediction techniques [21, 24, 28, 36,
43, 59, 65]; 3) as a post-processing step to verify the schema correct-
ness of the predicted facts [62]. Existing work extract schema infor-
mation resorting to entity types from KGs, by either heuristically
assuming only one type [21, 36] for each entity or exhaustively com-
bining the types of all entities in a fact [24, 48]. However, we argue
that these approaches fail to consider the sophisticated schema in-
formation in KGs, and propose to study the hyper-relational schema
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Figure 2: Overview of our proposed HELIOS with three mod-
ules: 1) Learning from type sets, 2) Learning from schema
tuples, and 3) Prediction with mask.

modeling problem, making predictions over mixed hyper-relational
schema tuples ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...).

3 MODELING HYPER-RELATIONAL SCHEMA
In this section, we introduce HELIOS, a hyper-relational schema
embedding model learning directly from hyper-relational schema
tuples. A couple of formal definitions are presented:

Definition 3.1. Entity type set. An entity type set is the collection
of types {𝑇𝑒 } of an entity 𝑒 in a given KG.

Definition 3.2. Hyper-relational schema tuple: A hyper-relat-
ional schema tuple contains a base triplet ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }) associated
with an arbitrary number of key-(type)set pairs (𝑘𝑖 , {𝑇𝑣𝑖 }).

Based on the above definitions, we introduce our HELIOS model
as shown in Figure 2. Specifically, HELIOS consists of three parts.
For an input hyper-relational schema tuple, it 1) learns from the
type set to capture the correlation between multiple types for each
entity, generating a contextualized type feature vector, 2) learns
from the hyper-relational schema tuple to capture the correlation
between contextualized type feature vectors and relations, and
3) makes predictions with mask tokens for resolving our schema
prediction tasks. We present the three modules in detail below.

3.1 Learning from Type Sets
In a hyper-relational schema tuple, each entity type set could con-
tain an arbitrary number of types as shown in Figure 1. To accom-
modate the variation of the size of the type set and capture the
dynamic correlation between multiple types of the type set across
different hyper-relational schema tuples, we propose a two-level

type set embedding paradigm inspired by the contextualized word
embedding techniques [5, 25, 49]. Specifically, for a type set, we use
a Graph Attention Network (GAT) [56] in the first level to model
the intrinsic interaction between its contained types and generate a
static type feature vector of the type set. In the second level, another
GAT is applied to dynamically adjust the importance of each type
in the type set accounting for their role in the specific context of
a hyper-relational schema tuple, by incorporating the static type
feature vectors of other type sets in the hyper-relational schema
tuple into modeling, and thus generate the final contextualized type
feature vector of the type set.

In the first level, for each type set {𝑇𝑒 }, we construct a fully-
connected graph G𝑒 with self-loops, where each type 𝑒_𝑡𝑦𝑝𝑒𝑝 ∈
{𝑇𝑒 } is a node 𝑝 in G𝑒 ; the fully-connected graph gives the maxi-
mum flexibility to GAT to learn to capture the correlation between
multiple types of the same entity. Without loss of generality, we
depict a single graph attention layer in the following. To encode
the correlation between types, an attention mechanism 𝑎 is applied
to every pair of nodes 𝑒_𝑡𝑦𝑝𝑒𝑝 , 𝑒_𝑡𝑦𝑝𝑒𝑞 ∈ {𝑇𝑒 } in the graph G𝑒 to
obtain the attention weights indicating the importance of node 𝑞
to node 𝑝:

𝑒𝑝𝑞 = 𝑎

(
W−−−−−→
𝑒_𝑡𝑦𝑝𝑒𝑝 ,W

−−−−−→
𝑒_𝑡𝑦𝑝𝑒𝑞

)
(1)

where −−−−−→
𝑒_𝑡𝑦𝑝𝑒𝑝 ,

−−−−−→
𝑒_𝑡𝑦𝑝𝑒𝑞 ∈ R𝐹 refer to the input embeddings of

node 𝑝 and 𝑞, respectively. 𝐹 denotes the embedding size and W ∈
R𝐹×𝐹 denotes the shared linear transformation to enhance the
representability of node features. The attention mechanism 𝑎 :
R𝐹 ×R𝐹 → R is inherited from [56], employing a single layer feed-
forward neural network with the LeakyReLU [37] as the non-linear
activation function. To normalize the attention weights across all
choices of node 𝑞, a softmax function is utilized:

𝛼𝑝𝑞 = softmax𝑞
(
𝑒𝑝𝑞

)
=

exp
(
𝑒𝑝𝑞

)∑
𝑚∈N𝑝

exp
(
𝑒𝑝𝑚

) (2)

where N𝑝 denotes the set of neighbors of node 𝑝 . Since G𝑒 is a
fully-connected graph with self-loops, N𝑝 corresponds to all node
sets in the graph, including node 𝑝 itself. Afterward, the normalized
attention weights are used to compute the linear combination of
input embeddings to update the embedding of node 𝑝:

−−−−−→
𝑒_𝑡𝑦𝑝𝑒

′
𝑝 = 𝜎

©«
∑︁
𝑞∈N𝑝

𝛼𝑝𝑞W
−−−−−→
𝑒_𝑡𝑦𝑝𝑒𝑞

ª®¬ (3)

where 𝜎 (·) refers to the ELU [9] activation function. Here,W is the
same linear transformation parameter as that in Eq. (1). Through a
multi-layer GAT with the number of layers 𝐿𝑡 , the profound feature
of each type is learnt. Finally, we use the sum readout function, i.e.,
sum all type features to get the static type feature vector 𝑠𝑒 with
respect to the type set.

In the second level, we also build a fully-connected graphG′
𝑒 with

self-loops for each type set {𝑇𝑒 }. Here G
′
𝑒 not only contains nodes

denoting types in {𝑇𝑒 } but also nodes denoting static type feature
vectors of other type sets in the same hyper-relational schema tuple
obtained from the first level. Similar to the first level, we also resort
to a GAT of 𝐿

′
𝑡 layers to model the complex correlation between

nodes, which can dynamically adjust the importance of types in
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{𝑇𝑒 } with the consideration of other static type feature vectors,
resulting in the final contextualized type feature vector 𝑠

′
𝑒 .

3.2 Learning from Schema Tuples
After being processed by the previous module, each type set {𝑇𝑒 } is
encoded into a contextualized type feature vector 𝑠

′
𝑒 . Subsequently,

a hyper-relational schema tuple ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...) is trans-
formed into (𝑠 ′

ℎ
, 𝑟 , 𝑠

′
𝑡 , 𝑘1, 𝑠

′
𝑣1 , ...). To capture the correlation between

types of different entities and relations in the schema tuple, we
feed the contextualized type features together with relations to a
self-attention network with learnable edge biases discriminating
connections between different elements in the schema tuple. We
adopt a masked training process, making HELIOS able to predict
any missing (masked) elements in a hyper-relational schema tuple.
As shown in Figure 2, the missing type set in the hyper-relational
schema tuple is replaced by a [MASK] token. Then the schema tuple
is fed into a self-attention network to learn the inherent correlation
between elements in the schema tuple. Without loss of generality,
we present a single self-attention layer below. Following the tradi-
tional fully-connected attention paradigm [55], for an input element
®𝑢𝑖 in the schema tuple 𝑢𝑖 ∈ {𝑠 ′

ℎ
, 𝑟 , 𝑠

′
𝑡 , 𝑘1, 𝑠

′
𝑣1 , ...}, ®𝑢𝑖 is first projected

into attention query, key and value3 W𝑄 ®𝑢𝑖 ,W𝐾 ®𝑢𝑖 ,W𝑉 ®𝑢𝑖 ∈ R𝐹
by linear transformation parameters W𝑄 ,W𝐾 ,W𝑉 ∈ R𝐹×𝐹 . To
measure the similarity between elements, a scaled dot-product is
applied:

𝛽𝑖 𝑗 =

(
W𝑄 ®𝑢𝑖

)⊤ (
W𝐾 ®𝑢 𝑗 + ®𝑐𝐾

𝑖 𝑗

)
√
𝐹

(4)

where ®𝑐𝐾
𝑖 𝑗

(and also ®𝑐𝑉
𝑖 𝑗

below) refers to learnable edge biases on
attention key (and value)3 [51, 58]. In a self-attention layer, a hyper-
relational schema tuple can also be regarded as a fully-connected
graph, and edge biases specify different edge classes between ele-
ments to discriminate connections between different elements in
the schema tuple. In the background, inspired by [58], edge biases
are divided into five categories according to edge classes, namely
(𝑠 ′
ℎ
, 𝑟 ), (𝑠 ′𝑡 , 𝑟 ), (𝑟, 𝑘), (𝑘, 𝑠

′
𝑣) and others not included in the above cat-

egories. Notably, edge biases are independent of edge direction. For
instance, (𝑠 ′

ℎ
, 𝑟 ) and (𝑟, 𝑠 ′

ℎ
) belong to the same edge class and will

share the same edge bias. With the above definition of edge biases,
the detailed formation of edge-biased fully-connected attention is
shown in Figure 2 as an adjacency matrix. Such an attention mecha-
nism can facilitate the representation of self-attention by modeling
the relative position of elements in the schema tuple [51, 58]. After
deriving the similarity scores 𝛽𝑖 𝑗 , a softmax function is used to
normalize the scores and the edge biases ®𝑐𝑉

𝑖 𝑗
on the attention value3

is also added when updating the embedding of element ®𝑢𝑖 :

®𝑢
′
𝑖 =

𝑁∑︁
𝑗=1

exp
(
𝛽𝑖 𝑗

)∑𝑁
𝑘=1 exp (𝛽𝑖𝑘 )

(
W𝑉 ®𝑢 𝑗 + ®𝑐𝑉𝑖 𝑗

)
(5)

where𝑁 denotes the number of elements in the schema tuple. Using
this self-attention layer with learnable edge biases, a multi-layer
self-attention network can generate the informative embedding of
[MASK] token to predict the missing element.
3Note that attention key and value are completely irrelevant to the key-value pairs in
a hyper-relational schema tuple.

Table 1: Statistics of the datasets

Dataset JF17K WikiPeople WD50K
#Types 613 2127 4186
#Relations 501 178 531
#Types per type set 5.35 1.26 1.35
#Training tuples 76379 294439 166429
Triple+Hyper (%) 57.9%+42.1% 97.4%+2.6% 86.2%+13.8%
#Test tuples 6144 9472 46158
Triple+Hyper (%) 42.4%+57.6% 97.2%+2.8% 86.9%+13.1%

3.3 Prediction with Mask
The previous module outputs the final embedding of [MASK] to-
ken, denoted as ®𝑥𝑀 therein. To make predictions, a single layer of
linear transformation with softmax function is used to generate the
prediction of the type set:

p = softmax
(
W𝑀 ®𝑥𝑀 + ®𝑏𝑀

)
(6)

whereW𝑀 corresponds to the weight matrix of the input embed-
ding layer with respect to type set and ®𝑏𝑀 is a learnable type set
bias. The final output p is a probability distribution over all types
in KG. Such prediction scores target elements against all candi-
dates simultaneously, which accelerates the convergence speed and
improves the prediction efficiency [12]. Note that for predicting
missing a relation, the learnable parameters W𝑀 and ®𝑏𝑀 in Eq. (6)
correspond to the weight matrices of the input embedding layer of
relation and relation bias, respectively.

3.4 Model Training
In a hyper-relational schema tuple ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...) ∈ R𝑁 ,
we mask every element in turn to expand the number of training
instances from 1 to 𝑁 . Thus, each instance corresponds to a missing
(masked) element to be predicted. Such an expansion enables the
model to smoothly learn to predict any missing (masked) elements
in a hyper-relational schema tuple. To train the model parameters,
we minimize a cross-entropy loss using Adam optimizer [30].

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We conduct experiments on three commonly used
hyper-relational KG datasets JF17K [47], WikiPeople [47], and
WD50K [18], where the training and test datasets are already split
by the data providers. As these datasets do not contain information
about entity types, we crawl the entity type information from their
corresponding data sources (Freebase and Wikidata) referring to
[48]. For Freebase, we extract entity types directly from the entity
node described as “/type/object”. For Wikidata, we collect entity
types by crawling through the property “instance_of” for each
entity. Note that we treat all types equally in this work, and leave the
hierarchy of entity types as future work. For each hyper-relational
fact (ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...), we replace the entity by its type set to obtain
our hyper-relational schema tuples ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...). In
the training process, we skip all schema tuples that appear in the test
to avoid data leakage. Table 1 shows the statistics of our datasets.

4.1.2 Baselines. We compareHELIOS against a sizable collection of
state-of-the-art techniques of hyper-relational link prediction over
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KGs, including: NaLP [23] learns the relatedness between relation-
type pairs under the n-ary representation of entity-typed tuples;
HINGE [47] captures both the triple-wise and quintuple-wise re-
latedness between elements in entity-typed tuples; NeuInfer [22]
models both primary entity-typed triplet and its associated key-
type pairs; RAM [36] captures the latent compatibility between
the meta-relation and all involved entity types by a pattern matrix;
GRAN [58] represents the entity-typed tuple as a heterogeneous
graph and captures the inter-vertex interactions via self-attention
mechanism; StarE [18] transforms an entity-typed tuple into a di-
rected heterogeneous graph and extract the inter-vertex interaction
using a GNN encoder; Hy-Transformer [69] extends StarE substi-
tuting the graph encoder by a light-weight relation/type embedding
technique; QUAD [53] also extends StarE by adopting two sepa-
rate aggregators to encode the primary entity-typed triplets and
associated key-type pairs, respectively. Detailed hyperparameter
settings of baselines and HELIOS are in Appx. A.1. The code and
data of HELIOS are available online here4.

4.1.3 Dataset Transformation. As discussed in the introduction,
our hyper-relational schema tuples ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }, ...) need
to be transformed to entity-typed tuples by replacing each type set
by a single type (ℎ_𝑡𝑦𝑝𝑒, 𝑟, 𝑡_𝑡𝑦𝑝𝑒, 𝑘1, 𝑣1_𝑡𝑦𝑝𝑒, ...) for the baseline
methods. There are two common settings as follows.
• One type kept for each entity [21, 36]. In this setting, we keep
only the most popular type for each entity, where the popularity
of types refers to their frequency in the dataset. Subsequently,
we obtain one entity-typed tuple from each schema tuple.

• Exhaustive combination of types [24, 48]. In this setting, for one
schema tuple such as ({𝑇ℎ}, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }), we generate a set
of entity-typed tuples of size |{𝑇ℎ}| · |{𝑇𝑡 }| · |{𝑇𝑣1 }| by exhaustively
combining types of all entities such as {(ℎ_𝑡𝑦𝑝𝑒, 𝑟, 𝑡_𝑡𝑦𝑝𝑒, 𝑘1,
𝑣1_𝑡𝑦𝑝𝑒) |ℎ_𝑡𝑦𝑝𝑒 ∈ {𝑇ℎ}, 𝑡_𝑡𝑦𝑝𝑒 ∈ {𝑇𝑡 }, 𝑣1_𝑡𝑦𝑝𝑒 ∈ {𝑇𝑣1 }}.

We denote our hyper-relational schema tuples as Original setting.

4.1.4 Evaluation Tasks and Metrics. Schema prediction tasks pre-
dict a missing element in a hyper-relational schema tuple, such as
(?, 𝑟 , {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }) or ({𝑇ℎ}, ?, {𝑇𝑡 }, 𝑘1, {𝑇𝑣1 }), where the missing
elements are a type set or a relation, respectively. For the missing
type set (or relation) in a test schema tuple, a ranking list of types (or
relation) is predicted. In this ranking list, in addition to the ground
truth from the test tuple, other type sets (or relation) might also be
true; we thus adopt the filtered setting introduced by [6], removing
them from the ranking list. As a type set usually contains multiple
types as ground truth (also for one type and exhaustive settings), we
report Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG) for a fair comparison. We report the
average results in predicting: 1) All type sets {𝑇ℎ}, {𝑇𝑡 } and {𝑇𝑣},
and their statistic breakdown; 2) Head and tail type H/T type sets
{𝑇ℎ} and {𝑇𝑡 }; 3) Value type sets {𝑇𝑣}; 4) All relation 𝑟 and 𝑘 ,
and their statistic breakdown; 5) Primary relation 𝑟 ; 6) Key 𝑘 .

Note that for the dataset transformation exhaustive setting when
the size of type sets |{𝑇 }| is large, a particular problem for eval-
uation occurs. As baseline techniques can only make predictions
on a single entity-typed tuple, for each test schema tuple with one
missing element, we generate a set of entity-typed tuples and each
4https://github.com/UM-Data-Intelligence-Lab/HELIOS_code

baseline technique thus generates a set of ranking lists for the miss-
ing element, while we have a unique ground truth for that missing
element. Therefore, to bridge this gap, we first aggregate these
ranking lists using Reciprocal Rank Fusion [11], and then evaluate
the aggregated ranking list against the ground truth.

4.2 Schema Prediction Performance
We compare the schema prediction performance of HELIOS against
all baselines under both data transformation settings. For each
dataset transformation setting, we highlight the best-performing
results on each task and for each dataset.

4.2.1 Overall Performance Comparison (All type and All rela-
tion). Table 2 shows the overall performance on all three datasets.
We observe that HELIOS consistently outperforms all baseline tech-
niques, achieving 29.7% and 20.0% improvement on average over
the best baselines in predicting types and relations, respectively. In-
terestingly, we observe that comparing the two data transformation
settings, there is no clear advantage of one over the other. While
One type may overlook useful schema information, Exhaustive may
introduce noisy entity-typed tuples; both lead to degraded schema
prediction performance to some extent. Our HELIOS learns directly
from entity type sets, resulting in the best performance.

In terms of computational overhead, our HELIOS also outper-
forms baselines with exhaustive settings. For example, on our bench-
mark hardware (Intel Xeon5320@2.20GHz, 128GB RAM@3200Hz,
NVIDIA GeForce RTX 3090 24GB, Ubuntu 18.04), the training pro-
cess of HELIOS takes 23.0 seconds per epoch on JF17K dataset,
while the best-performing baselines GRAN and RAM spend 364.7
and 177.5 seconds per epoch, respectively. This is because the 76,379
training tuples on JF17K dataset are transformed to 1,235,401 (∼16x
more) tuples with the exhaustive setting.

Moreover, we show two case studies of the attention weights of
types learnt by HELIOS in Figure 3. First, in Figure 3a, the most
supportive entity-typed tuples for the two facts are (corporation,
board member, human) and (technology company, product or material
produced, electronics), respectively, despite the two facts have the
same head entity Apple. This implies that the role of multiple types
of a single entity varies in different facts. Second, in Figure 3b, the
most supportive entity-typed tuple for the two facts are (corporation,
board member, human) and (comprehensive academic and research
university, member of, coalition), respectively, even though their
head entities share the same type corporation. In other words, the
same type corporation shows different levels of importance in these
two facts. In summary, in both cases, HELIOS effectively identifies
the most supportive entity-typed tuples, which cannot be captured
by existing approaches with One type or Exhaustive settings.

4.2.2 Entity Type Prediction Performance Comparison (H/T type
and Value type). Table 3 shows the entity type prediction per-
formance. We observe that HELIOS consistently achieves the best
performance, yielding 29.4% and 42.0% improvement over the best-
performing baselines in predicting H/T and value types, respec-
tively. Moreover, compared to the baselines that can predict both
H/T and value types, HELIOS achieves robust and stable perfor-
mance in predicting types at any positions (i.e., head/tail or value) in
a hyper-relational schema tuple, while the baselines yield different

https://github.com/UM-Data-Intelligence-Lab/HELIOS_code
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Table 2: Overall schema prediction performance (All type and All relation). “N/A” denotes the case that the method cannot
be applied to the task (namely RAM, StarE, Hy-Transformer, and QUAD are unable to predict missing relations). “-” refers
to the case that the method fails to run. Subsequently, NaLP, HINGE and NeuInfer run out of memory due to the expensive
permutation process of n-ary representations; the training process of QUAD runs over time (we set a time limit of 48h for all
methods). Moreover, due to the low efficiency of the evaluation code of NaLP, HINGE and NeuInfer, their results are evaluated
on 10% of the original test data.

Dataset
Transformation
Setting

Method
JF17K WikiPeople WD50K

All type All relation All type All relation All type All relation
MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG

One type

NaLP 0.1421 0.3700 0.4797 0.5771 0.2721 0.3565 0.1926 0.2499 0.1295 0.2536 0.1941 0.3274
HINGE 0.1447 0.3677 0.6696 0.7302 0.4032 0.5146 0.5225 0.6205 0.1916 0.3306 0.5447 0.6420
GRAN 0.1878 0.4103 0.8117 0.8416 0.5937 0.6398 0.6174 0.7351 0.3615 0.4906 0.6399 0.7100
NeuInfer 0.1312 0.3931 0.9736 0.9802 0.3483 0.4669 0.3055 0.4598 0.1963 0.2326 0.3262 0.4556
RAM 0.1979 0.4365 N/A N/A 0.2900 0.3198 N/A N/A 0.4103 0.5358 N/A N/A
StarE 0.3886 0.6088 N/A N/A 0.6306 0.7228 N/A N/A 0.4711 0.5979 N/A N/A
Hy-Transfomer 0.4322 0.6460 N/A N/A 0.7206 0.7681 N/A N/A 0.6791 0.7662 N/A N/A
QUAD 0.4523 0.6617 N/A N/A 0.4675 0.5984 N/A N/A 0.4738 0.5959 N/A N/A

Exhaustive

NaLP - - - - 0.2612 0.3491 0.1058 0.2683 0.1680 0.2967 0.1954 0.3304
HINGE - - - - 0.1699 0.3210 0.6961 0.7628 0.2771 0.4182 0.6681 0.7442
GRAN 0.2868 0.5103 0.8497 0.8916 0.1627 0.3090 0.3607 0.4845 0.2170 0.3477 0.6480 0.7196
NeuInfer - - - - 0.1600 0.2682 0.3145 0.4642 0.1810 0.3494 0.2699 0.4052
RAM 0.3347 0.4275 N/A N/A 0.4737 0.5653 N/A N/A 0.3671 0.4728 N/A N/A
StarE 0.5307 0.6793 N/A N/A 0.8805 0.9038 N/A N/A 0.4145 0.5360 N/A N/A
Hy-Transfomer 0.4333 0.6141 N/A N/A 0.8379 0.8783 N/A N/A 0.4207 0.5441 N/A N/A
QUAD - - N/A N/A 0.8992 0.9230 N/A N/A 0.4536 0.5708 N/A N/A

Original HELIOS 0.9636 0.9808 0.9932 0.9946 0.9558 0.9669 0.9258 0.9426 0.8484 0.8903 0.9048 0.9268

corporation 0.31

technology company 0.19

brand 0.15

technology company 0.32

brand 0.15

corporation 0.15

electronics 1

human 1

(a) The same entity (Apple Q312) has different roles in
different facts (the most important type is different).

corporation 0.31

technology company 0.19

brand 0.15 human 1

comprehensive academic 

and research university
0.37

autonomous university 0.19

corporation 0.17 coalition 1

SPARC

(b) The importance of the same type (corporation) varies
in different facts.

Figure 3: Case studies on type attention weights. The table
next to each entity shows its top three types according to
their attention weights learnt by HELIOS (the type list is not
exhaustive due to space limitation). The full name of the en-
tity SPARC (Q647039) is Scholarly Publishing and Academic
Resources Coalition.

performance when predicting head/tail or value types. To further
study this point, Table 5 shows the coefficient of variation [15] on
the performance of predicting types at different positions. HELIOS
has a coefficient of variation of 4.71%, which is 76.6% smaller than
the best-performing baseline GRAN with One type setting showing
a coefficient of variation of 20.13%.

4.2.3 Relation Prediction Performance Comparison (Primary rela-
tion and Key). Table 4 shows the relation prediction performance.
Our HELIOS achieves the best performance in most cases, except on
WikiPeople where NeuInfer with One type setting and GRAN with
Exhaustive setting are slightly better than ours when predicting
keys. Compared to the best-performing baselines, HELIOS yields an
improvement of 21.1% on primary relation prediction, while a slight
drop of 2.1% on key prediction. However, HELIOS is much more
robust than the baselines when predicting relations at different po-
sitions (primary relation or key) with a much smaller coefficient of
variation of 4.09%, which is 72.7% smaller than the best-performing
baseline as shown in Table 5.

4.3 Additional Experiments in Appendix.
Due to space limitations, we include more experiment results in
the Appendix, including ablation studies in Appx. A.2, and the
performance of HELIOS across different categories of schema tuples
in Appx. A.4.

5 CONCLUSION
In this paper, by revisiting the drawbacks of existing approaches
on extracting and using KG schema for link prediction, we propose
to study a novel problem of modeling hyper-relational schema,
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Table 3: Entity type prediction performance (H/T type and Value type). Note that StarE, Hy-Transfomer, and QUAD can only
predict head and tail types, but not value types; its performance on H/T type is thus the same as on All type in Table 2.

Dataset
Transformation
Setting

Method
JF17K WikiPeople WD50K

H/T type Value type H/T type Value type H/T type Value type
MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG

One type

NaLP 0.1021 0.3289 0.2486 0.4796 0.2683 0.3525 0.4846 0.5856 0.1055 0.2320 0.4159 0.5111
HINGE 0.1206 0.3433 0.2088 0.4328 0.4028 0.5140 0.4261 0.5502 0.1691 0.3122 0.4586 0.5493
GRAN 0.1819 0.4077 0.2035 0.4172 0.5886 0.6332 0.7123 0.7965 0.3321 0.4666 0.6807 0.7500
NeuInfer 0.1156 0.3100 0.2031 0.4481 0.3391 0.4584 0.4702 0.5485 0.1874 0.2246 0.3518 0.4276
RAM 0.1863 0.4291 0.2287 0.4563 0.2867 0.3165 0.4587 0.5090 0.3895 0.5191 0.6350 0.7176
StarE 0.3886 0.6088 N/A N/A 0.6306 0.7228 N/A N/A 0.4711 0.5979 N/A N/A
Hy-Transfomer 0.4322 0.6460 N/A N/A 0.7206 0.7681 N/A N/A 0.6791 0.7662 N/A N/A
QUAD 0.4523 0.6617 N/A N/A 0.4675 0.5984 N/A N/A 0.4738 0.5959 N/A N/A

Exhaustive

NaLP - - - - 0.2585 0.3458 0.4124 0.5349 0.1353 0.2677 0.7072 0.7789
HINGE - - - - 0.1659 0.3175 0.3955 0.5216 0.2552 0.4006 0.5533 0.6399
GRAN 0.2802 0.4871 0.4018 0.6182 0.1576 0.3047 0.4519 0.5528 0.2117 0.3440 0.2746 0.3887
NeuInfer - - - - 0.1599 0.2680 0.3642 0.5272 0.1561 0.2775 0.4166 0.5467
RAM 0.3276 0.4018 0.4538 0.4789 0.4775 0.5689 0.2582 0.3617 0.3629 0.4688 0.4517 0.5523
StarE 0.5307 0.6793 N/A N/A 0.8805 0.9038 N/A N/A 0.4145 0.5360 N/A N/A
Hy-Transfomer 0.4333 0.6141 N/A N/A 0.8379 0.8783 N/A N/A 0.4207 0.5441 N/A N/A
QUAD - - N/A N/A 0.8992 0.9230 N/A N/A 0.4536 0.5708 N/A N/A

Original HELIOS 0.9634 0.9805 0.9642 0.9816 0.9579 0.9684 0.8348 0.8808 0.8411 0.8851 0.9274 0.9472

Table 4: Relation prediction performance (Primary relation and Key). We exclude the methods (StarE, Hy-Transfomer and
QUAD) that cannot predict relations.
Dataset
Transformation
Setting

Method
JF17K WikiPeople WD50K

Primary relation Key Primary relation Key Primary relation Key
MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG

One type

NaLP 0.3854 0.4952 0.7309 0.7955 0.1849 0.2431 0.5337 0.6366 0.1596 0.2969 0.6041 0.6905
HINGE 0.5541 0.6357 0.9774 0.9821 0.5190 0.6176 0.7189 0.7848 0.5113 0.6156 0.9424 0.9560
GRAN 0.6750 0.7568 0.9937 0.9945 0.6017 0.7190 0.8234 0.8817 0.5803 0.6623 0.9627 0.9687
NeuInfer 0.9553 0.9665 0.9981 0.9986 0.2837 0.4428 0.9226 0.9409 0.2345 0.3816 0.8720 0.8960

Exhaustive

NaLP - - - - 0.0970 0.2609 0.6073 0.6845 0.1549 0.2949 0.7072 0.7789
HINGE - - - - 0.6950 0.7619 0.7577 0.8149 0.6445 0.7259 0.9662 0.9750
GRAN 0.7751 0.8248 0.9197 0.9342 0.3415 0.4690 0.9025 0.9238 0.5860 0.6702 0.9843 0.9876
NeuInfer - - - - 0.3131 0.4631 0.6555 0.7958 0.2348 0.3748 0.6763 0.6817

Original HELIOS 0.9881 0.9906 1.0000 1.0000 0.9283 0.9445 0.8556 0.8888 0.8867 0.9121 0.9839 0.9875

Table 5: Coefficient of variation on the performance of pre-
dicting types (relations) at different positions H/T and value
types (primary relations and keys) in hyper-relational tuples.

Data transformation setting Method Type Relation

One type

NaLP 49.75% 57.88%
HINGE 27.85% 30.27%
GRAN 20.13% 24.03%
NeuInfer 31.22% 44.94%
RAM 23.50% N/A

Exhaustive

NaLP 56.97% 80.04%
HINGE 44.23% 14.95%
GRAN 29.69% 32.29%
NeuInfer 52.94% 49.24%
RAM 22.64% N/A

Original HELIOS 4.71% 4.09%

which is formulated as mixed hyper-relational schema tuples. To ad-
dress this problem, we propose HELIOS, a hyper-relational schema
model designed to subtly learn from the two-fold hyper-relations

for solving schema prediction problems, by capturing not only the
correlation between multiple types of a single entity, but also the
correlation between types of different entities and relations in a
hyper-relational schema tuple. We evaluate HELIOS on three real-
world KG datasets in different schema prediction tasks. Results
show that HELIOS consistently outperforms state-of-the-art hyper-
relational link prediction techniques by 20.0-29.7%, and is also much
more robust than baselines in predicting types and relations across
different positions in a hyper-relational schema tuple.

In the future, we plan to further consider the hierarchy of entity
types, and also build end-to-end solutions for schema-enhanced
link prediction.
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A APPENDIX
A.1 Baseline details and Hyperparameter

Settings
We implement the baselines with both dataset transformation set-
tings, namely One type and Exhaustive, by reference to their best
hyperparameter settings on link prediction tasks.
• NaLP5 represents each entity-typed tuple (ℎ_𝑡𝑦𝑝𝑒, 𝑟, 𝑡_𝑡𝑦𝑝𝑒)
with (𝑘𝑖 , 𝑣𝑖_𝑡𝑦𝑝𝑒), 𝑖 = 1, ..., 𝑛, as a set of key-type pairs (𝑟ℎ :ℎ_𝑡𝑦𝑝𝑒 ,
𝑟𝑡 :𝑡_𝑡𝑦𝑝𝑒 , 𝑘𝑖 :𝑣𝑖_𝑡𝑦𝑝𝑒) and then a neural network pipeline is con-
structed to predict the missing keys (relations) or missing types.
Notably, NaLP adopts negative sampling to improve the training
process. However, this process is not fully applicable to the n-ary
representation of an entity-typed tuple because 𝑟ℎ and 𝑟𝑡 can be
inconsistent in this process and this is unreasonable. Therefore,
a variant of NaLP named NaLP-fix is utilized to address this
issue, which replaces 𝑟ℎ and 𝑟𝑡 simultaneously in the negative
sampling. Following the suggestion of the authors, we set the
batch size, embedding size, training epoch and learning rate to
{128, 100, 500, 0.00005} for all three datasets with both One type
and Exhaustive transformation settings. Furthermore, we set
the dimension of fully-connected layer to {1000, 1200, 1200} for
JF17K, WikiPeople and WD50K datasets, respectively.

• HINGE6 regards an n-ary entity-typed tuple as a primary entity-
typed triplet and its associated key-type pairs. To capture both the
triple-wise and quintuple-wise relatedness for (ℎ_𝑡𝑦𝑝𝑒, 𝑟, 𝑡_𝑡𝑦𝑝𝑒)
and (ℎ_𝑡𝑦𝑝𝑒, 𝑟, 𝑡_𝑡𝑦𝑝𝑒, 𝑘, 𝑣_𝑡𝑦𝑝𝑒), two convolutional neural net-
work pipelines are utilized. Following the suggestions from the
original paper, we set the batch size, embedding size, learning
rate and the number of convolution filers to {128, 100, 0.0001,
400} for all three datasets with both One type and Exhaustive
transformation settings. Additionally, the training epoch is set
to {600, 400, 400} for JF17K, WikiPeople and WD50K datasets,
respectively.

• NeuInfer7 represents each entity-typed tuple as a primary entity-
typed triplet associated with a set of key-type pairs. Subsequently,
a fully-connected neural network model is used to make predic-
tions on entity-typed tuples. For both One type and Exhaustive
transformation settings, we set the batch size, embedding size and
learning rate to {128, 100, 0.00005} for all three datasets. The train-
ing epoch is reduced to {500, 500, 1000} for JF17K, WikiPeople and
WD50K datasets, respectively, to prevent overfitting. As a piv-
otal hyperparameter in NeuInfer, the number of fully-connected
layers capturing relatedness in the primary entity-typed triplet
is set to {2, 1, 1} for JF17K, WikiPeople and WD50K datasets,
respectively.

• RAM8 explores the compatibility between roles (relations) to gen-
erate a meta-relation by representing relations as linear combina-
tions of basic vectors in a latent space. Then it further captures
the compatibility between the meta-relation and all involved en-
tity types by a pattern matrix. Following the suggestion made
by the authors, the batch size, training epoch, learning rate and
the number of basic latent vectors are set to {64, 200, 0.005, 10}

5https://github.com/eXascaleInfolab/HINGE_code/tree/master/NALP
6https://github.com/eXascaleInfolab/HINGE_code/tree/master/HINGE
7https://github.com/gsp2014/NeuInfer
8https://github.com/liuyuaa/RAM

for all three datasets with the One type transformation setting.
For Exhaustive transformation, we set the training epoch to {10,
200, 30} for JF17K, WikiPeople and WD50K datasets, respectively.
Meanwhile, the learning rate is set to 0.0002 for JF17K dataset,
while other hyperparameters remain the same as for One type
transformation.

• GRAN9 represents the entity-typed tuple as a heterogeneous
graph and captures the inter-vertex interactions by a self-attention
mechanism, which simultaneously exploits the global and local
dependencies in an entity-typed tuple. For One type transfor-
mation, wet set the batch size, embedding size, training epoch
and learning rate to {1024, 256, 160, 0.0005} for all three datasets.
Also, the number of hidden layers is set to {12, 6, 12} for JF17K,
WikiPeople and WD50K datasets, respectively. For Exhaustive
transformation, we change the training epoch from 160 to 60 for
JF17K dataset.

• StarE10 depicts the entity-typed tuple as a directedmulti-relational
graph and employs a message-passing based graph encoder to
capture the heterogeneous inter-vertex interactions. Afterward,
a transformer-based decoder is applied to predict the missing
tail types. Following the suggestions from the original paper, the
batch size, embedding size, graph layers and learning rate are
set to {128, 200, 2, 0.0001} for all three datasets with the One
type transformation setting. Moreover, the training epoch is set
to {400, 500, 400} for JF17K, WikiPeople and WD50K datasets,
respectively. For Exhaustive transformation, the batch size is
enlarged to 1024 for JF17K dataset.

• Hy-Transformer11 is a variant of StarE, which substitutes the
graph encoder with light-weight relation/type embedding tech-
niques for efficient computing.Moreover, a key-type pair-oriented
training measure is added to enhance the prediction ability. For
both One type and Exhaustive transformation settings, we set
the learning rate and graph layers to {0.0001, 2} for all three
datasets. Then, the batch size is set to {1024, 1024, 512} for JF17K,
WikiPeople and WD50K datasets, respectively. Concurrently, the
training epoch is set to {400, 500, 400} for JF17K, WikiPeople and
WD50K datasets, respectively.

• QUAD12 further extends StarE by adopting two separate aggre-
gators to encode the primary entity-typed triplet and associated
key-type pairs, respectively. Then the entity-typed triplet and
associated key-type pairs are masked separately and fed into the
transformer-based decoder to make predictions. Following the
suggestion from the authors, we set the batch size, embedding
size, training epoch, and the number of qualifier layers and triplet
layers to {128, 200, 500, 2, 2} for all three datasets with the One
type transformation setting. For Exhaustive transformation, the
batch size is changed to 1024 for JF17K dataset.

• HELIOS13 is our proposed model directly learning from hyper-
relational schema tuples. With the Original transformation set-
ting, the batch size, embedding size, the number of GAT layers,
the number of self-attention layers, the number of attention heads

9https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2021_GRAN
10https://github.com/migalkin/StarE
11https://github.com/PlusRoss/Hy-Transformer
12https://github.com/HarryShomer/QUAD
13https://github.com/UM-Data-Intelligence-Lab/HELIOS_code
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Table 6: Overall schema prediction performance comparison between HELIOS and its variants.

Method
JF17K WikiPeople WD50K

All type All relation All type All relation All type All relation
MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG

HELIOS(w/o edge biases) 0.9592 0.9790 0.9717 0.9787 0.9242 0.9368 0.8771 0.9043 0.8234 0.8711 0.8552 0.8886
HELIOS(w/o 2nd GAT) 0.9630 0.9811 0.9939 0.9952 0.9529 0.9644 0.8753 0.9032 0.8418 0.8854 0.9047 0.9259
HELIOS 0.9636 0.9808 0.9932 0.9946 0.9558 0.9669 0.9258 0.9426 0.8484 0.8903 0.9048 0.9268

Table 8: Performance across different categories of test tuples.
Note that we exclude JF17K dataset, as it contains too few
tuples of SType-HTuple.

Tasks Test tuple
categories

WikiPeople WD50K
MAP NDCG MAP NDCG

All Type

SType-TTuple 0.9668 0.9702 0.8568 0.8857
MType-TTuple 0.9572 0.9725 0.8031 0.8649
SType-HTuple 0.8408 0.8733 0.9081 0.9253
MType-HTuple 0.7862 0.8548 0.9295 0.9521

All Relation

SType-TTuple 0.8830 0.9475 0.8588 0.8903
MType-TTuple 0.9142 0.9418 0.8961 0.9227
SType-HTuple 0.8227 0.8233 0.9477 0.9604
MType-HTuple 0.9786 0.9769 0.9832 0.9885

Table 7: Statistics of the test schema tuples in different cate-
gories.

Test tuple categories JF17K WikiPeople WD50K
SType-TTuple 50 6306 19219
MType-TTuple 2555 2899 20898
SType-HTuple 1 135 1010
MType-HTuple 3538 132 5012

and the learning rate are set to {1024, 256, 4, 6, 4, 0.0001} for all
three datasets.

A.2 Ablation Studies
To delve into the effectiveness of each component in HELIOS, we
conduct ablation studies on two critical components, i.e., the edge
biases and the second GAT. The results are shown in Table 6. HE-
LIOS performs better than its ablation variants, resulting in up to
5.0% (in predicting relations on WD50K) and 5.1% (in predicting
relations on WikiPeople) improvements over variants without edge
biases and second GAT, respectively.

A.3 Statistics of the datasets with different
categories of test tuple

Table 7 presents the statistics of test schema tuples in different
categories. As the JF17K dataset contains only one hyper-relational
tuple with a single type (SType-HTuple), we exclude JF17K and
focus only on WikiPeople and WD50K datasets to study the perfor-
mance of HELIOS across different categories of schema tuples in
Section A.4. Note that following StarE [18], the maximum arity for
WD50K dataset is set to 7 in the experiments.

A.4 Performance across Different Categories of
Schema Tuples

We investigate the performance of HELIOS across different cate-
gories of hyper-relational schema tuples. Specifically, the meaning
of hyper-relations here is two folds. First, according to the size of
type sets, the test schema tuples can be classified into two cate-
gories: single type (SType) where all type sets contain only one type,
and multiple types (MType) where at least one type set contains
multiple types. Second, according to the number of key-(type)set
pairs, the test schema tuples can be classified into two categories:
triple tuple (TTuple) without any key-(type)set pairs, and hyper-
relational tuple (HTuple) with key-(type)set pairs. Subsequently,
we consider the combinations of these two classifications, resulting
in four categories of test tuples, and compare their performance
as shown in Table 8. We observe that for type prediction tasks,
MType underperforms SType in general (by 1.6% on average), as the
prediction on multiple types is more difficult than on single types.
In contrast, for relation prediction tasks, MType consistently out-
performs SType by 6.9% on average, implying that knowing more
types can help the prediction of relations in schema tuples.
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