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A Two-Step Schema-Aware Approach for
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Abstract—Modern Knowledge Graphs (KG) often suffer from an incompleteness issue (i.e., missing facts). By representing a fact as a
triplet (h, r, t) linking two entities h and t via a relation r, existing KG completion approaches mostly consider a link prediction task to
solve this problem, i.e., given two elements of a triplet predicting the missing one, such as (h, r, ?). However, this task implicitly has a
strong yet impractical assumption on the two given elements in a triplet, which have to be correlated, resulting otherwise in
meaningless predictions, such as (Marie Curie, headquarters location, ?). Against this background, this paper studies an instance
completion task suggesting r-t pairs for a given h, i.e., (h, ?, ?). Inspired by the human psychological principle “fast-and-slow thinking”,
we propose a two-step schema-aware approach RETA++ to efficiently solve our instance completion problem. It consists of two
components: a fast RETA-Filter efficiently filtering candidate r-t pairs schematically matching the given h, and a deliberate
RETA-Grader leveraging a KG embedding model scoring each candidate r-t pair considering the plausibility of both the input triplet
and its corresponding schema. RETA++ systematically integrates them by training RETA-Grader on the reduced solution space output
by RETA-Filter via a customized negative sampling process, so as to fully benefit from the efficiency of RETA-Filter in solution space
reduction and the deliberation of RETA-Grader in scoring candidate triplets. We evaluate our approach against a sizable collection of
state-of-the-art techniques on three real-world KG datasets. Results show that RETA-Filter can efficiently reduce the solution space for
the instance completion task, outperforming best baseline techniques by 10.61%-84.75% on the reduced solution space size, while
also being 1.7x-29.6x faster than these techniques. Moreover, RETA-Grader trained on the reduced solution space also significantly
outperforms the best state-of-the-art techniques on the instance completion task by 31.90%-105.02%.
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1 INTRODUCTION

KNowledge Graphs (KGs), such as Wikidata [1], Free-
base [2], or Google’s Knowledge Graph [3], have be-

come a key resource enabling a wide range of Web applica-
tions, including semantic search [4], question-answering [5],
and recommender systems [6], etc. A typical KG contains a
large collection of entities (representing real-world objects
or abstract concepts) interconnected via relations, where
entities contribute to the description of other entities via
relations. Using a widely adopted triplet representation
scheme [7], a KG consists of a set of triplets, (head, relation,
tail), or (h, r, t) for short, each of which encoding a relation
connecting a head entity to a tail entity, such as Marie Curie
(head) sex or gender (relation) female (tail). Figure 1 shows
two real-world examples of entities Marie Curie and Apple
Inc. from Wikidata; each example is associated with a set
of triplets having the entities as head in Wikidata. Despite
modern KGs contain high-quality structured data, they are
also known to suffer from an incompleteness issue, i.e.,
missing facts. For example, 71% of all people from Freebase
have no place of birth [8], even though this is a mandatory
property of the schema [9].
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Fig. 1. Examples of entities Marie Curie and Apple Inc. from Wikidata.
For each entity, we present a subset of triplets having the entity as head.

To overcome this issue, Knowledge Graph completion
problems have been widely studied by the current literature.
These problems are mostly formulated as a link prediction
task [7], [8], i.e., predicting missing links in a KG. More pre-
cisely, given two elements of a triplet, the task is to predict
the missing one, such as (h, r, ?), (h, ?, t), or (?, r, t), where
the question mark represents the missing entity/relation.
However, despite the wide adoption of such link prediction
tasks by existing work for KG completion, this task is often
impractical due to its strong assumption on knowing two el-
ements in a triplet; the two known elements in a triplet must
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somehow be correlated in order to make a meaningful pre-
diction, otherwise the task will result in meaningless results.
For example, the predictions for (Marie Curie, headquarters
location, ?) or (Apple Inc., sex or gender, ?) are nonsense, while
they would both be considered as valid input for the link
prediction task. Although existing work on link prediction
implement this task by taking out one element from a true
triplet in a KG and then making predictions on the triplet
(which implicitly ensures the correlation between the two
remaining elements in the triplet), such an experimental
setting indeed departs from real-world use cases where we
are not given two correlated elements in a triplet. Another
thread of work on KG completion focuses on the relation
prediction task1, suggesting missing relations to a given
entity using the information about other similar entities [13].
However, these techniques only suggest relations for a given
head, without predicting the tails and hence are only part of
the solution.

Toward the ultimate goal of KG completion, we tackle
in this paper a more complex instance completion problem.
Specifically, considering a (head) entity as an instance, we
complete its descriptions by suggesting relation-tail pairs.
In other words, we make predictions on (h, ?, ?), suggesting
r-t pairs to a given h. Different from the link prediction task,
our instance completion task has a more realistic setting
without assuming knowing two correlated elements in a
triplet. However, such an instance completion problem on
KGs is more challenging, due to a large number of potential
r-t pairs for a given h. Directly evaluating and ranking
all combinations of r and t not only incurs a significant
computation cost, but also results in poor performance due
to a large number of candidate triplets to consider (a large
solution space). For example, such an approach takes 350.7
hours (CPU time) even with an efficient link prediction
technique TransE on our JF17K dataset, resulting in poor
performance of 0.0097 for recall@5 [14]. An alternative solu-
tion to this problem is to combine the relation prediction and
link prediction tasks [10]; for a given h, it first predicts a set
of relations using a relation prediction technique, and then
predicts (h, r, ?) using a link prediction technique for each
predicted relation r. Although this approach can reduce
the number of candidate triplets to improve the prediction
efficiency, it does not fully leverage the schema information
encoded by the triplets (e.g., head type-relation-tail type),
thus resulting in a suboptimal performance as we showed
in our previous work [14].

Against this background, inspired by the human psy-
chological principle “fast-and-slow thinking”, we propose
a two-step schema-aware approach RETA++ to efficiently
solve our instance completion problem over KGs (h, ?, ?).
Specifically, fast-and-slow thinking is proposed by Nobelist
Daniel Kahneman [15] in psychology and behavioral sci-
ence, suggesting a dual-process model of human thinking,
where fast thinking is emotional, stereotypic, and uncon-
scious, and can process a large amount of information
effortlessly, while slow thinking is effortful, logical, and
conscious, and can process a small amount of information

1. This task is also known as property prediction/recommendation
by [10], [11], [12], as these works refer to a triplet by (en-
tity,property,value), which is equivalent to our notion of triplet as (head,
relation, tail).

with deliberate reasoning [16]. Inspired by this two-step
process, in our context, we design two distinct components
mimicking the respective fast and slow thinking processes,
and then systematically combine them for solving the in-
stance completion problem over KGs. First, inspired by the
fast thinking process, we design RETA-Filter, a fast Relation-
Tail pair filter using the schema information of a KG to
efficiently filter candidate r-t pairs schematically matching
the given h via tensor product, and thus significantly reduce
the solution space. Second, inspired by the slow thinking
process, we design RETA-Grader, a deliberate Relation-Tail
pair grader leveraging a KG embedding model scoring each
candidate r-t pair according to the plausibility of both the
input triplet and its corresponding schema. Finally, toward
the ultimate goal of instance completion over KGs, we
systematically integrate these two components by training
RETA-Grader on the reduced solution space output by
RETA-Filter via a customized negative sampling process,
so as to fully benefit from the efficiency of RETA-Filter
in solution space reduction and the deliberation of RETA-
Grader in scoring candidate triplets. Our contributions can
be summarized as follows:

• By revisiting the existing approaches to KG completion,
we identify the impractical settings of the widely stud-
ied link prediction problems, and thus propose to study
a novel instance completion problem with more realistic
settings, i.e., predicting relation-tail pairs given a head
(h, ?, ?).

• Inspired by the human psychological principle “fast-
and-slow thinking”, we propose a two-step schema-
aware approach RETA++ to efficiently solve our in-
stance completion problem. It tightly combines, via a
customized negative sampling process, a fast RETA-
Filter to efficiently reduce the solution space and a
deliberate RETA-Grader to evaluate the plausibility of
the candidate r-t pairs in the reduced solution space.

• We conduct a thorough evaluation of our proposed
techniques compared to a sizable collection of baselines
on three real-world KG datasets. Results show that
RETA-Filter is able to efficiently filter candidate r-t
pairs for the instance completion task, outperforming
the best baseline techniques by 10.61%-84.75% on the
reduced solution space size under the same quality
guarantees, while also being 1.7x-29.6x faster than these
techniques. Moreover, RETA-Grader trained on the re-
duced solution space also significantly outperforms the
best state-of-the-art link prediction techniques on the
instance completion task by 31.90%-105.02%. In partic-
ular, compared to our previous work RETA, RETA++
achieves 16.9% higher performance while requiring
35% fewer training epochs at the same time.

2 RELATED WORK

Knowledge Graph completion predicts missing facts in a
KG. In the following, we first briefly discuss existing work
implementing one of the three tasks (i.e., link prediction,
relation prediction, and instance completion) for KG com-
pletion, followed by related work on knowledge graph
schema.
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2.1 Link Prediction Task
In the current literature, KG completion has been mostly
formulated as a link prediction task, i.e., predicting one
missing element in a triplet, such as (h, r, ?), (h, ?, t) or
(?, r, t). Early solutions often resorted to rule/feature-based
relational learning, such as association rules [17] or hand-
crafted features [18], [19] (e.g., paths linking entities) for link
prediction. Recently, KG embedding techniques have been
proposed to learn latent representations of entities/relations
in a KG, which can then be effectively used for link pre-
diction tasks over the KG. These techniques can be classi-
fied into two broad categories. First, translational distance
models exploit distance-based scoring functions to create
embeddings. One representative model of this family is
TransE [20], which learns from triplets (h, r, t) such that the
relation between the head and tail is preserved as h+ r ≈ t.
Several works further improve TransE to capture richer KG
structures, such as involving relation-specific hyperplanes
[21] or spaces [22], [23], [24], for example. Second, semantic
matching models exploit similarity-based scoring functions.
One typical model in that context is RESCAL [25], which
represents each entity as a vector and each relation as a
matrix, and uses a bilinear function to model the relation
between two entities. Several works extend RESCAL by
reducing the complexity of the models [26], [27] or of the
training processes [28], by improving the model expres-
siveness [29], by capturing asymmetric relations [30], by
considering unbalanced data in KGs [31], or by modeling
non-linear relations using neural networks [32], [33], [34],
[35], [36].

In addition, there are also a few works on link predic-
tion combining triplets with other data. According to the
sources of such data, these works can be classified into
two categories, i.e., data in the KG and third-party data.
On one hand, besides triplets linking entities via relations,
literals [37], [38], images [39] or types [14], [40], [41], [42],
[43], [44], [45], [46] associated with entities in the KG can be
combined with triplets to improve the performance on link
prediction. On the other hand, some other techniques learn
entity/relation embeddings from triplets in a KG jointly
with third-party data sources, in particular with text (e.g.,
Wikipedia articles) [47], [48], [49], [50].

However, we argue in this paper that such link predic-
tion tasks are impractical as they assume knowing two of the
elements in a triplet, which is often not the case in practice.
Those two elements must be correlated to make meaningful
predictions, which otherwise result in meaningless outputs
such as (Marie Curie, headquarters location, ?). Therefore,
we study an instance completion problem in this paper,
suggesting relation-tail pairs for a given (head) entity.

2.2 Relation Prediction Task
KG completion problems have also been studied as a re-
lation prediction task, suggesting missing relations to a
given entity [10], [11], [12], [13], [51], [52]. Specifically, for
a given entity, the objective is to suggest a list of relations
(so-called properties by some of these works) which are
relevant to the entity. For example, Zangerle et al. [12] built
a “property suggester” for Wikidata, suggesting candidate
properties based on association rules learnt from existing

triplets in Wikidata. Lajus et al. [11] studied the problem of
determining obligatory relations for a given entity in a KG
by extracting and using the class hierarchy (of entities) in
the KG. Cao et al. [10] designed a relation prediction tech-
nique by applying an attention-based graph neural network
model to a bipartite entity-relation graph built from a KG.
Recoin [13] suggests properties to an entity on Wikidata by
collaboratively using the information about other entities
that are similar to that entity; to ensure the high quality of
the suggested properties, it sometimes involves much prior
knowledge when defining the similarity between entities
on Wikidata. For example, for entities of type human, a
(Boolean) similarity is manually defined as whether the two
entities have the same occupation or not.

Our work differs from these techniques by considering a
more complex problem, that of predicting relation-tail pairs
for a given (head) entity. Although these relation prediction
techniques can be combined with link prediction techniques
to perform our instance completion task, such an approach
yields subpar performance [14], as it does not fully leverage
the schema information encoded by the triplets.

2.3 Instance Completion Task

A closely related work to our instance completion problem
is OKELE [10], which suggests relation-tail pairs to a long-
tail head (i.e., a less popular/frequent entity) in a KG, using
open Web data. Specifically, for a given head h, OKELE first
implements a relation prediction technique by applying an
attention-based graph neural network model to a bipartite
entity-relation graph built from a KG, predicting a list of
relations; for each suggested relation r, it then extracts
and verifies potential tails from open Web data including
semi-structured vertical websites, unstructured plain text in
Web content and structured HTML tables. However, OKELE
differs from our work by extensively using open Web data.
In contrast, our proposed solution only requires triplets and
entity types from a KG, without the need of involving any
extra data sources.

We also note that the so-called instance reconstruction
task on KGs has been defined by [53] for n-ary (or multi-
fold) relational facts, where an n-ary relation consisting
of a set of relations {r1, r2, ..., rn} links multiple entities
{e1, e2, ..., en}, respectively. For example, the n-ary rela-
tion “PeopleMariage” containing the following three rela-
tions person, spouse, location, links three entities Kobe Bryant,
Venessa Bryant and California. The authors define the in-
stance reconstruction task as follows: given an n-ary relation
{r1, r2, ..., rn} and a subset of the entities linked by this
relation, predict the rest of the entities, such as {e1, ?, ..., ?}.
With the help of relation paths [54], this task boils down to a
link prediction task, i.e., predicting (e1, r1r2, ?), (e1, r1r3, ?)
and so on. Alternatively, this task can also be formulated
as a hyper(-relational) graph link prediction problem [55],
[56], [57]. Therefore, this task fundamentally differs from
our instance completion task, where we do not assume any
information about the relations.

Compared to our previous work [14] in which we pro-
posed RETA-Filter and RETA-Grader, in this paper, we
further design a systematic integration of the two com-
ponents to fully benefit from the efficiency of RETA-Filter



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

in solution space reduction and the deliberation of RETA-
Grader in scoring candidate triplets. Specifically, different
from our previous work where RETA-Grader is trained
independently of RETA-Filter, we now tightly couple the
training process of RETA-Grader with RETA-Filter by train-
ing RETA-Grader to identify correct r-t pairs for a given
h from the reduced solution space output by RETA-Filter us-
ing a customized negative sampling process; subsequently,
RETA-Grader can better focus on discriminating correct an-
swers from the schematically correct candidate r-t pairs (the
reduced solution space) rather than the schematically incor-
rect r-t pairs which have been filtered out by RETA-Filter.
The new experiments we present show that compared to
our previous work, our newly proposed RETA++ achieves
significantly better performance (with an improvement of
16.9% on average), while requiring 35% fewer training
epochs at the same time.

2.4 Knowledge Graph Schema

KG Schema defines a high-level structure and semantics
that a KG follows or should follow [58]. For domain-specific
KGs, their schema is usually manually defined with simple
structures and usually has a small scale, such as the medical
KG in [59] with 9 entity types and 9 relations for modeling
electronic medical records, or the biomedical KG [60] with
11 entity types and 13 relations for modeling drug-target
interactions. Note that in these KGs, a relation is manually
defined to connect two specific entity types only. However,
open-domain KGs (e.g., Wikidata [1] and Freebase [2]) usu-
ally do not have a unified and fixed schema [13]; relevant
and irrelevant entity types can sometimes even evolve over
time [61]. Even though some effort such as Schema.org has
been made to unify schemas for structured data on the Web,
such schemas still have a low coverage on the Web, and
thus have not been widely adopted by modern KGs (with
about 10 million Web sites adopting the schema vocabulary
[62], compared to about 1.98 billion sites in total on the Web
[63]). Subsequently, KG schema extraction (a.k.a., ontology
learning, taxonomy extraction, or ontology population) has
been studied, for purposes including refining an existing
ontology [64], adapting a given ontology to a new KG [65],
or building an new ontology [66], from either a given KG
[67] or text corpora [68]. In this paper, we focus on the KG
completion tasks with schema awareness.

In the current literature, schema information has been
shown to be significantly helpful for KG completion. Ex-
isting approaches use such schema information in different
stages of link prediction tasks: 1) as a pre-processing filter to
reduce the solution space before link prediction techniques
score the plausibility of a fact [14]; 2) as an additional
input together with a fact fed to link prediction techniques
when scoring the plausibility of the fact [40], [41], [42], [45],
[46], [67], [69], [70]; 3) as a post-processing step to verify
the schema correctness of the predicted facts generated by
link prediction techniques [43]. Our work differs from these
existing techniques in two aspects. First, we focus on the
instance completion task with a more realistic setting rather
than the link prediction task. Second, we use the schema
information in two stages of the task, i.e., not only as a pre-
processing filter for solution space reduction, but also as an

additional input for scoring candidate facts over the reduced
solution space.

3 RETA++: TWO-STEP SCHEMA-AWARE IN-
STANCE COMPLETION

In this section, we present RETA++, a two-step schema-
aware instance completion approach inspired by the hu-
man psychology principle ”fast-and-slow thinking”. We first
present the overview of our proposed approach, followed
by the detail of the two steps and the integration of them
for instance completion tasks.

3.1 RETA++ Overview
RETA++ is designed for efficiently solving the instance
completion problem (h, ?, ?). Inspired by the ”fast-and-
slow thinking” principle, we follow a two-step approach
as shown in Figure 2. First, inspired by the fast thinking
process, the first step designs RETA-Filter, leveraging the
schema of a KG (represented as entity-typed triplets) to fast
filter candidate r-t pairs schematically matching the given
h, so as to efficiently reduce the solution space. Second, in-
spired by the slow thinking process, the second step designs
a KG embedding model RETA-Grader scoring candidate r-t
pairs considering the plausibility of both the triplet and its
corresponding schema. Figure 2 shows an example of the
input/output of these two steps. For the instance comple-
tion problem (China, ?, ?) where (?, ?) ∈ {all combinations
of relations and entities} in the input KG, the first step uses
RETA-Filter to filter r-t pairs schematically matching the
entity China (of type Country) by leveraging the entity-
typed triplets, resulting in a reduced solution space where
(?, ?) ∈ {(hasCapital, entity of type City), (hasCurrency, entity of
type Currency), ...}. Afterward, the second step uses RETA-
Grader to score each candidate r-t pair using a KG embed-
ding model learnt from the triplets and its corresponding
schema from the input KG, resulting in a ranked list of r-t
pairs where the top ones are the most plausible r-t pairs
for the head entity China, such as {(hasCapital, Beijing),
(hasCurrency, CNY), ...}. In the following, we present the
detailed design of each step.

3.2 RETA-Filter
Our RETA-Filter is designed to filter candidate r-t pairs
schematically matching the given h. More precisely, al-
though the schema of a KG implies valuable information
about the structure of the KG, open-domain KGs such as
Wikidata do not have a fixed schema [13]. Therefore, we
resort to entity-typed triplets from an input KG, which
encodes the schema information of the KG. Specifically, a
KG contains a set of triplets (h, r, t), where h, t ∈ E and
r ∈ R; E and R are the sets of all entities and relations
in the KG, respectively. Each entity h (or t) can have one
or multiple types h type1, h type2, ... ∈ T , where T is the
set of all entity types in the KG (we will discuss later the
case where an entity does not have any type). Subsequently,
the schema of a KG can be characterized by a set of entity-
typed triplets (h type, r, t type), indicating that an entity
of type h type could be linked to an entity of type t type
via a relation r. Such information can serve as an important
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Fig. 2. Overview of our two-step approach RETA++ consisting of RETA-Filter and RETA-Grader.

Fig. 3. A toy example of RETA-Filter, where we highlight an example of
computation for one relation (in gray). Given an head entity h, RETA-
Filter fetches its type vector ~hT and multiply it with the tensor F. The
resulting matrix is then multiplied with the type matrix MT in order to
compute the candidate r-t pairs for h.

guideline to identify eligible r-t pairs for a given h, thus
avoiding many meaningless predictions.

To implement RETA-Filter, we first extract entity-typed
triplets (h type, r, t type) from the triplets (h, r, t) in a KG,
by considering all the combinations of the types of h and t
for each triplet (h, r, t). For example, if h and t have m and
n types, respectively, we extract m× n entity-typed triplets.
Afterward, we represent all these entity-typed triplets as a
head type-relation-tail type tensor F ∈ B|T

h|×|R|×|T t|, where
Th and T t are the sets of all head and tail types, respectively,
while R is the set of all relations in the KG. Note that Th

and T t are the same as T in practice, as they are both the
set of all entity types. We use different notations for them
to distinguish the semantic meaning of the corresponding
dimensions of F, where the first and third dimensions of
F refer to head and tail types, respectively. Finally, by
representing h using its type vector ~hT ∈ B|Th| and all
tails using a type matrix MT ∈ B|E|×|T |, we can efficiently
compute the candidate r-t pairs for h via a tensor product:

S = ~hT ×Th
F×Tt

M (1)

where ×n denotes the mode-n tensor product [71]. The re-
sulting matrix S ∈ N|R|×|E| encodes the number of matches
between h and each r-t pair, under the extracted schema.
Figure 3 shows a toy example. To implement this filter, we
have to take into account the following two practical issues:
• Frequency of entity-typed triplets. Entity-typed triplets

(h type, r, t type) encode the schema of a KG. When con-

verting the triplets of the KG into entity-typed triplets, we
also obtain the frequency of each entity-typed triplets, in-
dicating how many times it appears in the KG. Intuitively,
a low frequency indicates a small contribution of the cor-
responding entity-typed triplet to the schema of the KG,
which could also be considered as noise. Subsequently, we
could select frequent entity-typed triplets (whose frequen-
cies are higher than a threshold α) to build F. However, a
too high value of α could also remove useful entity-typed
triplets, resulting in an incomplete schema captured by
F. In other words, α controls the quality of the extracted
schema, and subsequently balances the tradeoff between
the size of the candidate (r-t pair) set and its coverage
of true r-t pairs being included in the candidate set. On
one hand, a too low value of α could include noisy entity-
typed triplets in F, resulting in a large candidate set with
noisy and redundant r-t pairs. On the other hand, a too
high value of α captures incomplete schema information
when building F, resulting in a small but low-coverage
candidate set (i.e., missing true r-t pairs).
We note that once we select frequent entity-typed triplets
(whose frequencies are higher than α), we build F as
a Boolean tensor without considering the absolute fre-
quency of each selected entity-typed triplet, since the
absolute frequencies of these frequent entity-typed triplets
are not useful when representing the schema of the KG.
For example, an entity-typed triplet (human, occupation,
profession) with a frequency of 10,000 does not necessarily
mean that it is (ten times) more important than an entity-
typed triplet (enterprise, headquarters location, city) with a
frequency of 1,000 when representing the structure of the
KG; such a frequency difference may just be caused by
the varying popularity of different entity types in a KG.
Therefore, we do not distinguish the selected entity-typed
triplets by their frequencies when building F.

• Number of matches between r-t pairs and h. The result-
ing matrix S encodes the number of matches between h
and each r-t pair under the extracted schema. Intuitively,
a higher number of matches indicates a higher plausibility
of the corresponding r-t pair being a candidate for h.
Following the example in Figure 3, the number of matches
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between h and the first r-t pair is S0,0 = 3. Subsequently,
instead of taking all r-t pairs with non-zero matches (in S)
as the candidate r-t pairs, we could further select higher-
quality r-t pairs whose numbers of matches are higher
than a threshold β as candidate r-t pairs. Obviously, a
lower value of β selects more candidate r-t pairs and thus
leads to higher coverage of true r-t pairs being included
in the candidate set, and vice versa. In essence, β directly
balances the tradeoff between the size of the candidate
(r-t pair) set and its coverage.

In summary, RETA-Filter is designed to efficiently filter
candidate r-t pairs schematically matching with the KG
schema extracted from the entity-typed triplets. We use two
tunable parameters α and β balancing the tradeoff between
the size of the candidate (r-t pair) set and its coverage. By
varying α and β, RETA-Filter can achieve the best Pareto
frontier when trading off the size of the candidate (r-t pair)
set and its coverage, compared to a sizable collection of
baselines (see our experiments for more detail).

3.3 RETA-Grader
Based on the set of filtered candidate r-t pairs provided
by RETA-Filter, RETA-Grader further evaluates and ranks
these candidate r-t pairs considering the plausibility of both
the triplet and its corresponding schema using a subtly
designed KG embedding model. Figure 4 shows our embed-
ding model consisting of three parts. Specifically, for each
fact (h, r, t), it 1) learns to capture the structural information
of the triplet (h, r, t), generating a triplet relatedness feature
vector, and 2) learns to capture the corresponding schema
information encoded by the triplet, generating a set of
relatedness feature vectors, one for each entity-typed triplet
(h type, r, t type), and then merges them into a unique
schema relatedness feature vector. Finally, it concatenates the
triplet and schema relatedness feature vectors into an overall
relatedness feature vector to output a final prediction score,
measuring the plausibility of both the input triplet and
its corresponding schema. In the following, we discuss the
detailed design of these three modules.

3.3.1 Learning from triplets
To learn from a triplet (h, r, t), we use a Convolutional
Neural Network (CNN) to model the interaction between
the three elements in the triplet, i.e., head h, relation r and
tail t. We adopt a CNN here, as it has been successfully
used to learn from triplets in KGs by previous work [33],
[72]. As shown in Figure 4, we start by concatenating the
three embedding vectors ~h,~r,~t ∈ RK (K is the embedding
dimension), resulting in a matrix I ∈ R3×K . The matrix
I is fed to a 2D convolutional layer with nf filters of size
3 × 3. We set the filter size to 3 × 3 to capture the triple-
wise relatedness between the embeddings of h, r and t.
This convolutional layer returns nf feature maps of size
K − 2 each, which are then flattened into a triplet relatedness
feature vector ~φ ∈ R1×nf (K−2). This relatedness vector ~φ
characterizes the plausibility of a fact (h, r, t) of being true.

3.3.2 Learning from schema (entity-typed triplets)
The schema information encoded by the triplet (h, r, t) is
also an important predictor for the plausibility of the triplet.

Therefore, we extract and learn from entity-typed triplets
considering all the combinations of the types of h and t.
When h and t have m and n types, respectively, we extract
a set of mn entity-typed triplets {(h typei, r, t typej)|1 ≤
i ≤ m, 1 ≤ j ≤ n}. Afterward, we learn from each of
these entity-typed triplet (h typei, r, t typej) to generate its
relatedness feature vector, using a similar method as for
learning from triplets. Specifically, as shown in Figure 4,
by concatenating three embedding vectors for head type−−−−−→
h typei, relation ~r, tail type

−−−−→
t typej , we also resort to a

2D convolutional layer with nf filters of size 3 × 3 to
capture the triple-wise relatedness between

−−−−−→
h typei, ~r, and−−−−→

t typej ; the resulted feature maps are then flattened into
a relatedness vector of size 1 × nf (K − 2). Note that the
filters in this module are different from the filters in the
first module. We repeat this process for all the mn entity-
typed triplets associated with the input triplet. Finally, we
concatenate these relatedness feature vectors into a matrix
of size mn× nf (K − 2), and then take the minimum value
along each feature dimension, resulting in a unique schema
relatedness feature vector ~ψ. The basic assumption behind this
min operation is that for a true triplet, the relatedness of the
three elements (h type, r, t type) of any entity-typed triplets
should be high; subsequently, the minimum relatedness
along each feature dimension is expected to be high. Similar
ideas have also been successfully applied by previous works
to merge relatedness scores in a neural network [55], [73].

3.3.3 Prediction using triplet and schema relatedness fea-
ture vectors
In the two previous modules, for each triplet, we obtain a
triplet and a schema relatedness feature vectors (~φ and ~ψ,
respectively). We then concatenate ~φ and ~ψ into an overall
relatedness feature vector of size 2nf (K − 2). Finally, we use
a fully connected layer to output the predicted score σ from
the overall relatedness feature vector.

3.4 Integration of RETA-Filter and RETA-Grader
To fully benefit from the efficiency of RETA-Filter in solution
space reduction and the deliberation of RETA-Grader in
scoring candidate triplets, we systematically integrate these
two components by training RETA-Grader on the reduced
solution space output by RETA-Filter via a customized
negative sampling process. Specifically, we train our RETA-
Grader model by minimizing a softplus loss, which is de-
fined as the negative log-likelihood of the logistic model:∑

ω∈Ω

log(1 + e−σ(ω)) + λEω′ log(1 + eσ(ω′)) (2)

where Ω represents the set of training triplets. For each
positive triplet ω = (h, r, t), a set of λ negative samples
(each denoted as ω′) are generated; σ(ω) and σ(ω′) denote
the predicted score of our RETA-Grader model for the true
fact ω and the negative fact ω′, respectively. The expectation
term implies ω′ is randomly generated/sampled according
to a certain strategy/distribution, which we discuss below.

3.4.1 Negative sampling strategies
Negative sampling strategies have been shown to play an
important role in learning (knowledge) graph embedding
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Fig. 4. Architecture of RETA-Grader

[74], [75] for resolving link prediction tasks. Traditional
negative sampling methods for link prediction tasks [7]
usually randomly corrupt one element in a positive triplet
h, r or t (e.g., replacing t by a randomly sampled entity
from the entity set E), which we denote as Rand Link;
this scheme is also adopted by our previous work RETA
[14]. For our instance completion task where we predict r-t
pairs for a given h, we now propose an alternative setting
to randomly corrupt r-t pair for a given h (i.e., replacing
r and t by randomly sampled relation and entity from the
relation set R and the entity set E, respectively), so as to
align with the goal the instance completion task, which we
denote as Rand Inst. In the following, we discuss the noise
distribution from which the negative samples are generated.

3.4.2 Noise distributions

Due to its simplicity, uniform sampling (Uni) is widely
used in KG embeddings [7]. However, the uniformly ran-
dom corruption scheme has been shown to suffer from
an inefficiency issue since many negative samples are less
informative during the training process [74]. To alleviate this
issue, existing solutions resort to customized noise distribu-
tions guided by heuristics [76] or dynamically adapted over
the learning process [77], [78], [79]. Specifically, a Structure
Aware Negative Sampling (SANS) [76] method is proposed
to generate negative entities for the link prediction task
based on a heuristic that neighboring entities without direct
relation to a target entity are good candidates for negative
samples. NSCaching [78] keeps negative entities with high
plausibility in head and tail caches for each positive triplet
during the training process, and then generates negative
samples directly from those caches. Note these two methods
are explicitly designed for the link prediction task (i.e.,
Rand Link strategy) for generating negative entities only.

As an alternative, self-adversarial (Self Adv) negative
sampling technique [79] also favorites the negative samples
with higher plausibility in the training process; it proposes
to sample a negative sample ω′ according to a probability
computed by applying a softmax function on its predicted
score pw′ = expσ(ω′)∑

w′′ expσ(ω′′) . However, in practice, it is com-
putationally expensive to compute the denominator over
all possible negative samples ω′′ to generate one negative

sample. The self-adversarial negative sampling thus uni-
formly samples a set of negative samples, and then reweighs
each negative sample w′ using the corresponding pw′ as the
weight [79]. Subsequently, it can be used for both Rand Corr
and Rand Inst sampling strategies.

3.4.3 RETA-Filter supervised negative sampling
Motivated by the idea of using customized noise distribu-
tion, we propose to directly take negative samples from the
reduced solution space output by RETA-Filter, where our
negative samples are all schematically correct (Sche Corr)
facts under the Rand Inst strategy. Subsequently, RETA-
Grader is learnt to focus on discriminating correct answers
from the schematically correct candidate r-t pairs (from
the reduced solution space only) rather than from those
schematically incorrect r-t pairs which have been filtered
out by RETA-Filter. This customized negative sampling
process is more efficient as RETA-Grader is now trained
in the reduced solution space instead of the whole solution
space, under the supervision of RETA-Filter. Note that self-
adversarial sampling (Self Adv) can be further combined
with our approach by reweighing a Sche Corr negative
sample. In our experiments later, we will systematically
compare these negative sampling techniques, and show
that Sche Corr yields the best performance on the instance
completion task.

In summary, Algorithm 1 shows the integrated training
process of RETA-Grader under the supervision of RETA-
Filter. For each training iteration, we first randomly sample
a batch of positive triplets S+ from the training dataset Ω
(Line 2), and initialize an empty batch of negative triplets
S− (Line 3). For each positive triplet w = (h, r, t), we
randomly sample one relation-tail pair r′-t′ from the filtered
results output by RETA-Filter for the given head h, and
then include the negative triplet w′ = (h, r′, t′) in S−

(Line 4-8). Afterward, RETA-Grader is trained on the batch
including both positive and negative triplets S = S+ ∪ S−,
to minimize the loss in Eq. 2 (Line 9-10).

3.5 Practical considerations on design choices
To implement our RETA++, we take into account the follow-
ing two practical considerations:
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Algorithm 1 Integrated training process of RETA-Grader
under the supervision of RETA-Filter
Input: Training dataset Ω, RETA-Filter
1: while not converge do
2: Sample a batch of positive triplets S+ from Ω randomly
3: Initialize an empty batch of negative triplets S−
4: for each positive triplet w = (h, r, t) ∈ S+ do
5: Get the filtered result Nh from RETA-Filter
6: Sample one pair r′-t′ from Nh randomly
7: Insert a negative triplet w′ = (h, r′, t′) into S−
8: end for
9: Get one batch of training triplets S = S+ ∪ S−

10: Train RETA-Grader on S to minimize the loss in Eq. 2
11: end while

• Number of types learnt per entity. Our RETA-Grader
evaluates a triplet considering the plausibility of both the
input triplet and its corresponding schema, where the
schema information is represented by a set of entity-typed
triplets. For a given triplet (h, r, t) where h and t have m
and n types, respectively, the second module in Figure
4 is repeated mn times when evaluating this triplet; this
could incur a large computation overhead for large values
of m and n. To overcome this issue, we choose to learn at
most top-k types (according to the frequency of types in
a KG dataset) for each entity, resulting in min(mk, nk, k2)
repetitions of the second module, rather than mn times.
In practice, a small value of k is able to achieve a good
performance on our instance completion task, which has
been shown in our previous work [14].

• Entities without types. Although most entities in modern
KGs are associated with one or multiple types, there is still
a small portion of entities without types. To accommodate
these entities, we make the following adaptation to our
proposed solution.
First, to generate a set of candidate r-t pairs for a head
h, if any entity (h or t) does not have a type, we assume
the entity could be associated with any type, such that
we do not miss any potential candidates. Specifically, we
have the following three cases: 1) when h has no type
but t has types, ~hT becomes an all-one vector, where our
RETA-Filter still considers the match between r and t; 2)
when t has no type but h has types, the corresponding
row of M becomes an all-one vector, where our RETA-
Filter still considers the match between h and r; 3) when
both h and t have no type, ~hT and the corresponding
row of M become all-one vectors, where our RETA-Filter
generates a full matrix S (without zero entry); in the last
case in particular, if we set the threshold beta to 1, our
RETA-Filter indeed degrades to keep all combinations of
r-t pairs as candidates.
Second, to let RETA-Grader learn from entities without
types, we assign an “unknown” type to these entities,
and then keep the same pipeline for score prediction. For
example, for a triplet (h, r, t) where h has no type and
t has n types, the set of entity-typed triplets becomes
{(unknown type, r, t typej)|1 ≤ j ≤ n}. From a schema
point of view, such an “unknown” type could be linked to
any type in a KG via a relation, which makes the schema
relatedness feature vector less discriminative for predic-
tion. Subsequently, the fully projected layer in the third
module in Figure 4 will automatically learn more from

TABLE 1
Statistics of the datasets

Dataset JF17k FB15k HumanWiki
#Entity 9,233 14,579 38,949
#Entity w/ types 9,174 14,417 34,470
#Entity w/o types 59 162 4,479
#Type 511 588 388
#Type per entity 6.45 10.02 1.08
#Relation 326 1,208 221
#Fact 19,342 154,916 108,199
#Fact w/ types 19,015 144,117 87,150
#Fact w/o types 327 10,799 21,049

the triplet relatedness feature vector to make predictions.

4 EXPERIMENTS

We conduct an extensive evaluation on our instance com-
pletion task. In the following, we start by presenting our
experimental setup, followed by our results and discussions.

4.1 Experimental Setup
4.1.1 Datasets
We use three popular KG datasets JF17K, FB15K and Hu-
manWiki in our experiments. More precisely, the JF17K and
FB15K datasets are extracted from Freebase by [54] and
[20], respectively. We extract the HumanWiki dataset from
Wikidata by extracting all triplets involving a head entity
of type human (i.e., class Q5 human on Wikidata)2. As our
instance completion task suggests relation-tail pairs for a
given head, for each unique head, we randomly split its r-t
pairs in the datasets into 80% training and 20% test datasets.
Table 1 shows the main statistics of the three datasets.

4.1.2 Baselines
We compare RETA++ against a sizable collection of state-of-
the-art techniques in the following three categories.
• Relation (property) prediction techniques. BPR [80] is a

recommendation technique generating an entity-specific
ranked list of relations (where we consider the relation
prediction task as recommending relations to entities).
Property suggester (WikiPS) [12] recommends relations
to an entity using association rules learnt from existing
triplets in Wikidata; this technique is provided as an
online API3 on Wikidata, and thus can only be applied
to the HumanWiki dataset. Recoin [13] suggests relations
to an entity by collaboratively using the information about
other similar entities, where the similarity is manually
defined using a Boolean similarity function that considers
two entities as similar if they share at least one type. In
particular, it has a special setting for entities of type human
using heuristics and prior knowledge, where the Boolean
similarity is defined as whether two humans have the
same occupation or not, i.e., whether the two head entities
of type human have the same tail entity linked via the
relation occupation or not. OKELE [10] predicts relations

2. We choose to extract the HumanWiki dataset because one of the
state-of-the-art relation prediction techniques, Recoin (see below), is
specifically designed for “human” instances on Wikidata, using prior
knowledge for better performance on relation prediction.

3. https://www.wikidata.org/w/api.php?action=help&modules=
wbsgetsuggestions

https://www.wikidata.org/w/api.php?action=help&modules=wbsgetsuggestions
https://www.wikidata.org/w/api.php?action=help&modules=wbsgetsuggestions
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associated with an entity using an attention-based graph
neural network model4. As these relation prediction tech-
niques suggest a ranking list of relations to a given head,
we take the top-N relations from the list as the predicted
relations; tuning N balances the tradeoff between the size
and the coverage of the resulting candidate (r-t pair) set.

• Tail candidate refinement techniques. Based on the predicted
list of relations returned by the above techniques, a
straightforward approach to form a set of candidate r-t
pairs is to combine each predicted relation with all entities
(All). One possible improvement to this step is to have a
filtered list of relevant t rather than using all entities, i.e.,
generating a subset of potential t for the given h and r.
Note that this differs from the link prediction task, as we
generate a subset of t rather than ranking r-t pairs. In the
current literature, an entity relatedness prediction task has
been introduced by [53] for n-ary relational facts where
an n-ary relation links multiple entities {e1, e2, e3, ..., en});
this task predicts the relatedness between entities in such
an n-ary relational fact, in order to perform an instance
reconstruction task {e1, e2, ?, ..., ?} (see more detail in
our Related Work section). The proposed techniques by
[53] evaluate the relatedness between two entities, i.e.,
whether two entities should be linked by a relation or
not, which can thus be adopted for our tail candidate
refinement. Specifically, two techniques have been pro-
posed by [53]. First, a relatedness affiliated embedding
(RAE) model, which learns a neural network to predict
a relatedness score between two entities, and considers
them to be relevant if the score is higher than a threshold
γ. Tuning γ balances the tradeoff between the size and the
coverage of the resulting candidate (r-t pair) set. Second, a
schema-based predictor (Sch), leverages the type require-
ments on the entities dictated by the schema of a relation,
generating a set of (tail) entities schematically matching
a given relation. Subsequently, one can also combine the
refined sets of candidate tails from RAE and Sch by taking
their intersection (RAE&Sch).

• Link prediction techniques. The instance completion task
can only be conducted using link prediction techniques
that predict a score for a given triplet. We thus exclude
those techniques that predict a distribution of (tail) entities
for a given head and a given relation (e.g., ConvE [33]),
as they cannot be adopted to our instance completion
task. Therefore, we consider the following link prediction
techniques.
First, we consider classical link prediction techniques
evaluating the plausibility of a triplet only. The trans-
lational distance models we consider include: TransE
[20], which learns to preserve the relation between two
entities as h + r ≈ t; TransH [21], which extends
TransE to better capture multi-mapping relations using
relation-specific hyperplanes; TransR [22], which intro-
duces relation-specific projections to also better capture
multi-mapping relations; TransD [23], which further ex-

4. Note that we consider only the relation prediction technique from
OKELE as a baseline technique in this paper, as its link prediction
technique extensively uses open Web data, which fundamentally differs
from our instance completion task requiring only triplets and entity
types from a KG, without the need of involving any extra data sources
(see more detail in our Related Work section).

tends TransR by decomposing the projection matrix into a
product of two vectors for an improved efficiency. The
semantic matching models we consider are as follows:
Rescal [25], which represents each entity as a vector and
each relation as a matrix, and uses a bilinear function to
model the relation between a pair of entities; DistMult
[26], which simplifies Rescal by representing each relation
embedding as a diagonal matrix; ComplEx [30], which
further extends DistMult in the complex space to better
model both symmetric and asymmetric relations; Anal-
ogy [81], which explicitly models analogical structures
in multi-relational KG embeddings; SimplE [82], which
is an expressive and interpretable KG embedding tech-
niques based on canonical polyadic tensor decomposition;
RotatE [79], which defines a relation as a rotation from
a head to a tail in the complex space, capturing richer
relation patterns; ConvKB [72] which uses convolutional
neural networks to learn KG embeddings for link pre-
diction; HolE [83] which learns compositional embed-
dings using circular correlation; QuatE [84] which learns
hypercomplex-valued embeddings with three imaginary
components (quaternion embeddings); OctonionE [84]
which further extends QuatE to the hypercomplex num-
ber space with one real part and seven imaginary com-
ponents (octonion embeddings). For each of these link
prediction technique, we use the hyperparameters set by
[85] and [86]. We also consider a variation of RETA-Grader
as a baseline, where we learn from triplets only, without
learning from the schema (entity-typed triplets); we refer
to it as RETA (no type).
Second, we also consider link prediction techniques using
additional information about entity types as baselines, as
our RETA-Grader also evaluates a triplet considering the
plausibility of both the input triplet and its corresponding
entity-typed triplets. TypeTransE and TypeRescal [69] are
extended from TransE and Rescal, respectively, by impos-
ing type constraints in the objective functions of the two
respective techniques. TypeDM and TypeComplex [41]
are extended from DistMult and ComplEx, respectively,
by explicitly modeling entity type compatibility. RETA
refers to the approach proposed by our previous work
[14], where the RETA-Grader is the trained with the neg-
ative triplets sampled from the whole solution space by
randomly corrupting one element in the positive triplet h,
r or t; in other words, the training process is independent
of RETA-Filter. RETA++ is the current extension of RETA,
systematically integrating RETA-Filter and RETA-Grader,
where RETA-Grader is trained under the supervision of
RETA-Filter via a customized negative sampling process.

For our RETA-Grader, we use the negative sampling
technique Sche Corr, and set the number of types learnt
per entity k = 1, 1, and 4, the number of Filters nf = 50,
200, and 50, the number of negative samples λ = 2, 1,
and 1 for JF17K, FB15K, and HumanWiki, respectively. More
details on these parameter sensitivity study will be present
later. The implementation of RETA++ and used datasets are
available here5.

5. https://github.com/eXascaleInfolab/RETA code/

https://github.com/eXascaleInfolab/RETA_code/
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4.1.3 Evaluation Protocol
To implement our instance completion task, for a test h, we
first generate a set of candidate r-t pairs, and then score and
rank them. We evaluate this task in two steps.

First, we evaluate the quality of the filtered candidate
r-t pair sets. We consider two metrics: 1) the coverage of
the candidate set (i.e., the percentage of the ground truth
r-t covered by the candidate set), and 2) the size of the
candidate set. Intuitively, a good candidate set should have
high coverage and a small size at the same time. Due to the
intrinsic tradeoff between the coverage and size of the candi-
date set, we plot and compare the Pareto frontier of different
techniques. Specifically, to generate a set of candidate r-t
pairs using our baseline techniques, we can use any relation
prediction technique (BPR, WikiPS, Recoin, Recoin Human
or OKELE) combined with any tail candidate refinement tech-
nique (All, RAE, Sch or RAE&Sch). We first take the top N
relations generated by a relation prediction technique and
then use one tail candidate refinement technique to generate
a set of candidate r-t pairs. By tuning N (and also γ for RAE
when applicable), we balance the tradeoff between the size
and the coverage of the resulting candidate (r-t pair) set. For
our method, we tune α and β to balance this tradeoff.

Second, we evaluate the performance of different (link
prediction) techniques in ranking these candidate r-t pairs.
Specifically, after training a technique on an input KG, we
use it to score each candidate r-t pair (together with the test
h), and thus generate a ranking list of candidate r-t pairs.
We then evaluate this ranking list against the ground truth
r-t pairs, and report Recall@k (Rec@k), Mean Average Preci-
sion (MAP), and Normalized Discounted Cumulative Gain
(NDCG). Note that the quality of the filtered candidate r-t
pair sets generated by different r-t pair filtering techniques
in the previous step will impact the performance in this step.
For a fair comparison, we discount this impact by fixing the
set of candidate r-t pairs ensuring 95% coverage using our
RETA-Filter for all techniques.

4.2 Performance on Filtering r-t Pairs
In this section, we evaluate the first step of our instance com-
pletion task by investigating the performance of filtering r-t
pairs using different techniques.

4.2.1 Tradeoff between the size and coverage of the filtered
results
Figure 5 shows the Pareto frontier when trading off the size
and the coverage of the candidate r-t pair set using each
baseline technique and our RETA-Filter. We observe that
our RETA-Filter outperforms state-of-the-art techniques in
general by achieving a better tradeoff in most cases, i.e., the
resulting Pareto frontier is closer to the upper-left corner
of the plot. Moreover, we find that adding tail candidate
refinement techniques to relation prediction techniques does
help improve the quality of the resulting r-t pair sets,
where combining RAE and Sch (RAE&Sch) shows the best
performance.

Furthermore, under the tail candidate refinement tech-
nique RAE&Sch, we find that Recoin (RAE&Sch) is the most
competitive baseline, which is able to achieve comparable
results to our RETA-Filter on FB15K and HumanWiki. More

TABLE 2
Size of candidate set with at least 95% coverage. *WikiPS works only
on HumanWiki and fails to reach 95% coverage, due to the fact that its

suggested relations (returned from its API online) do not include all
relations in our HumanWiki dataset.

Method JF17k FB15k HumanWiki
BPR (RAE&Sch) 450,933 1,526,529 287,247
OKELE (RAE&Sch) 699,890 7,734,614 1,011,185
Recoin (RAE&Sch) 514,930 1,567,367 278,253
WikiPS (RAE&Sch)* N/A N/A -*
RETA-Filter 68,745 1,048,053 248,721

precisely, RETA-Filter is better than Recoin (RAE&Sch) by
achieving a slightly smaller candidate set under the same
coverage when the coverage is higher than 82% on FB15K
(95% on HumanWiki), while we observe the opposite result
when the coverage is lower than 82% on FB15K (95% on
HumanWiki). However, Recoin achieves such results by
using heuristics and prior knowledge on the structure of
a KG (i.e., manually defined similarity between entities),
in particular on HumanWiki where the similarity between
entities is defined as whether two humans have the same
occupation or not, i.e., whether the two head entities of type
human have the same tail entity linked via the relation occu-
pation or not. In addition, WikiPS (RAE&Sch) also performs
well on HumanWiki (the second best baseline). However,
it cannot reach high coverage, due to the API limitations,
as the returned relations do not include all relations in our
HumanWiki dataset.

4.2.2 Solution space reduction under the same coverage
In practice, as the first step of our instance completion task,
the r-t pair filtering step should generate a set of candidate
r-t pairs with high coverage (95% or even higher), in order
to let the following link prediction techniques or our RETA-
Grader identify the true r-t pairs by scoring and ranking the
candidate r-t pairs. Otherwise, the prediction on a candidate
set with a low coverage will certainly lead to low perfor-
mance on our instance completion task, as a candidate set
with a low coverage excludes many ground-truth r-t pairs,
which can never be correctly predicted. In other words, the
coverage of the candidate set in this step is indeed the
upper bound of recall@N when ranking the candidate r-
t pairs in the following prediction step. Therefore, we set
the coverage to 95% and compare the size of the candi-
date sets generated by different methods using the best-
performing tail candidate refinement technique RAE&Sch.
Table 2 shows the results. We see that our RETA-Filter con-
sistently outperforms the baseline techniques, and reduces
the size of the candidate set by 84.75%, 31.34%, and 10.61%
compared to the best-performing baselines on JF17k, FB15k,
and HumanWiki, respectively. In the following experiments,
we use our RETA-Filter to generate the set of candidate r-t
pairs with 95% coverage.

4.2.3 Runtime performance
We also evaluate the runtime performance of different
techniques in both pre-processing/training (if applicable)
and filtering processes. Table 3 shows the results on
our benchmark hardware (Intel Xeon6248@2.50GHz, 128GB
RAM@2666Hz, NVIDIA Tesla V100 16GB, Ubuntu 18.04).
We observe that RETA-Filter achieves the best runtime
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Fig. 5. Tradeoff between the size and the coverage of the resulting candidate (r-t pair) set from different filtering techniques. Note that our RETA-
Filter has a unique tradeoff line on each dataset, as it does not use any tail candidate refinement techniques.

TABLE 3
Runtime performance of different techniques. *Note that WikiPS is only applicable to HumanWiki dataset; its pre-processing/training time is

unknown as it is provided as an online API by Wikidata, and its filtering time is measured by the querying time of the API.

Method (Offline) Pre-processing/Training (Online) Filtering
JF17k FB15k Wiki JF17k FB15k Wiki

BPR (RAE&Sch) 27.37s 57.37s 33.4s 21.78s 110.88s 47.79s
OKELE (RAE&Sch) 1h2m 34h40m 4h43m 18m18s 3h1m 41m32s
Recoin (RAE&Sch) 16.16s 82.10s 54.82s 9.46s 37.2s 34.86s
WikiPS* (RAE&Sch) N/A N/A N/A N/A N/A 39m52s
RETA-Filter 0.99s 7.15s 0.90s 8.54s 29.14s 13.19s

performance in both the (offline) pre-processing/training
process and (online) filtering process. Specifically, BPR and
OKELE both require a model training process (a matrix
factorization model and a graph neural network, respec-
tively), resulting in long training and filtering time. WikiPS
is provided as an online API by Wikidata, where we have
only its filtering time measured by the querying time of
the API. Recoin and our RETA-Filter do not need an ac-
tual training process, but require pre-processing the input
dataset to extract schema-related information, which makes
them more efficient than other techniques. Moreover, RETA-
Filter benefiting from the efficiency of tensor operations
on the GPU-enabled hardware further outperforms Recoin,
showing an average speedup of 29.6x and 1.7x in the offline
pre-processing and online filtering processes, respectively.

4.3 Performance on Ranking r-t Pairs

In this section, we evaluate the second step of our instance
completion task. For a fair comparison, based on the candi-
date r-t pair set generated by our RETA-Filter, we evaluate
the performance of different link prediction techniques.

4.3.1 Performance comparison

Table 4 shows the results. We observe that RETA/RETA++
consistently outperforms all baseline techniques on our
instance completion task in general. Taking MAP as an
example, it yields an improvement of 31.90%, 105.02%, and
45.38% over the best-performing baselines on JF17K, FB15K,
and HumanWiki, respectively. We discuss the results in
detail as follows.

First, schema-aware techniques using entity types
achieve better performance in general. In particular, com-
pared to RETA (no type), which is the variant of
our proposed model without learning from the schema,
RETA/RETA++ learning from both triplets and their corre-
sponding schema significantly achieve better performance;
this shows that learning from entity-typed triplets is in-
deed helpful for the instance completion task. Note that
TypeComplex, which further considers entity types on top
of the ComplEx model, underperforms ComplEx; opposite
results are reported in [41]. This is due to the different
implementations of the ComplEx model. More precisely, we
tested two different implementation of ComplEx from [41]
and [85], respectively, and report the results from the best-
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TABLE 4
Performance of different methods on our instance completion task. We highlight the best-performing one of RETA/RETA++ and also the

best-performing baseline techniques for each metric.

Method JF17K FB15K HumanWiki
Rec@10 Rec@5 MAP NDCG Rec@10 Rec@5 MAP NDCG Rec@10 Rec@5 MAP NDCG

TransE 0.0682 0.0321 0.0230 0.0233 0.0411 0.0162 0.0242 0.1654 0.0098 0.0008 0.0147 0.1140
TransH 0.0410 0.0188 0.0173 0.1248 0.0216 0.0069 0.0175 0.1505 0.0110 0.0007 0.0119 0.1086
TransR 0.0657 0.0316 0.0229 0.1343 0.0441 0.0124 0.0240 0.1648 0.0052 0.0006 0.0124 0.1118
TransD 0.0465 0.0238 0.0179 0.1253 0.0253 0.0086 0.0196 0.1566 0.0050 0.0005 0.0108 0.1061
Rescal 0.0074 0.0057 0.0048 0.0791 0.0009 0.0004 0.0002 0.0566 0.0000 0.0000 0.0000 0.0474
Distmult 0.0892 0.0499 0.0367 0.1392 0.0596 0.0260 0.0245 0.1559 0.1400 0.1035 0.0767 0.1747
ComplEx 0.0841 0.0523 0.0317 0.1377 0.1235 0.0683 0.0597 0.1994 0.0986 0.0586 0.0416 0.1365
Analogy 0.1129 0.0679 0.0414 0.1424 0.1496 0.0841 0.0625 0.2017 0.0136 0.0064 0.0077 0.0891
SimplE 0.0881 0.0398 0.0290 0.1336 0.0483 0.0198 0.0245 0.1536 0.1151 0.0812 0.0573 0.1520
RotatE 0.1745 0.0996 0.0529 0.1694 0.0583 0.0341 0.0359 0.1805 0.0429 0.0064 0.0171 0.1172
ConvKB 0.1264 0.0756 0.0422 0.1487 0.0782 0.0202 0.0356 0.1758 0.1256 0.0902 0.0498 0.1586
HolE 0.1795 0.0976 0.0581 0.1698 0.1406 0.0798 0.0587 0.1943 0.1348 0.0988 0.0586 0.1689
QuatE 0.1791 0.0989 0.0556 0.1710 0.1540 0.0958 0.0687 0.2079 0.1356 0.1072 0.0634 0.1674
OctonionE 0.1732 0.0977 0.0554 0.1703 0.1498 0.0934 0.0673 0.2043 0.1366 0.1062 0.0627 0.1651
RETA (no type) 0.1414 0.0976 0.0528 0.1600 0.1262 0.0653 0.0538 0.2114 0.1606 0.1109 0.0860 0.2038
TypeTransE 0.0692 0.0379 0.0244 0.0240 0.0435 0.0174 0.0258 0.1767 0.0098 0.0009 0.0150 0.1215
TypeRescal 0.0083 0.0060 0.0049 0.0796 0.0009 0.0005 0.0002 0.0560 0.0000 0.0000 0.0000 0.0456
TypeDM 0.1481 0.0524 0.0452 0.1651 0.1274 0.0693 0.0576 0.1999 0.1285 0.1143 0.0789 0.2079
TypeComplex 0.0665 0.0425 0.0203 0.1204 0.0985 0.0552 0.0439 0.1755 0.0581 0.0015 0.0165 0.1082
RETA 0.1916 0.1153 0.0615 0.1855 0.2104 0.1288 0.1037 0.2658 0.2049 0.1545 0.1166 0.2332
RETA++ 0.2153 0.1418 0.0766 0.1986 0.2560 0.1770 0.1409 0.3233 0.2191 0.1535 0.1250 0.2463

TABLE 5
Performance of RETA and RETA++ on different test facts.

Method Test Facts JF17K FB15K HumanWiki
MAP NDCG MAP NDCG MAP NDCG

RETA known types 0.0614 0.1857 0.1075 0.2780 0.1440 0.2912
unknown type 0.0651 0.1577 0.0792 0.1875 0.0608 0.1154

RETA++ known types 0.0766 0.1987 0.1282 0.3248 0.1530 0.3076
unknown type 0.0786 0.1609 0.2224 0.3103 0.0683 0.1216

performing implementation from [85] in this paper.
Second, compared to link prediction techniques us-

ing additional information about entity types, our
RETA/RETA++ yield better performance by evaluating the
plausibility of both the input triplet and its corresponding
schema using a subtly designed KG embedding model.
Moreover, RETA++ further outperforms RETA by 16.9%
on average, which verifies the effectiveness of our newly
proposed integration scheme of RETA-Filter and RETA-
Grader. In other words, training RETA-Grader under the
supervision of RETA-Filter can better benefit from the re-
duced solution space output by RETA-Filter, where RETA-
Grader is learnt to discriminate correct answers from the
schematically correct candidate r-t pairs (from the reduced
solution space only) rather than those schematically incor-
rect r-t pairs which have been filtered out by RETA-Filter
(as our previous work RETA does).

4.3.2 Performance on facts with and without types
We further investigate the performance of RETA and
RETA++ when handling entities without types, where we
assign an artificially created “unknown” type to such en-
tities. To this end, we divide all test facts into two sets
depending on whether a fact involves an “unknown” type
or not: 1) test facts with types on both h and t (denoted as
known type); and 2) test facts involving “unknown” type
(denoted as unknown type), including both facts with types
on either h or t and facts without types at all. We then
compare the performance of our RETA-Grader on these two

sets of test facts. Table 5 shows the results. We observe that
the performance on the facts with known type is generally
better than the facts with unknown type. On one hand, for
the facts with known type, our RETA-Grader is able to fully
leverage the corresponding entity-typed triplets to evaluate
the plausibility of a triplet from a schema perspective,
resulting in better performance. On the other hand, for the
facts with unknown type, our RETA-Grader can only evaluate
the schematic plausibility based on the assumption that an
“unknown” type could be linked to any type in a KG via a
relation, which makes the schema relatedness feature vector
less informative for prediction.

Moreover, compared to our previous work RETA,
RETA++ consistently shows significant improvement of
13.27% and 47.79% on facts with known and unknown
types, respectively. The improvement difference here is
probably due to the following reason. For the facts with
unknown type, where the schema relatedness feature vec-
tors are less informative for prediction, training RETA-
Grader on the reduced solution space is more beneficial for
identifying the correct answers from the reduced solution
space. In contrast, for the fact with known type, where the
schema relatedness feature vectors are more informative
for prediction, the benefit of training RETA-Grader on the
reduced solution space is thus relatively smaller compared
to the case of the facts with unknown type.

We note that the results of known type in Table 5 are very
close to the results on all test facts from Table 4 (MAP and
NDCG) on JF17K and FB15K, but not on HumanWiki. This
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difference can be explained by the fact that facts with known
type dominate the set of all test facts on JF17K and FB15K,
representing 98.3% and 93.0% of all test facts on JF17K and
FB15K, respectively, while this statistic on HumanWiki is
80.5% (see Table 1 for more detail).

4.3.3 Impact of Different Negative Sampling Techniques
In this experiment, we study the impact of different negative
sampling techniques using RETA-Grader on our instance
completion task. As discussed in Section 3.4, we com-
pare two sampling strategies (Rand Link and Rand Inst)
configured with different noise distributions (Uni, SANS,
NSCaching, Self Adv, Sche Corr) with applicable. Table 6
shows the results.

First, we observe that the sampling strategy Rand Inst
generally performs slightly better than Rand Link under
the same noise distribution, as Rand Inst matches better
the problem setting of instance completion predicting r-t
pairs. For example, with Uni and Self Adv distributions,
Rand Inst outperforms Rand Link by 1.17% and 0.93%,
respectively.

Second, we find that although SANS and NSCaching
have been shown to be useful for link prediction tasks,
they are not helpful for the instance completion task, which
is due to the fact that they are explicitly designed for
the link prediction task to only generate negative entities.
In addition, we see that Self Adv is generally helpful by
reweighing uniformly generated negative samples, showing
consistent improvement over Uni under both Rand Inst
and Rand Link sampling strategies, with 3.75% and 3.51%
improvement, respectively.

Finally, our Sche Corr achieves the best performance
compared to other negative sampling techniques, yielding
an improvement of 11.44% over the best-performing base-
line (Self Adv under the Rand Inst strategy). This shows
the advantage of integrating RETA-Grader with RETA-Filter
for the instance completion task. Interestingly, when further
combined with Self Adv, Sche Corr (Self Adv) shows com-
parable results to Sche Corr, which implies that Self Adv is
not helpful on top of Sche Corr. This is due to the fact that
the reduced solution space from RETA-Filter is sufficiently
small and meanwhile has high quality; reweighing the neg-
ative samples there thus shows marginal improvement.

4.3.4 Runtime Performance
We also study the runtime performance of RETA and
RETA++ by investigating the number of training epochs
for convergence (achieving the previously reported perfor-
mance), under the same set of training hyperparameters.
Table 7 shows the results. We observe that RETA++ train-
ing RETA-Grader on the reduced solution space converges
faster than RETA, requiring 35% fewer training epochs,
while still achieving higher performance than RETA on
instance completion tasks with an improvement of 16.9%
(see Table 4). We note that the evaluation time of RETA and
RETA++ are the same, as they both use the RETA-Grader
for scoring and ranking r-t Pairs.

4.3.5 Parameter Sensitivity Study
We study the impact of three parameters of RETA-Grader
in RETA and RETA++, i.e., the number of types learnt per

Fig. 6. Parameter sensitivity study on RETA and RETA++. The impact of
1) the number of types learnt per entity k, 2) the number of filters nf ,
and 3) the number of negative samples λ, are shown in three rows from
the top to bottom, respectively. The runtime performance is measured
by the training time per epoch.

entity k, the number of filters nf , and the number of neg-
ative samples λ on both instance completion performance
and training time per epoch. In this section, we focus on test
facts with known type only, i.e., test facts with known types
on both h and t, as these test facts can be fully evaluated by
our RETA-Grader considering the plausibility of both the
input triplet and its corresponding schema.
• Number of types learnt per entity. RETA-Grader evaluates

a triplet considering the plausibility of both the input
triplet and its corresponding schema, where the schema
information is represented by a set of entity-typed triplets.
For entities with many types, the size of this entity-
typed triplet set is large, incurring a large computation
overhead. To solve this issue, our RETA-Grader considers
at most top-k types for each entity. In this experiment,
we investigate the impact of k on instance completion
performance and training time per epoch. Figure 6 shows
the results. On one hand, we observe that a small k can
achieve a good performance on the instance completion
task. Although considering entity types could improve
the performance on instance completion, learning from
a too large set of entity-typed triplets indeed makes it
hard to capture the key schematic structure of the KG,
due to the noise included in the large set of entity-typed
triplets, resulting in degraded performance. On the other
hand, the training time per epoch consistently increases
with k, as our RETA-Grader repeats its second module
min(mk, nk, k2) times for a triplet where h and t have
m and n types, respectively. We observe an exponentially
increasing time on JF17K (and FB15K), as for most triplets
in the dataset we have min(mk, nk, k2) = k2 (the average
number of types per entity is 6.45 on JF17K (and 10.02
on FB15K), which is larger than k in Figure 6). Note that
on HumanWiki, both instance completion performance
and training time per epoch have a small variation when
increasing k, due to the small number of types per entity
in the dataset. In essence, as the average number of types
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TABLE 6
Impact of different negative sampling techniques. Note that SANS and NSCaching can only be used with the Rank Link strategy, as they are
designed to only sample negative entities; Sche Corr is our proposed solution taking negative samples from the results of RETA-Filter, which

intrinsically follows the Rand Inst strategy.

Sampling
Strategy

Noisy
Distribution

JF17K FB15K HumanWiki
Rec@10 Rec@5 MAP NDCG Rec@10 Rec@5 MAP NDCG Rec@10 Rec@5 MAP NDCG

Rand Link

Uni 0.1916 0.1153 0.0615 0.1855 0.2104 0.1288 0.1037 0.2658 0.2049 0.1545 0.1166 0.2332
SANS 0.1895 0.1147 0.0603 0.1906 0.2074 0.1276 0.1029 0.2700 0.2035 0.1543 0.1136 0.2310
NSCaching 0.1863 0.1131 0.0611 0.1825 0.2037 0.1255 0.1035 0.2606 0.2011 0.1447 0.1123 0.2307
Self Adv 0.1999 0.1206 0.0673 0.1928 0.2174 0.1355 0.1119 0.2806 0.2080 0.1556 0.1182 0.2370

Rand Inst

Uni 0.1966 0.1188 0.0615 0.1847 0.2150 0.1286 0.1090 0.2668 0.2049 0.1546 0.1163 0.2364
Self Adv 0.1999 0.1191 0.0676 0.1857 0.2197 0.1360 0.1190 0.2860 0.2093 0.1547 0.1188 0.2388
Sche Corr 0.2153 0.1418 0.0766 0.1986 0.2560 0.1770 0.1409 0.3233 0.2191 0.1535 0.1250 0.2463
Sche Corr(Self Adv) 0.2155 0.1417 0.0762 0.1989 0.2563 0.1779 0.1406 0.3235 0.2188 0.1533 0.1255 0.2469

TABLE 7
Number of training epochs for convergence

Method JF17K FB15K HumanWiki
RETA 3000 400 3000
RETA++ 2300 300 1300

per entity is only 1.08 on HumanWiki, increasing k affects
only very few entities which have more than k types. In
summary, we select the best-performing k = 1, 1, and 4
for JF17K, FB15K, and HumanWiki, respectively, for all
other experiments.

• Number of filters nf . The impact of the number of filters nf
used by RETA-Grader is shown in Figure 6. We observe
that the optimal nf varies across datasets, while the
training time per epoch monotonically increases with nf .
Therefore, in all other experiments, we selected the best-
performing nf = 50, 200, and 50 for JF17K, FB15K, and
HumanWiki, respectively.

• Number of negative samples λ. The impact of the number
of negative samples λ is shown in Figure 6. We see that
the number of negative samples has a marginal impact on
the instance completion performance, while the training
time per epoch linearly increases with λ, as the number of
trained negative facts linearly increases. Therefore, in all
other experiments, we selected the best-performing λ = 2,
1, and 1 for JF17K, FB15K, and HumanWiki, respectively.

Finally, compared to RETA, RETA++ consistently
achieves better performance over different hyperparameters
settings. On the other hand, although RETA++ incurs a
small expense on the computational overhead per epoch
compared to RETA, it is trained on a reduced solution
space, and thus requires fewer training epochs (as evidenced
above), which still yields an improved runtime perfor-
mance.

5 CONCLUSION

This paper studies an instance completion problem over
KGs, where we predict relation-tail r-t pairs for a given
head h. To this end, inspired by the human psychological
principle “fast-and-slow thinking”, we propose a two-step
schema-aware approach RETA++ consisting of two compo-
nents: a fast RETA-Filter efficiently filtering candidate r-t
pairs schematically matching the given h, and a deliberate
RETA-Grader leveraging a KG embedding model scoring
each candidate r-t pair considering the plausibility of both

the input triplet and its corresponding schema. RETA++
systematically integrates these two components by training
RETA-Grader on the reduced solution space output by
RETA-Filter via a customized negative sampling process,
benefiting from the efficiency of RETA-Filter in solution
space reduction and the deliberation of RETA-Grader in
scoring candidate triplets. We evaluate our approach against
a sizable collection of state-of-the-art techniques on three
real-world KG datasets. Results show that our RETA-Filter
can efficiently reduce the solution space for the instance
completion task, outperforming best baseline techniques by
10.61%-84.75% on the reduced solution space size, while
also being 1.7x-29.6x faster than these techniques. More-
over, RETA-Grader trained on the reduced solution space
also significantly outperforms the best state-of-the-art link
prediction techniques on the instance completion task by
31.90%-105.02%. In particular, compared to our previous
work RETA where RETA-Grader is trained independently
of RETA-Filter, RETA++ integrates these two components by
training RETA-Grader on the reduced solution space output
by RETA-Filter, now achieving 16.9% higher performance
while requiring 35% fewer training epochs at the same time.

In future work, we plan to investigate more efficient
solutions for the instance completion problem using graph
neural networks.
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[29] I. Balažević, C. Allen, and T. M. Hospedales, “Tucker: Tensor fac-
torization for knowledge graph completion,” in EMNLP-IJCNLP),
2019, pp. 5185––5194.

[30] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
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