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Abstract

In this paper, we develop an algorithm to simulate blood flows in aneurysmal

arteries and focus on the construction of robust and efficient multilevel pre-

conditioners to speed up the convergence of both linear and nonlinear solvers.

The work is motivated by the observation that in the local aneurysmal region,

the flow is often quite complicated with one or more vortices, but in the

healthy section of the artery, the principal component of blood flows along the

centerline of the artery. Based on this observation, we introduce a novel two-

level additive Schwarz method with a mixed-dimensional coarse

preconditioner. The key components of the preconditioner include (1) a three-

dimensional coarse preconditioner covering the aneurysm; (2) a one-

dimensional coarse preconditioner covering the central line of the healthy

section of the artery; (3) a collection of three-dimensional overlapping sub-

domain preconditioners covering the fine meshes of the entire artery; (4) exten-

sion/restriction operators constructed by radial basis functions. The blood flow

is modeled by the unsteady incompressible Navier–Stokes equations with resis-

tance outflow boundary conditions discretized by a stabilized finite element

method on fully unstructured meshes and the second-order backward differen-

tiation formula in time. The resulting large nonlinear algebraic systems are

solved by a Newton-Krylov algorithm accelerated by the new preconditioner in

two ways: (1) the initial guess of Newton is obtained by solving a linear system

defined by the coarse preconditioner; (2) the Krylov solver of the Jacobian sys-

tem is preconditioned by the new preconditioner. Numerical experiments indi-

cate that the proposed preconditioner is highly effective and robust for

complex flows in a patient-specific artery with aneurysm, and it significantly

reduces the numbers of linear and nonlinear iterations.
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1 | INTRODUCTION

Computational hemodynamics is an important tool to study the behavior of blood flows and help understand certain
vascular diseases such as the effect of the flow patterns and the distribution of the wall shear stress on the growth of the
cerebral aneurysm.1,2 With the rapid development of supercomputing and parallel algorithms in recent years, computa-
tional fluid dynamics (CFD) based technology for blood flow studies is becoming a powerful tool for research and clinic
studies.3–10 Compared with the standard imaging technologies such as computed tomography, magnetic resonance imag-
ing, and transcranial Doppler, the CFD-based methods provide more details of blood flows. In the CFD modeling, 3D
unsteady incompressible Navier–Stokes equations with suitable initial and boundary conditions11–13 are commonly used,
and the arterial geometry is extracted from medical images. Because of the complexity of the incompressible Navier–Stokes
equations and the complex patient-specific geometry, the CFD-based methods often take a great deal of compute time. To
reduce the total compute time is essential in order to apply the methods in clinical situations. In the methods, the system
of partial differential equations is first discretized in space and time and then solved using a Newton-Krylov method14 in
which an inexact Newton method15 is used to solve the nonlinear system, and a Krylov subspace method16 is used to solve
the linear Jacobian system at each Newton step. The robustness and effectiveness of the Krylov subspace method depend
on a suitable preconditioner, and the fast convergence of the inexact Newton method requires a sufficiently good initial
guess. In this paper, we introduce a mixed-dimensional coarse approximation of the incompressible Navier–Stokes operator
that can be used to provide a good initial guess for Newton and a good second-level preconditioner for the Krylov iteration.

There are several classes of preconditioning methods for the incompressible Navier–Stokes equations such as block
preconditioners and domain decomposition preconditioners. Among block preconditioners, Klawonn introduced
block-diagonal and block-triangular preconditioners based on the block structure of the discretized matrix,17,18 and
Quarteroni et al.,19,20 Elman et al.,21–23 and Benzi et al.24,25 developed block preconditioners based on the algebraic fac-
torization methods. Among domain decomposition preconditioners, Klawonn et al.26 and Li et al.27 presented non-
overlapping substructuring preconditioners, and Klawonn et al.28,29 and Cai et al.3,30 introduced monolithic overlapping
additive Schwarz preconditioners. We should mention that there are other methods such as multigrid methods,31 lattice
Boltzmann methods,32 and isogeometric methods.33 In this paper, we focus on the additive Schwarz preconditioner
which is a powerful and naturally parallel preconditioner, but the scalability of the one-level preconditioner is not
guaranteed when the number of subdomains increases.34,35 To improve the scalability we introduce a special coarse
space for the two-level additive Schwarz preconditioner for the 3D unsteady incompressible Navier–Stokes equations in
a patient-specific cerebral artery with aneurysm.

Recently, we designed a robust and efficient two-level additive Schwarz preconditioner with a 1D coarse preconditioner
for 2D steady-state Stokes equations in artery-like domains36 and 3D unsteady incompressible Stokes and Navier–Stokes
equations in patient-specific arteries.37,38 The key components of the 1D coarse preconditioner include a coarse global
matrix obtained by a finite element discretization of parameterized 1D Stokes and Navier–Stokes models, a 3D-to-1D
restriction matrix and a 1D-to-3D extension matrix constructed by some approximation techniques. The most attractive fea-
ture of the method is that its computational cost is nearly negligible. The 1D model is obtained by the homogenization of
the 3D Navier–Stokes equations on the axial cross-sections of the artery and the reduced order model has been applied to
compute the averaged behavior of blood flows.39–44 Instead of using the 1D model to simulate the entire flow, it can also be
used as coarse preconditioners for some patient-specific arteries even with a large number of branches. However, for arter-
ies with moderate to large size aneurysm, our numerical experiments show that the performance of the 1D coarse
preconditioner degrades significantly because it is impossible to define a reasonable centerline in the aneurysmal region.

To overcome the difficulty, we propose a new method that combines the 1D coarse preconditioner defined on the
centerline of the normal region with a 3D coarse preconditioner3 defined on the small 3D aneurysmal region to form a
mixed-dimensional coarse preconditioner with some compatibility conditions on the interfaces of the centerline and
the aneurysm. The mixed-dimensional Navier–Stokes model is discretized in space by a stabilized finite element
method on the coarse mesh and the implicit backward Euler method in time. This mixed-dimensional coarse problem
serves two different purposes: (1) to reduce the number of linear iterations in the Krylov subspace method; (2) to reduce
the number of nonlinear iterations in the inexact Newton method. Different from most initial-boundary value prob-
lems, the initial condition for the blood flow problem is not actually available since a direct measurement of the entire
flow field at any given moment is clinically impossible, therefore, in traditional simulations, an approximate initial con-
dition is used that involves the Dirichlet boundary values for the boundary points and zero values for all other mesh
points. Such a “Dirichlet+zero” initial condition is also used to obtain the initial guess for the inexact Newton method
for the first time step, which often results in a large number of iterations. In this work, a new initial guess for the
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inexact Newton method is derived by solving the mixed-dimensional coarse preconditioning system with a special
right-hand side defined using the nonlinear residual function computed with the “Dirichlet+zero” initial condition.

The rest of the paper is organized as follows. In Section 2 we describe the model problem and the stabilized finite
element discretization. In Section 3 we derive the mixed-dimensional Navier–Stokes model with compatibility condi-
tions on the 1D and 3D interface. In Section 4, we develop the two-level additive Schwarz preconditioner with the
mixed-dimensional coarse preconditioner. In Section 5 we discuss a method that uses the mixed-dimensional coarse
problem to initialize the inexact Newton iteration. Section 6 shows some numerical experiments for a patient-specific
aneurysmal artery and some conclusions are given in Section 7.

2 | MODEL PROBLEM AND ITS DISCRETIZATION

In an aneurysmal artery Ω�ℝ3 (see Figure 1), we consider the unsteady incompressible Navier–Stokes problem

ρ
∂u
∂t

þu �ru

� �
�μΔuþrp¼ 0 inΩ� 0,Tð Þ,

r�u¼ 0 inΩ� 0,Tð Þ,
u x,0ð Þ¼ 0 inΩ,
u¼uI onΓI � 0,Tð Þ,
u¼ 0 onΓW � 0,Tð Þ,
p¼Ri

OQ
i
O onΓi

O� 0,Tð Þ, i¼ 1,…,m,

8>>>>>>>>>><>>>>>>>>>>:
ð1Þ

where u¼ u1,u2,u3ð ÞT is the blood velocity and p is the blood pressure, μ is the dynamic viscosity, and ρ is the blood
density. On the boundary, we impose a velocity Dirichlet condition on the inlet ΓI , a non-slip condition on the wall ΓW ,
and a resistance condition on the outlets ΓO ¼ [

m

i¼1
Γi
O, where m is the number of outlets. Here Ri

O is the constant resis-
tance and Qi

O ¼
R
Γi
O
u �ndΓi

O is the flux on Γi
O with the outward unit normal vector n.

Define V Ωð Þ¼ v�H1 Ωð Þ : v ΓI ¼uI ,vj jΓW
¼ 0

n o
, V 0 Ωð Þ¼ v�H1 Ωð Þ : v

��
ΓI [ ΓW

¼ 0
n o

. Denote u,vð Þ¼
R
ΩuvdΩ,

u,vh iΓO
¼
R
ΓO
uvdΓO. Then the variational formulation of (1) is to find u � , tð Þ,p � , tð Þð Þ�V Ωð Þ�L2 Ωð Þ such that

ρ
∂u
∂t

,v

� �
þ μru,rvð Þ� p,r�vð Þþ q,r�uð Þþ ρu �ru,vð Þ

� μru �n,vh iΓO
þ
Xm
i¼1

Ri
O

Z
Γi
O

u �ndΓi
O

Z
Γi
O

v �ndΓi
O ¼ 0,

ð2Þ

FIGURE 1 An aneurysmal artery with 1 inlet and 15 outlets and flow patterns at aneurysmal, bifurcating and normal regions.
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for all v,qð Þ�V 0 Ωð Þ�L2 Ωð Þ and t� 0,Tð Þ. Let T h be a shape-regular unstructured tetrahedral mesh of Ω, and Sh the
continuous, piecewise linear polynomial function space on T h. The P1-P1 finite element method is used and the finite
element spaces are as follows

Vh ¼ Sh½ �3\V Ωð Þ,W h ¼ Sh½ �3\V 0 Ωð Þ,Qh ¼ Sh\L2 Ωð Þ:

As the finite element pair Wh,Qhð Þ does not satisfy the inf-sup condition,45 we use the stabilized finite element
method3,46 to spatially discretize the weak formulation (2): find uh � , tð Þ,ph � , tð Þð Þ�Vh�Qh, such that

ρ
∂uh

∂t
,vh

� �
þ μruh,rvhð Þ� ph,r�vhð Þþ qh,r�uhð Þþ ρuh �ruh,vhð Þ

� μruh �n,vhh iΓO
þ
Pm
i¼1

Ri
O

Z
Γi
O

uh �ndΓi
O

Z
Γi
O

vh �ndΓi
Oþ

P
K � T h

r�uh,γ2r�vhð ÞK

þ
P

K � T h

ρ ∂uh
∂t þuh �ruh
� �

þrph,γ1 uh �rvhþrqhð Þ
� �

K ¼ 0,

8>>>>>>><>>>>>>>:
ð3Þ

for all vh,qhð Þ�W h�Qh and t� 0,Tð Þ, where γ1 and γ2 are the stabilization parameters satisfying

γ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
Δt2

þuT
hGuhþ36

μ

ρ

� �2

G :G

s0@ 1A�1

,γ2 ¼ 8γ1
X3
i¼1

Gi,i

 !�1

,

here G¼ Gi,j
� �

, i, j¼ 1,2,3ð Þ satisfies Gi,j ¼
P3

k¼1
∂bxk
∂xi

∂bxk
∂xj
, where bxif g3i¼1 and xif g3i¼1 are the local reference and global

physical coordinate variables, respectively. Let uh,phð Þ be the solution of (3). Denote the unknowns vectors of uh and ph
as U ,V ,Wð Þ and P, respectively. Then the semi-discretized system (3) can be rewritten as a system of ordinary differen-
tial equations

dX
dt

¼ L Xð Þ, ð4Þ

where X ¼ U,V ,W ,Pð ÞT is the time-dependent unknown vector. We subdivide the time interval 0,Tð Þ with a fixed time
step size Δt and use the second-order backward differentiation formula (BDF2) for the temporal discretization to (4).
Then we obtain a fully discretized system at tn ¼nΔt

3
2X

n�2Xn�1þ 1
2X

n�2

Δt
¼L Xnð Þ, n≥ 2ð Þ ð5Þ

where X1 is obtained by the first-order implicit backward Euler method.
Rewrite the nonlinear system (5) as

Fn Xnð Þ¼ 0: ð6Þ

The nonlinear algebraic system (5) is often large and sparse for a high-resolution simulation of blood flows, and we
solve it by a Newton-Krylov method. Specifically, in the outer iteration, an inexact Newton method is used to update
the numerical solution of (6) and in the inner iteration, the linear Jacobian system is approximately solved by a Krylov
subspace method to approximate the Newton direction. Note that the Jacobian system is a Stokes-like system and has
the same dimension as the nonlinear system (6). The most time-consuming part of the computation is solving the
Jacobian systems, therefore, it is necessary to design an efficient preconditioner. There are many general purpose
preconditioners,3,30 but they require a coarse mesh that has to be sufficiently fine to resolve the geometry of the fine
mesh. Consequently the computational time spent on the coarse mesh is very high and their performance is not
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satisfactory. We therefore introduce a method designed particularly for the time-dependent Navier–Stokes problem
defined on an arterial domain with aneurysm. In the following sections, we first introduce a two-level additive Schwarz
preconditioner with a mixed-dimensional coarse preconditioner for the Jacobian system. Then, we propose a mixed-
dimensional coarse correction to generate a better initial guess for the inexact Newton method.

3 | A MIXED-DIMENSIONAL NAVIER–STOKES MODEL AND ITS
DISCRETIZATION

In this section, we introduce a mixed-dimensional Navier–Stokes model obtained by coupling a 1D Navier–Stokes
model defined on the centerline of the normal region with a 3D Navier–Stokes model defined in the aneurysmal region
with some suitable interface conditions. The new model will be used to construct a better initial guess for Newton and
also a better coarse preconditioner for the Jacobian solver.

We divide Ω into a normal region Ωo and an aneurysmal region Ωa and denote Γ¼ ∂Ωo\ ∂Ωa as the interface, see
the left subfigure of Figure 2. Let Ωcl

o be the centerline of Ωo, sI the center of ΓI and siO
� 	m

i¼1 the center of Γi
O

� 	m
i¼1.

FIGURE 2 Normal (gray) and aneurysmal (red) regions of an aneurysmal artery (left) and the corresponding mixed-dimensional

domain with a mixed-dimensional coarse mesh.

FIGURE 3 Centerline of an artery at a bifurcation and some notations.
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Denote by mcl the number of branches of Ωcl
o and mJ the number of bifurcations of Ωcl

o . On each bifurcation, without
loss of generality, we assume that there is one inflow branch and two outflow branches and denote the corresponding

adjoining points by siJ1

n omJ

i¼1
and siJ2 ,s

i
J3


 �n omJ

i¼1
, see Figure 3. Then the mixed-dimensional model defined in Ωcl

o [Ωa

(see the right subfigure of Figure 2) can be described as follows.39,47,48

1. On the centerline Ωcl
o , we consider the 1D Navier–Stokes equations38,40,41

ρ
As

2
∂ucl

∂t
þβρ

α

4
Asu

cl ∂u
cl

∂s
þKr

2
uclþAs

∂pcl

∂s
¼ 0 inΩcl

o � 0,Tð Þ,

∂

∂s
Asu

cl
� �

¼ 0 in Ωcl
o � 0,Tð Þ,

ucl s,0ð Þ¼ 0 in Ωcl
o ,

8>>>><>>>>: ð7Þ

with the boundary conditions

ucl sI , tð Þ¼� 2
jΓI j

Z
ΓI

uI �ndΓI , pcl siO, t
� �

¼Ri
OAs

2
ucl siO, t
� �

i¼ 1,…,mð Þ, ð8Þ

and the bifurcation compatibility conditions

As siJ1


 �
ucl siJ1


 �
¼As siJ2


 �
ucl siJ2


 �
þAs siJ3


 �
ucl siJ3


 �
, ð9Þ

pcl siJ1


 �
¼ pcl siJ2


 �
¼ pcl siJ3


 �
i¼ 1,…,mJð Þ, ð10Þ

where α¼ 4=3 is the Coriolis coefficient and Kr ¼ 8πμ. Here β is a model parameter and corresponds to the Stokes
model (β¼ 0) and the Navier–Stokes model (β¼ 1).

2. In the aneurysmal region Ωa, we consider the 3D Navier–Stokes equations

ρ
∂u
∂t

þβu �ru

� �
�μΔuþrp¼ 0 in Ωa� 0,Tð Þ,

r�u¼ 0 in Ωa� 0,Tð Þ,
u x,0ð Þ¼ 0 in Ωa,

u¼ 0 on ∂Ωa\ΓW � 0,Tð Þ:

8>>>>><>>>>>:
ð11Þ

3. On the interface Γ¼ [
mf

i¼1
Γi, we consider the following compatibility conditions

ucli ¼ sign u �nð Þ 2
jΓi j

Z
Γi

u �ndΓi, pcli ¼
1

jΓi j

Z
Γi

pdΓi i¼ 1,…,mf
� �

: ð12Þ

The first condition represents the conservation of mass across the interfaces, and the second condition shows the
balance of forces from different sides of the interface.

Define V Ωcl
o

� �
¼ v�H1 Ωcl

o

� �
: v sIð Þ¼� 2

jΓI j
R
ΓI
uI �ndΓI

n o
and V0 Ωcl

o

� �
¼ v�H1 Ωcl

o

� �
: v
��
∂Ωcl

o ∖ Γ ¼ 0
n o

on the centerline

of the normal region and V Ωað Þ¼ v� H1 Ωað Þ½ �3 : v
���
∂Ωa \ ΓW

¼ 0

� 
in the aneurysmal region. The weak formulation of

mixed-dimensional model (7)–(12) can be described as: find ucl � , tð Þ,pcl � , tð Þ
� �

�V Ωcl
o

� �
�L2 Ωcl

o

� �
and

u � , tð Þ,p � , tð Þð Þ�V Ωað Þ�L2 Ωað Þ, such that
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ρAs
2
∂ucl
∂t þ

Kr
2 u

cl,vcl

 �

Ωcl
o

þ
Pmcl

i¼1
Asvclpcl

����s1i
s0i

� ∂Asvcl

∂s ,pcl

 �

Ωcl
o

þβ ρα
4Asucl ∂u

cl

∂s ,v
cl


 �
Ωcl

o

þη ∂Asucl

∂s ,qcl

 �

Ωcl
o

¼ 0,

ρ ∂u
∂t þβu �ru,v
� �

Ωa
þμ ru,rvð ÞΩa

� p,r�vð ÞΩa

þ q,r�uð ÞΩa
þ
Pmf

i¼1
pcli

Z
Γi

v �ndΓi ¼ 0,

8>>>>>>>>>>><>>>>>>>>>>>:
ð13Þ

for all vcl,qcl
� �

�V 0 Ωcl
o

� �
�L2 Ωcl

o

� �
, v,qð Þ�V Ωað Þ�L2 Ωað Þ and t � 0,Tð Þ, where η is a positive parameter. In (13), the

flux interface condition in (12) is used for the one-dimensional model (7) and the pressure interface condition in (12) is
used for the three-dimensional model (11) which is a defective condition introduced in Reference 47.

Let T cl
H be a polyline mesh of Ωcl

o with the mesh size O Hclð Þ and T a
H a shape-regular unstructured tetrahedral mesh

of Ωa with the mesh size O Hað Þ. Similarly, we denote SclH and SaH as the continuous, piecewise linear polynomial func-
tion space on T cl

H and T a
H , respectively, and the corresponding linear finite element spaces are defined as

Vcl
H ¼ SclH \V Ωcl

o

� �
,Wcl

H ¼ SclH \V0 Ωcl
o

� �
,Qcl

H ¼ SclH \L2 Ωcl
o

� �
,

V a
H ¼ SaH

� �3\V Ωað Þ,Qa
H ¼ SaH \L2 Ωað Þ:

Then, the stabilized finite element method to discretize (13) is to find uclH � , tð Þ,pclH � , tð Þ
� �

�Vcl
H �Qcl

H and
uH � , tð Þ,pH � , tð Þð Þ�V a

H �Qa
H , such that

ρAs
2
∂uclH
∂t þ

Kr
2 u

cl
H þAs

∂pclH
∂s þβρα

4AsuclH
∂uclH
∂s ,v

cl
H


 �
Ωcl

o

�η AsuclH ,
∂qclH
∂s


 �
Ωcl

o

þη
Pmcl

i¼1
AsuclHq

cl
H

����s1i
s0i

þ γ
P

e � T cl
H

H2
cl eð Þ ρAs

2
∂uclH
∂t þ

Kr
2 u

cl
H þAs

∂pclH
∂s ,

∂qclH
∂s


 �
Ωcl

o

þγ
P

e � T cl
H

H2
cl eð Þ βρα

4AsuclH
∂uclH
∂s ,

∂qclH
∂s


 �
Ωcl

o

¼ 0,

ρ ∂uH
∂t þβuH �ruH ,vH

� �
Ωa

þμ ruH ,rvHð ÞΩa
� pH ,r�vHð ÞΩa

þ
Pmf

i¼1
pcli

Z
Γi

vH �ndΓi

þ qH ,r�uHð ÞΩa
þ γ

P
K � T a

H

H2
a Kð Þ ρ ∂uH

∂t þβuH �ruH
� �

þrpH ,uH �rvH þrqH
� �

K ¼ 0,

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð14Þ

for all vclH ,q
cl
H

� �
�Wcl

H �Qcl
H , vH ,qHð Þ�V a

H �Qa
H and t� 0,Tð Þ, where γ is a positive stabilization parameter. For the time

integration of (14), we use the implicit backward Euler method and obtain the nonlinear system at tn ¼ nΔt

Fn
mc Xn

mc

� �
¼ 0, ð15Þ

where Xn
mc ¼ Xn

cl,X
n
a

� �T
is the unknown vector at tn, Xcl, and Xa correspond to the solutions of the 1D Navier–Stokes

equations on Ωcl
o and the 3D Navier–Stokes equations in Ωa, respectively. Finally, the Jacobian matrix An,k

mc of F
n
mc at the

kth Newton solution Xn,k
cl ,X

n,k
a

� �
takes the form

An,k
mc ¼

Acl X
n,k
cl

� �
2BT

31

B31 Aa Xn,k
a

� � !
, ð16Þ

where Acl and Aa are the linearized discretized matrices of the 1D Navier–Stokes Equations (7)–(10) and the 3D
Navier–Stokes Equation (11), respectively, and B31 corresponds to the interface integration

Pmf

i¼1p
cl
i

R
Γi
vH �ndΓi.

In the next section we will use the Jacobian matrix (16) to construct a coarse preconditioner.
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4 | TWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONER WITH MIXED-
DIMENSIONAL COARSE PRECONDITIONER

In this section, we introduce an overlapping two-level additive Schwarz preconditioner for the Jacobian problems
corresponding to (6). The one-level additive Schwarz preconditioner is the sum of all the subdomain preconditioners
and the coarse preconditioner is a combination of a 1D coarse preconditioner defined on the centerline of the normal
region and a 3D coarse preconditioner defined in the aneurysmal region. In the following, we first briefly review the
one-level method and then focus on the mixed-dimensional coarse preconditioner.

4.1 | One-level additive Schwarz preconditioner

To obtain the one-level additive Schwarz preconditioner, we first divide the arterial domain Ω into np non-overlapping
subdomains Ωif gnpi¼1 consisting of some elements of T h denoted by T h,if gnpi¼1. Then we extend the subdomains with δ
layers of adjoining elements to overlapping subdomains Ωδ

i

� 	np
i¼1 with the mesh T δ

h,i as follows

T 0
h,i ¼T h,i, T δ

h,i ¼ K � T h : 9K 0 � T δ�1
h,i , ∂K

0 \ ∂K≠ ;
� 	

:

Figure 4 shows an example of a non-overlapping and the corresponding overlapping partition obtained with
METIS.49 Now in the overlapping subdomains Ωδ

i

� 	np
i¼1, we define local finite element subspaces

V i
h ¼ v�V h Ωδ

i
: v

��� ���
∂Ωδ

i n ∂ΩnΓWð Þ
¼ 0

� 
,Qi

h ¼ q�Qh Ωδ
i
: q

��� ���
∂Ωδ

i n∂Ω
¼ 0

� 

and the natural restriction operator Ri :V h�Qh !V i
h�Qi

h which returns all degrees of freedom associated with the
overlapping subdomains and R0

i :Vh�Qh !V i
h�Qi

h which returns all degrees of freedom associated with the non-
overlapping subdomains. The one-level restricted additive Schwarz preconditioner50 can be defined as

M�1
1s ¼

Xnp
i¼1

R0
i

� �T
A�1
i Ri, ð17Þ

where Ai ¼RiART
i is the ith subdomain matrix and A is the Jacobian matrix of (6) at each Newton step.

It is worth noting that the one-level preconditioner (17) only involves local information exchange between adjoining
subdomains and the scalability is generally not guaranteed when the number of subdomains is large. Next, we intro-
duce a two-level method by additively combining the one-level preconditioner with a coarse preconditioner to improve
its scalability and robustness.

FIGURE 4 A non-overlapping partition of an arterial domain into 8 subdomains and the overlapping layers (red) are marked for two of

the subdomains.
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4.2 | Mixed-dimensional coarse preconditioner

In this subsection, we combine the discretization of the mixed-dimensional model given in Section 3 with suitable
restriction and extension operators to construct a cheap and scalable coarse preconditioner. For simplicity, we ignore
the superscript and denote An,k

mc as Amc in (16). Let Rmc :ℝ4N !ℝ2Nc
clþ4Nc

a and Emc :ℝ2Nc
clþ4Nc

a !ℝ4N be the mixed-dimen-
sional restriction and extension matrices, where N ,Nc

cl and Nc
a are the numbers of mesh points of T h,T cl

H and T a
H . Then

the mixed-dimensional coarse preconditioner takes the form

M�1
mc ¼EmcA

�1
mcRmc: ð18Þ

We first give some definitions and notations. Let xih
� 	N

i¼1 be the collection of mesh points of T h divided into two dis-
joint sets xih,o

� 	No

i¼1
and xih,a

� 	Na

i¼1
in Ωo and Ωa, respectively, and N ¼NoþNa. Define V h Ωoð Þ and Qh Ωoð Þ as the sub-

spaces of Vh Ωð Þ and Qh Ωð Þ such that functions in Vh Ωoð Þ and Qh Ωoð Þ vanish at xih,a
� 	Na

i¼1
, and similarly we define

Vh Ωað Þ and Qh Ωað Þ. Consequently we have Vh Ωð Þ¼Vh Ωoð Þ⊕V h Ωað Þ,Qh Ωð Þ¼Qh Ωoð Þ⊕Qh Ωað Þ. Next we define the
extension and restriction matrices Emc and Rmc.

First we define a restriction matrix Ro,cl :ℝ4No !ℝ2Nc
cl and an extension matrix Eo,cl :ℝ2Nc

cl !ℝ4No between the

coarse finite element space Vcl
H Ωcl

o

� �
�Qcl

H Ωcl
o

� �
and the fine finite element space V h Ωoð Þ�Qh Ωoð Þ, respectively. Let

sif gN
c
cl

i¼1 be the collection of mesh points of T cl
H . Denote Iif gN

c
cl�1

i¼1 as the collection of line elements of T cl
H . Then for any s

in T cl
H , there exists a unique j� 1,…,Nc

cl�1
� 	

, denoted by j sð Þ, such that s� Ij. Define a mapping

I : xih,o
� 	No

i¼1
! Iif gN

c
cl�1

i¼1 by

I xih,o
� �

¼ Ij,

where j¼ min
s � s�

j sð Þ and s� ¼ argmin
s � T cl

H

xih,o� x sð Þ
�� ��. Denote ζ yð Þ y� 0,1½ �ð Þ as the interpolation function of the velocity on

the normalized cross sections, which is defined as

ζ yð Þ¼ θ 1� yð Þþ 1�θð Þ 1� y2
� �

,θ� 0,1f g:

Note that ζ is linear when θ¼ 1 and quadratic when θ¼ 0 which is used in Reference 38. We define the extension
operator from uclH , p

cl
H

� �
�Vcl

H Ωcl
o

� �
�Qcl

H Ωcl
o

� �
to uh,phð Þ�Vh Ωoð Þ�Qh Ωoð Þ as

uh xjh,o


 �
¼uclH sð Þζ

j xjh,o� x sð Þ j
r0 sð Þ

 !
τ sð Þ, ph xjh,o


 �
¼ pclH sð Þ, ð19Þ

for any xjh,o j¼ 1,…,Noð Þ with s satisfying s� I xjh,o


 �
and xjh,o �Cs sð Þ, where τ sð Þ is the unit tangential vector along the

centerline. Denote φif gN
c
cl

i¼1 as the nodal basis functions of T cl
H . Based on the definition (19), the extension matrix

Eo,cl :ℝ2Nc
cl !ℝ4No can be given as38

Eo,cl ¼
Wu

1 Wu
2 Wu

3 0

0 0 0 Wp

� �T

,Wu
k ¼TkW

u k¼ 1,2,3ð Þ, ð20Þ

where Tk ¼ diag τk s1ð Þ, � � �,τk sNc
cl


 �
 �
are the tangent matrices and Wl ¼ wl

ij


 �
Nc

cl�No

, l¼u,pð Þ are the weighting matrices
defined as

wu
ij ¼

ζ
rj
r0

� �
φi sð Þ, xjh,o �Di

o,x
j
h,o �Cs sð Þ

0, xjh,o =2Di
o

8><>: , wp
ij ¼

φi sð Þ, xjh,o �Di
o,x

j
h,o �Cs sð Þ

0, xjh,o =2Di
o

(
,

LIU ET AL. 9 of 20
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with Di
o ¼ x � xjh,o

n oNo

j¼1
: I xð Þ� si�1,siþ1½ �,x �Cs sð Þ, 8s� si�1,siþ1½ �

� 
. The restriction matrix Ro,cl is defined as the trans-

pose of Eo,cl.

Then we define a restriction matrix Ra,c :ℝ4Na !ℝ4Nc
a and an extension matrix Ea,c :ℝ4Nc

a !ℝ4Na between the coarse

finite element space V a
H Ωað Þ�Qa

H Ωað Þ and the fine finite element space Vh Ωað Þ�Qh Ωað Þ. Let xiH,a

� 	Nc
a

i¼1
be the collec-

tion of mesh points of T a
H . Following,

3,51 using radial basis functions (RBF) denoted ϕ r,εð Þ (see Table 1) with the
rescaled technique,51 the extension operator from uH ,pHð Þ�V a

H Ωað Þ�Qa
H Ωað Þ to uh,phð Þ�V h Ωað Þ�Qh Ωað Þ can be

defined as

Zh xih,a
� �

¼
X

xjH,a � Di
H

wijZH xjH,a


 �
,wij ¼

ewijP
xkH,a � Di

H

ewik
, ewi ¼Φ�1ϕi, Z¼u,pð Þ ð21Þ

with the vectors ewi ¼ wij
� �

,ϕi ¼ ϕij


 �
for any xih,a i¼ 1,…,Nað Þ, where ϕij ¼ϕ rij,1=Hi

� �
, Φ is the interpolate matrix with

elements ϕjk, rij ¼j xih,a�xjH,a j, Hi is the diameter of Di
H and Di

H is the collection of the first four coarse mesh points of

T a
H close to xih,a. Through numerical experiments, we find that if Φ is replaced by the identify matrix the performance

of the algorithm is actually better in the sense that the number of iterations is smaller without having any accuracy
issue. In this case, the weight wij reduces to

wij ¼
ϕ rij,1=Hi
� �P

xkH,a � Di
H

ϕ rik,1=Hið Þ : ð22Þ

By the definition of the extension operator in (21), the extension matrix Ea,c :ℝ4Nc
a !ℝ4Na is stated as

Ea,c ¼ diag Erbf ,Erbf ,Erbf ,Erbf
� �

,Erbf ¼ eij
� �

Na�Nc
a
,eij ¼

wij xjH,a �Di
H

0 xjH,a =2Di
H

(
: ð23Þ

Similarly, the restriction matrix Ra,c is defined as the transpose of Ea,c.
Finally, using Eo,cl defined in (20) and Ea,c defined in (23), the mixed-dimensional extension matrix

Emc :ℝ2Nc
clþ4Nc

a !ℝ4N can be obtained by

Emc ¼
Eo,cl 0

0 Ea,c

� �
ð24Þ

TABLE 1 Common radial basis functions.

Type RBF

Local compact support (CP2) 1�εrð Þ4 1þ4εrð Þ
Polyharmonic spline (PHS(m)) rm m¼ 1,3,…ð Þ;rm log rð Þ m¼ 2,4,…ð Þ
Multiquadric biharmonic (MQB)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εrð Þ2

q
Inverse quadratic (IQ) 1= 1þ εrð Þ2

� �
Inverse multiquadric (IMQ)

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εrð Þ2

q
Gaussian (GA) e� εrð Þ2
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and the corresponding restriction matrix Rmc is given as the transpose of Emc. Consequently combining the one-level
preconditioner (17) with the coarse preconditioner (18), we obtain a mixed-dimensional two-level additive Schwarz
preconditioner

M�1
2s,mc ¼M�1

mcþM�1
1s ¼EmcA

�1
mcRmcþ

Xnp
i¼1

R0
i

� �T
A�1
i Ri: ð25Þ

For the following numerical comparison, we also consider a full 1D coarse preconditioner M�1
cl defined on the entire

central-line coarse mesh (see the left subfigure of Figure 5) and a full 3D coarse preconditioner M�1
c defined on the

whole 3D coarse mesh (see the right subfigure of Figure 5). The full 1D and 3D coarse preconditioners can be obtained
similarly to the 1D and 3D parts of the mixed-dimensional coarse preconditioner, respectively. The corresponding two-
level preconditioners are denoted by M�1

2s,cl and M�1
2s,c.

Remark 1. The aforementioned coarse preconditioners rely on the coarse solution at the current Newton
step when β¼ 1. In order to obtain the coarse solutions, we restrict the current Newton solution from the
fine finite element space into the coarse finite element space using radial basis functions. Specifically for
the mixed-dimensional coarse preconditioner, given the current Newton solution uh,phð Þ and the radial
basis functions ϕ r,εð Þ, the coarse solution uclH ,p

cl
H ,uH ,pH

� �
can be obtained by the following restriction

operations

uclH sið Þ¼
X

xjh,o � Di
h,o

wo
ijuh xjh,o


 �
τ sið Þ,pclH sið Þ¼

X
xjh,o � Di

h,o

wo
ijph xjh,o


 �
, ð26Þ

uH xiH,a

� �
¼

X
xjh,a � Di

h,a

wa
ijuh xjh,a


 �
,pH xiH,a

� �
¼

X
xjh,a � Di

h,a

wa
ijph xjh,a


 �
, ð27Þ

where the weights wl
ij l¼ o,að Þ can be obtained similarly to (21).

FIGURE 5 A full central-line mesh (left) with about 4�102 mesh points and a full 3D coarse mesh (right) with about 4�103 mesh

points of an aneurysmal artery.
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5 | A MIXED-DIMENSIONAL COARSE CORRECTION OF THE INITIAL
GUESS FOR INEXACT NEWTON

The nonlinear system (6) is solved by an inexact Newton method whose convergence depends on a good initial guess
which is often not available. In this section, we introduce a good initial guess for the first time step using the mixed-
dimensional coarse preconditioner defined in (18). For simplicity, we denote the nonlinear system at the current time
step as F xð Þ¼ 0, and a mixed-dimensional coarse correction function Cmc :ℝ4N !ℝ4N is as

Cmc xð Þ¼ x� λmcM
�1
mcF xð Þ, 8x �ℝ4N , ð28Þ

where λmc � 0,1ð � is a step-size parameter. Note that Cmc xð Þ¼ x if and only if x is a root of F. The correction takes the
following steps:

1. compute the nonlinear residual: F xkð Þ.
2. obtain the 3D correction, specifically

� compute the mixed-dimensional residual by restriction: Fmc xkð Þ¼RmcF xkð Þ.
� compute the correction by solving the mixed-dimensional residual equations: Amcδ

k
mc ¼Fmc xkð Þ.

� compute the 3D correction by extension: δk ¼Emcδ
k
mc.

3. correct the solution: Cmc xkð Þ¼ xk�λmcδk:

We remark that the coarse correction has two advantages: it is cheap and it saves a lot of Newton iterations.
Finally, a Newton-Krylov method with the mixed-dimensional coarse preconditioner and initial guess correction for

solving (6) can be described in Algorithm 1, in which the step-size parameter λmc ¼ 1, the Jacobian matrix Jnk of Fn at

Algorithm 1 Newton-Krylov method with mixed-dimensional coarse correction of the initial guess
for Fn Xnð Þ¼ 0

1: Given an initial guess Xn
0 ¼Xn�1:

2: Correct the initial guess bXn
0 ¼Cmc Xn

0

� �
and reset Xn

0 ¼ bXn
0 when n¼ 1.

3: for k¼ 0,1,2,… do
4: Find the Newton direction snk by approximately solving the Jacobian system by a preconditioned GMRES
method

Jnk Mn,k
2s,mc

� ��1
Mn,k

2s,mcs
n
k ¼�Fn Xn

k

� �
, ð29Þ

with the stopping condition

Fn Xn
k

� �
þ Jnks

n
k

�� ��
2 ≤ max atolGMRES,rtolGMRES Fn Xn

k

� ��� ��
2

n o
: ð30Þ

5: Find the step length λnk by the line search technique

f Xn
k þ λnks

n
k

� �
≤ f Xn

k

� �
þ ελnkrf Xn

k

� �T
snk : ð31Þ

6: Update the Newton solution Xn
kþ1 ¼Xn

k þλnks
n
k .

7: if Fn Xn
kþ1

� ��� ��
2 ≤ max atolNewton,rtolNewton Fn Xn

0

� ��� ��
2

n o
then

8: Xn ¼Xn
kþ1, return.

9: end if
10: end for.

12 of 20 LIU ET AL.

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3771 by U
niversity O

f M
acau, W

iley O
nline L

ibrary on [10/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Xn
k is analytically calculated, Mn,k

2s,mc

� ��1
is the proposed two-level Schwarz preconditioner at Xn

k , f is a merit function
defined as f Xð Þ¼ F Xð Þk k22=2 and the linesearch parameter ε¼ 10�4. The absolute and relative tolerances
atolGMRES,rtolGMRES and atolNewton,rtolNewton are used to control the Krylov and Newton iterations, respectively.

6 | NUMERICAL EXPERIMENTS

Some numerical experiments are provided in this section to show the effectiveness of the proposed mixed-dimensional coarse
preconditioner and correction for unsteady incompressible Navier–Stokes flows in a 3D patient-specific aneurysmal artery
including one inlet and fifteen outlets. The diameters of inlet and outlets of the artery are about 6 mm and 1.2 mm. For the
blood flows, we set the viscosity ν¼ 0:035 g/(cm�s), the density ρ¼ 1 g/cm3. On the inlet, we prescribe a pulsatile periodic

flow velocity3 (see Figure 6) with a parabolic profile. On each outlet Γi
O, the resistance Ri

O ¼Rtotal
Pm

j¼1 Γj
O

��� ���1:5= Γi
O

�� ��1:5
with Rtotal ¼ 1500 dyn�s/cm5. Here the value of the resistance is from Reference 38 In Algorithm 1, we set
rtolNewton ¼ 10�4,atolNewton ¼ 10�6 and rtolGMRES ¼ 10�4,atolGMRES ¼ 10�6. The linear Jacobian system at each Newton
step is solved by the right-preconditioned GMRES (30). In the Schwarz preconditioner, we set the overlapping parame-
ter δ¼ 1, the subdomain problems is solved by incomplete LU (ILU) method with one fill-in level and the coarse prob-
lem is solved by direct method. Several different meshes are considered and their details are listed in Table. 2.

We consider the blood flow in a patient-specific cerebral artery depicted in Figure 2 (left) with the aneurysm marked
in red. By solving (6) on a mesh with 2,789,226 elements and Δt¼ :005s, we obtain the numerical solution for a cardiac
cycle. Figure 7 shows the computed streamlines and wall shear stress at the peak systole (t¼ :165s) and a diastole stage
(t¼ :4s). We observe that the fluid flows along the centerline of the normal region and recirculates in the aneurysmal
region, and the wall shear stress in the aneurysmal region is lower than that in the normal region, which is consistent
with the results in Reference 2, indicating that the low wall shear stress might be a factor for the growth of the aneu-
rysm and might lead to the localized degeneration of the aneurysmal wall. Figure 8 shows more details of the local fea-
tures of the aneurysm including the streamline, the distribution of the magnitude of the velocity, and the wall shear

FIGURE 6 Inflow velocity for a cardiac cycle.

TABLE 2 Information of some 3D fine meshes and mixed-dimensional coarse meshes to be used in the experiments.

3D fine meshes Mixed-dimensional coarse meshes

N E h (mm) Nc
cl Hcl (mm) Nc

a Ha (mm)

597,556 2,789,226 .22 297 2.61 109 3.00

1,582,006 8,738,883 .17 420 1.85 210 2.30

784 1.00 350 1.80

Note: N , E, and h denote the number of mesh points, the number of elements and the mesh size. Nc
cl and Hcl denote the number of mesh points and the mesh

size on the centerline, and Nc
a and Ha denote the number of mesh points and the mesh size in the aneurysmal region.
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FIGURE 7 Distributions of streamlines (top) and wall shear stresses (bottom) at t¼ :165s (left) and t¼ :4s (right).

FIGURE 8 Local features of the streamline (left), the magnitude of a cross-sectional velocity (middle) and the wall shear stress (right) in

the aneurysmal region at t¼ :165s.
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stress. We see that a single vortex is formed within the aneurysmal region, which is reasonable as the inflow jet flows
against the aneurysmal wall. Besides, the magnitudes of the wall shear stress at the neck and downstream lips of the
aneurysm are significantly higher than that in the aneurysm and the inflow jet does not produce an obvious impinge-
ment zone and local elevation of the wall shear stress, which might mean a lower probability of rupture.1

6.1 | Performance of 1D coarse preconditioner without aneurysm

We first consider the artery shown in Figure 2 (left), but with the aneurysm removed (see Figure 9). This is an easier sit-
uation and we investigate the performance of the 1D coarse preconditioner. The 1D preconditioner M�1

cl θ,ηð Þ given in
the paper is more general than the 1D preconditioner introduced in.38 As discussed before, θ is a positive parameter
imposed on the momentum equation of 1D Navier–Stokes equations, and η is an interpolation parameter. In this exper-
iment, the time step size Δt¼ :005s, the fine mesh has 536,890 points and 2,497,260 elements and the central-line coarse
mesh has 297 points. Table 3 shows the numbers of Newton and GMRES iterations with different values of θ,η and γ.
Figure 9 shows the corresponding pressure distribution at t¼ :05s. We can see that the linear function (θ¼ 1) as the
velocity profile in the restriction and extension matrices gives a more effective 1D preconditioner than the quadratic
function (θ¼ 0), and a careful choice of η and γ can reduce the number of GMRES iterations. Usually, we set η¼ 1 and
γ¼ :05, but the optimal values of the parameters are obtained experimentally. In the rest of the paper, we fix θ¼ 1 and
η¼ 7. This example shows that the 1D coarse preconditioner with appropriate parameters works well in complex

FIGURE 9 Computed pressure field in the artery without aneurysm at t¼ :05s.

TABLE 3 Effect of some parameters on the numbers of Newton and GMRES iterations of 1D coarse preconditioner (β¼ 0) for the artery

without aneurysm at the tenth time step (t¼ :05s).

θ η γ Newton GMRES

0 1 .05 2 169.00

0 1 .15 2 160.00

0 1 .30 2 223.00

1 1 .05 2 110.50

1 1 .15 2 105.00

1 1 .30 2 124.50

1 3 .15 2 86.00

1 5 .15 2 71.50

1 7 .15 2 66.50
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arteries without aneurysms. Next, we show the degradation of the performance of the 1D coarse preconditioner when
there is an aneurysm and how the addition of the 3D coarse preconditioner in the aneurysmal region improves the
performance.

6.2 | Performance of mixed-dimensional coarse preconditioner and initial-guess
correction

In this subsection, we study the performance of the mixed-dimensional coarse preconditioner and the initial guess cor-
rection for the problem with an aneurysm as shown in Figure 2 (left). In Table 4, we show the numbers of Newton and
GMRES iterations for two different mesh sizes and different time step sizes with and without mixed-dimensional coarse
correction at the first time step. It is clear that both numbers of Newton and GMRES decrease significantly when the
initial guess correction is used. Figure 10 shows the history of the nonlinear residual with and without the initial-guess
correction, and it is clear that the correction is quite effective.

In Table 5, we show the numbers of Newton and GMRES iterations with a fixed Δt¼ :005s, and varying some of the
parameters including the coarse mesh size, the type of the coarse model, the radial basis function, and the stabilization
parameter. From this table, we observe that different radial basis functions do not affect the preconditioner, the coarse
Navier–Stokes model (β¼ 1) is more effective than the coarse Stokes model (β¼ 0) and a suitable stabilization parame-
ter γ¼ :7 can clearly reduce the number of GMRES iterations. In addition, we note that the number of GMRES itera-
tions does not decrease when the number of coarse mesh points increases beyond a certain value. In other words, the
coarse mesh does not need to be too fine.

TABLE 4 Performance of the mixed-dimensional coarse correction at the first time step.

N Δt (s) cor Newton GMRES

597,556 .005 0 16 93.38

1 4 56.00

.01 0 16 95.88

1 5 59.00

1,582,006 .005 0 11 107.64

1 4 62.50

.01 0 11 103.36

1 4 75.00

Note: cor¼ 0 or 1 means the correction option is off and on, respectively.

FIGURE 10 Nonlinear residual histories with and without mixed-dimensional coarse correction.
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Next, we compare the scalability and effectiveness of the one-level and two-level preconditioners. Table 6 shows the
numbers of Newton and GMRES iterations for different mesh sizes and number of subdomains at the peak systole. It
can be seen that the number of GMRES iterations of the two-level preconditioner is far fewer than that of the one-level
preconditioner, and it increases moderately when the mesh is refined and slightly when the number of subdomains
increases. Figure 11 further presents the histories of the GMRES residuals of these preconditioners at the first two New-
ton steps. Note that the GMRES residual decreases fast and almost linearly for the two-level preconditioner but slowly
for the one-level preconditioner after some iterations.

Finally, we consider the performance of the mixed-dimensional coarse preconditioner compared with 1D and 3D
coarse preconditioners. Table 7 shows the numbers of Newton and GMRES iterations of these preconditioners with
Stokes or Navier–Stokes model at the peak systole. For the 3D and mixed-dimensional preconditioners, the Navier–
Stokes coarse model (β¼ 1) can significantly reduce the number of GMRES iterations of the Stokes coarse model
(β¼ 0). The full 1D coarse preconditioner performs badly, however, the mixed-dimensional coarse preconditioner,
which is obtained by replacing the aneurysmal part of the full 1D coarse preconditioner with a 3D coarse
preconditioner in the aneurysmal region, has a significant improvement and is comparable to the 3D preconditioner
when β¼ 1. Figure 12 shows the sparsity patterns and the number of nonzero elements of these coarse matrices. It is
easy to see that the mixed-dimensional coarse matrix has a local denser submatrix than the full 1D coarse matrix, and
they have far fewer non-zeros than the 3D coarse matrix. These results indicate that for the aneurysmal artery the
mixed-dimensional coarse preconditioner not only performs well in terms of the number of GMRES iterations but also
has only a small increase in the dimension and the density compared with the 1D coarse preconditioner (Figure 12).

TABLE 5 Effect of parameters on the numbers of Newton and GMRES iterations with mixed-dimensional coarse preconditioner at the

tenth time step.

Nc
cl Nc

a β RBF γ Newton GMRES

784 109 0 CP2 .05 2 88.50

784 109 0 CP2 .7 2 82.50

784 109 0 CP2 1.2 2 82.00

784 109 0 GA .7 2 82.50

784 109 0 MQB .7 2 82.50

784 109 1 MQB .7 2 76.50

784 210 1 MQB .7 2 81.50

784 350 1 MQB .7 2 104.00

420 109 1 MQB .7 2 82.50

297 109 1 MQB .7 2 78.50

Note: Ncl, Nc
a are the numbers of mesh points on the centerline and aneurysmal region, β is the model parameter, γ is the stabilization parameter, and “RBF” is

the type of radial basis functions.

TABLE 6 Comparison of one-level and proposed two-level preconditioners with different numbers of mesh points N and different

number of subdomains np at the peak systole.

One-level Two-level

N np Newton GMRES Newton GMRES

597,556 128 2 389.50 2 63.50

256 2 419.50 2 66.00

512 2 460.00 2 69.00

1,582,006 256 3 600.00 3 89.33

512 3 600.00 3 92.00

1024 3 600.00 3 94.00

Note: The maximum number of GMRES iterations is set to 600.

LIU ET AL. 17 of 20

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3771 by U
niversity O

f M
acau, W

iley O
nline L

ibrary on [10/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Note: “Dim” is the dimension of the coarse matrix, nnz is the number of nonzeros in the coarse matrix, β is the
model parameter and γ is the stabilization parameter.

7 | CONCLUSIONS

High-fidelity simulation of 3D unsteady incompressible Navier–Stokes equations is becoming an important tool to under-
stand the behavior of the blood flows in the human artery, but the simulation is computationally expensive, especially
when there is aneurysm since the fluid becomes much more complex. In this paper, we develop and test a Newton-Krylov
method with a two-level additive Schwarz preconditioner with a mixed-dimensional coarse space and also a mixed-

FIGURE 11 GMRES residual histories of the one-level and two-level preconditioners at the first (left) and second (right) Newton steps

with N ¼ 1582006 at the peak systole.

TABLE 7 Comparison of the 1D, 3D, and mixed-dimensional (mD) coarse preconditioners at the peak systole.

Preconditioner Dim nnz β RBF γ Newton GMRES

1D 1590 9205 0 - .7 2 237.50

1D 9205 1 MQB .7 2 236.00

3D 16,872 269,947 0 CP2 7.0 2 223.50

3D 349,549 1 CP2 7.0 2 68.00

mD 2004 17,746 0 MQB .7 2 92.50

mD 21,243 1 MQB .7 2 63.50

FIGURE 12 Sparsity pattern of 1D (left), 3D (middle) and mixed-dimensional (right) coarse matrices with β¼ 1.
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dimensional initial guess correction for solving the 3D Navier–Stokes equations. In the two-level preconditioner, we con-
struct an effective and scalable coarse preconditioner by combining a 1D coarse preconditioner defined on the centerline of
the normal region and a 3D coarse preconditioner defined in the aneurysmal region. Such a mixed-dimensional coarse
preconditioner is later modified to provide an initial guess correction for the inexact Newton's method for the first time
step. For a patient-specific cerebral flow problem, we show numerically that the proposed methods reduce the numbers of
the linear and nonlinear iterations significantly while keeping a very low computational complexity.
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