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AMS-Net: Adaptive Multi-Scale Network for
Image Compressive Sensing

Kuiyuan Zhang , Zhongyun Hua , Member, IEEE, Yuanman Li , Member, IEEE,
Yongyong Chen , Member, IEEE, and Yicong Zhou , Senior Member, IEEE

Abstract—Recently, deep convolutional neural networks have
been applied to image compressive sensing (CS) to improve
reconstruction quality while reducing computation cost. Existing
deep learning-based CS methods can be divided into two classes:
sampling image at single scale and sampling image across
multiple scales. However, these existing methods treat the image
low-frequency and high-frequency components equally, which
is an obstruction to get a high reconstruction quality. This
paper proposes an adaptive multi-scale image CS network
in wavelet domain called AMS-Net, which fully exploits the
different importance of image low-frequency and high-frequency
components. First, the discrete wavelet transform is used to
decompose an image into four sub-bands, namely the low-low (LL),
low-high (LH), high-low (HL), and high-high (HH) sub-bands.
Considering that the LL sub-band is more important to the final
reconstruction quality, the AMS-Net allocates it a larger sampling
ratio, while allocating the other three sub-bands a smaller one.
Since different blocks in each sub-band have different sparsity,
the sampling ratio is further allocated block-by-block within the
four sub-bands. Then a dual-channel scalable sampling model
is developed to adaptively sample the LL and the other three
sub-bands at arbitrary sampling ratios. Finally, by unfolding
the iterative reconstruction process of the traditional multi-scale
block CS algorithm, we construct a multi-stage reconstruction
model to utilize multi-scale features for further improving
the reconstruction quality. Experimental results demonstrate
that the proposed model outperforms both the traditional and
state-of-the-art deep learning-based methods.

Index Terms—Compressive sensing, convolutional neural
networks, discrete wavelet transform, block compressive sampling.
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I. INTRODUCTION

COMPRESSIVE sensing (CS) is a new signal acquisi-
tion technique [1], [2]. It can sample a signal using

a measurement matrix at a far lower ratio than the require-
ment of Nyquist sampling theory and can construct the orig-
inal signal from its measurements [3]. Because the sampling
and compressing operations are performed simultaneously, the
CS shows good performance in data acquisition, storage, and
transmission [4], [5]. Researchers have applied the CS theory
to many fields such as magnetic resonance imaging [6], video
compression [7], image coding [8] and snapshot compressive
imaging [9].

There are two main tasks in studying the CS: signal sampling
and signal reconstruction. For traditional CS schemes, although
their measurement matrices can satisfy the restricted isometry
property [10], they have low reconstruction performance due to
the lack of adaptability for signals with different features. Be-
sides, their reconstruction algorithms [11], [12], [13] were devel-
oped by considering the prior knowledge of the original signal
and applying iterative non-linear optimization approaches for
reconstruction. These reconstruction algorithms have some dis-
advantages such as low reconstruction quality, high complexity,
and blocking artifacts.

Recently, some deep learning-based image CS models have
been proposed to solve the limitations of traditional CS meth-
ods. These models implement the reconstruction process us-
ing the convolutional neural networks (CNNs) to replace the
time-consuming optimization process, and their measurement
matrices can be learned adaptively [14], [15], [16], [17]. Be-
sides, some works first decompose an image using differ-
ent multi-scale decomposition approaches and then sample
these decomposed images across scales to sufficiently uti-
lize the multi-scale features [18], [19], [20]. Compared with
traditional iterative optimization-based algorithms, these deep
learning-based methods can significantly improve the recon-
struction quality and reduce the time complexity of reconstruc-
tion. However, these methods directly sample images at sin-
gle scale [14], [15], [16], [17] or across multiple scales [18],
[19], [20] by equally treating the image low-frequency and
high-frequency components with the same resources. This limits
the reconstruction quality, since the low-frequency components
are more important to the reconstruction quality of an image than
the high-frequency components, especially at a low sampling
ratio [12].
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In this paper, we propose a wavelet domain-based adap-
tive multi-scale image CS network (AMS-Net) by consider-
ing the different importance of the image low-frequency and
high-frequency components. It can adaptively sample images in
the multi-scale domain. Specifically, the discrete wavelet trans-
form (DWT) is used to decompose an image from the spatial
domain to the frequency domain, generating the low-low (LL),
low-high (LH), high-low (HL), and high-high (HH) sub-bands.
Considering that the LL sub-band is the low-frequency compo-
nents and is more important to the reconstruction quality than
the other three sub-bands, we design a dual-channel scalable
sampling model that assigns the LL sub-band a larger sampling
ratio while assigning the other three sub-bands a smaller one.
As different blocks in the sub-bands have different sparsity, we
apply a linear sampling resource assigning (LSRA) strategy to
these two channels to further adjust the sampling ratios accord-
ing to block sparsity. By unfolding the reconstruction process of
the multi-scale block CS (MS-BCS) strategy [12] using CNN,
we construct a multi-stage reconstruction architecture. In each
stage, the reconstruction model first applies a dual-channel pro-
jection operation in the wavelet domain on the reconstructed
image block-by-block, and then implements a full-image de-
noising operation in the spatial domain to remove the noise and
blocking artifacts.

The contributions and novelty of this paper are summarized
as follows:
� We present a wavelet domain-based adaptive multi-scale

image CS network, which is the first deep learning-based
CS network that considers the different importance of im-
age low-frequency and high-frequency components.

� We develop an LSRA strategy to adjust the sampling ratios
according to block sparsity and propose a dual-channel
scalable sampling model to perform the adaptive sampling
tasks at arbitrary sampling ratios.

� Unfolding the traditional reconstruction strategy with
CNN, we design a multi-stage reconstruction architecture
to exploit the multi-scale features, which can further im-
prove the reconstruction quality.

� We conduct a comprehensive evaluation and the results
show that our model outperforms both the traditional and
state-of-the-art deep learning-based CS methods.

The rest of this paper is organized as follows. Section II intro-
duces the CS theory and the traditional MS-BCS algorithm. Sec-
tion III reviews the deep learning-based CS models. Section IV
presents the network structure of our AMS-Net. Section V eval-
uates the performance of the proposed model and compares it
with state-of-the-art methods. Section VI gives a conclusion of
this paper.

II. PREREQUISITE KNOWLEDGE

A. Compressive Sensing

For a given measurement matrix Φ ∈ Rm×n with n >> m,
the CS theory specifies that the sparse signal x ∈ Rn×1 can be
sampled as y = Φx and it can be reconstructed using some
reconstruction algorithms [11], [13] from the measurements
y ∈ Rm×1. The CS methods can be divided into two classes:

single-scale CS methods and multi-scale CS methods. The
single-scale CS methods sample and reconstruct images in the
spatial domain, while the multi-scale CS methods sample images
in the multi-level decomposition domain or reconstruct images
using multi-scale information.

B. Multi-Scale Block Compressive Sensing

When processing a two-dimensional (2D) image, the size of
the measurement matrix will be quite large if transforming the
2D image into a one-dimensional (1D) signal. To solve this prob-
lem, block-based sampling (BCS) methods [12], [21] have been
widely used to separately sample each non-overlapping image
block with constant size B ×B.

Letxi represent the 1D vector transformed from the i-th block
of the image X, and the sampling process is written as

yi = ΦBxi, (1)

whereΦB ∈ RnB×B2
is a measurement matrix and yi ∈ RnB×1

is the measurements of xi. The sampling ratio (sr) is sr =
nB/B

2. The authors in [21] proposed a BCS-SPL method that
directly samples image blocks in the spatial domain and uses pro-
jected Landweber reconstruction mechanism to reduce blocking
artifacts. To utilize the multi-scale features of images, the authors
in [12] further proposed the MS-BCS to deploy the BCS-SPL
in the multi-level decomposition domain.

1) Multi-Scale Sampling: To sample an image in multi-scale
domain, one should first decompose the image to produce L
levels of wavelet decomposition coefficients. Then each block
x̃l,s,i of a sub-band s at level l is sampled as

yl,s,i = Φlx̃l,s,i, (2)

where s ∈ {LH,HL,HH}, 1 ≤ l ≤ L and Φl means the mea-
surement matrix for the level l. Since a lower level of the decom-
position coefficients is more important to the final reconstruction
quality, the sampling resources are adaptively adjusted for each
level l.

2) Multi-Scale Reconstruction: First, the initial estimation
of each image block is generated by linearly mapping the mea-
surements, which is shown as

x̂
(0)
l,s,i = Φ∗

l yl,s,i, (3)

where Φ∗
l represents the linear mapping matrix and it is the

pseudo-inverse matrix of Φl. Then the reconstruction process is
an iterative process and each iterative step contains the following
two operations.
� Projection in the wavelet domain: This operation is to find

a vector that is closer than the current vector x̂
(t)
l,s,i on

the hyperplane H = {x̂l,s,i : Φlx̂l,s,i = yl,s,i}. The pro-
jection operation is defined as

x̂
(t+1)
l,s,i = x̂

(t)
l,s,i +Φ∗

l

(
yl,s,i −Φlx̂

(t)
l,s,i

)
= x̂

(t)
l,s,i + x̂

(0)
l,s,i −Φ∗

lΦlx̂
(t)
l,s,i. (4)

� Deblocking and Denoising: Block-based reconstruction
and projection may generate some blocking artifacts and
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Fig. 1. The framework of the AMS-Net. The X donates the original image and the X̂(T ) represents the reconstructed image.

noises. Thus, a non-linear mapping

X̂(t+1) = H
(
X̂(t+1)′

)
(5)

is employed to remove the blocking artifacts and noises
of the reconstructed image X̂(t+1)′, where H donates the
Wiener filtering in the spatial domain or the thresholding
operation in the frequency domain, and X̂(t+1)′ is the full
image generated by applying inverse DWT (IDWT) to the
reconstructed blocks x̂(t+1)

l,s,i .

III. DEEP LEARNING-BASED CS METHODS

Since deep learning-based methods can show great effect in
image restoration tasks, they were used to solve the signal sam-
pling and reconstruction problems [14], [15], [22], [23], [24].
The authors in [22] proposed the first model that uses an stacked
denoising autoencoder to reconstruct the image patches from the
sampled measurements. Later, the authors in [23] constructed a
deep CNN architecture to implement the non-iterative recon-
struction process from the sampled measurements. However,
the two works use constant measurement matrices to sample
images. This limits the reconstruction quality because the con-
stant measurement matrices may lose the generality and adapt-
ability for images with different features. Thus, some models
were proposed to simultaneously train the sampling network
and reconstruction network [14], [15], [24]. For example, the
CSNet∗ [24] and CSNet+ [14] use learnable convolutional lay-
ers without overlapping to mimic the sampling process. Then
the measurements are transmitted into the reconstruction net-
work to get the final reconstructed image. All these models are
single-scale CS methods and they apply sampling and recon-
struction in the spatial domain.

To utilize the multi-scale features in the deep learning-based
CS methods, the models LAPRAN [25] and SCSNet [16] divide
CS measurements into multiple levels. The CS measurements at
the lowest level are used to generate the initial reconstruction of
the image, while those at higher levels are progressively fused
to generate a high-frequency image residual for enhancing the
quality of the initial reconstruction. Besides, the model MSR-
Net [17] applies three parallel channels with different convolu-
tion kernel sizes in the reconstruction stage to fuse multi-scale
features. The models in [16], [17], [25] exploit multi-scale fea-
tures in the reconstruction stage but still sample images at sin-
gle scale in the spatial domain. To directly learn multi-scale
features in the sampling stage, the model MS-DCSNet [18]

samples the decomposed images block-by-block across multi-
ple wavelet scales. Moreover, it integrates a multi-level wavelet
convolutional neural network to further utilize the multi-scale
information in the reconstruction stage. Using the same recon-
struction architecture but different multi-scale decomposition
methods with the MS-DCSNet [18], the models DoC-DCS [19],
SS-DCI [20] and P-DCI [20] also develop multi-scale CS archi-
tectures to utilize multi-scale features in both the sampling and
reconstruction stages. Specifically, the multi-scale decomposi-
tion methods in the models DoC-DCS [19], SS-DCI [20] and
P-DCI [20] are the difference of convolution, scale-space and
pyramid, respectively.

These existing single-scale and multi-scale deep learning-
based CS methods equally treat the image low-frequency and
high-frequency components by sampling them using the same
resources. However, the low-frequency components are usually
more important to the final reconstruction quality than the high-
frequency components [12]. Sampling the image low-frequency
and high-frequency components equally may lead to a low re-
construction quality, especially at low sampling ratios.

IV. AMS-NET

In this section, we present the AMS-Net and Fig. 1 shows
its framework. It is an end-to-end structure that contains a dual-
channel sampling model and a multi-stage reconstruction model.
To demonstrate the sampling and reconstruction processes, we
assume that the input image is X ∈ R2H×2W×1, and the image
block size is B ×B.

A. Sampling Model

The framework of the sampling model is shown as Fig. 2. The
original image X is decomposed by DWT and then sampled by
a dual-channel scalable sampling model with LSRA strategy.

1) DWT Decomposition: We use the DWT to decompose the
original image X into four sub-figures, namely the LL, LH, HL
and HH sub-bands, and each sub-band is of size RH×W×1. Be-
cause the image low-frequency and high-frequency components
have different importance to the final reconstruction quality,
we use different sampling ratios to sample them. Specifically,
we set the LL sub-band as the first channel and denote it as
P ∈ RH×W×1, and set the LH, HL and HH sub-bands as the
second channel and denote it as Q ∈ RH×W×3.

Assuming that the target sampling ratio of the input image X
is sr, we set the sampling ratio in sub-band P as srp and that
in sub-bands Q as srq . The sr, srp and srq should satisfy the
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Fig. 2. The sampling model of the AMS-Net. The original image X is de-
composed by DWT to generate LL, LH, HL and HH sub-bands. A dual-channel
architecture is used to assign sampling resources for sampling the LL sub-band
and the other three sub-bands. The Y1 and Y2 denote the measurements of the
LL sub-band and the other three sub-bands, respectively.

following equation:

sr =
srp ×HW + srq × 3HW

2H × 2W

=
1

4
srp +

3

4
srq . (6)

Let the allocation ratio ar =
srp×HW

sr×2H×2W =
srp
4 sr represent the

ratio of the measurement number in P to the total measurement
number in X. Then one can obtain that srp = 4sr × ar and

srq = 4sr×(1−ar)
3 . When sr is very low, the low-frequency com-

ponents are critical, and we set a large ar to reconstruct more im-
age approximations. When sr is high, the high-frequency com-
ponents become important, and we set a relatively small ar to
reconstruct more image details. Besides, from the global view,
the low-frequency components are more important to the final re-
construction quality than the high-frequency components, since
the image approximations contain most of the image informa-
tion [12]. Thus, the ar should be not smaller than 0.25 to ensure
that srp ≥ srq .

2) LSRA Strategy: The sampling resources are linearly as-
signed according to the block sparsity in P and Q, respectively.
Specifically, the saliency information [26] is used to measure the
block sparsity. The larger saliency information indicates that the
corresponding image block is less sparse and thus should be as-
signed more sampling resources.

For P, its saliency map [26] is defined as:

D = sign(Ct(P)),

F = abs
(
C−1

t (D)
)
,

S = G ∗ F 2, (7)

where Ct and C−1
t are the 2D discrete cosine transform and its

inverse transform, respectively, andG is a 2D Gaussian low-pass
filter. To smooth the calculation results, we further normal-
ize the values of S into [0, 1]. Assume that Pij ∈ RB×B×1

represents an image block in P, where i ∈ {1, 2, . . . , h}
and j ∈ {1, 2, . . . , w} with h = H/B and w = W/B. The
quantified saliency information vij of each image block Pij

Fig. 3. Illustration of the measurement allocation map. The first row shows the
LL coefficients of the two images and the second row shows their measurement
allocation maps.

is calculated as

vij =
∑
s∈Sij

s/
∑
s∈S

s, (8)

where Sij is the corresponding region of Pij in S, and∑h
i=1

∑w
j=1 vij = 1. For simplicity, we assume that the sub-

bands P and Q have the same saliency information distribution
within blocks.

Algorithm 1 shows the linear sampling resource assigning
process. We first initialize the measurements for each image
block to avoid the final number of measurements of some blocks
being too small, and then linearly assign the rest sampling
resources according to the saliency information. Using Algo-
rithm 1 with two group of inputs {v, srp, B, (H,W, 1)} and
{v, srq, B, (H,W, 3)}, we can obtain the measurement num-
ber mp

ij for each image block Pij and measurement number
mq

ij for each image block Qij , respectively. Note that the actual
total measurements are less than the target total measurements
because of the floor function in Algorithm 1. Then we use these
reserved sampling resources to save the saliency information v
and include it in the actual sampling results. Due to the errors
that may be caused by the floor operation, the actual sampling
ratio (sra) and target sampling ratio (srt) may have some slight
difference. Table I lists the average errors between the sra and
srt for images in Set11 at different sampling ratios.

To illustrate the advantage of our adaptive sampling, we
present the measurement allocation maps in the LL coefficients
of two images “Cameraman” and “Parrots” in Fig. 3. The image
block size is set as 16× 16. Each value indicates the measure-
ment number to the image block and a larger value means more
allocated measurement resources. It can be seen that the image
blocks with more details are allocated more measurement re-
sources. For example, the camera in the image “Cameraman”
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TABLE I
THE AVERAGE ERRORS BETWEEN THE ACTUAL SAMPLING RATIO (sra) AND TARGET SAMPLING RATIO (srt) ON SET11 DATASET

Algorithm 1: The LSRA Strategy.

Input: Saliency information v, sampling ratio sr′, block
size B, image size (H,W,C)

Output: The measurement number mij for each image
block

1: pixels_per_block = B ×B × C
2: total = �sr′ ×H ×W × C�
3: base = 	sr′/3 ∗ pixels_per_block

4: rest = total − (

base× H
B × W

B

)
5: for i = 1 : H

B do
6: for j = 1 : W

B do
7: mij = base+ �rest× vij�
8: end for
9: end for

and the eyes in the image “Parrots” have more details, and thus
their related image blocks are allocated more measurement re-
sources.

3) Dual-Channel Scalable Sampling: Following existing
deep learning-based CS methods [14], [15], we also use the
BCS strategy to reduce the memory and computational burden
rather than directly sampling the whole image. When applying
different sampling ratios to different image blocks, one usually
constructs a measurement matrix for each sampling ratio and
this will highly increase the parameter number of the model. To
solve the problem, we apply a scalable deep compressive sensing
method that can perform different sampling tasks with only one
measurement matrix. The convolution operation is used to mimic
the compressive sampling process on the image block-by-block.
Note that our method samples image blocks without overlap-
ping, and thus the kernels of each convolution layer have the
same size as the image block.

Specifically, to sample P with an adaptive sampling ratio, we
replace the measurement matrix with a convolutional layer A1

with weights wA1
∈ RB2×(B×B×1), and the scalable sampling

process is defined as

Y1 = (A1 ∗P)�MA1
, (9)

where ∗ denotes the convolution operation with stride
size B ×B, � represents the element-wise multiplication,
MA1

∈ Rh×w×B2
is the mask to control the activities of

measurements for each image block and Y1 ∈ Rh×w×B2

is the final sampling results. For each sub-tensor of the
mask MA1

, MA1

[
i, j, 1 : mp

ij

]
= 1 and other elements are

zeros. Thus, for the measurements of the image block
Pij , only Y1

[
i, j, 1 : mp

ij

]
are valid measurements and

Y1

[
i, j,mp

ij + 1 : B2
]
= 0.

Similarly, using a convolutional layerA2 with weightswA2
∈

R3B2×(B×B×3), the sampling process for Q is calculated as

Y2 = (A2 ∗Q)�MA2
, (10)

where MA2
∈ Rh×w×3B2

is the corresponding sampling mask
and Y2 ∈ Rh×w×3B2

is the sampling results of Q. For each
sub-tensor of the mask MA2

, MA2

[
i, j, 1 : mq

ij

]
= 1 and other

elements are zeros. Thus, for the measurements of the image
block Qij , only Y2

[
i, j, 1 : mq

ij

]
are valid measurements and

Y2

[
i, j,mq

ij + 1 : 3B2
]
= 0.

Formally, the whole sampling process can be expressed as

Y1,Y2 = fsamp(X, sr,A1,A2). (11)

To ensure that each image block has at least one measurement,
hw
HW and hw

3HW are the smallest sampling ratios that the sam-
pling model can perform on P and Q, respectively. Thus, the
target sampling ratio of the input image should be not smaller
than hw

2HW . When the target sampling ratio is smaller than this
threshold, we set it as the threshold.

B. Reconstruction Model

We construct the reconstruction model by unfolding the re-
construction process of the traditional MS-BCS method. In the
traditional MS-BCS method, the matrix Φ∗

l in (3) and (4) is the
pseudo-inverse matrix of Φl. However, since the measurement
matrix in our method is generated using learning strategy, the
measurement matrix is not orthogonal in the training process,
and the real-time calculation of pseudo-inverse will interrupt the
backward propagation of gradients. Thus, for simplicity, we set
the matrix Φ∗

l learnable in (3) and (4) to ensure that the model
can be trained.

To improve the denoising and deblocking ability, we use a
feed-forward learnable denoising block to replace the traditional
denoising method in (5). This can also solve the problem that tra-
ditional denoising algorithms cannot propagate backward gra-
dients in the training process. The full-image denoising and de-
blocking operation is expressed as

X̂(t+1) = X(t+1)′ +D
(
X(t+1)′

)
, (12)

where D indicates the denoising block containing convolutional
layers. The residual learning is used to speed up the training
process and improve the reconstruction performance.

The reconstruction model is shown as Fig. 4 and it contains
an initial reconstruction module finit and a deep reconstruction
module fdeep. The original image can be reconstructed from its
dual-channel measurements.

1) Initial Reconstruction: Our module finit applies the ini-
tial reconstruction illustrated in (3) on the sampled measure-
ments in the wavelet domain. Similar to the sampling module,
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Fig. 4. The reconstruction model of the AMS-Net. The initial reconstruction image X̂(0) is generated by first linearly mapping the measurements Y1 and Y2

and then performing IDWT to the mapping results. Then the deep reconstruction module processes X̂(0) for T stages to obtain the final reconstructed image X̂(T ).
A dual-channel projection operation and a full-image denoising operation are used in each stage, in which the dual-channel projection is performed in the wavelet
domain while the denoising operation is performed in spatial domain using d convolutional layers.

the learnable convolutional layers are used to implement the lin-
ear mapping matrix to get the initial reconstruction. Specifically,
the measurements Y1 in the first channel is connected to a con-
volutional layer A∗

1 containing B2 kernels of size 1× 1×B2.
A tensor of size Rh×w×B2

is generated by convolving these B2

kernels on the Y1 with stride size 1× 1. By reshaping the ten-
sor into hw feature maps of size B ×B × 1 and concatenating
them into an H ×W × 1 feature map, the initial reconstruction
P̂(0) of P in the first channel can be generated. Using the simi-
lar operation, the initial reconstruction Q̂(0) of Q in the second
channel can be obtained by connecting the measurements Y2 to
a convolutional layer A∗

2 with 3B2 kernels of size 1× 1× 3B2.
The process of the initial reconstruction can be expressed as

{
P̂(0) = Ξ (A∗

1 ∗Y1)

Q̂(0) = Ξ (A∗
2 ∗Y2) ,

(13)

where Ξ is the reshaping and concatenation operations, and the
linear mapping in Eq. (3) is separately implemented using con-
volution operations with A∗

1 and A∗
2. The final initial recon-

struction X̂(0) is generated by applying the inverse DWT to the
combination of P̂(0) and Q̂(0).

2) Deep Reconstruction: The deep reconstruction process is
performed to the initial reconstruction result X̂(0) to improve its
quality. By unfolding the iterative process in traditional MS-BCS
reconstruction algorithm, we divide the module fdeep into T
stages. Each stage alternatively implements the projection (see
Eq. (4)) in the wavelet domain and the full-image denoising (see
(12)) in the spatial domain.

At the (t+ 1)-th stage, let X̂(t) be the reconstruction result of
the previous stage. To perform the projection in (4) in the wavelet
domain, we first decompose the image X̂(t) into sub-images P̂(t)

and Q̂(t), in which P̂(t) represents the LL sub-band and Q̂(t)

represents the stacking of the LH, HL and HH sub-bands. The
projection operations for P̂(t) and Q̂(t) are expressed as

⎧⎨
⎩
P̂(t+1)=P̂(t)+P̂(0)−Ξ

(
A∗

1 ∗
((

A1 ∗ P̂(t)
)
�MA1

))
Q̂(t+1)=Q̂(t)+Q̂(0)−Ξ

(
A∗

2 ∗
((

A2 ∗ Q̂(t)
)
�MA2

))
.

(14)
By applying the IDWT on the combination of P̂(t+1) and
Q̂(t+1), we can obtain the projection result X̂(t+1)′ of the
(t+ 1)-th stage.

For the full-image denoising operation in (12), we use the de-
noising block to remove the noise of X̂(t+1)′ to get the (t+ 1)-th
reconstruction result X̂(t+1). In each denoising block, the first
(d− 1) layers generate w feature maps using 3× 3 convolu-
tion and the ReLU activation function, and the last layer gen-
erates a feature map using 3× 3 convolution without activation
function. The architecture of the denoising block is designed by
removing the batch normalization layer between the convolu-
tional layer and ReLU activation function in the feed-forward
denoising model [27].

After finishing all the T stages, the final reconstructed image
X̂(T ) can be generated. Formally, let SΘ = {Θ1,Θ2, . . . ,ΘT }
represent the learnable weights of all the denoising blocks. Then
the total process of the reconstruction model can be expressed
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as

X̂(T ) = frec (Y1,Y2,SΘ,A1,A∗
1,A2,A∗

2) . (15)

C. Loss Function

The forward propagation process of the AMS-Net is shown in
Algorithm 2, where the whole model can be trained end-to-end
and all the parameters are adaptively learned through backward
propagation.

The mean squared error (MSE) is widely used as the loss
function in many state-of-the-art deep learning-based CS meth-
ods [14], [15], [20], since it is differentiable and has faster con-
vergence speed than other loss functions such as l1 loss and per-
ceptual loss [28]. To obtain the fastest convergence speed and
best reconstruction performance, we also use MSE as the loss
function to calculate the difference between the original image
and its corresponding reconstructed image. Given N training
images {Xi}Ni=1, the loss function is calculated by

L =
1

2N

N∑
i=1

‖frec (fsamp (Xi, sri,A1,A2) ,

SΘ,A1,A2,A∗
1,A∗

2)−Xi‖22, (16)

where sri is the target sampling ratio of the i-th original image
Xi in the training set. Using this loss function, the AMS-Net can
quickly minimize the error between the reconstructed image and
the original image in the training process.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATIONS

In this section, we first design the training method to evalu-
ate the performance of the AMS-Net, and then compare it with
state-of-the-art schemes in terms of reconstruction quality, vi-
sual effect, and model complexity.

A. Experiment Settings

The image block size in the sampling model is set as B = 16
and the number of reconstruction stage T is set as 10. The width
w and depthd of the denoising block in each reconstruction stage
are set as 64 and 5, respectively. For the target sampling ratio sr
in the original image, the allocation ratio ar is set as ar = 0.95
when sr ≤ 0.05, and set as ar = max(0.25, 0.95− sr) when
sr > 0.05. The parameter studies about the stage T , the widthw
and depthd, and the allocation ratioar are shown in Section V-D.

1) Training: Our experiment uses the same database with
other models [14], [16] to build the training dataset. Specifically,
the training set is constructed using the training set (200 im-
ages) and testing set (200 images) of the BSD500 [29], [30], [31]
dataset. We randomly flip and rotate these original images to ex-
tend our dataset, which is the same with the CSNet+ [14]. Then
we randomly crop 400× 224 = 89600 gray-scale sub-images
of size 128× 128 as the training set.

To speed up the training process and improve the reconstruc-
tion performance, we use a pre-trained denoising block to ini-
tialize the weights of all the denoising blocks in the proposed
model. Specifically, following the settings in [27], we pretrain

Algorithm 2: The forward propagation of the AMS-Net.
Input:X, sr,A1,A2,A∗

1,A∗
2,SΘ, T

Output:X̂T

1: procedure Sampling(X, sr,A1,A2)
2: srp, srq = SR_Assign(sr)
3: P,Q = DWT (X)
4: MA1

= LSRA(srp,P)
5: MA2

= LSRA(srq,Q)
6: Y1 = (A1 ∗P)�MA1

7: Y2 = (A2 ∗Q)�MA2

8: return Y1,Y2

9: end procedure
10: procedure Reconstruction(Y1,Y2,A∗

1,A∗
2,SΘ, T )

11: P̂(0) = Ξ(A∗
1 ∗Y1)

12: Q̂(0) = Ξ(A∗
2 ∗Y2)

13: X̂(0) = IDWT
(
P̂(0), Q̂(0)

)
14: t = 0
15: while (t+ 1) ≤ T do �In the (t+ 1)th stage

16: P̂(t), Q̂(t) = DWT
(
X̂t

)
17: P̂(t+1) =

P̂(t) + P̂(0) − Ξ
(
A∗

1 ∗
((

A1 ∗ P̂(t)
)
�MA1

))
18: Q̂(t+1) =

Q̂(t) + Q̂(0) − Ξ
(
A∗

2 ∗
((

A2 ∗ Q̂(t)
)
�MA2

))
19: X̂(t+1)′ = IDWT

(
P̂(t+1), Q̂(t+1)

)
20: X̂(t+1) = X̂(t+1)′ +D

(
X̂(t+1)′,Θ(t+1)

)
21: t = t+ 1
22: end while
23: return X̂(t)

24: end procedure

a single denoising block for blind Gaussian denoising task with
random noise levels σ ∈ [0, 55]. The training epochs are 50 and
the batch size is 64. The Adam optimization strategy [32] with a
learning rate of 0.0001 is employed to optimize the parameters
of the denoising block. Our AMS-Net is trained with batch size
1 for 10 epochs. For every mini-batch, a random sampling ratio
within [0.01,0.50] is set for the used image. The optimizer is
the Adam optimizer, and the learning rate decays linearly from
0.0001 to 0.00001 on these ten epochs. The TensorFlow frame-
work is used to implement the proposed model, and all the ex-
periments are implemented on a workstation with two GeForce
RTX3090 GPUs and an Intel(R) Core(TM) i9-10920X CPU. It
takes about one hour for one epoch in the training process.

2) Testing: Four widely used benchmark datasets, includ-
ing the Set5 (5 images) [35], Set11 (11 images) [23], Set14
(14 images) [36], and the validating dataset of BSD500 called
BSD100 (100 images), are used for evaluation. These widely
used datasets contain different image features and can fairly
reflect the reconstruction performance of different models. To
keep consistency with the training process, we also convert all
the color images in these four datasets into gray-scale images
and use the obtained gray-scale images as the testing images.
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TABLE II
PSNR AND SSIM COMPARISONS OF OUR AMS-NET WITH THE TRADITIONAL CS METHODS UNDER MULTIPLE SAMPLING RATIOS (sr)

The competing methods contain six traditional CS meth-
ods, including the DAMP [33], BCS-FOCUSS [13], TV [11],
MH [34], BCS-SPL [21] and MS-BCS [12], five single-scale
deep learning-based CS models, including the ReconNet [23],
ISTA-Net [37], CSNet+ [14], ISTA-Net++ [38] and AMP-
Net [15], and six multi-scale deep learning-based CS models,
including the SCSNet [16], MSRNet [17], MS-DCSNet [18],
DoC-DCS [19], P-DCI [20] and SS-DCI [20]. The reconstruc-
tion performance is tested by calculating the Peak Signal-
to-Noise Ratio (PSNR) [39] and Structural Similarity In-
dex (SSIM) [40] between the reconstructed image and orig-
inal image. A higher PSNR or SSIM score means the bet-
ter reconstruction quality. Besides, the visual quality is also
compared by showing the reconstruction results of different
methods.

B. Comparison With Traditional CS Methods

First, we compare our AMS-Net with six traditional CS
methods, DAMP [33], BCS-FOCUSS [13], TV [11], MH [34],
BCS-SPL [21] and MS-BCS [12]. All codes of the traditional
CS methods are directly downloaded from the authors’ web-
sites, and the default parameters are used for evaluation. Two
kinds of measurement matrices are used, including the random
measurement matrices (i.e. Gaussian matrices) and learned mea-
surement matrices. The learned measurement matrices are gen-
erated as follows. First, two convolutional layers are used to
sample the image and recover the initial reconstruction results
from the sampled measurements, respectively. Then, using these

two learnable layers, we construct a small model and train it us-
ing the training set. By converting the learned weights of the
sampling layer into matrix, we can get the learned measurement
matrices.

1) Reconstruction Quality: Table II shows the comparison
results of our AMS-Net with traditional CS methods on Set5
and Set14, respectively. For traditional CS methods, the suf-
fix ‘-R’ denotes that the measurement matrices are randomly
generated while the suffix ‘-L’ means that the measurement ma-
trices are learned. For our AMS-Net, the suffix ‘-R’ means that
the measurement matrices are non-learnable in the training pro-
cess. The sampling ratio varies from 0.01 to 0.5. Note that the
MS-BCS [12] cannot work at a sampling ratio lower than 0.02
and it samples image in the multi-level wavelet domain with dif-
ferent block sizes. Thus, its measurement matrices are difficult
to learn. We only test it with random measurement matrices and
do not provide the test result at sampling ratio 0.01 for MS-BCS.

As can be see from Table II, when using the learned measure-
ment matrices to replace the random measurement matrices, the
reconstruction performance of all the traditional CS methods can
be greatly improved, and the average PSNR scores are improved
about 3 ∼ 5 dB for every traditional CS methods. Meanwhile,
using the learned measurement matrices, the average PSNR
scores of our AMS-Net can be improved about 2 ∼ 3 dB than
using the random measurement matrices. Thus, it is obvious that
the learned measurement matrices are much more effective than
these randomly generated measurement matrices. From Table II,
we can see that the PSNR and SSIM scores of our AMS-Net are
significantly larger than those of the traditional methods. Thus,
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Fig. 5. Reconstructed results of image “butterfly” by our AMS-Net and the traditional CS methods under sampling ratio 0.05.

our AMS-Net can outperform all the traditional CS methods un-
der all the sampling ratios. For example, in the comparison on
Set5, when the traditional CS methods use random measurement
matrices, the average PSNR score of the AMS-Net is 11.65 dB,
7.43 dB, 6.68 dB, 8.26 dB, 7.62 dB larger than the PSNR scores
of the DAMP [33], BCS-FOCUSS [13], MH [34], TV [11], and
BCS-SPL [21], respectively, while the corresponding average
SSIM score is 0.2599, 0.1385, 0.1215, 0.1684 and 0.1261 larger
than these methods, respectively. Besides, when using the ran-
dom measurement matrices, our AMS-Net still outperforms all
other traditional CS methods.

2) Visual Effect: To show the high reconstruction perfor-
mance of our model, we compare the visual quality of our model
with the traditional CS methods using the image “butterfly” from
Set5. The comparison results are shown in Fig. 5, where the used
sampling ratio is 0.05. As can be seen, there is obvious blocking
artifacts in the reconstructed images by the traditional CS meth-
ods. However, our model can eliminate these blocking artifacts.
This is because the denoising and deblocking modules in our
model are learnable, and they can produce better denoising and
deblocking performance than the traditional denoising meth-
ods. Meanwhile, by comparing the two versions of traditional
CS methods, we can find that all the traditional CS methods can
obtain better visual quality when using the learned measure-
ment matrices. This visual quality results further verify the high
performance of the measurement matrix learning strategy.

C. Comparison With Deep Learning-Based CS Methods

These competing deep learning-based methods, including the
ReconNet [23], ISTA-Net [37], CSNet+ [14], ISTA-Net++ [38],
AMP-Net [15], SCSNet [16], MSRNet [17], DoC-DCS [19],

P-DCI [20], SS-DCI [20], MS-DCSNet [18], are all devel-
oped recently with high performance. For the ReconNet [23],
ISTA-Net [37], CSNet+ [14], SCSNet [16], MSRNet [17],
DoC-DCS [19], P-DCI [20], SS-DCI [20] and MS-DCSNet [18],
we re-train them using the training set strictly following the de-
tails in the original literature. For the ISTA-Net++ [38] and
AMP-Net [15], we download their pre-trained models from the
authors’ websites and run these models on the testing datasets
to get the results.

1) Reconstruction Quality: Table III shows the comparison
results of different networks on the four testing datasets. As can
be seen, the AMS-Net can obtain significantly higher PSNR
scores than these deep learning-based CS methods over all sam-
pling ratios and achieve larger SSIM scores in most cases. For
example, the average PSNR score of the AMS-Net on Set11 is
2.12 dB, 4.24 dB, 7.06 dB, 2.11 dB, 4.9 dB, 1.47 dB, 2.11 dB,
4.78 dB, 1.80 dB, 2.26 dB, 1.75 dB and 2.14 dB larger than
the PSNR scores of the CSNet+ [14], ISTA-Net [37], Re-
conNet [23], AMP-Net [15], ISTA-Net++ [38], SCSNet [16],
MSRNet [17], DoC-DCS [19], P-DCI [20], SS-DCI [20] and
MS-DCSNet [18], respectively, while the corresponding aver-
age SSIM score on Set11 is 0.0160, 0.0789, 0.1376, 0.0088,
0.1114, 0.0148, 0.0689, 0.0098, 0.0142, 0.0081, 0.0148 larger
than these methods, respectively.

Note that the SSIM score is calculated by a sliding Gaus-
sian window in the spatial domain. However, our proposed
model performs the sampling and projection operations in the
wavelet domain, and this may slightly affect the SSIM scores
of our method. Although our model gets a little smaller SSIM
scores than the AMP-Net [15] under some sampling ratios, it can
obtain the best SSIM score on average among all the methods.
This indicates that our model can get the best reconstruction
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TABLE III
PSNR AND SSIM COMPARISONS OF OUR AMS-NET WITH THE DEEP LEARNING-BASED CS METHODS UNDER MULTIPLE SAMPLING RATIOS (sr)

quality. Besides, compared with AMP-Net [15], our AMS-Net
has some other important advantages. First, it can achieve much
larger PSNR and SSIM scores when the sampling ratio is very
low, which indicates that it shows much better performance in
heavy compression tasks (see Fig. 6 and Table III). Second,
our AMS-Net is a scalable method while AMP-Net [15] is
not. This indicates that our method can sample images at ar-
bitrary sampling ratios with only one-time training. However, a

single AMP-Net [15] model can sample images only at a fixed
sampling ratio. Thus, to perform tasks with n sampling ratios,
the AMP-Net [15] should train n models and thus has much
more parameters than our AMS-Net, as shown in Table VII.

2) Visual Effect: We use the image “Parrots” in Set11 dataset
to show the visual quality of the reconstructed images by
different deep learning-based CS methods and Fig. 6 shows
the reconstruction results under the sampling ratio 0.05. As
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Fig. 6. Reconstructed results of image “Parrots” by our AMS-Net and the deep learning-based CS methods under sampling ratio 0.05.

TABLE IV
THE INFLUENCE OF THE NUMBER OF DENOISING STAGES T , THE WIDTH w AND DEPTH d OF THE DENOISING BLOCK, THE LSRA STRATEGY L, AND THE

PROJECTION OPERATION P ON THE AVERAGE RECONSTRUCTION PSNR (DB) PERFORMANCE ON SET11 OF OUR PROPOSED AMS-NET

can be seen, the reconstructed images by the ReconNet [23],
ISTA-Net [37], ISTA-Net++ [38] and MSRNet [17] have
obvious blocking artifacts. This is because these methods focus
on the reconstruction of each image block individually, and don’t
consider the correlations between adjacent blocks. On the con-
trary, there aren’t obvious blocking artifacts in the reconstructed
images generated by other models, because these models all ap-
ply denoising and deblocking operations to the full-image on
the reconstruction stage. As shown in Fig. 6, the image recon-
structed by our AMS-Net contains more details and sharp edges
of the original image than the images reconstructed by other
methods. Thus, compared with other methods, our AMS-Net
has stronger ability to remove blocking artifacts and reconstruct
images with higher visual quality.

D. Discussion

In this section, we evaluate the influence of model parameters
and model structure on the reconstruction performance of our
AMS-Net.

1) Depth and Width of the Denoising Block: The number of
parameters in our AMS-Net is influenced by the width w and
depth d of the denoising block. Here, we investigate the param-
eter capacity by setting w as 32 and 64, and setting d ranging
from 3 to 11. As can be seen from Table IV, when fixing d
and changing w from 32 to 64, the average PSNR scores can
be improved about 0.2 dB. Besides, the reconstruction quality
gradually rises until d grows to 9. When d > 9, the model ap-
pears to be over-fitting and slightly declines in the reconstruction
performance. Thus, to achieve a relatively high reconstruction
quality and small parameter capacity, we set w = 64 and d = 5
in our model.

2) Projection Operation: By utilizing the projection opera-
tion, our model can integrate the structure advantages of the tra-
ditional CS method with the powerful learning ability of CNN.
Besides, the projection operation only reuses the learned mea-
surement matrices and the linear mapping matrices to update
the image blocks. Thus, it does not introduce any extra pa-
rameters. As shown in Table IV, when removing the projection
operation, the average reconstruction PSNR scores of our model
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TABLE V
THE INFLUENCE OF THE DEEP RECONSTRUCTION MODULE ON

RECONSTRUCTION PERFORMANCE. THE TESTING SET IS SET11

will degrade about 0.9 ∼ 3 dB on each sampling ratio. This
demonstrates the effectiveness of the projection operation for
image reconstruction.

3) Deep Reconstruction Module: To demonstrate the effec-
tiveness of our deep reconstruction module, we construct two
new models, the AMS-CSNet+ and AMS-SCSNet, by replac-
ing the deep reconstruction module of our AMS-Net with the
deep reconstruction module in CSNet+ [14] and SCSNet [16],
respectively. Table V shows the comparison results on Set11 and
the suffix “-NoProj” means that no projection operation is used
in each reconstruction stage. As can be seen from Table V, the
performance of the AMS-CSNet+ and AMS-SCSNet are not su-
perior compared to the original models. Besides, with more con-
volutional layers, the AMS-NoProj achieves similar reconstruc-
tion performance with the AMS-CSNet+ and AMS-SCSNet,
which indicates that the reconstruction performance cannot be
improved by simply stacking more convolutional layers. Com-
pared to other models, the proposed AMS-Net with projection
operation can significantly improve the reconstruction perfor-
mance. This demonstrates that the projection operation is very
important for our adaptive multi-scale sampling model.

4) Reconstruction Stages: The reconstruction module of our
AMS-Net has multiple reconstruction stages T . To evaluate the
influence of T , we train the AMS-Net with multiple reconstruc-
tion stages ranging from 4 to 12. As can be seen from Table IV,
the reconstruction quality can be improved with the increasing of
T . However, when T > 10, the model appears to be over-fitting
and slightly declines in the reconstruction performance. Thus, to
achieve a relatively high reconstruction quality, we set T = 10
in our model.

5) LSRA Strategy: Considering that the block sparsities of
the two groups of sub-bands in the wavelet domain are dis-
tributed unevenly, our model adaptively allocates sampling re-
sources to different image blocks of the two groups of sub-bands
using the LSRA strategy. As can be seen from the fourth row
and the penultimate row of Table IV, the average reconstruction
PSNR scores of the proposed model can improve about 0.5 ∼ 3
dB on each sampling ratio when using the LSRA strategy. This
proves the effectiveness of the LSRA strategy on reconstruction
performance.

6) Allocation Ratio: The allocation ratio ar is used to adap-
tively assign sampling resources according to the target sampling
ratio. To test the influence of the ar on reconstruction perfor-
mance, we train the AMS-Net with different settings of ar. The
maximum value of ar is ranging from 0.65 to 0.95, and Table VI

TABLE VI
THE INFLUENCE OF THE ALLOCATION RATIO ar ON RECONSTRUCTION

QUALITY. THE TESTING SET IS SET11

TABLE VII
MODEL COMPLEXITY COMPARISONS OF DIFFERENT CS METHODS WITH n
SAMPLING RATIOS. THE PN1 AND PN2 ARE THE PARAMETER NUMBERS OF

THE LEARNABLE MATRICES AND ALL OTHER CONVOLUTIONAL LAYERS,
RESPECTIVELY, AND SR = sr1 + sr2 + · · ·+ srn IS THE SUM OF THE n

SAMPLING RATIOS

shows the comparison results. As can be seen, our model can
get relatively high PSNR and SSIM scores when the maximum
value of ar is 0.95. Thus, we set the maximum value of ar to
0.95 in the experiment settings.

E. Model Complexity

This section compares the model complexity of different CS
methods in terms of parameter capacity and time complexity.
The average running time is used to evaluate the actual recon-
struction efficiency. Besides, we use the number of floating-point
operations (FLOPs) [41] to quantify the time complexity, since
it is commonly used in the time complexity comparison of
deep learning-based models [6]. Note that the average run-
ning time and the number of FLOPs are calculated by recon-
structing an image of size 256× 256. The traditional CS meth-
ods are implemented in MATLAB software and run on CPU,
while the deep learning-based methods are tested on GPU. Ta-
ble VII shows the comparison results and the suffix “T ·” of our
AMS-Net represents the number of reconstruction stages. As the
DoC-DCS [19], P-DCI [20], SS-DCI [20] and MS-DCSNet [18]
have the same reconstruction architecture, we only list the results
of DoC-DCS [19] for comparison.
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1) Parameter Capacity: As can be seen from Table VII, the
SCSNet [16], ISTA-Net++ [38] and our AMS-Net use scal-
able sampling strategies and train only one model for multi-
ple sampling ratios, which significantly reduce the parameter
capacity and training time. In contrast, all other models need
to train a model for each sampling ratio. However, a method
should be available for different sampling ratios. Thus, when
performing tasks with n sampling ratios, they need to train n
models for these n sampling ratios, which greatly increases the
parameter capacity and training time. As a result, for a nor-
mal task (e.g., n > 10), our AMS-Net can achieve the second
smallest parameter capacity and only has larger parameter ca-
pacity than ISTA-Net++ [38]. Thus, our AMS-Net can achieve a
small parameter capacity while keeping the best reconstruction
quality.

2) Time Complexity: As shown in Table VII, it takes several
seconds for traditional CS methods to reconstruct the images,
while the average running times for deep learning-based meth-
ods are below 0.1 seconds when running on GPU. This is be-
cause the reconstruction process of traditional CS methods is
implemented iteratively until achieving convergence or reach-
ing the maximum iteration steps. Besides, compared with CPU,
the GPU has advantages in calculation ability and parallel com-
putation. This can heavily reduce the running time of the deep
learning-based CS methods.

Among all the deep learning-based CS methods, the Recon-
Net [23] has the least FLOPs but the lowest reconstruction qual-
ity (see Table III), because it has fewer convolutional layers than
other models. Our model has a comparative number of FLOPs
compared to other models. Besides, with a small number of
reconstruction stages, our AMS-Net can achieve a faster re-
construction speed and less FLOPs while maintaining a good
reconstruction performance (see Table IV). In general, these
deep learning-based CS methods have different time complexity.
However, due to the strong computation efficiency of GPU, the
slightly different running times of these methods do not make
much sense. Since all running speeds are almost the same mag-
nitude, the reconstruction quality is more important for a deep
learning-based method. Our AMS-Net can achieve better recon-
struction quality than other methods, especially at low sampling
ratios (see Table III and Fig. 6).

VI. CONCLUSION

In this paper, we proposed a dual-channel deep network for
adaptive multi-scale image CS, called AMS-Net, which fully
exploits the different importance of the image low-frequency
and high-frequency components in the wavelet domain. An
original image is decomposed into four sub-images using the
DWT, namely the LL, LH, HL and HH sub-bands. Since the
LL sub-band is low-frequency components and more impor-
tant to the reconstruction quality than the other three sub-bands,
the AMS-Net allocates the LL sub-band a larger sampling ra-
tio while allocating the other three sub-bands a smaller one.
Considering the different sparsity in different blocks, an LSRA
strategy is proposed to further adjust the sampling resources
block-by-block on the two groups of sub-bands, respectively.

Then a dual-channel scalable sampling model is developed to
apply adaptive sampling tasks in the wavelet domain at arbi-
trary sampling ratios. Furthermore, by unfolding the reconstruc-
tion process of the traditional multi-scale block CS algorithm,
we propose a multi-stage reconstruction architecture to utilize
multi-scale features for further enhancing the reconstruction
quality. Comparison results demonstrate that our AMS-Net can
outperform the traditional CS methods and state-of-the-art deep
leaning-based CS methods.

REFERENCES

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[3] Q. Jiang et al., “Design of compressed sensing system with probability-
based prior information,” IEEE Trans. Multimedia, vol. 22, no. 3,
pp. 594–609, Mar. 2020.

[4] B. Zhang, D. Xiao, and Y. Xiang, “Robust coding of encrypted im-
ages via 2D compressed sensing,” IEEE Trans. Multimedia, vol. 23,
pp. 2656–2671, 2021.

[5] Y. Zhang et al., “Secure transmission of compressed sampling data using
edge clouds,” IEEE Trans. Ind. Informat., vol. 16, no. 10, pp. 6641–6651,
Oct. 2020.

[6] M. Ran et al., “MD-Recon-Net: A. parallel dual-domain convolutional
neural network for compressed sensing MRI,” IEEE Trans. Radiat. Plasma
Med. Sci., vol. 5, no. 1, pp. 120–135, Jan. 2021.

[7] S. Zheng, J. Chen, X.-P. Zhang, and Y. Kuo, “A new multihypothesis based
compressed video sensing reconstruction system,” IEEE Trans. Multime-
dia, vol. 23, pp. 3577–3589, 2021.

[8] X. Yuan and R. Haimi-Cohen, “Image compression based on compressive
sensing: End-to-end comparison with JPEG,” IEEE Trans. Multimedia,
vol. 22, no. 11, pp. 2889–2904, Nov. 2020.

[9] X. Yuan, D. J. Brady, and A. K. Katsaggelos, “Snapshot compressive imag-
ing: Theory, algorithms, and applications,” IEEE Signal Process. Mag.,
vol. 38, no. 2, pp. 65–88, Mar. 2021.

[10] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[11] C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization
by augmented lagrangian and alternating direction algorithms,” CAAM
Rep., vol. 20, no. 46-47, pp. 1–8, 2009.

[12] J. E. Fowler, S. Mun, and E. W. Tramel, “Multiscale block compressed
sensing with smoothed projected landweber reconstruction,” in Proc. 19th
Eur. Signal Process. Conf., 2011, pp. 564–568.

[13] A. S. Unde and P. Deepthi, “Block compressive sensing: Individual and
joint reconstruction of correlated images,” J. Vis. Commun. Image Repre-
sentation, vol. 44, pp. 187–197, 2017.

[14] W. Shi, F. Jiang, S. Liu, and D. Zhao, “Image compressed sensing us-
ing convolutional neural network,” IEEE Trans. Image Process., vol. 29,
pp. 375–388, 2020.

[15] Z. Zhang, Y. Liu, J. Liu, F. Wen, and C. Zhu, “AMP-Net: Denoising-
based deep unfolding for compressive image sensing,” IEEE Trans. Image
Process., vol. 30, pp. 1487–1500, 2021.

[16] W. Shi, F. Jiang, S. Liu, and D. Zhao, “Scalable convolutional neural net-
work for image compressed sensing,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 12282–12291.

[17] R. Liu, S. Li, and C. Hou, “An end-to-end multi-scale residual reconstruc-
tion network for image compressive sensing,” in Proc. IEEE Int. Conf.
Image Process., 2019, pp. 2070–2074.

[18] T. N. Canh and B. Jeon, “Multi-scale deep compressive sensing network,”
in Proc. IEEE IEEE Visual Commun. Image Process., 2018, pp. 1–4.

[19] T. N. Canh and B. Jeon, “Difference of convolution for deep compressive
sensing,” in Proc. IEEE Int. Conf. Image Process., 2019, pp. 2105–2109.

[20] T. N. Canh and B. Jeon, “Multi-scale deep compressive imaging,” IEEE
Trans. Comput. Imag., vol. 7, pp. 86–97, 2021.

[21] L. Gan, “Block compressed sensing of natural images,” in Proc. 15th Int.
Conf. Digit. Signal Process., 2007, pp. 403–406.

[22] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to
structured signal recovery,” in Proc. 53rd Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), 2015, pp. 1336–1343.

Authorized licensed use limited to: Universidade de Macau. Downloaded on November 04,2023 at 10:04:27 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: AMS-NET: ADAPTIVE MULTI-SCALE NETWORK FOR IMAGE COMPRESSIVE SENSING 5689

[23] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “ReconNet:
Non-iterative reconstruction of images from compressively sensed mea-
surements,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 449–458.

[24] W. Shi, F. Jiang, S. Zhang, and D. Zhao, “Deep networks for com-
pressed image sensing,” in Proc. IEEE Int. Conf. Multimedia Expo, 2017,
pp. 877–882.

[25] K. Xu, Z. Zhang, and F. Ren, “LAPRAN: A scalable laplacian pyramid
reconstructive adversarial network for flexible compressive sensing recon-
struction,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 485–500.

[26] Y. Yu, B. Wang, and L. Zhang, “Saliency-based compressive sampling for
image signals,” IEEE Signal Process. Lett., vol. 17, no. 11, pp. 973–976,
Nov. 2010.

[27] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[28] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3,
no. 1, pp. 47–57, Mar. 2017.

[29] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human seg-
mented natural images and its application to evaluating segmentation al-
gorithms and measuring ecological statistics,” in Proc. Eighth IEEE Int.
Conf. Comput. Vis., 2001, pp. 416–423.

[30] X. Fu, M. Wang, X. Cao, X. Ding, and Z.-J. Zha, “A model-driven deep
unfolding method for JPEG artifacts removal,” IEEE Trans. Neural Netw.
Learn. Syst., early access, doi: 10.1109/TNNLS.2021.3083504.

[31] C. Mou, J. Zhang, X. Fan, H. Liu, and R. Wang, “Cola-net: Collaborative
attention network for image restoration,” IEEE Trans. Multimedia, vol. 24,
pp. 1366–1377, 2022.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Representations, ICLR, 2015, pp. 1–15.

[33] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to com-
pressed sensing,” IEEE Trans. Inf. Theory, vol. 62, no. 9, pp. 5117–5144,
Sep. 2016.

[34] C. Chen, E. W. Tramel, and J. E. Fowler, “Compressed-sensing recovery of
images and video using multihypothesis predictions,” in Proc. Conf. Rec.
Forty Fifth Asilomar Conf. Signals, Syst. Comput. (ASILOMAR), 2011,
pp. 1193–1198.

[35] M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” in Proc. Brit. Mach. Vis. Conf., 2012, pp. 135.1–135.10.

[36] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-
representations,” in Proc. Curves Surfaces, 2010, pp. 711–730.

[37] J. Zhang and B. Ghanem, “ISTA-Net: Interpretable optimization-inspired
deep network for image compressive sensing,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), 2018, pp. 1828–1837.

[38] D. You, J. Xie, and J. Zhang, “ISTA-NET++: Flexible deep unfolding
network for compressive sensing,” in Proc. IEEE Int. Conf. Multimedia
Expo (ICME), 2021, pp. 1–6.

[39] J. Korhonen and J. You, “Peak signal-to-noise ratio revisited: Is simple
beautiful?,” in Proc. Fourth Int. Workshop Qual. Multimedia Experience,
2012, pp. 37–38.

[40] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Trans. Image
Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[41] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-
volutional neural networks for resource efficient inference,” in Proc. Int.
Conf. Learn. Representations, 2016, pp. 1–17.

Kuiyuan Zhang received the M.S. degree in com-
puter science and technology from the Harbin In-
stitute of Technology, Shenzhen, Shenzhen, China,
where he is currently working toward the Ph.D degree
in computer science and technology. His research in-
terests include image compressive sensing and image
encryption.

Zhongyun Hua (Member, IEEE) received the B.S.
degree in software engineering from Chongqing Uni-
versity, Chongqing, China, in 2011, and the M.S. and
Ph.D. degrees in software engineering from the Uni-
versity of Macau, Macau, China, in 2013 and 2016,
respectively. He is currently an Associate Professor
with the School of Computer Science and Technol-
ogy, Harbin Institute of Technology, Shenzhen, Shen-
zhen, China. He has authored or coauthored more than
50 papers on the subject, receiving more than 3500
citations. His research interests include chaotic sys-

tem, image processing, and multimedia security. He is currently an Associate
Editor for the International Journal of Bifurcation and Chaos.

Yuanman Li (Member, IEEE) received the B.Eng.
degree in software engineering from Chongqing Uni-
versity, Chongqing, China, in 2012, and the Ph.D.
degree in computer science from the University of
Macau, Macau, China, in 2018. From 2018 to 2019,
he was a Postdoctoral Fellow with the State Key Lab-
oratory of Internet of Things for Smart City, Univer-
sity of Macau. He is currently an Assistant Professor
with the College of Electronics and Information Engi-
neering, Shenzhen University, Shenzhen, China. His
research interests include data representation, multi-

media security and forensics, computer vision, and machine learning.

Yongyong Chen (Member, IEEE) received the B.S.
and M.S. degrees from the Shandong University of
Science and Technology, Qingdao, China, in 2014
and 2017, respectively, and the Ph.D. degree from
the University of Macau, Macau, China, in 2020. He
is currently an Assistant Professor with the School
of Computer Science and Technology, Harbin Insti-
tute of Technology, Shenzhen, Shenzhen, China. He
has authored or coauthored more than 30 research
papers in top-tier journals and conferences, includ-
ing IEEE TRANSACTIONS ON IMAGE PROCESSING,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE
TRANSACTIONS ON MULTIMEDIA, IEEE TRANSACTIONS ON CIRCUITS AND SYS-
TEMS FOR VIDEO TECHNOLOGY, IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING, IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, IEEE
JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, Pattern Recognition
and ACM MM. His research interests include image processing, data mining,
and computer vision.

Yicong Zhou (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Hunan Uni-
versity, Changsha, China, and the M.S. and Ph.D.
degrees in electrical engineering from Tufts Univer-
sity, Medford, MA, USA. He is a Professor with the
Department of Computer and Information Science,
University of Macau, Macau, China. His research in-
terests include image processing, computer vision,
machine learning, and multimedia security. He is a
Fellow of SPIE the Society of Photo-Optical Instru-
mentation Engineers) and was recognized as one of

World’s Top 2% Scientists and one of Highly Cited Researchers in 2020 and
2021. He was the recipient of the Third Price of Macao Natural Science Award
as a sole winner in 2020 and a co-recipient in 2014. Dr. Zhou has been a leading
Co-Chair of Technical Committee on Cognitive Computing in the IEEE SYS-
TEMS, Man, and Cybernetics Society since 2015. He is an Associate Editor for
the IEEE TRANSACTIONS ON NEUTRAL NETWORKS AND LEARNING SYSTEMS,
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, and four other
journals.

Authorized licensed use limited to: Universidade de Macau. Downloaded on November 04,2023 at 10:04:27 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TNNLS.2021.3083504


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


