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AI & AIGC Background

AIGC and AI for Science are both 
selected in Science’s 10 

Breakthrough of Year 2022Data-driven AI

Computing 
Platform

Algori
thm

Data
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(Rise and Fall of AI, :online source)

AI has a long history of being “the next 
big thing”… 

11/2023

AlphaFold 

MidjourneyChatGPT

AI is coming of age …
AI for Science

AI Generated Contents

AI for Entertainment

Foundation 
Model
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Needs for Computing Power surpass the Moore’s Law

Computing power and memory bw required for training increase 
exponentially in model size. How to design an effective system for AI?  

From 2016 to 2022, model size is growing 105 times 
larger, while the computing perf is growing only 26X.

GPT 3.5 GPT 4

Number of 
parameters

175 
billions

1.8 trillions

Type of inputs Text Text Images

tokens 4,096 32,786

#words at 
once

~3,000 ~ 24,000

GPUs 1,000 
A100 

25,000 
A100 GPU

Training time 30 days 90days

Cost 5 mil US $ 63 milUS $

Utilization / 32-36%



Part I: Challenges in the Design of Effective Systems

Part II: Recent Experience with Effective Systems for AI

Part III: AIGC and Foundation Model’s Impact

Outline
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 Systems for AI: using systems (parallel/distributed 
/cloud/edge/…) to support efficient model training and 
inference in parallel

• cluster and cloud, to be shared for resource utilization
• cloud for model inference, handling millions of queries in real time

Interplay of Systems and AI

System State

Learning
f(param)=S

511/2023

 AI for Systems: using  AI tools, in contrast 
to optimization, to  config/schedule/ 
manage/diagnose/… systems

• Due to uncertainty, sometimes unpredictable 
relationship between resource and perf



Parallel Learning in Clouds 

Cloud-Edge Collaboration for Learning 
(Vertical)

Cooperative Learning among Peers 
(Horizontal)

Examples of Effective Systems for AI   

611/2023

Clouds

Cloud 
Edge

Edge… Edge 

Parallel

Vertical

Horizontal



 Parallel Training
• Input-data partitioning (data parallelism, SPMD): 

GPUs run the same code (e.g. SGD 
optimization) on different parts of dataset

• Model partitioning (model parallelism, pipelining): 
Multiple GPU working simultaneously on 
different parts of a model for an input

 Need to revisit performance issues
• Load balancing, data locality, overlapping 

computation with comm, comm efficiency, etc

Parallel Learning in Clouds

711/2023
Data Parallelism by Batch Size, 
saturates quickly. (Google,2019)



 Online Model Inference
• Handle queries from millions of chatGPT users in real-time

 Both training and inference tend to be run in clouds to 
leverage the cloud resource flexibility (e.g. chatGPT in 
MS Azure). 

 Resource management is a key to success of parallel 
learning in clouds. How to schedule AI tasks in clouds 
so as to maximize overall throughput and meanwhile 
satisfying individual SLO regarding latency?

Parallel Learning in Clouds (cont’)

811/2023



 Edges often located in proximity to users and data, but with limited 
resources. It provides capability of sensing and interacting the world.

 Cloud-Edge collaboration aims to provide instant response, without need 
for communication of large volume data

Cloud-Edge Collaboration for Distributed Learning

 How to split, compress models, or fine-tuning 
models for resource constrained edges ? 

911/2023

 It bears resemblance to the 
layered social structure, as 
well as our body’s layered 
intelligence/response.

Deep Model in 
Cloud/Brain

Sense Intelligence
Instant Response )(



 Leverage the learning capabilities of peers by distributed optimization or 
knowledge fusion over different datasets to train a model collectively 
(horizontally)

Cooperative Learning among Peers

 Clouds/clusters are mostly 
homogeneous, but the peers may not, 
and resource-constrained. Also, the 
data is not necessarily balanced. 

 How to apply cooperative learning 
ideas to domains of variance (non-IID 
data) with heterogeneous systems? 

Source: LinkedIn

1011/2023
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 Parallel Learning in Clouds 
(ASPLOS’23, EuroSys’2023, 
SC’2023)

 Cloud-Edge Collaboration for 
Distributed Learning 
(ICLR’2019, NeurIPS’2019)

 CooperativeLearning among 
Peers (CVPR’2023, 
ICML’2020)

Early Experience in the Design of Effective Systems

Cloud DC
Deep Model

Edge: in situ
decision

DAP AI 

IoT Device
Intelligence

datadata

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

深度智能自主智能泛在智能

AI

1211/2023

Effective Systems for Deep, Autonomous, Pervasive AI 



 Appl in the form of microservices,  
and the cloud in serverless arch so 
as to leverage the opportunity of 
fine-grained resource management

 Current research focus: 
• Scheduling for deep learning (a)
• Scheduling for microservices (b)
• Unified scheduling for both batch & 

online applications (c)

Parallel Learning in Native Clouds

Scheduling

AI App

Cloud (a)

Scheduling

Cloud

Apps
in mS

(b) (c)

Unified Sched

App

Cloud
11/2023 13



Deep Learning on Dedicated Clusters

 GPU Schedulers for Deep Learning (DL)
• Packing multiple tasks on the same GPU via time-

sharing or spatial-sharing multiplexing to improve the 
GPU utilization.

 In space sharing (multi-tenant), suffer from 
underutilization and long queuing delay

• Up to 60% GPUs are <10% utilization (MS Azure, 2019)
• Long queuing delay, sometimes intolerable ! 

Interference of co-located tasks

 In time sharing, simple multiplexing would cause 
severe interference among tasks, leading to 
significant slowdown. 

1411/2023

Scheduling

AI App

Cloud (a)



Inefficiency due to Low-Level Multiplexing 

Antman outperforms dedicated config by 15%

 Kernel-level solutions to fine tuning 
launching order of co-located tasks

• Antman[1] (Alibaba) with time-sharing
• OS-level solutions require significant 

custom modification for various DL
• Also, tasks cannot perfectly pad each 

other’ idle GPU cycles statically

 Hardware-level solutions
• MPS[2] and MIG[3] of NVIDIA
• Both help reduce interference by explicitly 

isolating SM and mem resources among tasks. 
• But neither can deal with critical PCIe BW, which 

prone to be bottleneck in DL 

[1] Xiao W, et al. {AntMan}: Dynamic Scaling on {GPU} Clusters for Deep Learning[C], OSDI 2020
[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu

of A100

11/2023
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https://docs.nvidia.com/deploy/mps/index.html


IADeep: Middleware Solution for Online Learning Tasks

 Opportunities

 Challenges 
• Task config heavily influences interference, as well as task training progress
• Vast search space of task configurations
• Closely couple between adjusting task config and designing task placement policies
• Config and placement decisions are made in realtime for newly arrived tasks 

• Choose different types of learning tasks to 
multiplex on a GPU can mitigate interference.

• Co-locate suitable number of tasks to balance the 
waiting time and training time

• System wide: GPU mem, PCIe BW

1611/2023

Slowndown of VGG16, running together with diff apps



IADeep System Design

① Online Scheduler: Find the optimal device to place the new arrival task 
② Tuner: Tune configurations (batch sizes) to mitigate the interference. 
③ Task Agent: Update the configurations for each co-located task.

𝑥𝑥𝑑𝑑𝑘𝑘 is a binary variable indicating 
whether task k is placed on device d

Minimize the overall performance degradation
(PD) of all co-located tasks on the same device.

W. Chen, Z. Mo, H. Xu, K. Ye, and C. Xu, IADeep: Interference-aware Multiplexing for Deep Learning, SC’2023 1711/2023



Experimental Results: End-to-End Performance

 Full impl on Kubernetes, and evaluation using Microsoft Phillly Traces 
 Completion Time (CT), makespan and GPU utilization

• IADeep reduces the overall CT and makespan by up to 49% and 67% 
respectively, compared to Antman[1], MPS[2] and Kernel Est[3].

• IADeep can obtain up to 29% and 31% higher SM and memory utilization.

[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.
[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] Xu, Xin, et al. "Characterization and Prediction of Performance Interference on Mediated Passthrough GPUs for Interference-aware Scheduler." In Proceedings of HotCloud. 2019. 1811/2023

https://docs.nvidia.com/deploy/mps/index.html
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 Monolithic app is divided to multiple MSs

Microservices (MS) in Clouds

 Model inference in the form of microservices: ease of management, 
maintenance, and update

(Stanford, eurosys’2020)11/2023

Scheduling

Cloud

Apps
in MS

(b)
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 The scale of MS is large in Alibaba.
• 20000+ MS
• 10 billion calls between MSs within 7 days 
• Traces contain diverse metrics

 100+G traces has been released.
• https://github.com/alibaba/clusterdata

Traces Analysis: Overview of Alibaba traces

Complicated MSs dependencies graph
11/2023
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 Key concept: Dependence Graph (DG)
 Scale of DG, follows a heavy-tail distribution

• A DG can involve 1000+ MS, and depth of DG can be 
100+.

 A DG has a tree-like structure
• MS DG has more scatter components than gather 

components.
 A small percentage of MS are hot-spots in DG. 

• 5% of MSs are shared among more than 90% of applications

 MSs form highly dynamic dependencies in runtime.
• DGs of an online service can be categorized into multiple clusters
• Complicated DG makes it a challenge to resource management 

for MS

Characteristic of Microservices

Out-degree 10% MS > 5
In-degree 90 % MS = 1

S. Luo, et al., Characterizing Microservice Dependency and
Performance: Alibaba Trace Analysis. SoCC’2021 (best paper award)11/2023
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 Problem Statement
• Given a set of apps in mServices, each with DG and info about their 

sojourn time, resource demand and latency, and overall SLA requirements
• Schedule/deploy mService based on allocated 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿𝑂𝑂𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑂𝑂𝑇𝑇𝑇𝑇𝐿𝐿𝑂𝑂

 Improve resource efficiency, and satisfy SLA requirements

 Optimization problem:

 Optimal latency target in closed-form: 

Scheduling for Shared Microservices

s.t.

𝑂𝑂𝑖𝑖 : Slope of MS 𝑂𝑂 in latency model. 𝛾𝛾𝑖𝑖 : Workload of (shared) MS 𝑂𝑂. 

Latency Target = ∑ (              )

T00

T03

T10

T13

T20

T22

T’02

 [Theorem] The resource usage yielded by the optimization problem is no larger 
than that due to FCFS sharing or no-sharing approaches (ASPLOS’2023)

11/2023
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 System arch of Erms (Efficient resource management system)

Erms for Shared MS: Design of System

S. Luo, et al., Erms: Efficient Resource Management for Shared Microservices with SLA
Guarantees. ASPLOS’2023 (ACM Trans. on Computer Sysgtems, 2023)11/2023
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 Allocated resource: Erms saves about 60% of containers.

RM for Shared MS: Evaluation on Cluster

 E-t-E response time: reduce reduces SLA violation probability by 5x and improves 
performance by up to 10%

 Replay Alibaba workloads for trace-driven simulation, using 1000 services and 
20k+ mservices in 12-h period, on a cluster of 14 nodes, each with 64 CPU cores

GrandSlam, Eurosys’2019
Rhythm, Eurosys’2020
Firm, OSDI’2020
Erms: our approach

11/2023
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 End-to-End performance  

RM for Shared MS: Trace-driven Simulation    

 Scalability of Erms
• For largest graph with 1000+ microservices, the computational overhead is 300ms.
• Overhead of resource provisioning for 1000 containers across 5000 hosts is 200ms.

Erms reduce # allocated containers by 1.6x. Latency Target Comp save resource usage by 1.1x. 
Priority Scheduling reduce resource usage by 50%.

Software available online,  functional, and results are reproducable

S. Luo, et al., Erms: Efficient Resource Management for Shared Microservices with
SLA Guarantees. ASPLOS’2023

11/2023



(c)

Unified Sched

App

Cloud

Unified Sched for Batch and Online Jobs
1st gen: hybrid scheduling multi-tenant clouds (--2016) 

• Reserve resources for batch and online, and schedule separately

• Sigma of Alibaba for long-running latency-sensitive jobs; Fuxi for 
batch jobs with many small task with complex dependeces

• ~10-15% utilization, unacceptable! 

2nd gen: unified scheduling (2016-)
• Unified scheduling for all applications, in the form of unified 

requests, and manage all resources in a consistent way

• Google Borg (Eurosys 2020), Facebook Twine (OSDI 
2020), Alibaba Aliware (2021)

• Overall utilization increases to ~30% on average
Alibaba unified scheduling framework

2611/2023



 Over 1 million tasks (pods) deployed in one Alibaba datacenter 
(2 clusters, each with 6000 physical hosts) for a  8-day period

 Cluster resource utilization
• Filling valleys and shaving peaks
• High max (>90%) but low ave (~40%)

 Scheduling efficiency
• Heavy-tailed distribution in scheduling delay
• Large number of pods experienced long delay

(10% of BE pods had 100 seconds delay)

Characterization of Unified Scheduling in Alibaba Cloud

a. Avg Pod CPU util b. Host resource util

(100,0.9)
C. Lu, et al, Understanding and optimizing workloads for 
unified resource management in large cloud platforms, 
EuroSys’2023

11/2023 27



How to Optimize the Unified Scheduler?

 Perf Metrics: key to scheduling 
• CT works well for batch tasks. However,  RT 

NOT a good perf indicator for LS services 
about  resource usage 

• PSI (Pressure Install Info.) to measure the 
ratio of waiting time of LS services (OS-level) 
to sampling interval (appl-level) 

 PSI shows strong correlation with host CPU 
utilization and pod CPU utilization

(a) Latency-sensitive (LS) services (b) Best-effort (BE) applications

Distribution of correlation between RT and metrics

(a) Host CPU utilization (b) Pod CPU utilization

CoV: std deviation/average， pod resource usage vs perf

11/2023 28



 Optimization framework

How to Optimize the Unified Scheduler

Resource Usage 
Predictor

Interference Predictor, 
based on PSI

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂 = ∑𝑝𝑝,𝑞𝑞∈ℎ𝑜𝑜𝑜𝑜𝑜𝑜 max
𝑝𝑝∈𝐴𝐴𝑝𝑝,𝑞𝑞∈𝐵𝐵𝑞𝑞

max
𝑜𝑜

max 𝑅𝑅𝑈𝑈𝑝𝑝 𝑜𝑜 +𝑅𝑅𝑈𝑈𝑞𝑞 𝑜𝑜

max 𝑅𝑅𝑈𝑈𝑝𝑝 +max 𝑅𝑅𝑈𝑈𝑞𝑞
∗ (max 𝑅𝑅𝑈𝑈𝑝𝑝 + max 𝑅𝑅𝑈𝑈𝑞𝑞 )

 Interference Predictor
• For LS applications:

• For BE applications:

 Resource Usage Predictor
• Predict the resource usage of the host as 

PSI𝑝𝑝𝑜𝑜 = 𝑓𝑓𝑆𝑆𝑖𝑖
𝑜𝑜 C𝑝𝑝𝑜𝑜 , M𝑝𝑝

𝑜𝑜 , Cℎ𝑜𝑜 , Mℎ
𝑜𝑜 , Q𝑜𝑜

𝐶𝐶𝑇𝑇𝑝𝑝 = 𝑓𝑓𝐵𝐵𝑗𝑗
𝑏𝑏 C𝑝𝑝𝑚𝑚, M𝑝𝑝

𝑚𝑚, Cℎ𝑚𝑚, Mℎ
𝑚𝑚

Optimization System Overview

See EuroSys’2023 for Details

2911/2023



 Improved resource utilization by 15% and the violation rate is very low

How the optimized unified scheduler works

(a) Resource utilization (b) Violation of resource usage

 LS pods have little PSI violation, and few BE 
pods violate the original completion time 

 High efficient: average scheduling latency 
is 96ms for each pod (python)

See EuroSys’2023 for details

30

 Trace-driven simu: Alibaba load and Optum used pods data of 7 days to build model

11/2023



 Early Experience with Scheduling: 
• Scheduling for deep learning (SC’2023) (a) 
• Scheduling for microservices (ASPOLOS’2023) (b)
• Unified scheduling for both batch and online appl (EuroSys’2023) (c)

Summary of Parallel Learning in Clouds

Scheduling

App

Cloud
(a)

Scheduling

Cloud

Apps
in mS

(b) (c)

Unified Sched

App

Cloud

3111/2023



 Parallel Learning in Clouds
 Cloud-Edge Collaboration for (Vertical) Distributed Learning

• Model Compression (ICLR’2019, NeurIPS’2019)
 Cooperative Learning among Peers (Horizontal)

Early Experience in Cloud-Edge Intelligence

Cloud DCEdge Server

DAP AI 

IoT Device datadata

Deep ModelIn situ decision

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

On-device intelli

深度智能自主智能泛在智能

AI

3211/2023

Clouds

Cloud 
Edge

Edge… Edge 

Parallel

Vertical

Horizontal
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 Microservice arch meets the needs of model splitting

Model Splitting/Compression in Cloud-Edge Collaboration

Deep Model in Brain

Sensing Intelligence
Instant Response

Sensing/Interactive 
Intelligence in the front

Deep model in backend

 Model compression is a must for constrained resources 
11/2023



Gao, et al., Dynamic Channel Pruning, ICLR’2019

Key Observation/Motivation：
Importance of features produced by deep 
models is highly input-dependent

New Method:  Feature Boosting and Suppression (FBS) to
predictively amplify salient channels and skip unimportant ones at run-time

Images to excite neurons of ResNet-18  
model and outputs high/low weights

34

Efficient Model Inference for Constrained Edge

11/2023



Key Observations
• Channel pruning introduces various degrees of sparsity to different layers
• But, traditional shift quantization位移量化becomes a poor choice for certain 

layers in sparse models, as most near-zero quantization levels are under-utilized.

Efficient Model Inference: Shift Quantization for Sparcity

11/2023 35



Gao, et al., Focused Quantization for Sparse 
CNNs, NeurIPS’2019

Focused Quantization: exploit the statistical properties of weights in
pruned models to quantize them efficiently and effectively

Focused Quantization for Efficient Inference

3611/2023



 Key Observations:
• Shift op facilitates HW impl. HW design tends to use  flattened 

streaming arch (vs systolic arrays) for inference acceleration.
• Flatten streaming accelerators isolate layer-wise comp, offering 

chance to use different arith and precisions for each layer’s 
computation

 Proposed Tomato HW/SW Co-Design: 
• HW: Multi-Precision Multi-Arith accelerator on Multi-FPGAs
• SW:  Hybrid quantization to automate the selection of arith and precisions for different layers of the 

model, so as to map all the layers onto a single or multiple FPGAs. 

HW/SW Co-Design for Model Inference

Gao, et al., FPGA Implementation 
for CNN acceleration, FPT’201911/2023 37



 Parallel Learning in Clouds
 Cloud-Edge Collaboration for (Vertical) Distributed Learning
 Cooperative Learning among Peers (Horizontal) 

• Dealing with System and Data Heterogeneity (CVPR’2023)

Early Experience in Cloud-Edge Intelligence

Cloud DCEdge Server

DAP AI 

IoT Device datadata

Deep ModelIn situ decision

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

On-device intelli

深度智能自主智能泛在智能

AI
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 In cooperative learning, peers are not necessarily homogenous 
 Data located in peers most likely be biased or unbalanced

Challenges in Cooperative Learning 

 In IoT devices, the savings of comm
could be completely dwarfed by the 
expensive computation cost

• E.g. an iPhone 12 running fashion-mnist
model as a FedAvg of FL client took 6+ 
hours on training, but only minutes under 
5G/WIFI to transmit required 700 MB data Heterogeneity in computing capabilities clients may 

result in slow convergence in FL.

3911/2023



 In MNIST training, clients allocated with the same digits shared similar update 
patterns, while different client pair's update direction is quite dispersed.

40Observation: local gradient update is contingent on data distribution

Data Heterogeneity in FL

Figure 4. Magnitudes of clients’ local gradient update

11/2023

10 clients, each pair be 
trained with the same 
class-biased digits



Observations:
• the output predictions from the locally updated client model on a 

balanced validation set are biased towards majority classes. 
• the model prediction bias consistently exists throughout the whole 

training phase.

Biased Predictions of Clients due to Data Heterogeneity 

42

Prediction statistics on homogeneous vs heterogeneous data.

11/2023



Adaptive Channel Sparsity for System Heterogeneity 

43

Proposed Method Flado: Federated Learning with Adaptive Dropout

Flado tailors an adaptive sparsity scheme for each client according to their local gradient updates.

FLOPs budget constraint

Sparsity-driven Trajectory Alignment 

11/2023

FjORD trains models with fixed 
channel sparsities for clients 
with different capabilities. 

Flado adapts channel sparsities
with underlying training 
trajectories and capabilities for 
each training round.



Experimental Results of Adaptive Channel Sparsity

45

• Flado is highly elastic under different system heterogeneity levels.
• Flado attains consistently higher converged accuracies on CIFAR-10

D. Liao, X. Gao, Y. Zhao, C. Xu, Adaptive Channel Sparsity for 
Federated Learning under System Heterogeneity, CVPR’2023

11/2023



 Resource Management for Distributed Learning in Clouds
 Cloud-Edge Collaboration for (Vertical) Distributed Learning
 Cooperative/Federated Learning among Peers (Horizontal) 

In Summary: Effective Systems for AI

4711/2023

Clouds

Cloud 
Edge

Edge… Edge 

Parallel

Vertical

Horizontal

Cloud DCEdge Server

DAP AI 

IoT Device datadata

Deep ModelIn situ decision

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

On-device intelli

深度智能自主智能泛在智能

AI
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chatGPT/AIGC 智能涌现：4 个能力

• 记忆力： 集体记忆 vs 个性化记忆力（AI agent)

• 创造力：生成语言，文本，图像等。可以吟诗

作画，coding）

• 理解力 （对某个事物或事情的认识、认知、抽

象的能力）：可以举一反三，可以意译文字语

言，个性化翻译

• 推理能力（常识、逻辑）：归纳（induction）

演绎（deduction）

Intelligence Emergence

https://www.visualcapitalist.com/how-smart-is-chatgpt/



Progress towards AGI



Source: Reddit.com Dev of apps using models, as embodied AI 
• Productivity improvement tool: 

 creative text/image/video, 

• AI Agent: ask questions to AI agent for 
personalized services: 
healthcare/education/entertainment/…

• Challenges: have AI agent to ask questions!

 How to dev apps with assistance of AI
• AI-assisted coding: GitHub CoPilot, chatGPT

All in AI, no exception for coding



Future Software Engineering

 Evolution of programming abstraction
• Low-level: binary/assembly code
• “high”-level: c/c++/Java/…/Python/

 NL-based coding: coding on how to do 
could be assisted by AI
• Abstraction is further lifted
• Arch/OS/algs need to be revisited

 Need to focus on what to do and learn 
to ask questions.  
• Creative thinking remains critical in SE. 
• Task-/agent-oriented might be a future

End of programming might be 
exaggerated at present, but alarming



 Takeaways:
• Effective systems for AI and Large Models, particularly 

via cloud-edge collaboration
• Resource Management is a key to serverless cloud 

computing, in support of AI
• Model Compression makes a good tradeoff for edge AI
• System/Data heterogeneity must be dealt with in 

collaborative AI among peers 

 AI for ALL, including programming/coding. AI for how to do 
and human for what to do in high abstraction levels.

Conclusion

Thank You！

Chengzhong Xu （须成忠）

University of Macau (澳门大学）

C. Xu
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