Effective Computing for Al

S, BT R

Chengzhong Xu, University of Macau

November 22, 2023

Al & AIGC Background

Al has a long history of being “the next

o, Al is coming of age ...
big thing

e Al for Entertainment Al for Science

age of reasoning, prototype Al O e -y

developed <)° AIphaFOI,d-"'r‘ 2
Explosive * 1970s: Al winter | - é% e
Growth * 1980s-1980s: Second Al boom: the ALFH“ZEHU . A

age of Knowledge representation A I h G S AT

[appearance of expert systems
capable of repreducing human

decson-makin) Al Generated Contents

= 1990s: Al winter |l
./
ﬁ

= 1997: Deep Blue beats Gary
ChatGPT Midjourney

! Al winter |l

Foundation
Model

Kasparow

= 2006: University of Teronto
develops Deep Learning

* 2011: IBM's Watson won Jeopardy

= 2016: Go software based on Deep
Learning beats world's champions

i :I i
|Alwinterl | |
i i i i

1950 1956 1974 1980 1987 1993 Time

(Rise and Fall of Al, :online source)

Algori
thm

AIGC and Al for Science are both
selected in Science’s 10
Breakthrough of Year 2022

Computing
Platform

11/2023 Data-driven Al

Needs for Computing Power surpass the Moore’s Law

26X Performance in 6 Years

. Relentless Full Stack Innovation
1 The blessings of scale
Number Of 175 18 trllllons Al training runs, estimated computing resources used
pa rameters bi I I io ns Floating-point operations, selected systems, by type, log scale .
102+ X
GPT3 o8&
. LaMDA @ NVIDIA Platform Performance on Top Apps
Type of inputs Text Text Images o Draving © Language GPT-2 j\mm 100 | ® moore's Law
@ Vision Other BERT-Large ﬂ'. h
tokens 4,096 32,786 NPLM oo 10
o]
* ' 10‘1
~ ~ NetTalk *
#words at 3,000 24,000 _ ©e
Neocognitron . ° 10
once il
e o DALINE 104
GPUs 1,000 25,000 OTheseus 1 B e
A100 A100 GPU 50 e 7 8 s 20 10 2 2016 2017 2018 2019 2020 2021 2022
T . e th e A e i e . (P100) (V100) (V100) (V100) (A100) (A100) (H100)
Sources: "Compute trends across three eras of machine learning”, by J. Sevilla et al,, arXiv, 2022; Qur Waorld in Data

Training time 30 days 90days
Cost 5milUSS 63 milUS $ From 2016 to 2022, model size is growing 10° times

Utilization / 32-36% larger, while the computing perf is growing only 26X.

Computing power and memory bw required for training increase
exponentially in model size. How to design an effective system for Al?

11/2023 3

Outline

Part I: Challenges in the Design of Effective Systems
Part |I: Recent Experience with Effective Systems for Al

Part lll: AIGC and Foundation Model’s Impact

Thanks to the teams in University of Macau, and Shenzhen Institute of
Advanced Technology, including K. Ye, Y. Wang, X. Gao, C. Gao, J. Zhao, S.
Wang, H. Xu, M. Xu, L. Li, S. Luo, X. Li, K. Wang, C. Lu, W. Chen

Interplay of Systems and Al

» Systems for Al: using systems (parallel/distributed
/cloud/edge/...) to support efficient model training and

Inference in parallel

e cluster and cloud, to be shared for resource utilization
 cloud for model inference, handling millions of queries in real time

« Al for Systems: using Al tools, In contrast
to optimization, to config/schedule/
manage/diagnose/... systems

e Due to uncertainty, sometimes unpredictable
relationship between resource and perf

%" System Stat
3 | |
H I!"r"f’ (' LNM.. f!trﬂ '

oa

.....

Learning
f(param)=S

] o] 7]]
2]] P] [t

' Examples of Effective Systems for Al

= Parallel Learning in Clouds

» Cloud-Edge Collaboration for Learning Clouds
(Vertical)
_ _ Cloud
» Cooperative Learning among Peers Edge

(Horizontal) cdge... Edge

11/2023

Parallel

Vertical

Horizontal

Parallel Learning in Clouds

- Parallel Training
 Input-data partitioning (data parallelism, SPMD):
GPUs run the same code (e.g. SGD
optimization) on different parts of dataset

* Model partitioning (model parallelism, pipelining):

Multiple GPU working simultaneously on
different parts of a model for an input
- Need to revisit performance issues

« Load balancing, data locality, overlapping
computation with comm, comm efficiency, etc

11/2023

Relative

Staps

Transformer on LM1B

number of steps

Baj[;:h ‘.'i_':i-z »;
Data Parallelism by Batch Size,
saturates quickly. (Google,2019) 7

' Parallel Learning in Clouds (cont’)

= Online Model Inference

« Handle queries from millions of chatGPT users in real-time

- Both training and inference tend to be run in clouds to
leverage the cloud resource flexibility (e.g. chatGPT in
MS Azure).

« Resource management is a key to success of parallel
learning in clouds. How to schedule Al tasks in clouds
so as to maximize overall throughput and meanwhile
satisfying individual SLO regarding latency?

11/2023

Cloud-Edge Collaboration for Distributed Learning

- Edges often located in proximity to users and data, but with limited
resources. It provides capability of sensing and interacting the world.
« Cloud-Edge collaboration aims to provide instant response, without need

for communication of large volume data
Deep Model in
- It bears resemblance to the Cloud/Brain
O

layered social structure, as (5ense |nte||igence) 9

well as our body’s layered Instant Response |y,
*:*32“\%“* " ”_’w 7™ — Vision —

: . Nl gme -

Intelligence/response. . et T

- How to split, compress models, or fine-tuning
models for resource constrained edges ?

11/2023

Cooperative Learning among Peers

- Leverage the learning capabilities of peers by distributed optimization or
knowledge fusion over different datasets to train a model collectively
(horizontally)

» Clouds/clusters are mostly

homogeneous, but the peers may not,
_ Central Server Source: LinkedIn
and resource-constrained. Also, the LR

data Is not necessarily balanced. o O
1 G <
Node / l@ Q Node
- How to apply cooperative learning 9 LY O E|
. . . o (7
ideas to domains of variance (non-11D OB wanng gy ?; Oa e BO
Local Dat @ E@’ d @ Local Data

data) with heterogeneous systems? o s

11/2023 10

' Outline

Part I: Challenges in the Design of Effective Systems
Part |I: Recent Experience with Effective Systems for Al

Part lll: AIGC and Foundation Model’s Impact

11/2023

11

Early Experience in the Design of Effective Systems

Effective Systems for Deep, Autonomous, Pervasive Al

[
dat data
I loT Device — Edge: in situ Cloud DC
: Intelligence decision Deep Model
I Cloud-Edge Platform
Pervasive Al Autonomous Al Deep Al
(anywhere) (anytime) (anything)

iZTEERE SESS- IR ERE
DAP Al

11/2023

- Parallel Learning in Clouds

(ASPLOS’23, EuroSys’2023,
SC’2023)

- Cloud-Edge Collaboration for

Distributed Learning
(ICLR’2019, NeurlPS’'2019)

- CooperativelLearning among

Peers (CVPR'2023,
ICML’2020)

12

Parallel Learning in Native Clouds

- Appl in the form of microservices, Al ApFA
and the cloud in serverless arch so p—
: cheauling
as to leverage the opportunity of
fine-grained resource management CIoudO @)
- Current research focus: Apps,s '; App »\
» Scheduling for deep learning (a) o A LA
» Scheduling for microservices (b) . e screg
« Unified scheduling for both batch & nitieq >che

online applications (c) Cloud 88
ou
(b)

Q (c)

Cloud

Deep Learning on Dedicated Clusters

Al App i i

* GPU Schedulers for Deep Learning (DL)

 Packing multiple tasks on the same GPU via time- Scheduling
sharing or spatial-sharing multiplexing to improve the
GPU utilization.
Cloud (a)

" |n space sharing (multi-tenant), suffer from

underutilization and long queuing delay SqueezeNet
e Up to 60% GPUs are <10% utilization (MS Azure, 2019) 520,
 Long queuing delay, sometimes intolerable ! VGI:E;LFE;:

" |n time sharing, simple multiplexing would cause
severe interference among tasks, leading to

significant slowdown. Interference of co-located tasks

14

11/2023

Inefficiency due to Low-Level Multiplexing

" Hardware-level solutions = Kernel-level solutions to fine tuning
e MPSIZ and MIGE3! of NVIDIA launching order of co-located tasks
e Both help reduce interference by explicitly .

Antmanl!l! (Alibaba) with time-sharing
OS-level solutions require significant
custom modification for various DL

* Also, tasks cannot perfectly pad each
other’ idle GPU cycles statically

isolating SM and mem resources among tasks. .
e But neither can deal with critical PCle BW, which
prone to be bottleneck in DL

B ResNet50

B
=)

€
e MPS MIG
‘510
—IAD ResNet50 w/ Ant
: N I ST g o| (S| 2 [i
'» s o e 6L o 0 6 32 22 L £ 75|
o ADT YT P EST BRT AR AR 0 407 T A7 = ._ql.-rﬂ——w—,_ﬂ
CT = *xrr* e
(@) of A100 0 'Ill i ?I AN
gl.ﬂ —— ResNet50 VGG16 o W o
< 'l | i l 200 400 600
‘o 0.5 A. ﬂ /‘ N Time
2 ||| | M | | l|| || i”
e 0.0 |I | .||.. '. L '-LII | Al L'LJ | | J {b} SM utilization
o 50 100 150 200
Time [Antman outperforms dedicated config by 15% J
(b) PCle Bx throughput
11/2023 [1] Xiao W, et al. {AntMan}: Dynamic Scaling on {GPU} Clusters for Deep Learning[C], OSDI 2020

[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] NVIDIA Multi-Instance GPLR https://www.nvidia.com/en-us/technologies/multi-instance-gpu

https://docs.nvidia.com/deploy/mps/index.html

|ADeep: Middleware Solution for Online Learning Tasks

o
=

= QOpportunities

* Choose different types of learning tasks to
multiplex on a GPU can mitigate interference.

Slowdown({%)
Lt o
= o o
.n?; |
-
el
o
]
o
)
o

* Co-locate suitable number of tasks to balance the 5 S B
- 1}'3' o A GG
waiting time and training time VP8 ﬁ{jﬂ}eﬁ"'
e System wide: GPU mem, PCle BW

Slowndown of VGG16, running together with diff apps

= Challenges

Task config heavily influences interference, as well as task training progress
e Vast search space of task configurations

Closely couple between adjusting task config and designing task placement policies

Config and placement decisions are made in realtime for newly arrived tasks

11/2023 16

IADeep System Design

(D Online Scheduler: Find the optimal device to place the new arrival task
) Tuner: Tune configurations (batch sizes) to mitigate the interference.
(3 Task Agent: Update the configurations for each co-located task.

xf,‘l" is a binary variable indicating
/ whether task k is placed on device d

(Online Scheduler Taskstats

\ : Y [- D N
Predictor Packing ‘ | Tuner @ ; min Z Zx'; r PDZ(*k)
_ gy) ': Batch 4 L3 Dejgradationﬁ d=1k=1
Scheduling .. Device size & & = &Memory | N
decision ", stats F ".:"-...proﬂles s.t., Zx’; . PMF (%) < C 4, Vd,
, ‘ ... ; l_," Task Agent P TaSkAgen.i"- IJCDZI
/—il Tulne.r ™ /—@_\ Profiler ' Zx:; — 1. Vk. and x'; e {0,1}.
[Task'Aw ﬁask E!ﬁ‘ — Estimator | ! d=1
A e = TaskE] |TaskFJ P i
N — ~ - P Controller Controller § L. .
é |T35ka ﬁ'ﬁk D AN Y | Minimize the overall performance degradation
: ’) P Stop&Start 5 .
: i GPUd P r 5 -
| dewcgp,d S\ svice /i [(TaskE | [TaskF | (PD) of all co-located tasks on the same device.
e D OBV . : PDk(*k)—le(*k}}iDTk(*k)bileHqCIENCkatk]
d T d t

W. Chen, Z. Mo, H. Xu, K. Ye, and C. Xu, IADeep: Interference-aware Multiplexing for Deep Learning, SC’2023 {7

11/2023

Experimental Results: End-to-End Performance

* Full impl on Kubernetes, and evaluation using Microsoft Phillly Traces

* Completion Time (CT), makespan and GPU utilization
e |ADeep reduces the overall CT and makespan by up to 49% and 67%
respectively, compared to Antman!tl, MPS[2l and Kernel Est!3l.

e |ADeep can obtain up to 29% and 31% higher SM and memory utilization.

1.00

3 | ™= Antman = Kernel Est. " ol 80
MPS == (ADeep 0.75 ~ A —Antman—-Kernel Est. —Antman--Kernel Est.
' P Z 100 MPS —IADeep < 60 MPS —IADeep
2 A g0 L - 2 = ™ =
Q6 404 0 0.50 | 72 = Y2 =
B8 e 1807 o e L5 W
0 o 0.25 |} = 50 |t Mg =
1 : : : =Antman—Kernel Est. = ¢ v ﬁu, Ay L
MPS -lADeep i AL | E2
0.00 J 1 "jv
0 - 0 :
0 o Makecoan 0 Tinfg{nmim 400 0 1000 2000 3000 0 1000 2000 3000
P Time(min) Time(min)
(a) Average CT and makespan (b) CDFof CT (a) Avg. SM utilization (b) Avg. memory utilization

[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.

[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] 9(&,)219,2& al. "Characterization and Prediction of Performance Interference on Mediated Passthrough GPUs for Interference-aware Scheduler." In Proceedings of HotCloud. 2019.

https://docs.nvidia.com/deploy/mps/index.html

Microservices (MS) in Clouds

- Monolithic app is divided to multiple MSs

Apps
fffffffffffffffffffffffffff ; in Ms /AAX AR

gg Setvirgeer § Client Browser &E § @ I
Cliort Biowser > —* Containers
L Product service | Cart service% / '''''''''' I@ \
== < oustomer # proguctsenice og\njvice‘
o —\E — e OO0
= oW L@,
Single Intance

« Model inference In the form of microservices: ease of management,
maintenance, and update

Stage 1 ' Stage 2 Stage 3 Stage 4

i
! 1
input | |
—D[Image Recognition |_|: I

r 2 . ‘ Natural Language

|

|

|

Yy

: Question i
Understanding —>|_ Answering H Text to Speech oot

~ |—’
. A :) g Q &?A g P
pu—l\-[Speech Recognition i y ; ; lIJ

11/2023 (Stanford, eurosys’2020) }))) l

Output : 19

Traces Analysis: Overview of Alibaba traces

» The scale of MS is large in Alibaba.
e 20000+ MS

e 10 billion calls between MSs within 7 days
* Traces contain diverse metrics

100+G traces has been released.
e https://github.com/alibaba/clusterdata

Center

Bill \nfnmatmn

Delivery Data User Data Store Data

Trading Data ltem Data

11/2023 Complicated MSs dependencies graph

@

Bare-metal Node

@JSampIed Microservice Invocation

Pod Pod
Secure
Container Container
Microservice Batch Jobs
| Pod || Pod | ||[Batch Jobs

1. TimeStamp 2. TracelD 3. rpcID
4. UM 5.UMPod_IP 6.DM
7. DM Pod_IP 8. Interface 9. RT
10. Communication Paradigm

@ Aggregated Microservice

@ Microservice System Metrics

4. Microservices 5. Pod IP

1. TimeStamp 2. Metrics 3. Values

1. TimeStamp 2. Call Times 3. RT
4. Microservices

5. Provided / Consumed Interface
6. UMs / DMs

Web [Request

(O Stateless service

Stateful service
() Database

() Memcached

IPC
RPC
MQ

20

Characteristic of Microservices

- Key concept: Dependence Graph (DG) —
— IDaba lraces
. Scale of DG, follows a heavy-tail distribution f——:iﬁfst.)ésst,rkbﬂ."ﬁs, k=0.17)
« ADG can involve 1000+ MS, and depth of DG can be 0 20 40 60 80 100 120 140 160
100+ Number of Microservices

= A DG has a tree-like structure

« MS DG has more scatter components than gather
In-degree 0% MS=1
components.
- A small percentage of MS are hot-spots in DG.
* 5% of MSs are shared among more than 90% of applications

- MSs form highly dynamic dependencies in runtime. 2 3 7T T 8T 7T %

. Number of Cluster
* DGs of an online service can be categorized into multiple clusters
« Complicated DG makes it a challenge to resource management
for MS

S. Luo, et al., Characterizing Microservice Dependency and

11/2023 Performance: Alibaba Trace Analysis. SoCC’2021 (best paper award) 21

Scheduling for Shared Microservices

Problem Statement
« Given a set of apps in mServices, each with DG and info about their

sojourn time, resource demand and latency, and overall SLA requirements
» Schedule/deploy mService based on allocated Optimal Latency Target 00
o Improve resource efficiency, and satisfy SLA requirements

O
J T1o
Optimization problem: rn ni-Ri, s.t. latency, (%) <SLAk.. T’o»

i=1

Optimal latency target in closed-form: To3

N
_s(a i @l ;= SLA— > b;) +b;.
Latency Target = > (ai 0 + b;) Tno >N JairiR; ; ’) ' T22 Ti3

@, : Slope of MS i in latency model. V; : Workload of (shared) MS 1.

= [Theorem] The resource usage yielded by the optimization problem is no larger
than that due to FCFS sharing or no-sharing approaches (ASPLOS’2023)

11/2023 22

20

Erms for Shared MS: Design of System

« System arch of Erms (Efficient resource management system)

HTTP

K8s
System

Z
Q
=
iJ

. ’,0'
N .
’v

-

-
@‘ -~.
K N

K N

AN &
\ -
==

O\’“
Ol
@’

-
< Sso

IR -~

. b -

DG

¥

A W

N
Y o .
N T < -
N Sel ' C 4 N .
NERN ~ - N
SERVEERAN L ..
- o .)R
B -, .
o T ICUPEAERN
EISRY PN Sl .
- ' N N .
. e [Sall Lt N

N
N
t\

ploym
Module

e

Tracing

Coordinat

Online Scheduling

Dynamic Resource
Provisioning

.

Offline Profiling

Latency
Profiling

Latenc

Workload

Online Scaling

Priority-basedclg‘ ‘é
Scheduling ©_

tl_atency Target
Computation
|
Dependency Merge
@m R o
o0 OO0 '

S. Luo, et al.,, Erms: Efficient Resource Management for Shared Microservices with SLA

11/2023 Guarantees. ASPLOS’2023 (ACM Trans. on Computer Sysgtems, 2023)

23

RM for Shared MS: Evaluation on Cluster

= Replay Alibaba workloads for trace-driven simulation, using 1000 services and
20k+ mservices in 12-h period, on a cluster of 14 nodes, each with 64 CPU cores

= Allocated resource: Erms saves about 60% of containers.

e ——————

— Erms

—-—= GrandSLAm
...... Rhythm
-== Firm

mmm Rhythm

GrandSlam, Eurosys’2019
Rhythm, Eurosys’2020
Firm, OSDI’2020

Erms: our approach

« E-t-E response time: reduce reduces SLA violation probability by 5x and improves

performance by up to 10%

11/2023

B Erms B Firm W GrandSLAmM B Rhythm
[|

I | HI I

il Nl I N}

I GrandSLAmM B Rhythm

24

RM for Shared MS: Trace-driven Simulation

- End-to-End performance

Priority Scheduling B Default FCFS

o
¥
N
S
asn
O]
7
3.
O
ns
.
Iy

L] L]
— Erms . .
GrandSLAm
...... cronds i = o
Erms reduce # allocated containers by 1.6x. Latency Target Comp save resource usage by 1.1x.

Priority Scheduling reduce resource usage by 50%.
- Scalability of Erms

» For largest graph with 1000+ microservices, the computational overhead is 300ms.
« Overhead of resource provisioning for 1000 containers across 5000 hosts is 200ms.

S. Luo, et al., Erms: Efficient Resource Management for Shared Microservices with
SLA Guarantees. ASPLOS'2023

112023 Software available online, functional, and results are reproducable

Unified Sched for Batch and Online Jobs

/\
: : : A

15t gen: hybrid scheduling multi-tenant clouds (--2016) PP i \

* Reserve resources for batch and online, and schedule separately

« Sigma of Alibaba for long-running latency-sensitive jobs; Fuxi for Unified Sched

batch jobs with many small task with complex dependeces
« ~10-15% utilization, unacceptable! O (c)
Cloud

2"d gen: unified scheduling (2016-)

« Unified scheduling for all applications, in the form of unified — zemt< @ @

CLs,

requests, and manage all resources in a consistent way

* Google Borg (Eurosys 2020), Facebook Twine (OSDI
2020), Alibaba Aliware (2021)

« Overall utilization increases to ~30% on average ™ ©9(282)(88)(88°]|

Alibaba unified scheduling framework
11/2023 26

Characterization of Unified Scheduling in Alibaba Cloud

- Over 1 million tasks (pods) deployed in one Alibaba datacenter
(2 clusters, each with 6000 physical hosts) for a 8-day period

= Cluster resource utilization

0.4 1.00
. - . BE LS = 1 B o,
Filling valleys and shaving peaks = 2075 [~ cruavg - Ty
« High max (>90%) but low ave (~40%) (@0-2 = 0.50 [T PUM - bemne]
: . & 0.25 | MWW IWOWTIW,
u SChedUHnQ Eﬁ|C|ency 0.0 0 250 500 750 1000 0 250 500 750 1000
. Ti 10 mi i i
- Heavy-tailed distribution in scheduling delay Avg'";i; oo L o o
« Large number of pods experienced long delay
(10% of BE pods had 100 seconds delay)
1.000 1.0 o —
0.995 0.8 \ LS
. - W W 0.6 LSR
C. Ly, et al, Understanding and optimizing workloads for Q 0.990 8 0.4 (100,0.9)
unified resource management in large cloud platforms, 0.985 ‘ o
, : 0.2
EuroSys'2023 0.980

0.0
100 400 700 1000 130! 10" 10> ,10°

11/2023 # of scheduling pods per min

Waiting Time(s)

How to Optimize the Unified Scheduler?

- Perf Metrics: key to scheduling
o CT works well for batch tasks. However, RT
NOT a good perf indicator for LS services
about resource usage
PSI (Pressure Install Info.) to measure the
ratio of waiting time of LS services (OS-level)
to sampling interval (appl-level)

o PSI shows strong correlation with host CPU
utilization and pod CPU utilization

Lz Jon

-1.0

Corr

D 0‘\. \)_ \)\ :\Q \ QQ ;\Q \'\.Q‘ Q
P & &L & o L P
O NN \\\ X & << &
06‘23 b@ Qob Q Q C)Q
11/2023 T °

Q QQ QQ
LS
C? @QJ @Q? é@v \:\‘@ \&\Q@ Q\\Q'@

CoV: std deviation/average,

1.0
0.8
L 0.6
© 0.4
0.2
0.0

CPU Used
Mem Util
RT

QPs

icov= 1

-2 0 2 4

10 107 10° 10° 10

(a) Latency-sensitive (LS) services

0 1.0
2038
0.6
-2 0.4
o

§0.2
% 0.0

CoV

— PSI10
— PSI160
— PSI 300

-0.6-0.3 0.0 0.3 0.6 0.9

Corr

(a) Host CPU utilization

pod resource usage vs perf

1.0
0.8
u 0.6
004
0.2
0.0

CPU Used Cores
Mem Util
Completion Time

iCoV=1

10 107% 10" 10°
CoV

(b) Best-effort (BE) applications

2 1.0
gos
5 0.6
204
[=]

802

et

% 0.0

— PSI10
— PSI160
— PSI 300

-0.6-0.3 0.0 0.3 0.6 0.9

Corr

(b) Pod CPU utilization

Distribution of correlation between RT and metrics

28

How to Optimize the Unified Scheduler

Resource Usage Predictor
» Predict the resource usage of the host as

Util = Zp,qehost< max max

Interference Predictor

max(RUp(£)+RU,(t))

peAyqeB, t max(RUp)+max(RUq)

- . t — t t t t t
e For LS applications: PSlp = /5;(Cp, Mp, Ch, M, Q")

» For BE applications:

CT, = f5,(C5 My, CIY, M)

. Optimization framework

-C -M
max Z Ut]h . Utlh —

Z PSE’ — o - Z cT!

qEJ,_}EJ‘

heH PPl
/ s.t., Utif, Uty gﬁl\e H,

Resource Usage
Predictor

11/2023

e

Racing Coordinator Beployment Modulg;

Q

4

O..

A
w

@

Interference Predictor,

based on PSI

> * (max(RUp) + max(RUq))

OBEAppi' /“\BEApp2 'OSAppa ' LS Appd User
| | @ r

L 2 e) | . I

.'._._.._.._.._.__._._._.._._.____._._.._.._.__'_._.._.._._.__r'_._.._._._._'._._.. __________ ._.__'___________.._._.__________'__.._..T

¥ Online
o Node Selector Scheduler
o Interference Predictor 4——9 Resource Usage Predictor
: f ﬁ ¥

Interference Profiler

Resource Usage Profiler
LS Application | BE Application . : .
IBig o‘ Profiler Profiler 9

Offline Profiler

Optimization System Overview

See EuroSys’2023 for Details

29

How the optimized unified scheduler works

See EuroSys’2023 for details

= Trace-driven simu: Alibaba load and Optum used pods data of 7 days to build model
- Improved resource utilization by 15% and the violation rate is very low

2 20 | - Optum - N-sigma - Medea -
= - RC-like - Borg-like L 4
P —
S 10 =
(5] @ 2
3 s
€ o 0
WS C-WKE, gM2_ (\\KRpede@
0 500 1000 1500 OPWTRCNR 510 Eora e
Time(min) Model
(a) Resource utilization (b) Violation of resource usage
- LS pods have little PSI violation, and few BE - High efficient: average scheduling latency
pods violate the original completion time is 96ms for each pod (python)
__150 |- Optum - Medea
= - RC-like - N-sigma
= 100 | - Borg-like
£ 50

0

1000 2000 3000 4000 5000 6000 30

11/2023
Number of Nodes

' Summary of Parallel Learning in Clouds

« Early Experience with Scheduling:
e Scheduling for deep learning (SC’2023) (a)
» Scheduling for microservices (ASPOL0S2023) (b)
 Unified scheduling for both batch and online appl (EuroSys'2023) (C)

App A ﬁ‘]p:]sSA ADPL\

Unified Sched

Scheduling Scheduling

Q0 Q
CloudQ Cloud Clou

(a) (b) (c)

11/2023

Early Experience in Cloud-Edge Intelligence

- Parallel Learning in Clouds

- Cloud-Edge Collaboration for (Vertical) Distributed Learning
e Model Compression (ICLR’2019, NeurlPS’'2019)

- Cooperative Learning among Peers (Horizontal)

11/2023

2 TEERE EESS:E REERE
DAP Al

loT Device data Edge Server data Cloud DC
On-device intelli In situ decision Deep Model
Cloud-Edge Platform S
Pervasive Al Autonomous Al Deep Al
(anywhere) (anytime) (anything)

Clouds Parallel

Cloud
Edge

Vertical

Horizontal

Edge... Edge

32

Model Splitting/Compression in Cloud-Edge Collaboration

« Microservice arch meets the needs of model splitting

Web | Request

.............

Sensing/Interactive

Intelligence in the front
Deep Model in Brain

. : Sensing Intelligence
Instant Response

—
o

_______________________________________ — Hearing v

: v : Sy — Vision -

; % ; ey _

' v ' -

J v ! Taste

: L : =

v . M

)

Deep model in backend

» Model compression is a must for constrained resources

11/2023 33

Efficient Model Inference for Constrained Edge

11

Key Observation/Motivation:
Importance of features produced by deep
models is highly input-dependent

Original Netwark Pruning

high
response

QETIQI

5 426 3.297 3.076 2,938 3.409 3.300 3.298 3 171

low j | I8y
rLspun:;L

0 051 0.052 0. 066 0. I}EQ -0. 229 -0. 218 -0.168 -0. 161

(a) Channel 114

Images to excite neurons of ResNet-18

(b) Channel 181

model and outputs high/low weights

New Method: Feature Boosting and Suppression (FBS) to

predictively amplify salient channels and skip unimportant ones at run-time

| =T
convolution (+ bias)
X1 L\ convy (%) norm (convy (x;-1)) + B
spar sty
sbsampieN T
channel saliency multiple winners
predictor take all wta
—— multiply ——
nixi1) m(x) (+Reld) N

Figure 2: A high level view of a convolutional layer with FBS. By way of illustration, we
use the ™ layer with 8-channel input and output features, where channels are colored to
indicate different saliencies, and the white blocks (&) represent all-zero channels

»,&3a0, et al., Dynamic Channel Pruning, ICLR’2019

i -
e — -
B o
HH]}-'
e
A Bn® 4
1 :
g
a H4%y
Ra= o
e == NS jop-|
— FHS -1
—h— NS FHS sop-§
TH% T r T
il ns 1.0 |.5

MACs Izl

(a) M-CifarMNet u:'{'uru:'_'.'l,r’_"nl_-"l.(':-n tra

Accuracy

80%

N

-
2

(]
®

! =t NS top-1
+ =+ = NS top-5
—+— FBS top-1
FBS top-5
l]fﬁ |j[] |j5
MACs le9

Efficient Model Inference: Shift Quantization for Sparcity

Key Observations

 Channel pruning introduces various degrees of sparsity to different layers

e But, traditional shift quantization{i/ % & {t.becomes a poor choice for certain
layers in sparse models, as most near-zero quantization levels are under-utilized.

LA LA L) (L L
AL R L) T [l

(a) Dense layers (b) After shift quantization (c) Sparse layers (d) After shift quantization

Figure 1: The weight distributions of the first 8 layers of ResNet-18 on ImageNet. (a) shows the weight

11/2023 35

Focused Quantization for Efficient Inference

Focused Quantization: exploit the statistical properties of weights in
pruned models to quantize them efficiently and effectively

LY

.

il N F N %
Before Mormalized Quantized Represented values
(32-bit float) (32-bit float) (5-bit values)

0 |-3.81]1.50 0 |0.19 |-2.50: 0 |025] =2 0 & 2

563| 0 |-5.69 163 0 |-1.69| 2 ol -2 6 | 0| -6

454 -3.13'2.44 0.54)|0.87 -1% 05| 1| -2 451 -3 2
/128 /128 /128 /128

E: SN st E: —[031%5
= 00 TH "-'L'il.‘-': s £

A - !

'.I F [

L] Ll JI- : L] j- L] -l
-0.1 0.0 0.1} -0.1 0.0 0.1 |1-0.1 0.0 0.1 ||-0.1 0.0 0.1

=

ResMNei-18

Gao, et al., Focused Quantization for Sparse
CNNs, NeurlPS’2019

11/2023

Top-1 Top-5 Siee(MB) CRix)

TTQ [27] 6600 8710 2 97 1 600
NG (2 bats) [26] bo6l BT 20 2 97 1 600
NG (3 bats) [26] 6808 EBRE36 438" 10L6T"
ADMDM (2 bats) [14] 670 875 2 92 1 600"
ADMM (3 bats)h [14] 680 BR3 438" 10L6T"
ABC-Met (5 bases, or 5 bats) [15] 6730 EB7.90 7307 64 -
LO-Net (preact. 2 bats) [23] 6E00 BE.OOD 2 9= 1 60
DS [large) [210] Tile 9117 2198 > 13"
Coreset [3] 68 00 — 311" 15000

I Focused compression (5 bils, sparse) 6836 2 BEAS 1B6 1633
Res™et-50 Top-1 Top-5 Siee(MB) CRix)

NGO (5 bits) [26] 7481 9245 1464 640"
ADMDM (3 bats) [14] 74.0 216 B.TE" 10.6T"
ThiNet [17] 7204 67 1694 5537
Chip-C) [22] 1370 — 670 1400

et [3] JAOD 593 1580

I Focused compression (5 bus, sparse) T4.86 29159 519 18.08

36

HW/SW Co-Design for Model Inference

= Key Observations: — N

e Shift op facilitates HW impl. HW design tends to use flattened e
streaming arch (vs systolic arrays) for inference acceleration. — I I :
o e W S
e Flatten streaming accelerators isolate layer-wise comp, offering : e :
chance to use different arith and precisions for each layer’s i I o] IE:--:I
Dutpu Buffer
computation — I = |

Fig. 1: An illustration of a homogenous core (left) and

| Proposed Tomato HW/SW Co_Design: flattened streaming cores (right).
e HW: Multi-Precision Multi-Arith accelerator on Multi-FPGAs

e SW: Hybrid quantization to automate the selection of arith and precisions for different layers of the
model, so as to map all the layers onto a single or multiple FPGA:s.

- 0 Quenniisation(s) Platf. Frequency Latency Throughput Arithmetic
Implementation Weights Acts orm (MHz) {ms) (FPS) perL. (GOP/s)
Throughput-Opt [33] FXP8 FXPl6 Intel Stratix V 120 262.9 38" 1178
fpzaConvNet [34] FXP16 FXPI6 Xilinx Zyng XCTZ045 125 197" 507 156
2 Angel-Eye [9] BFPS BFPS Xilinx Zyng XCTZ045 150 163* 6.12* 188
2 Going Deeper [25] FXPI6 FXPI6 Xilinx Zyng XCTZ045 150 224* 445 137
> Shen er al. [31] FXP16 FXPI6 Xilinx Virtex US XCVU440 200 49.1 267 821
HARPv2 [23] BIN BIN Intel HARPv2 8.77° 114 3500
GPU [23] FP32 FP32 Nvidia Titan X 121 3590
" Ours Mixed FXP8 Intel Stratix 10 156 0.32 3109 3536 .
Z Ours Mixed FXPS Xilinx Virtex US+ XCVU9P 125 0.40 2491 2833 Gao, et a|_' FPGA |mp|ementat|on
= Zhao et al. [41] FXPI6 FXPl6 Intel Stratix V 200 0.58 1131 1287 . ’
11/2023 = Zhao et al. [42] FXP8 FXPS Intel Stratix V 150 433 231 264 fOf' CNN acceleratlon, FPT'2039
GPU FP32 FP32 Nvidia GTX 1080Ti 2794 515 586

Early Experience in Cloud-Edge Intelligence

- Parallel Learning in Clouds
« Cloud-Edge Collaboration for (Vertical) Distributed Learning

- Cooperative Learning among Peers (Horizontal)
« Dealing with System and Data Heterogeneity (CVPR’2023)

11/2023

loT Device
On-device intelli

Pervasive Al
(anywhere)

2 TEERRE EESS: IREERE
DAP Al

Edge Server dat Cloud DC
In situ decision Deep Model

Cloud-Edge Platform

Autonomous Al
(anytime)

Deep Al
(anything)

Clouds Parallel

Cloud
Edge

Vertical

Horizontal
Gl

38

Challenges in Cooperative Learning

» In cooperative learning, peers are not necessarily homogenous
» Data located in peers most likely be biased or unbalanced

- In 10T devices, the savings of comm T ST SR p—
could be completely dwarfed by the ([— &)
expensive computation cost 'm]H ------ Hﬁiﬁiﬁl ____ [

E.g. an iPhone 12 running fashion-mnist & L0 e L
model as a FedAvg of FL client took 6+] (:) %
hours on training, but only minutes under %L | % - Pt:d

SG/W”:I tO transmlt reqUIred 700 MB data Heterogeneity in computing capabilities clients may

result in slow convergence in FL.

Data Heterogenelty in FL

= |In MNIST training, clients allocated with the same digits shared similar update
patterns, while different client pair's update direction is quite dispersed.

First 10 Pairs ofC lients w ith Sin iarD istrbutions
3 5 7 . 9,

10 clients, each pair be
trained with the same
class-biased digits

Figure 4. Magnitudes of clients’ local gradient update

Observation: local gradient update is contingent on data distribution 40

Biased Predictions of Clients due to Data Heterogeneity

—— classl #576
w,, 041 —— ¢lass? #1461
= 034 —— class3 #1472
o VN — class4 #2370
i) iy, —— classh #0
_g ':lz T s - IV W
oo 011
0.0
20 a0 &0 80 100

Communication rounds

(b) Heterogeneous data.

Prediction statistics on homogeneous vs heterogeneous data.

0304 —— ¢lassl #1000
- ’ —— class? #1000
= nas _ I —— class3 #1000
‘O i D |l —— class4 #1000
E 0.20 1 A NN W — classs #1000
E’ 11 II .'II L
o 0158 ’I : W\u

0 20 40 60 80 100
Communication rounds
(a) Homogeneous data
Observations:

e the output predictions from the locally updated client model on a
balanced validation set are biased towards majority classes.
the model prediction bias consistently exists throughout the whole

11/2023

training phase.

42

Adaptive Channel Sparsity for System Heterogeneity

Proposed Method Flado: Federated Learning with Adaptive Dropout

FJjORD trains models with fixed
channel sparsities for clients
with different capabilities.

Flado adapts channel sparsities
with underlying training
trajectories and capabilities for
each training round.

(a) FJORD prescribes fixed sparsity. (b) Adaptlve sparsity with Flado.

Flado tailors an adaptive sparsity scheme for each client according to their local gradient updates.

Sparsity-driven Trajectory Alignment P R ... N— |
maxp, By 5(p,) = : \!:'% HH 2 E
cossim(J(AOD), J (Vo le(be0OP))),
s.t. ge(re, Pe) 2> 0. ﬁ—za* ______________________________
FLOPs budget constraint 4Meta Forward

11/2023

43

Experimental Results of Adaptive Channel Sparsity

« Flado is highly elastic under different system heterogeneity levels.
 Flado attains consistently higher converged accuracies on CIFAR-10

11/2023

Accuracy (%)

oo
=

h
=

W
=

b2
=

e — e ——————————]
g —

=== Flado
FjORD
HeteroFL

— tFD
UniProb

]
0 0.2 04 06

Compute (#FLOPs)

(a) Accuracy vy, FLOPs,

0.8
.1n1ﬂ

T T | T
&0 R SSmwm— B0+ o
) =
“;ﬁﬂ “;:fiﬂ
2 &
5 40 — Flado = 40 — Flado
5 i FiORD 3 FjORD
-!1: HeteroFL { HeteroFL
20 — cFD H 20 e ¢FD 2
UniProb UniProb
]] I I
1 0 2 4 6 R 0 o00 1,000 1,500 2,000

Communications (#Params) 1010 Communication (#Rounds)

i{b) Accuracy vs. Communicated parameters. {c) Accuracy vs. Communication rounds.

D. Liao, X. Gao, Y. Zhao, C. Xu, Adaptive Channel Sparsity for
Federated Learning under System Heterogeneity, CVPR’2023

45

In Summary: Effective Systems for Al

- Resource Management for Distributed Learning in Clouds
« Cloud-Edge Collaboration for (Vertical) Distributed Learning
- Cooperative/Federated Learning among Peers (Horizontal)

————————————————— | ClOUdS Parallel
: loT Device data pyoe server 9312 Cloud DC I
On-device intelli In situ decision Deep Model [
: Cloud-Edge Platform [Cloud Vertical
T - Edge
Pervasive Al Autonomous Al Deep Al
(anywhere) (anytime) (anything)

IZE%:%\E QEE%:%\E isTe}'E%“ﬁ‘é Ed e... Edge Horizontal
DAP Al

11/2023 47

' Outline

Part I: Challenges in the Design of Effective Systems
Part II: Recent Experience wtih Effective Systems for Al

Part lll: AIGC and Foundation Model’s Impact

11/2023

48

@ How Smart is

I n te I I i e n C e E m e r e n C e e ek hgecekanct st i

OpenAl's latest large language model, GPT-4, is capable 60% of examinees 40% scored
_ H A scored lower than higher than
'@ of humaAn level performance in many professional and Sk s
@ academic exams.
Exam Results @ ChatGPT3.5 @ ChatGPT 4.0

chatGPT/AIGC EEEEIL: 4 18E e . o

to many graduate schools across North America.

- BIZH: EINTIZ vs MEIRIZA (Alagent) T E Q@

Uniform Bar Exam @ @

C BN ERGES, XA, Bl TR s - o
{EE, coding) =@ P

CEEN (MEAEMEEBIOAR AL B e ' g
SuEn) | TUE—RS, TUmEE 0 0 ° ®

Chemistry @
Advanced Placement
— /\’l‘i{%; ' !’hyslcs 2 @ @
Advanced Placement
W”rt‘_';? According to OpenA that GPT-4 @
o produced for these ed by

. ?&f@ e (BiR. &%) : 1398 (induction) e

Engl\sh Language
Ad ed Placement

i&E2% (deduction)

Advanced Placement

"qualified third-party contractors” @

@ GPT 4.0 has made impressive strides over GPT 3.5
programming contests 100

e but continues to struggle in certain subjects.
GPT attempted 10
times each, but able to consistently find

solutions to the complex problems

I@IW@@%

Codeforces Rating
Competitive Programming

VISUAL Source: OpenAl (2023)
CAPITALIST Note: Percentiles are based on the most recently available score distributions for test takers of each exam type.

https ://WWW.ViS u a Ica pita I ist. CO m/h Ow_sm a rt_is_ch atg pt/ COLLABORATORS RESEARCH +WRITING Marcus Lu | DESIGN Rosey Eason @ @N'\sualcap'\kalist @ @visualcap @ visualcapitalist.com

Progress towards AGI

Performance (rows) x
Generality (columns)

Narrow
clearly scoped task or set of tasks

General

wide range of non-physical tasks,
including metacognitive abilities
like learning new skills

Level 0: No Al

Narrow Non-Al
calculator software; compiler

General Non-Al
human-in-the-loop computing,
e.g., Amazon Mechanical Turk

Level 1: Emerging
equal to or somewhat better than
an unskilled human

Emerging Narrow Al

GOFAI*; simple rule-based sys-
tems, e.g., SHRDLU (Winograd,
1971)

Emerging AGI

ChatGPT (OpenAl, 2023), Bard
(Anil et al., 2023), Llama 2
(Touvron et al., 2023)

Level 2: Competent
at least 50th percentile of skilled
adults

Competent Narrow Al

toxicity detectors such as Jig-
saw (Das et al., 2022); Smart
Speakers such as Siri (Apple),
Alexa (Amazon), or Google As-
sistant (Google); VQA systems
such as PaLI (Chen et al., 2023);
Watson (IBM); SOTA LLMs for a
subset of tasks (e.g., short essay
writing, simple coding)

Competent AGI
not yet achieved

o Google DeepMind

2023-11-04

Levels of AGI: Operationalizing Progress on
the Path to AGI

Meredith Ringel Morris!, Jascha Sohl-dickstein’, Noah Fiedel!, Tris Warkentin!, Allan Dafoel,
Aleksandra Faust!, Clement Farabet! and Shane Legg!

! Google DeepMind

adults

Level 3: Expert
at least 90th percentile of skilled

Expert Narrow Al

spelling & grammar checkers
such as Grammarly (Gram-
marly, 2023); generative im-
age models such as Imagen (Sa-
haria et al., 2022) or Dall-E 2
(Ramesh et al., 2022)

Expert AGI
not yet achieved

adults

Level 4: Virtuoso
at least 99th percentile of skilled

Virtuoso Narrow Al

Deep Blue (Campbell et al.,
2002), AlphaGo (Silver et al.,
2016, 2017)

Virtuoso AGI
not yet achieved

Level 5: Superhuman
outperforms 100% of humans

Superhuman Narrow Al
AlphaFold (Jumper et al., 2021;
Varadi et al., 2021), AlphaZero
(Silver et al., 2018), StockFish
(Stockfish, 2023)

Artificial Superintelligence
(ASD)
not yet achieved

Coding Assistants

AI I i n A I] n O eXC e pti O n fo r CO d i n goftware engineers completed a coding task in less than half the time with Al

coding assistant GitHub Copilot.

Time to Complete Coding Tasks: 2022*

« Dev of apps using models, as embodied Al = Source: Reddit.com

e Productivity improvement tool: ,

120 -55%

100

Minutes

a creative text/image/video,

80
60

* Al Agent: ask questions to Al agent for “0

20

personalized services: 0

healthcare/education/entertainment/...

HOW GITHUB COPILOT AFFECTS
THE QUALITY OF CODE?

e Challenges: have Al agent to ask questions!

» How to dev apps with assistance of Al
e Al-assisted coding: GitHub CoPilot, chatGPT - I I

AKV=LON

Future Software Engineering

= Evolution of programming abstraction
e Low-level: binary/assembly code
e “high”-level: c/c++/Java/.../Python/

= NL-based coding: coding on how to do
could be assisted by Al
e Abstraction is further lifted
e Arch/0OS/algs need to be revisited

// Large language models-
// and the end of programming

Presenting ... The software team of the future

= Need to focus on what to do and learn
to ask questions. ot technical Engih,

* Creative thinking remains critical in SE. End of programming might be
exaggerated at present, but alarming

e Task-/agent-oriented might be a future

Conclusion

» Takeaways:

e Effective systems for Al and Large Models, particularly
via cloud-edge collaboration

e Resource Management is a key to serverless cloud Tha n k You !

computing, in support of Al
 Model Compression makes a good tradeoff for edge Al
» System/Data heterogeneity must be dealt with in
collaborative Al among peers

= Al for ALL, including programming/coding. Al for how to do
and human for what to do in high abstraction levels.

Chengzhong Xu (i
University of Macau (/[7]k2%

	Effective Computing for AI
	AI & AIGC Background
	Needs for Computing Power surpass the Moore’s Law
	Outline
	Interplay of Systems and AI
	Examples of Effective Systems for AI
	Parallel Learning in Clouds
	Parallel Learning in Clouds (cont’)
	Cloud-Edge Collaboration for Distributed Learning
	Cooperative Learning among Peers
	Outline
	Early Experience in the Design of Effective Systems
	Parallel Learning in Native Clouds
	Deep Learning on Dedicated Clusters
	Inefficiency due to Low-Level Multiplexing
	IADeep: Middleware Solution for Online Learning Tasks
	IADeep System Design
	Experimental Results: End-to-End Performance
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	Unified Sched for Batch and Online Jobs
	Characterization of Unified Scheduling in Alibaba Cloud
	How to Optimize the Unified Scheduler?
	How to Optimize the Unified Scheduler
	How the optimized unified scheduler works
	Summary of Parallel Learning in Clouds
	Early Experience in Cloud-Edge Intelligence
	Model Splitting/Compression in Cloud-Edge Collaboration
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	Early Experience in Cloud-Edge Intelligence
	Challenges in Cooperative Learning
	Data Heterogeneity in FL
	Biased Predictions of Clients due to Data Heterogeneity
	Adaptive Channel Sparsity for System Heterogeneity
	Experimental Results of Adaptive Channel Sparsity
	In Summary: Effective Systems for AI
	Outline
	Intelligence Emergence
	Progress towards AGI
	All in AI, no exception for coding
	Future Software Engineering
	Conclusion

