
Effective Computing for AI

须成忠, 澳门大学
Chengzhong Xu, University of Macau

November 22, 2023
C. Xu

C. Xu @UM MoCAD 1 111/2023

AI & AIGC Background

AIGC and AI for Science are both
selected in Science’s 10

Breakthrough of Year 2022Data-driven AI

Computing
Platform

Algori
thm

Data

2

(Rise and Fall of AI, :online source)

AI has a long history of being “the next
big thing”…

11/2023

AlphaFold

MidjourneyChatGPT

AI is coming of age …
AI for Science

AI Generated Contents

AI for Entertainment

Foundation
Model

11/2023 3

Needs for Computing Power surpass the Moore’s Law

Computing power and memory bw required for training increase
exponentially in model size. How to design an effective system for AI?

From 2016 to 2022, model size is growing 105 times
larger, while the computing perf is growing only 26X.

GPT 3.5 GPT 4

Number of
parameters

175
billions

1.8 trillions

Type of inputs Text Text Images

tokens 4,096 32,786

#words at
once

~3,000 ~ 24,000

GPUs 1,000
A100

25,000
A100 GPU

Training time 30 days 90days

Cost 5 mil US $ 63 milUS $

Utilization / 32-36%

Part I: Challenges in the Design of Effective Systems

Part II: Recent Experience with Effective Systems for AI

Part III: AIGC and Foundation Model’s Impact

Outline

4

Thanks to the teams in University of Macau, and Shenzhen Institute of
Advanced Technology, including K. Ye, Y. Wang, X. Gao, C. Gao, J. Zhao, S.

Wang, H. Xu, M. Xu, L. Li, S. Luo, X. Li, K. Wang, C. Lu, W. Chen

11/2023

 Systems for AI: using systems (parallel/distributed
/cloud/edge/…) to support efficient model training and
inference in parallel

• cluster and cloud, to be shared for resource utilization
• cloud for model inference, handling millions of queries in real time

Interplay of Systems and AI

System State

Learning
f(param)=S

511/2023

 AI for Systems: using AI tools, in contrast
to optimization, to config/schedule/
manage/diagnose/… systems

• Due to uncertainty, sometimes unpredictable
relationship between resource and perf

Parallel Learning in Clouds

Cloud-Edge Collaboration for Learning
(Vertical)

Cooperative Learning among Peers
(Horizontal)

Examples of Effective Systems for AI

611/2023

Clouds

Cloud
Edge

Edge… Edge

Parallel

Vertical

Horizontal

 Parallel Training
• Input-data partitioning (data parallelism, SPMD):

GPUs run the same code (e.g. SGD
optimization) on different parts of dataset

• Model partitioning (model parallelism, pipelining):
Multiple GPU working simultaneously on
different parts of a model for an input

 Need to revisit performance issues
• Load balancing, data locality, overlapping

computation with comm, comm efficiency, etc

Parallel Learning in Clouds

711/2023
Data Parallelism by Batch Size,
saturates quickly. (Google,2019)

 Online Model Inference
• Handle queries from millions of chatGPT users in real-time

 Both training and inference tend to be run in clouds to
leverage the cloud resource flexibility (e.g. chatGPT in
MS Azure).

 Resource management is a key to success of parallel
learning in clouds. How to schedule AI tasks in clouds
so as to maximize overall throughput and meanwhile
satisfying individual SLO regarding latency?

Parallel Learning in Clouds (cont’)

811/2023

 Edges often located in proximity to users and data, but with limited
resources. It provides capability of sensing and interacting the world.

 Cloud-Edge collaboration aims to provide instant response, without need
for communication of large volume data

Cloud-Edge Collaboration for Distributed Learning

 How to split, compress models, or fine-tuning
models for resource constrained edges ?

911/2023

 It bears resemblance to the
layered social structure, as
well as our body’s layered
intelligence/response.

Deep Model in
Cloud/Brain

Sense Intelligence
Instant Response)(

 Leverage the learning capabilities of peers by distributed optimization or
knowledge fusion over different datasets to train a model collectively
(horizontally)

Cooperative Learning among Peers

 Clouds/clusters are mostly
homogeneous, but the peers may not,
and resource-constrained. Also, the
data is not necessarily balanced.

 How to apply cooperative learning
ideas to domains of variance (non-IID
data) with heterogeneous systems?

Source: LinkedIn

1011/2023

Part I: Challenges in the Design of Effective Systems

Part II: Recent Experience with Effective Systems for AI

Part III: AIGC and Foundation Model’s Impact

Outline

1111/2023

 Parallel Learning in Clouds
(ASPLOS’23, EuroSys’2023,
SC’2023)

 Cloud-Edge Collaboration for
Distributed Learning
(ICLR’2019, NeurIPS’2019)

 CooperativeLearning among
Peers (CVPR’2023,
ICML’2020)

Early Experience in the Design of Effective Systems

Cloud DC
Deep Model

Edge: in situ
decision

DAP AI

IoT Device
Intelligence

datadata

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

深度智能自主智能泛在智能

AI

1211/2023

Effective Systems for Deep, Autonomous, Pervasive AI

 Appl in the form of microservices,
and the cloud in serverless arch so
as to leverage the opportunity of
fine-grained resource management

 Current research focus:
• Scheduling for deep learning (a)
• Scheduling for microservices (b)
• Unified scheduling for both batch &

online applications (c)

Parallel Learning in Native Clouds

Scheduling

AI App

Cloud (a)

Scheduling

Cloud

Apps
in mS

(b) (c)

Unified Sched

App

Cloud
11/2023 13

Deep Learning on Dedicated Clusters

 GPU Schedulers for Deep Learning (DL)
• Packing multiple tasks on the same GPU via time-

sharing or spatial-sharing multiplexing to improve the
GPU utilization.

 In space sharing (multi-tenant), suffer from
underutilization and long queuing delay

• Up to 60% GPUs are <10% utilization (MS Azure, 2019)
• Long queuing delay, sometimes intolerable !

Interference of co-located tasks

 In time sharing, simple multiplexing would cause
severe interference among tasks, leading to
significant slowdown.

1411/2023

Scheduling

AI App

Cloud (a)

Inefficiency due to Low-Level Multiplexing

Antman outperforms dedicated config by 15%

 Kernel-level solutions to fine tuning
launching order of co-located tasks

• Antman[1] (Alibaba) with time-sharing
• OS-level solutions require significant

custom modification for various DL
• Also, tasks cannot perfectly pad each

other’ idle GPU cycles statically

 Hardware-level solutions
• MPS[2] and MIG[3] of NVIDIA
• Both help reduce interference by explicitly

isolating SM and mem resources among tasks.
• But neither can deal with critical PCIe BW, which

prone to be bottleneck in DL

[1] Xiao W, et al. {AntMan}: Dynamic Scaling on {GPU} Clusters for Deep Learning[C], OSDI 2020
[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu

of A100

11/2023
15

https://docs.nvidia.com/deploy/mps/index.html

IADeep: Middleware Solution for Online Learning Tasks

 Opportunities

 Challenges
• Task config heavily influences interference, as well as task training progress
• Vast search space of task configurations
• Closely couple between adjusting task config and designing task placement policies
• Config and placement decisions are made in realtime for newly arrived tasks

• Choose different types of learning tasks to
multiplex on a GPU can mitigate interference.

• Co-locate suitable number of tasks to balance the
waiting time and training time

• System wide: GPU mem, PCIe BW

1611/2023

Slowndown of VGG16, running together with diff apps

IADeep System Design

① Online Scheduler: Find the optimal device to place the new arrival task
② Tuner: Tune configurations (batch sizes) to mitigate the interference.
③ Task Agent: Update the configurations for each co-located task.

𝑥𝑥𝑑𝑑𝑘𝑘 is a binary variable indicating
whether task k is placed on device d

Minimize the overall performance degradation
(PD) of all co-located tasks on the same device.

W. Chen, Z. Mo, H. Xu, K. Ye, and C. Xu, IADeep: Interference-aware Multiplexing for Deep Learning, SC’2023 1711/2023

Experimental Results: End-to-End Performance

 Full impl on Kubernetes, and evaluation using Microsoft Phillly Traces
 Completion Time (CT), makespan and GPU utilization

• IADeep reduces the overall CT and makespan by up to 49% and 67%
respectively, compared to Antman[1], MPS[2] and Kernel Est[3].

• IADeep can obtain up to 29% and 31% higher SM and memory utilization.

[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.
[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] Xu, Xin, et al. "Characterization and Prediction of Performance Interference on Mediated Passthrough GPUs for Interference-aware Scheduler." In Proceedings of HotCloud. 2019. 1811/2023

https://docs.nvidia.com/deploy/mps/index.html

19

 Monolithic app is divided to multiple MSs

Microservices (MS) in Clouds

 Model inference in the form of microservices: ease of management,
maintenance, and update

(Stanford, eurosys’2020)11/2023

Scheduling

Cloud

Apps
in MS

(b)

20

 The scale of MS is large in Alibaba.
• 20000+ MS
• 10 billion calls between MSs within 7 days
• Traces contain diverse metrics

 100+G traces has been released.
• https://github.com/alibaba/clusterdata

Traces Analysis: Overview of Alibaba traces

Complicated MSs dependencies graph
11/2023

21

 Key concept: Dependence Graph (DG)
 Scale of DG, follows a heavy-tail distribution

• A DG can involve 1000+ MS, and depth of DG can be
100+.

 A DG has a tree-like structure
• MS DG has more scatter components than gather

components.
 A small percentage of MS are hot-spots in DG.

• 5% of MSs are shared among more than 90% of applications

 MSs form highly dynamic dependencies in runtime.
• DGs of an online service can be categorized into multiple clusters
• Complicated DG makes it a challenge to resource management

for MS

Characteristic of Microservices

Out-degree 10% MS > 5
In-degree 90 % MS = 1

S. Luo, et al., Characterizing Microservice Dependency and
Performance: Alibaba Trace Analysis. SoCC’2021 (best paper award)11/2023

22

 Problem Statement
• Given a set of apps in mServices, each with DG and info about their

sojourn time, resource demand and latency, and overall SLA requirements
• Schedule/deploy mService based on allocated 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿𝑂𝑂𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑂𝑂𝑇𝑇𝑇𝑇𝐿𝐿𝑂𝑂

 Improve resource efficiency, and satisfy SLA requirements

 Optimization problem:

 Optimal latency target in closed-form:

Scheduling for Shared Microservices

s.t.

𝑂𝑂𝑖𝑖 : Slope of MS 𝑂𝑂 in latency model. 𝛾𝛾𝑖𝑖 : Workload of (shared) MS 𝑂𝑂.

Latency Target = ∑ ()

T00

T03

T10

T13

T20

T22

T’02

 [Theorem] The resource usage yielded by the optimization problem is no larger
than that due to FCFS sharing or no-sharing approaches (ASPLOS’2023)

11/2023

23

 System arch of Erms (Efficient resource management system)

Erms for Shared MS: Design of System

S. Luo, et al., Erms: Efficient Resource Management for Shared Microservices with SLA
Guarantees. ASPLOS’2023 (ACM Trans. on Computer Sysgtems, 2023)11/2023

24

 Allocated resource: Erms saves about 60% of containers.

RM for Shared MS: Evaluation on Cluster

 E-t-E response time: reduce reduces SLA violation probability by 5x and improves
performance by up to 10%

 Replay Alibaba workloads for trace-driven simulation, using 1000 services and
20k+ mservices in 12-h period, on a cluster of 14 nodes, each with 64 CPU cores

GrandSlam, Eurosys’2019
Rhythm, Eurosys’2020
Firm, OSDI’2020
Erms: our approach

11/2023

25

 End-to-End performance

RM for Shared MS: Trace-driven Simulation

 Scalability of Erms
• For largest graph with 1000+ microservices, the computational overhead is 300ms.
• Overhead of resource provisioning for 1000 containers across 5000 hosts is 200ms.

Erms reduce # allocated containers by 1.6x. Latency Target Comp save resource usage by 1.1x.
Priority Scheduling reduce resource usage by 50%.

Software available online, functional, and results are reproducable

S. Luo, et al., Erms: Efficient Resource Management for Shared Microservices with
SLA Guarantees. ASPLOS’2023

11/2023

(c)

Unified Sched

App

Cloud

Unified Sched for Batch and Online Jobs
1st gen: hybrid scheduling multi-tenant clouds (--2016)

• Reserve resources for batch and online, and schedule separately

• Sigma of Alibaba for long-running latency-sensitive jobs; Fuxi for
batch jobs with many small task with complex dependeces

• ~10-15% utilization, unacceptable!

2nd gen: unified scheduling (2016-)
• Unified scheduling for all applications, in the form of unified

requests, and manage all resources in a consistent way

• Google Borg (Eurosys 2020), Facebook Twine (OSDI
2020), Alibaba Aliware (2021)

• Overall utilization increases to ~30% on average
Alibaba unified scheduling framework

2611/2023

 Over 1 million tasks (pods) deployed in one Alibaba datacenter
(2 clusters, each with 6000 physical hosts) for a 8-day period

 Cluster resource utilization
• Filling valleys and shaving peaks
• High max (>90%) but low ave (~40%)

 Scheduling efficiency
• Heavy-tailed distribution in scheduling delay
• Large number of pods experienced long delay

(10% of BE pods had 100 seconds delay)

Characterization of Unified Scheduling in Alibaba Cloud

a. Avg Pod CPU util b. Host resource util

(100,0.9)
C. Lu, et al, Understanding and optimizing workloads for
unified resource management in large cloud platforms,
EuroSys’2023

11/2023 27

How to Optimize the Unified Scheduler?

 Perf Metrics: key to scheduling
• CT works well for batch tasks. However, RT

NOT a good perf indicator for LS services
about resource usage

• PSI (Pressure Install Info.) to measure the
ratio of waiting time of LS services (OS-level)
to sampling interval (appl-level)

 PSI shows strong correlation with host CPU
utilization and pod CPU utilization

(a) Latency-sensitive (LS) services (b) Best-effort (BE) applications

Distribution of correlation between RT and metrics

(a) Host CPU utilization (b) Pod CPU utilization

CoV: std deviation/average， pod resource usage vs perf

11/2023 28

 Optimization framework

How to Optimize the Unified Scheduler

Resource Usage
Predictor

Interference Predictor,
based on PSI

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂 = ∑𝑝𝑝,𝑞𝑞∈ℎ𝑜𝑜𝑜𝑜𝑜𝑜 max
𝑝𝑝∈𝐴𝐴𝑝𝑝,𝑞𝑞∈𝐵𝐵𝑞𝑞

max
𝑜𝑜

max 𝑅𝑅𝑈𝑈𝑝𝑝 𝑜𝑜 +𝑅𝑅𝑈𝑈𝑞𝑞 𝑜𝑜

max 𝑅𝑅𝑈𝑈𝑝𝑝 +max 𝑅𝑅𝑈𝑈𝑞𝑞
∗ (max 𝑅𝑅𝑈𝑈𝑝𝑝 + max 𝑅𝑅𝑈𝑈𝑞𝑞)

 Interference Predictor
• For LS applications:

• For BE applications:

 Resource Usage Predictor
• Predict the resource usage of the host as

PSI𝑝𝑝𝑜𝑜 = 𝑓𝑓𝑆𝑆𝑖𝑖
𝑜𝑜 C𝑝𝑝𝑜𝑜 , M𝑝𝑝

𝑜𝑜 , Cℎ𝑜𝑜 , Mℎ
𝑜𝑜 , Q𝑜𝑜

𝐶𝐶𝑇𝑇𝑝𝑝 = 𝑓𝑓𝐵𝐵𝑗𝑗
𝑏𝑏 C𝑝𝑝𝑚𝑚, M𝑝𝑝

𝑚𝑚, Cℎ𝑚𝑚, Mℎ
𝑚𝑚

Optimization System Overview

See EuroSys’2023 for Details

2911/2023

 Improved resource utilization by 15% and the violation rate is very low

How the optimized unified scheduler works

(a) Resource utilization (b) Violation of resource usage

 LS pods have little PSI violation, and few BE
pods violate the original completion time

 High efficient: average scheduling latency
is 96ms for each pod (python)

See EuroSys’2023 for details

30

 Trace-driven simu: Alibaba load and Optum used pods data of 7 days to build model

11/2023

 Early Experience with Scheduling:
• Scheduling for deep learning (SC’2023) (a)
• Scheduling for microservices (ASPOLOS’2023) (b)
• Unified scheduling for both batch and online appl (EuroSys’2023) (c)

Summary of Parallel Learning in Clouds

Scheduling

App

Cloud
(a)

Scheduling

Cloud

Apps
in mS

(b) (c)

Unified Sched

App

Cloud

3111/2023

 Parallel Learning in Clouds
 Cloud-Edge Collaboration for (Vertical) Distributed Learning

• Model Compression (ICLR’2019, NeurIPS’2019)
 Cooperative Learning among Peers (Horizontal)

Early Experience in Cloud-Edge Intelligence

Cloud DCEdge Server

DAP AI

IoT Device datadata

Deep ModelIn situ decision

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

On-device intelli

深度智能自主智能泛在智能

AI

3211/2023

Clouds

Cloud
Edge

Edge… Edge

Parallel

Vertical

Horizontal

33

 Microservice arch meets the needs of model splitting

Model Splitting/Compression in Cloud-Edge Collaboration

Deep Model in Brain

Sensing Intelligence
Instant Response

Sensing/Interactive
Intelligence in the front

Deep model in backend

 Model compression is a must for constrained resources
11/2023

Gao, et al., Dynamic Channel Pruning, ICLR’2019

Key Observation/Motivation：
Importance of features produced by deep
models is highly input-dependent

New Method: Feature Boosting and Suppression (FBS) to
predictively amplify salient channels and skip unimportant ones at run-time

Images to excite neurons of ResNet-18
model and outputs high/low weights

34

Efficient Model Inference for Constrained Edge

11/2023

Key Observations
• Channel pruning introduces various degrees of sparsity to different layers
• But, traditional shift quantization位移量化becomes a poor choice for certain

layers in sparse models, as most near-zero quantization levels are under-utilized.

Efficient Model Inference: Shift Quantization for Sparcity

11/2023 35

Gao, et al., Focused Quantization for Sparse
CNNs, NeurIPS’2019

Focused Quantization: exploit the statistical properties of weights in
pruned models to quantize them efficiently and effectively

Focused Quantization for Efficient Inference

3611/2023

 Key Observations:
• Shift op facilitates HW impl. HW design tends to use flattened

streaming arch (vs systolic arrays) for inference acceleration.
• Flatten streaming accelerators isolate layer-wise comp, offering

chance to use different arith and precisions for each layer’s
computation

 Proposed Tomato HW/SW Co-Design:
• HW: Multi-Precision Multi-Arith accelerator on Multi-FPGAs
• SW: Hybrid quantization to automate the selection of arith and precisions for different layers of the

model, so as to map all the layers onto a single or multiple FPGAs.

HW/SW Co-Design for Model Inference

Gao, et al., FPGA Implementation
for CNN acceleration, FPT’201911/2023 37

 Parallel Learning in Clouds
 Cloud-Edge Collaboration for (Vertical) Distributed Learning
 Cooperative Learning among Peers (Horizontal)

• Dealing with System and Data Heterogeneity (CVPR’2023)

Early Experience in Cloud-Edge Intelligence

Cloud DCEdge Server

DAP AI

IoT Device datadata

Deep ModelIn situ decision

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

On-device intelli

深度智能自主智能泛在智能

AI

3811/2023

Clouds

Cloud
Edge

Edge… Edge

Parallel

Vertical

Horizontal

 In cooperative learning, peers are not necessarily homogenous
 Data located in peers most likely be biased or unbalanced

Challenges in Cooperative Learning

 In IoT devices, the savings of comm
could be completely dwarfed by the
expensive computation cost

• E.g. an iPhone 12 running fashion-mnist
model as a FedAvg of FL client took 6+
hours on training, but only minutes under
5G/WIFI to transmit required 700 MB data Heterogeneity in computing capabilities clients may

result in slow convergence in FL.

3911/2023

 In MNIST training, clients allocated with the same digits shared similar update
patterns, while different client pair's update direction is quite dispersed.

40Observation: local gradient update is contingent on data distribution

Data Heterogeneity in FL

Figure 4. Magnitudes of clients’ local gradient update

11/2023

10 clients, each pair be
trained with the same
class-biased digits

Observations:
• the output predictions from the locally updated client model on a

balanced validation set are biased towards majority classes.
• the model prediction bias consistently exists throughout the whole

training phase.

Biased Predictions of Clients due to Data Heterogeneity

42

Prediction statistics on homogeneous vs heterogeneous data.

11/2023

Adaptive Channel Sparsity for System Heterogeneity

43

Proposed Method Flado: Federated Learning with Adaptive Dropout

Flado tailors an adaptive sparsity scheme for each client according to their local gradient updates.

FLOPs budget constraint

Sparsity-driven Trajectory Alignment

11/2023

FjORD trains models with fixed
channel sparsities for clients
with different capabilities.

Flado adapts channel sparsities
with underlying training
trajectories and capabilities for
each training round.

Experimental Results of Adaptive Channel Sparsity

45

• Flado is highly elastic under different system heterogeneity levels.
• Flado attains consistently higher converged accuracies on CIFAR-10

D. Liao, X. Gao, Y. Zhao, C. Xu, Adaptive Channel Sparsity for
Federated Learning under System Heterogeneity, CVPR’2023

11/2023

 Resource Management for Distributed Learning in Clouds
 Cloud-Edge Collaboration for (Vertical) Distributed Learning
 Cooperative/Federated Learning among Peers (Horizontal)

In Summary: Effective Systems for AI

4711/2023

Clouds

Cloud
Edge

Edge… Edge

Parallel

Vertical

Horizontal

Cloud DCEdge Server

DAP AI

IoT Device datadata

Deep ModelIn situ decision

Deep AI
（anything)

Autonomous AI
(anytime)

Pervasive AI
(anywhere)

Cloud-Edge Platform

On-device intelli

深度智能自主智能泛在智能

AI

Part I: Challenges in the Design of Effective Systems

Part II: Recent Experience wtih Effective Systems for AI

Part III: AIGC and Foundation Model’s Impact

Outline

4811/2023

chatGPT/AIGC 智能涌现：4 个能力

• 记忆力： 集体记忆 vs 个性化记忆力（AI agent)

• 创造力：生成语言，文本，图像等。可以吟诗

作画，coding）

• 理解力 （对某个事物或事情的认识、认知、抽

象的能力）：可以举一反三，可以意译文字语

言，个性化翻译

• 推理能力（常识、逻辑）：归纳（induction）

演绎（deduction）

Intelligence Emergence

https://www.visualcapitalist.com/how-smart-is-chatgpt/

Progress towards AGI

Source: Reddit.com Dev of apps using models, as embodied AI
• Productivity improvement tool:

 creative text/image/video,

• AI Agent: ask questions to AI agent for
personalized services:
healthcare/education/entertainment/…

• Challenges: have AI agent to ask questions!

 How to dev apps with assistance of AI
• AI-assisted coding: GitHub CoPilot, chatGPT

All in AI, no exception for coding

Future Software Engineering

 Evolution of programming abstraction
• Low-level: binary/assembly code
• “high”-level: c/c++/Java/…/Python/

 NL-based coding: coding on how to do
could be assisted by AI
• Abstraction is further lifted
• Arch/OS/algs need to be revisited

 Need to focus on what to do and learn
to ask questions.
• Creative thinking remains critical in SE.
• Task-/agent-oriented might be a future

End of programming might be
exaggerated at present, but alarming

 Takeaways:
• Effective systems for AI and Large Models, particularly

via cloud-edge collaboration
• Resource Management is a key to serverless cloud

computing, in support of AI
• Model Compression makes a good tradeoff for edge AI
• System/Data heterogeneity must be dealt with in

collaborative AI among peers

 AI for ALL, including programming/coding. AI for how to do
and human for what to do in high abstraction levels.

Conclusion

Thank You！

Chengzhong Xu （须成忠）

University of Macau (澳门大学）

C. Xu

5311/2023

	Effective Computing for AI
	AI & AIGC Background
	Needs for Computing Power surpass the Moore’s Law
	Outline
	Interplay of Systems and AI
	Examples of Effective Systems for AI
	Parallel Learning in Clouds
	Parallel Learning in Clouds (cont’)
	Cloud-Edge Collaboration for Distributed Learning
	Cooperative Learning among Peers
	Outline
	Early Experience in the Design of Effective Systems
	Parallel Learning in Native Clouds
	Deep Learning on Dedicated Clusters
	Inefficiency due to Low-Level Multiplexing
	IADeep: Middleware Solution for Online Learning Tasks
	IADeep System Design
	Experimental Results: End-to-End Performance
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	Unified Sched for Batch and Online Jobs
	Characterization of Unified Scheduling in Alibaba Cloud
	How to Optimize the Unified Scheduler?
	How to Optimize the Unified Scheduler
	How the optimized unified scheduler works
	Summary of Parallel Learning in Clouds
	Early Experience in Cloud-Edge Intelligence
	Model Splitting/Compression in Cloud-Edge Collaboration
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	Early Experience in Cloud-Edge Intelligence
	Challenges in Cooperative Learning
	Data Heterogeneity in FL
	Biased Predictions of Clients due to Data Heterogeneity
	Adaptive Channel Sparsity for System Heterogeneity
	Experimental Results of Adaptive Channel Sparsity
	In Summary: Effective Systems for AI
	Outline
	Intelligence Emergence
	Progress towards AGI
	All in AI, no exception for coding
	Future Software Engineering
	Conclusion

