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A B S T R A C T

Linear discriminant analysis (LDA) is a popular technique for supervised classification problems, and it works
quite well when the number of classes is small, but the accuracy deteriorates when the number of classes
becomes large. In this paper, we propose a domain decomposed method and an iteratively deflated method
to improve the classification accuracy. In the domain decomposed LDA, we decompose the given dataset into
subsets and apply LDA separately to each subset for the training part of the algorithm. In the testing step,
we project the samples into multiple subspaces, contrary to the full space as in the traditional LDA. From
the multiple low-dimensional projections we determine the class or classes that the sample belongs to. An
optimality theory is developed to show why the new method offers better classification under a technical
assumption. In the iteratively deflated method, the traditional LDA method serves as the initial iteration from
which we select separable classes to be deflated from the training set, and the remaining samples in the dataset
are used for the next iteration. As the process goes on we generate a sequence of projection matrices that are
used to determine which class or classes a sample belongs to using certain classification criteria. With the
proper choices of the quantile radii in the separable criteria for the training and testing phases, we show that
the proposed method is much more accurate than the traditional LDA. To test and compare the two proposed
methods, we consider the popular datasets CIFAR-10/100 and a gene expression dataset of cancer patients,
and show that the new approaches outperform the traditional LDA by a large margin.
1. Introduction

In machine learning, dimensionality reduction plays an important
role, and linear discriminant analysis (LDA) [1] is one of the popularly
used techniques to extract the most discriminative features of a dataset.
LDA finds the optimal discriminative direction by maximizing the
between-class variance while simultaneously minimizing the within-
class variance in the projected space. In the reduced low-dimensional
feature space, the dataset can be classified without high computational
costs.

LDA was originally introduced in taxonomy for the purpose of
assigning an individual specimen to a proper group [2,3]. More recently
the method and its variants are applied to many problems in data
sciences. For example, Huang et al. [4] applied LDA to the classification
of cancer patients and compared the classification performance of LDA
and its modified variants by applying these methods to six public
cancer gene expression datasets. Ricciardi et al. [5] reported the use of
data mining techniques to analyze a population of 10,265 people who
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were evaluated and 22 features were extracted, and linear discriminant
analysis was used to classify both normal and pathological patients. The
classification accuracies were 84.5 and 86.0 percent, respectively. Le
et al. [6] defined the discriminant capacity for each connected compo-
nent of a graph, and the variables of the most discriminant components
are kept. The adapted LDA and the variable selection procedure were
initially evaluated with synthetic data, and then applied to real data
from PET images of the human brain for the classification of patients
with Alzheimer’s disease. Sengur et al. [7] investigated the usage
of LDA and adaptive neuro-fuzzy inference system to determine the
normal and abnormal heart valves from the Doppler heart sounds. The
heart valve disorder detection system was composed of three stages,
from which a comparative study was realized with a data set containing
215 samples. In the study [8], the classification of invasive ductal
carcinoma breast cancer is performed by using the ridge regression
method and LDA.

Generally speaking, the traditional LDA performs well when the
problem has a small number of classes. The performance deteriorates
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the number of classes is large. In the present paper we introduce
two techniques to solve classification problems with a relatively large
number of classes. In the new algorithms, the traditional LDA is used for
subsets of the problem with a smaller number of classes, and the global
classification solution is obtained by combining the subspace results
with proper scaling. The first technique is referred to as domain decom-
position which is a family of methods designed originally for solving
partial differential equations [9–12] and recently be used for learning
problems [13–16]. In each subdomain, we select a dimension of the
reduced space and then apply the traditional LDA in this subspace.
The testing is carried out for all subdomains and the classification
is determined by a distance vector computed in all subdomains. The
second technique is referred to as iterative deflation which is moti-
vated by linear algebra algorithms for eigenvalue calculations [17].
We iteratively remove the well-separated classes during the training
phase of the algorithm and several projection matrices are generated
to determine if a sample belongs to a certain class or classes.

The rest of the paper is organized as follows. The related works are
reviewed in Section 2. In Section 3, we discuss the traditional LDA,
then we introduce a domain decomposed linear discriminant analysis
in Section 4 and an iteratively deflated linear discriminant analysis
in Section 5. To demonstrate the classification accuracy of these two
methods, in Section 6, we consider three applications including the
CIFAR-10/100 datasets and a gene expression dataset. Finally, we make
some concluding remarks in Section 7.

2. Related work

LDA has been extensively used in industry and economics. The
applications include, for example, bankruptcy prediction, face recog-
nition, marketing, and earth science. In bankruptcy prediction, Edward
et al. [18] introduced an LDA based statistical method to systematically
explain which companies entered bankruptcy. In face recognition, each
face is represented by some ordered pixel values, LDA is then used to
reduce the number of features to a more manageable number before
classification. In marketing, LDA was often used to determine the
factors that distinguish different types of customers and/or products on
the basis of surveys or other collected data. Panayides et al. [19] exam-
ined the marketing practices and investigated the marketing strategy-
business performance relationship across logistics companies in the
Asia-Pacific region. Further discriminant analysis of the significant pre-
dictor variables suggested that two variables, market segmentation and
positioning, and cross-functional customer focus are useful in differen-
tiating between high and low performers. Sunny et al. [20] used linear
models of classification including logistic regression classification, LDA,
partial least-square discriminant analysis, and penalized discriminant
analysis, and nearest Shrunken discriminant analysis were considered
in the study to predict the stock prices of top six banks of Bangladesh.
In earth science, Tahmasebi et al. [21] employed LDA and 24 electron
microprobe element analysis related to the rock samples were used as
the input data to classify different rocks and separate the variety of
alterations. In AI, Gorban et al. [22] presented the probabilistic basis
for fast non-destructive correction of AI systems. It showed that simple
linear Fisher discriminant analysis can separate the situations with er-
rors from correctly solved tasks even for very large samples. In biology,
Mngadi et al. [23] sought to determine certain characteristical values in
discriminating and mapping commercial forest species. Based on LDA,
the multi-spectral imagery showed an overall classification accuracy of
84%, with bands such as the red-edge, narrow near infrared, and short
wave infrared particularly influential in discriminating individual forest
species stands.

There are several advanced studies to improve different aspects
of LDA. Khoder et al. [24] extended and improved a scheme for
linear feature extraction that can be used in supervised multi-class
classification problems. The paper introduced an iterative alternating
minimization scheme to estimate and update the linear transformation
2
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and the orthogonal matrix via the steepest descent gradient technique.
Kim et al. [25] provided a novel method to define sample similarity
in deep metric learning using LDA to analyze the characteristics of
the embedding space. The technique is applied to an existing deep
metric learning scheme and proved to provide better similarity than
previous works. Sifaou et al. [26] proposed an improved LDA classifier
based on the assumption that the covariance matrix follows a spiked
covariance model. The main principle of the proposed technique was
the design of a parametrized inverse covariance matrix estimator, the
parameters of which are shown to be easily optimized. Ortega-Martinez
et al. [27] used single stimulus Kalman filter regression to estimate
the hemodynamic response function produced by subjects performing
different tasks. It trained an LDA classifier with a subset of the data
and performed cross-validation to estimate the mean classification
accuracy. Huang et al. [28] proposed multi-subspace ratio-trace LDA
(ms-LDA) and trace-ratio LDA (ms-LDA-tr) methods. It showed that they
outperformed their ratio-trace and single-subspace counterparts. The
methods can be used to solve some rather challenging classification
problems with a large number of classes. The main difference with
the proposed algorithm is that [28] introduced the centroid-based
multi-subspace scatter matrices and ddLDA introduced the within-class
scatter matrix and the between-class scatter matrix in the subdomains.
Both methods improve the traditional LDA.

3. A brief review of linear discriminant analysis

LDA [29] is an algorithm that projects a set of vectors linearly to
a lower-dimensional space such that vectors with different features are
best separated into different classes. We first introduce some notations.
Let 𝑋 be the dataset of vectors in R𝑚 to be classified into 𝑐 classes and
𝑛𝑗 is the number of samples in the 𝑗th class. 𝑥𝑖𝑗 ∈ R𝑚 denotes the 𝑖th
sample in the 𝑗th class. 𝑛𝑐 = ∑𝑐

𝑗=1 𝑛𝑗 is the total number of samples in
the dataset. 𝑋𝑗 = [𝑥1𝑗 ,… , 𝑥𝑛𝑗 𝑗 ] ∈ R𝑚×𝑛𝑗 is the matrix consisting of all
samples in the 𝑗th class. In other words, 𝑋 = [𝑋1, 𝑋2,… , 𝑋𝑐 ] ∈ R𝑚×𝑛𝑐

is a matrix representation of the dataset.
Let 𝜇 ∈ R𝑚 be the mean of the dataset,

𝜇 = 1
𝑛𝑐

𝑐
∑

𝑗=1

𝑛𝑗
∑

𝑖=1
𝑥𝑖𝑗

and 𝜇𝑗 ∈ R𝑚 the mean of the 𝑗th class,

𝜇𝑗 = 1
𝑛𝑗

𝑛𝑗
∑

𝑖=1
𝑥𝑖𝑗 .

Then we define the within-class scatter matrix 𝑆𝑊 and the between-
class scatter matrix 𝑆𝐵 as follows

𝑊 =
𝑐
∑

𝑗=1

𝑛𝑗
∑

𝑖=1
(𝑥𝑖𝑗 − 𝜇𝑗 )(𝑥𝑖𝑗 − 𝜇𝑗 )𝑇 , (1)

𝑆𝐵 =
𝑐
∑

𝑗=1
𝑛𝑗 (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 . (2)

LDA computes an orthogonal matrix 𝑉 ∈ R𝑚×𝑑 , where 𝑑 is the
desired dimension of the reduced space often chosen to be much
smaller than 𝑚, to maximize the following ratio:

max
𝑉

𝐽 (𝑉 ) =
𝑇 𝑟(𝑉 𝑇𝑆𝐵𝑉 )
𝑇 𝑟(𝑉 𝑇𝑆𝑊 𝑉 )

, (3)

where 𝑇 𝑟 is the trace of a matrix. We denote the optimizer as 𝑉 ∗ and
the optimal value of the objective function as

𝐽 ∗ = 𝐽 (𝑉 ∗). (4)

The optimizer consists of the set of eigenvectors 𝑣𝑖 ∈ R𝑚 of the
eneralized eigenvalue problem
𝐵𝑣𝑖 = 𝜆𝑖𝑆𝑊 𝑣𝑖, (5)
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associated with the largest 𝑑 eigenvalues. More precisely, we have

𝑉 ∗ = [𝑣1, 𝑣2,… , 𝑣𝑑 ] ∈ R𝑚×𝑑 .

Let 𝑁 = [𝑛1, 𝑛2,… , 𝑛𝑐 ] ∈ Z𝑐 be a vector of integers denoting the sizes
of all classes. We describe the LDA algorithm in Algorithm 1.
Algorithm 1 The LDA algorithm.

Input 𝑋 ∈ R𝑚×𝑛𝑐 , 𝑁 ∈ Z𝑐 , 𝑐, 𝑑
1. Compute the means 𝜇 and 𝜇𝑗 , 𝑗 = 1,… , 𝑐
2. Form the within-class matrix 𝑆𝑊
3. Form the between-class matrix 𝑆𝐵

4. Solve the generalized eigenvalue problem for 𝑑 largest
eigenvalues and the corresponding eigenvectors 𝑣1, ..., 𝑣𝑑

5. Project the samples to the lower dimensional space R𝑑

Output 𝑉 = 𝐿𝐷𝐴(𝑋,𝑁, 𝑐, 𝑑) ∈ R𝑚×𝑑 , 𝑌 = 𝑉 𝑇𝑋 ∈ R𝑑×𝑛𝑐

4. Domain decomposed linear discriminant analysis and an opti-
mality theory

As mentioned earlier in the paper, LDA works well when the number
of classes is small. When the number of classes is large, a natural
idea is to divide the training set into smaller subsets and conduct the
training for the subsets separately. The question is how to combine
the projection operators and use them to obtain more accurate testing
results. In this section, we first introduce a domain decomposed linear
discriminant analysis (ddLDA). Recall that 𝑋 is the original dataset with
𝑐 classes. In ddLDA, we define 𝑝 as the total number of partitions and
𝑘 = 1, 2,… , 𝑝 as the index for the 𝑘th subdomain. For each 𝑘, define
𝑠𝑘 as the subclasses in domain 𝑘. To decompose the dataset into 𝑝
ubdomains (𝑝 ≤ 𝑐), we denote an index set by

= {1, 2,… , 𝑐} = {𝑠1,… , 𝑠𝑝}

where each 𝑠𝑘 is a subset of 𝑠 such that ∪𝑝
𝑘=1𝑠𝑘 = 𝑠, and |𝑠𝑘| denotes

the number of classes of the 𝑘th subdomain. For example, if 𝑐 = 10
and 𝑝 = 3, then 𝑠 = {1, 2,… , 10} and one possible decomposition is
𝑠1 = {1, 2, 3}, 𝑠2 = {4, 5, 6}, 𝑠3 = {7, 8, 9, 10}. Note that there are multiple
ways to decompose the same dataset. A subdomain is a union of the
classes defined by 𝑠𝑘 and

𝑘 = {𝑋𝑖
| 𝑖 ∈ 𝑠𝑘} ∈ R𝑚×

∑

𝑖∈𝑠𝑘
𝑛𝑖 .

The subdomains do not overlap. Denote 𝑑𝑘 as the desired dimension
f the 𝑘th reduced space that can be chosen differently for different
ubdomains, in practice, one often uses some small values, such as
𝑘 = 2 or 3.

In the training part of ddLDA, we apply the traditional LDA al-
orithm (Algorithm 1) to produce a projection matrix 𝑘 in each

subdomain defined by 𝑠𝑘 with selected 𝑑𝑘. Since the subdomains are
independent of each other, this part of the computation can be carried
out in parallel. Note that compared with the traditional LDA, ddLDA
offers a tremendously important option of additional parallelism which
is needed for large problems running on large scale parallel computers.
For each reduced space, we define

𝑘 = 𝑇
𝑘 𝑘 ∈ R𝑑𝑘×

∑

𝑖∈𝑠𝑘
𝑛𝑖

as the projection of the training samples in the subdomain defined by
𝑠𝑘. The training part of ddLDA is summarized in Algorithm 2.

Algorithm 2 The ddLDA training algorithm.

Input: 𝑋 ∈ R𝑚×𝑛𝑐 , 𝑁 ∈ Z𝑐 , 𝑐 , and a decomposition 𝑠 = {𝑠1, ..., 𝑠𝑝}
1. Decompose 𝑋 into 1,… ,𝑝
2. Select 𝑑𝑘 for each 𝑘
3. Apply 𝐿𝐷𝐴(𝑘, 𝑠𝑘, |𝑠𝑘|, 𝑑𝑘) to produce 𝑘

Output: 𝑘 and 𝑘 = 𝑇
𝑘 𝑘, 𝑘 = 1,… , 𝑝
3

In the testing part of ddLDA, we denote 𝑇 = {𝑧1,… , 𝑧𝐿} as a test
dataset, and for 𝑧𝑖 ∈ 𝑇 , define

𝐶(𝑧𝑖) = {the class(es) it belongs to}.

For each 𝑘, we define

𝑧𝑖𝑘 = 𝑇
𝑘 𝑧

𝑖, where 𝑖 = 1,… , 𝐿 and 𝑘 = 1,… 𝑝.

Recall 𝜇𝑗 (𝑗 = 1,… 𝑐) is the mean of 𝑋𝑗 . For each 𝑧𝑖𝑘, we define a scaled
distance to the center of all 𝑐 classes

𝜂𝑖𝑘,𝑗 =
1

√

𝑑𝑘
‖𝑧𝑖𝑘 − 𝜇𝑗

‖2, 𝑗 ∈ 𝑠𝑘 (6)

and for each 𝑖, we define

𝜂𝑖 = {𝜂𝑖𝑘,𝑗 , 𝑘 = 1,… , 𝑝 and 𝑗 ∈ 𝑠𝑘} (7)

as the distance vector of 𝑧𝑖. Note that the scaling factor 1∕
√

𝑑𝑘 in
(6) is important; without the factor, the distances between different
subdomains calculated with different 𝑑𝑘 would not be comparable. To
decide the class that the test sample belongs to, we solve the following
minimization problem

𝑎𝑟𝑔min
𝑘,𝑗

𝜂𝑖𝑘,𝑗 . (8)

If 𝜂𝑖𝑘∗ ,𝑗∗ is the minimal value, then 𝑗∗ is the class that 𝑧𝑖 belongs to,
then we put 𝑗∗ in 𝐶(𝑧𝑖). The testing part of ddLDA is summarized in

lgorithm 3. The dimension of the optimization problem is the same as
he number of classes which is also the dimension of the distance vector
7). The number of minimal solutions may or may not be unique.

After the testing step, we compute the success rate defined as the
atio of the number of correctly classified samples to the total number
f samples in the testing dataset.

We remark that the ddLDA is different from the traditional LDA
n several aspects. In LDA, a single projection matrix is produced and
ach sample in the training set is then projected to the low dimension
pace with this projection. In the ddLDA, depending on the number
f subdomains we choose, we generate 𝑝 projections matrices, and the
amples in the training set are projected into low dimensional spaces
ubdomain-by-subdomain. The total number of samples are the same
nd the total number of low dimensional projected vectors are also the
ame, but the ways they are computed are different. The two important
ariables in ddLDA are the decomposition of the training dataset and
he selection of the dimension of the reduced subspaces. We will show
heir impact with numerical experiments.

Algorithm 3 The ddLDA testing algorithm.
Input: The testing set 𝑇
for 𝑖 = 1,…𝐿 do
for 𝑘 = 1,… , 𝑝 do

𝑧𝑖𝑘 = 𝑇
𝑘 𝑧

𝑖

end for
Calculate the distance vector 𝜂𝑖

Solve the minimization problem (8)
if 𝜂𝑖𝑘∗ ,𝑗∗ is the minimal value, then put 𝑗∗ in 𝐶(𝑧𝑖)

end for
Output: 𝐶(𝑧1),… , 𝐶(𝑧𝐿)

Next, we present some analysis of the ddLDA algorithm for the
situation that

𝑑1 = ⋯ = 𝑑𝑝.

imilar to the traditional LDA, the within-class scatter matrix in the
th subdomain is defined as

𝑘
𝑊 =

∑

𝑛𝑗
∑

(𝑥𝑖𝑗 − 𝜇𝑗 )(𝑥𝑖𝑗 − 𝜇𝑗 )𝑇 , (9)

𝑗∈𝑠𝑘 𝑖=1
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and the between-class scatter matrix in the 𝑘th subdomain is defined
as

𝑆𝑘
𝐵 =

∑

𝑗∈𝑠𝑘

𝑛𝑗 (𝜇𝑗 − 𝜇(𝑘))(𝜇𝑗 − 𝜇(𝑘))𝑇 , (10)

where 𝜇(𝑘) is the mean of all samples in the 𝑘th subdomain in the
ddLDA. Define 𝑛(𝑘) as the number of samples in the 𝑘th subdomain.
We have the following properties:

𝑛𝑐𝜇 =
𝑝
∑

𝑘=1
𝑛(𝑘)𝜇(𝑘) =

𝑐
∑

𝑗=1
𝑛𝑗𝜇

𝑗 . (11)

ddLDA computes an orthogonal matrix 𝑉𝑘 ∈ R𝑚×𝑑𝑘 to maximize the
following ratio:

𝐽𝑘(𝑉𝑘) =
𝑇 𝑟(𝑉 𝑇

𝑘 𝑆𝑘
𝐵𝑉𝑘)

𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘)
. (12)

he optimizer consists of the set of eigenvectors 𝑣𝑘𝑖 ∈ R𝑚 of the
eneralized eigenvalue problem in the 𝑘th subdomain
𝑘
𝐵𝑣

𝑘
𝑖 = 𝜆𝑖𝑆

𝑘
𝑊 𝑣𝑘𝑖 , (13)

ssociated with the largest 𝑑𝑘 eigenvalues.
For each 𝑘, the optimizer 𝑉 ∗

𝑘 satisfies

𝑘(𝑉 ∗
𝑘 ) ≥ 𝐽𝑘(𝑉 ), (14)

or any 𝑉 ∈ R𝑚×𝑑 . We denote the value of the scaled sum of the
ubdomain objective functions

∗
𝑑𝑑 =

𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
max

𝑉 𝑇
𝑘 𝑉𝑘=𝐼

𝐽𝑘(𝑉𝑘) =
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝐽𝑘(𝑉 ∗

𝑘 ).

We remark that the factor 𝑛𝑐

𝑛(𝑘)
is important since the number of samples

n each subdomain is different.
To compare the optimal value 𝐽 ∗

𝑑𝑑 from the ddLDA and the optimal
value 𝐽 ∗ from the traditional LDA, we need to find the connections
between the ddLDA and the LDA. By definition, we can rewrite 𝑆𝑊 as

𝑊 =
𝑝
∑

𝑘=1
𝑆𝑘
𝑊 ,

nd 𝑆𝐵 as

𝐵 =
𝑐
∑

𝑗=1
𝑛𝑗 (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 =

𝑝
∑

𝑘=1

∑

𝑗∈𝑠𝑘

𝑛𝑗 (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 .

Then, we show that the maximum of the objective function 𝐽 ∗ in the
traditional LDA is smaller than 𝐽 ∗

𝑑𝑑 obtained from the ddLDA. In the
remainder of this section, we first recall some mathematical facts, then
we show some lemmas useful in the proof of the main theorem.
Titu’s Lemma:
∑

𝑖

𝑎𝑖
𝑏𝑖

≥
∑

𝑖 𝑎𝑖
∑

𝑖 𝑏𝑖
. (15)

for 𝑎𝑖 ≥ 0 and 𝑏𝑖 > 0.
There are several names commonly associated with this inequality

and its proof is elementary.

Lemma 1. For any function 𝑓𝑘(𝑥) ∶ R𝑚 → R, 1 ≤ 𝑘 ≤ 𝑝,
𝑝
∑

𝑘=1
max
𝑥𝑘

𝑓𝑘(𝑥𝑘) ≥ max
𝑥1 ,…,𝑥𝑝

𝑝
∑

𝑘=1
𝑓𝑘(𝑥𝑘). (16)

The proof is trivial.
Because for any 𝑥, 𝑦 ∈ R𝑚, 𝑇 𝑟(𝑥𝑦𝑇 ) = 𝑇 𝑟(𝑦𝑥𝑇 ) = 𝑥𝑇 𝑦, we have

𝑇 𝑟(𝜇𝑗𝜇(𝑘)𝑇 ) = 𝑇 𝑟(𝜇(𝑘)𝜇𝑗𝑇 ) = 𝜇𝑗𝑇 𝜇(𝑘), (17)

𝑇 𝑟(𝜇𝑗𝜇𝑇 ) = 𝑇 𝑟(𝜇𝜇𝑗𝑇 ) = 𝜇𝑗𝑇 𝜇. (18)
4

With these facts, we present several technical lemmas.
Lemma 2. For any 𝑑𝑘, 𝑘 = 1,… , 𝑝, we have
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
max
𝑉𝑘

𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝐵𝑉𝑘)

𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘)
≥ max

𝑉1 ,…,𝑉𝑝

𝑇 𝑟(
∑𝑝

𝑘=1
𝑛𝑐

𝑛(𝑘)
𝑉 𝑇
𝑘 𝑆𝑘

𝐵𝑉𝑘)

𝑇 𝑟(
∑𝑝

𝑘=1 𝑉
𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘)
.

Proof. Let 𝑓𝑘(𝑉𝑘) =
𝑛𝑐

𝑛(𝑘)
𝑇 𝑟(𝑉 𝑇

𝑘 𝑆𝑘
𝐵𝑉𝑘)

𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘)
, then by (16), we have

𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
max
𝑉𝑘

𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝐵𝑉𝑘)

𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘)
≥ max

𝑉1 ,…,𝑉𝑝

𝑇 𝑟(
∑𝑝

𝑘=1
𝑛𝑐

𝑛(𝑘)
𝑉 𝑇
𝑘 𝑆𝑘

𝐵𝑉𝑘)

𝑇 𝑟(
∑𝑝

𝑘=1 𝑉
𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘)
.

Denote 𝑎𝑘 = 𝑇 𝑟
(

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇
𝑘 𝑆𝑘

𝐵𝑉𝑘
)

, 𝑏𝑘 = 𝑇 𝑟(𝑉 𝑇
𝑘 𝑆𝑘

𝑊 𝑉𝑘), then following
Titu’s Lemma, we have the desired estimate.

Lemma 3. Assume 𝑑1 = ⋯ = 𝑑𝑝 = 𝑑, for any 𝑉 ∈ R𝑚×𝑑 such that
𝑉 𝑇 𝑉 = 𝐼 ,

𝑇 𝑟(𝑉 𝑇𝑆𝐵𝑉 ) ≤ 𝑇 𝑟

( 𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉

)

.

Proof. By definition,

𝑇 𝑟(𝑉 𝑇𝑆𝐵𝑉 ) = 𝑇 𝑟

( 𝑐
∑

𝑗=1
𝑛𝑗𝑉

𝑇 (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 𝑉

)

=
𝑐
∑

𝑗=1
𝑛𝑗𝑇 𝑟(𝑉 𝑇 𝜇𝑗𝜇𝑗𝑇 𝑉 ) −

𝑐
∑

𝑗=1
𝑛𝑗𝑇 𝑟(𝑉 𝑇 𝜇𝑗𝜇𝑇 𝑉 )

−
𝑐
∑

𝑗=1
𝑛𝑗𝑇 𝑟(𝑉 𝑇 𝜇𝜇𝑗𝑇 𝑉 ) +

𝑐
∑

𝑗=1
𝑛𝑗𝑇 𝑟(𝑉 𝑇 𝜇𝜇𝑇 𝑉 ).

To simplify the notations, we denote �̃� = 𝑉 𝑇 𝜇 and �̃�𝑗 = 𝑉 𝑇 𝜇𝑗 , then
the above expression takes the following form
𝑐
∑

𝑗=1
𝑛𝑗‖�̃�

𝑗
‖

2
2 −

𝑐
∑

𝑗=1
𝑛𝑗 �̃�

𝑗𝑇 �̃� −
𝑐
∑

𝑗=1
𝑛𝑗 �̃�

𝑇 �̃�𝑗 +
𝑐
∑

𝑗=1
𝑛𝑗‖�̃�‖

2
2

=
𝑐
∑

𝑗=1
𝑛𝑗‖�̃�

𝑗
‖

2
2 − 2

𝑐
∑

𝑗=1
𝑛𝑗 �̃�

𝑗𝑇 �̃� +
𝑐
∑

𝑗=1
𝑛𝑗‖�̃�‖

2
2

=
𝑝
∑

𝑘=1

∑

𝑗∈𝑠𝑘

𝑛𝑗‖�̃�
𝑗
‖

2
2 − 𝑛𝑐‖�̃�‖22.

The last step is obtained using the fact that ∑𝑐
𝑗=1 𝑛𝑗 = 𝑛𝑐 and

∑𝑐
𝑗=1 𝑛𝑗 �̃�

𝑗 = 𝑛𝑐 �̃�.
Similarly, by definition,

𝑇 𝑟

( 𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉

)

= 𝑇 𝑟

( 𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗𝑉
𝑇 (𝜇𝑗 − 𝜇(𝑘))(𝜇𝑗 − 𝜇(𝑘))𝑇 𝑉

)

=
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗𝑇 𝑟(𝑉 𝑇 (𝜇𝑗 − 𝜇(𝑘))(𝜇𝑗 − 𝜇(𝑘))𝑇 𝑉 ).

Denote �̃�(𝑘) = 𝑉 𝑇 𝜇(𝑘), by (17) and (18) and using the fact that
∑

𝑗∈𝑠𝑘 𝑛𝑗 = 𝑛(𝑘) and ∑𝑝
𝑘=1 𝑛

(𝑘)�̃�(𝑘) =
∑𝑐

𝑗=1 𝑛𝑗 �̃�
𝑗 , the above expression can

e written as
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗𝑇 𝑟(�̃�𝑗 �̃�𝑗𝑇 ) −
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗𝑇 𝑟(�̃�𝑗 �̃�(𝑘)𝑇 )

−
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗𝑇 𝑟(�̃�(𝑘)�̃�𝑗𝑇 ) +
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗𝑇 𝑟(�̃�(𝑘)�̃�(𝑘)𝑇 )

=
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗‖𝜇𝑗‖
2
2 − 2

𝑝
∑

𝑘=1

∑

𝑗∈𝑠𝑘

𝑛𝑐

𝑛(𝑘)
𝑛𝑗 �̃�

𝑗𝑇 �̃�(𝑘)

+
𝑝
∑ ∑ 𝑛𝑐

(𝑘)
𝑛𝑗‖�̃�

(𝑘)
‖

2
2

𝑘=1 𝑗∈𝑠𝑘
𝑛
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𝑇

i

a

o

T
w

𝑄

=
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
∑

𝑗∈𝑠𝑘

𝑛𝑗‖�̃�𝑗‖
2
2 +

𝑝
∑

𝑘=1
𝑛(𝑘)‖�̃�(𝑘)

‖

2
2 −

𝑝
∑

𝑘=1

(

1 − 𝑛𝑐

𝑛(𝑘)

)

𝑛(𝑘)‖�̃�(𝑘)
‖

2
2.

Thus,

𝑟(𝑉 𝑇𝑆𝐵𝑉 ) − 𝑇 𝑟

( 𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉

)

=
𝑝
∑

𝑘=1

(

1 − 𝑛𝑐

𝑛(𝑘)

)

∑

𝑗∈𝑠𝑘

𝑛𝑗‖𝜇𝑗‖
2
2

+
𝑝
∑

𝑘=1

(

1 − 𝑛𝑐

𝑛(𝑘)

)

𝑛(𝑘)‖�̃�(𝑘)
‖

2
2 −

𝑝
∑

𝑘=1
𝑛(𝑘)‖�̃�(𝑘)

‖

2
2 − 𝑛𝑐‖�̃�‖22. (19)

Because 1 − 𝑛𝑐∕𝑛(𝑘) < 0, all the coefficients of the right-hand side in
(19) are negative. Therefore, we have the proof.

Lemma 4. Assume 𝑑1 = ⋯ = 𝑑𝑝 = 𝑑, for any 𝑉 ∈ R𝑚×𝑑 such that
𝑉 𝑇 𝑉 = 𝐼 ,
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝑇 𝑟(𝑉 𝑇𝑆𝑘

𝐵𝑉 )

𝑇 𝑟(𝑉 𝑇𝑆𝑘
𝑊 𝑉 )

≥
𝑇 𝑟(𝑉 𝑇𝑆𝐵𝑉 )
𝑇 𝑟(𝑉 𝑇𝑆𝑊 𝑉 )

.

Proof. Let 𝑎𝑘 = 𝑇 𝑟
(

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉
)

, 𝑏𝑘 = 𝑇 𝑟(𝑉 𝑇𝑆𝑘
𝑊 𝑉 ), by Titu’s Lemma,

𝑝
∑

𝑘=1

𝑇 𝑟
(

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉
)

𝑇 𝑟(𝑉 𝑇𝑆𝑘
𝑊 𝑉 )

≥

∑𝑝
𝑘=1 𝑇 𝑟

(

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉
)

∑𝑝
𝑘=1 𝑇 𝑟(𝑉

𝑇𝑆𝑘
𝑊 𝑉 )

=

∑𝑝
𝑘=1 𝑇 𝑟

(

𝑛𝑐

𝑛(𝑘)
𝑉 𝑇𝑆𝑘

𝐵𝑉
)

𝑇 𝑟(𝑉 𝑇𝑆𝑊 𝑉 )
≥

𝑇 𝑟(𝑉 𝑇𝑆𝐵𝑉 )
𝑇 𝑟(𝑉 𝑇𝑆𝑊 𝑉 )

.

The last inequality follows from Lemma 3.

With the technical lemmas mentioned above, we have the following
theorem.

Theorem 1. When 𝑑1 = ⋯ = 𝑑𝑝 = 𝑑,

𝐽 ∗
𝑑𝑑 ≥ 𝐽 ∗. (20)

Proof. For any 𝑉 ∈ R𝑚×𝑑 , by Lemma 4,
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝑇 𝑟(𝑉 𝑇𝑆𝑘

𝐵𝑉 )

𝑇 𝑟(𝑉 𝑇𝑆𝑘
𝑊 𝑉 )

≥
𝑇 𝑟(𝑉 𝑇𝑆𝐵𝑉 )
𝑇 𝑟(𝑉 𝑇𝑆𝑊 𝑉 )

.

Especially, for 𝑉 ∗ defined in (4), that is
𝑝
∑

𝑘=1

𝑛𝑐

𝑛(𝑘)
𝑇 𝑟(𝑉 ∗𝑇𝑆𝑘

𝐵𝑉
∗)

𝑇 𝑟(𝑉 ∗𝑇𝑆𝑘
𝑊 𝑉 ∗)

≥
𝑇 𝑟(𝑉 ∗𝑇𝑆𝐵𝑉 ∗)
𝑇 𝑟(𝑉 ∗𝑇𝑆𝑊 𝑉 ∗)

. (21)

By the definition of 𝑉 ∗
𝑘 , 𝑘 = 1,… , 𝑝, in (14), and taking 𝑉 as 𝑉 ∗, we

have
𝑇 𝑟(𝑉 ∗𝑇

𝑘 𝑆𝑘
𝐵𝑉

∗
𝑘 )

𝑇 𝑟(𝑉 ∗𝑇
𝑘 𝑆𝑘

𝑊 𝑉 ∗
𝑘 )

≥
𝑇 𝑟(𝑉 ∗𝑇𝑆𝑘

𝐵𝑉
∗)

𝑇 𝑟(𝑉 ∗𝑇𝑆𝑘
𝑊 𝑉 ∗)

. (22)

Multiplying both sides of (22) by 𝑛𝑐∕𝑛(𝑘) and taking the sum for
𝑘 = 1,… , 𝑝, and combining with estimate (21), we arrive at the desired
estimate (20).

We remark that the theorem indicates that the ddLDA is better than
the traditional LDA for 𝑝 > 1. When 𝑝 = 1, they are obliviously the
same. Note that the proof is valid only when 𝑑1 = ⋯ = 𝑑𝑝 = 𝑑,
even though we think the conclusion holds for any 𝑑𝑖. In the numerical
experiments, we use different values of 𝑑𝑖 for different subdomains.

The other important feature of ddLDA is that it is well-suited for
distributed computing. In other words, on a parallel computing system,
we can map different subdomains to different processors and they can
all be computed in parallel. In such an implementation, ddLDA is not
only more accurate but also faster.

The computational complexity of ddLDA in the 𝑘th subdomain is
𝑂(|𝑠𝑘|𝑚2). Since 1

𝑝 ≈ |𝑠𝑘|
𝑐 in the practical applications, the complexity

n the 𝑘th subdomain is 1 of the complexity of the traditional LDA.
5

𝑝

In short, ddLDA is capable of dealing with datasets with a large
number of classes, and it is naturally parallel so that it can be imple-
mented on computers with many processors. However, we note that the
optimal partition is not always easy to determine.

5. Iteratively deflated linear discriminant analysis

Motivated by the fact that the traditional LDA works quite well
for problems with a small number of classes, in this section, we in-
troduce an iteratively deflated LDA (idLDA) method, formulated by
the deflation techniques for eigenvalue problems [17], in which we
iteratively remove the well-separated classes during the training phase
of the algorithm.

We start with some notations. Let 𝐷(0) be the original dataset with
𝑐(0) classes. Denote 𝑛(0)𝑗 as the number of samples in the 𝑗th class in 𝐷(0)

and 𝑛𝑐(0) =
∑𝑐(0)

𝑗=1 𝑛
(0)
𝑗 is the total number of samples in 𝐷(0). Let 𝑁 (0) =

[𝑛(0)1 , 𝑛(0)2 ,… , 𝑛(0)𝑐 ] ∈ Z𝑐(0) be a vector of integers indicating the sizes of
all classes in 𝐷(0). Let 𝑚 be the dimension of the samples in the dataset
nd 𝑥𝑖𝑗(0) ∈ R𝑚 denote the 𝑖th sample from the 𝑗th class in the 𝐷(0), then

𝑋𝑗(0) = [𝑥11(0),… , 𝑥𝑛
(0)
𝑗 𝑗(0)] ∈ R𝑚×𝑛(0)𝑗 is the set of all samples in the 𝑗th

class in 𝐷(0). In other words, 𝑋(0) = [𝑋1(0), 𝑋2(0),… , 𝑋𝑐(0)(0)] ∈ R𝑚×𝑛𝑐(0)

is 𝐷(0).
The idLDA algorithm takes several iterates. At the 𝑘th iterate,

suppose 𝐷(𝑘) is the resulting dataset after the first 𝑘−1 steps of deflation,
let 𝑐(𝑘) be the total number of classes in 𝐷(𝑘) and 𝑛(𝑘)𝑗 be the number of
samples in the 𝑗th class, we define 𝑛𝑐(𝑘) =

∑𝑐(𝑘)
𝑗=1 𝑛

(𝑘)
𝑗 as the total number

of samples in 𝐷(𝑘). We assume that

𝐷(𝑘) ⊂ 𝐷(𝑘−1) ⊂ ⋯ ⊂ 𝐷(0),

and we denote by 𝑋𝑗(𝑘) = [𝑥1𝑗(𝑘),… , 𝑥𝑛
(𝑘)
𝑗 𝑗(𝑘)] ∈ R𝑚×𝑛𝑐(𝑘) as the 𝑗th class

f samples in 𝐷(𝑘) and 𝑋(𝑘) = [𝑋1(𝑘), 𝑋2(𝑘),… , 𝑋𝑐(𝑘)(𝑘)] ∈ R𝑚×𝑛𝑐(𝑘) in
𝐷(𝑘). In the reduced space, let us denote 𝑦𝑖𝑗 = 𝑉 𝑇 𝑥𝑖𝑗 as the projection
of the sample into the reduced space and 𝑌 𝑗 = [𝑦1𝑗 ,… , 𝑦𝑛𝑗 𝑗 ] ∈ R𝑑×𝑛𝑗

is the 𝑗th class of samples in the reduced space. Also we define 𝑌 =
[𝑌 1,… , 𝑌 𝑐 ] ∈ R𝑑×𝑛𝑐 as the sample matrix in the reduced space. We
define 𝑌 𝑗(𝑘) = [𝑦1𝑗(𝑘),… , 𝑦𝑛

(𝑘)
𝑗 𝑗(𝑘)] ∈ R𝑑×𝑛𝑐(𝑘) is the 𝑗th class of samples

and 𝑌 (𝑘) = [𝑌 1(𝑘), 𝑌 2(𝑘),… , 𝑌 𝑐(𝑘)(𝑘)] ∈ R𝑑×𝑛𝑐(𝑘) is the sample matrix in the
reduced space.

Next, we discuss the classification in the reduced space R𝑑,𝑛𝑐 . To
determine whether the classes are well-separated, we introduce several
metrics. Let 𝜈𝑗 ∈ R𝑑 denote the mean of the 𝑗th class in the reduced
space,

𝜈𝑗 = 1
𝑛𝑗

𝑛𝑗
∑

𝑖=1
𝑦𝑖𝑗 .

We define the radius of the 𝑗th class as

𝑅𝑗 = max
𝑦𝑖𝑗∈𝑌 𝑗

{‖𝜈𝑗 − 𝑦𝑖𝑗‖2}.

o remove the impact of the outliers in the training phase, for each 𝑌 𝑗 ,
e define, for example, the 75% training quantile set
𝑗
𝑇𝑅 = {𝑦𝑖𝑗 ∈ 𝑌 𝑗

| ‖𝜈𝑗 − 𝑦𝑖𝑗‖2 ≤ 75%𝑅𝑗}

and its radius as

𝑅𝑗
𝑇𝑅 = max

𝑦𝑖𝑗∈𝑄𝑗
𝑇𝑅

{‖𝜈𝑗 − 𝑦𝑖𝑗‖2}.

Similarly, for the testing phase, we define, for example, the 95% testing
quantile set

𝑄𝑗
𝑇𝐸 = {𝑦𝑖𝑗 ∈ 𝑌 𝑗

| ‖𝜈𝑗 − 𝑦𝑖𝑗‖2 ≤ 95%𝑅𝑗}

and the corresponding radius

𝑅𝑗
𝑇𝐸 = max

𝑖𝑗 𝑗
{‖𝜈𝑗 − 𝑦𝑖𝑗‖2}.
𝑦 ∈𝑄𝑇𝐸
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With these definitions, we introduce the class-separation criteria as
follows. If the distance between 𝜈𝑗 and 𝜈𝑖 is larger than the sum of their
radii, in other words,

‖𝜈𝑗 − 𝜈𝑖‖2 > 𝑅𝑗
𝑇𝑅 + 𝑅𝑖

𝑇𝑅,

we say that the two classes 𝑗 and 𝑘 are well-separated. If

‖𝜈𝑗 − 𝜈𝑖‖2 ≤ 𝑅𝑗
𝑇𝑅 + 𝑅𝑖

𝑇𝑅,

we say that the two classes are not well-separated. If a class is well-
separated from all other classes, then we say this class is separable.

In the above definitions, we specify the quantile values to be 75%
for training and 95% for testing. The best choices of these values are ap-
plication dependent and should be selected carefully. In the numerical
experiment section of the paper, we examine different quantile values
for both training and testing and compare the classification results.

For the class-separation criteria, we define a distance matrix 𝑀 (𝑘) =
{𝑀 (𝑘)

𝑖𝑗 } ∈ R𝑐(𝑘)×𝑐(𝑘) calculated at the 𝑘th iteration in the idLDA. Let 𝜈𝑖(𝑘)
e the mean of the 𝑖th class in the reduced space at the 𝑘th iteration.
et
(𝑘)
𝑖𝑗 = ‖𝜈𝑖(𝑘) − 𝜈𝑗(𝑘)‖2 if 𝑖 ≠ 𝑗;

(𝑘)
𝑖𝑖 = 𝑅𝑖

𝑇𝑅 if 𝑖 = 𝑗,

here 𝑅𝑖
𝑇𝑅 is the training quantile radius of the 𝑖th class. If 𝑀 (𝑘)

𝑖𝑖 <
𝑀 (𝑘)

𝑖𝑗 , for all 𝑗 ≠ 𝑖, then we say that the 𝑖th class is well-separated from
the other classes in 𝐷(𝑘). Otherwise, the two classes are not separable.

The training part of idLDA is summarized in Algorithm 4.

Algorithm 4 The idLDA training algorithm.

Input: 𝑋(0) ∈ R𝑚×𝑛𝑐(0) , 𝑁 (0) ∈ Z𝑐(0) , 𝑐(0), 𝑑(0)
for 𝑘 = 0… do

1. Compute 𝑉 (𝑘) = 𝐿𝐷𝐴(𝐷(𝑘), 𝑁 (𝑘), 𝑐(𝑘), 𝑑(𝑘))
2. Compute 𝑌 (𝑘) = 𝑉 (𝑘)𝑇𝑋(𝑘) ∈ R𝑑×𝑛𝑐(𝑘)

3. Compute the distance matrix 𝑀 (𝑘)

4. Deflate the well-separated class(es); if nothing to deflate, return

5. Define 𝐷(𝑘+1), 𝑁 (𝑘+1), 𝑐(𝑘+1), 𝑑(𝑘+1); 𝑘 = 𝑘 + 1, go to Step 1
end for
Output: 𝑉 (0),⋯ ∈ R𝑚×𝑑(𝑘)

We remark that the dimension of the reduced space can be different
t different iterations, but in practice, one often uses the same value,
uch as 𝑑(𝑘) = 2. For the testing procedure, we denote

= {𝑧1,… , 𝑧𝐿} ∈ 𝐷(0)

s a test set. For 𝑧𝑖 ∈ 𝑇 , define

(𝑧𝑖) = {the class(es) it belongs to}.

or each 𝑉 (𝑘), 𝑧𝑖𝑘 = (𝑉 (𝑘))𝑇 𝑧𝑖, where 𝑖 = 1,… , 𝐿 and 𝑘 = 1,…𝐾, where
is the number of deflation steps in the training phase of the algorithm

nd 𝜈(𝑘) is the mean of 𝑌 (𝑘). The testing part of idLDA is summarized in
lgorithm 5. In the last step, we compare the predicted label to the true

abel. The success rate is defined as the ratio of the number of correctly
redicted samples to the total number of samples in the testing dataset.

Because idLDA does not perform well when the dataset has a large
umber of classes that are not separable, it is often better to use ddLDA
irst to reduce the problem and then apply idLDA.
. Numerical experiments

In this section, we present some numerical experiments for the
roposed ddLDA and idLDA algorithms. Three datasets are used in the
esting, the CIFAR-10/100 datasets with 60,000 images are used for
he study of ddLDA, and a gene expression dataset with 5,629 cancer
atient data is used for the study of idLDA.
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Algorithm 5 The idLDA testing algorithm.
Input: The testing dataset 𝑇
for 𝑖 = 1,… , 𝐿 do
for 𝑘 = 1,…𝐾 do
for 𝑗 = 1,… , 𝑐(𝑘) do

𝑧𝑖𝑘 = (𝑉 (𝑘))𝑇 𝑧𝑖

if ||𝑧𝑖𝑘 − 𝜈𝑗𝑘||2 < 𝑅𝑗
𝑇𝐸 then

include 𝑗 in 𝐶(𝑧𝑖)
end if

end for
end for

end for
Output: 𝐶(𝑧1),… , 𝐶(𝑧𝐿)

6.1. Experiments with ddLDA

6.1.1. Experiments with the CIFAR-10 dataset
In this subsection, we test the proposed ddLDA method using the

CIFAR-10 dataset [30] consisting of 60,000 images in 10 classes in-
cluding airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The color images are of size 32 × 32. The dataset is separated
into a training dataset with 50,000 samples and a testing dataset with
10,000 samples.

In this experiment, we consider a decomposition of the dataset with
𝑐 = 10 classes into 𝑝 = 3 subdomains. More precisely, we choose
subdomain 1 as {airplane, cat, ship}, subdomain 2 as {automobile,
deer, truck}, and subdomain 3 as {bird, Dog, Frog, Horse}.

In the first test, we select 𝑑1 = 𝑑2 = 𝑑3 = 2 and the quantile radius is
et to be 95%. We project all training images into the two-dimensional
pace, subdomain-by-subdomain. In Fig. 1, each picture corresponds
o a subdomain, and the circles are the 95% quantile radii. It is clear
hat the classes are well separated for subdomains 1 and 2, but not for
ubdomain 3. To further understand the situation, we take a sample
mage (a ship) represented by a green circle. It is correctly classified in
ubdomain 1, and when it is placed in subdomains 2 and 3, the image
oes not belong to any of the classes.

Following the ddLDA testing algorithm, we compute the distance
ector for this sample, as shown below in (23), which has a minimum
alue of 0.0131 indicating that this particular sample belongs to the
lass of ships.

(

𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 𝐶𝑎𝑡 𝑆ℎ𝑖𝑝 𝐴𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑒𝑟 𝑇 𝑡𝑟𝑢𝑐𝑘 𝐵𝑖𝑟𝑑 𝐷𝑜𝑔 𝐹𝑟𝑜𝑔 𝐻𝑜𝑟𝑠𝑒
𝑖𝑝 0.1615 0.1923 0.0131 1.8267 2.0488 1.2713 1.0271 0.9493 2.2207 1.6399

)

1×10.

(23)

.1.2. A wrongly classified case
In this subsection, we show a wrongly classified sample. (24) is the

omputed distance vector of a bird. The true label of the test sample
s a bird, but the minimum value is 0.0740 which put it in the class
f airplanes. Fig. 2 shows the figure of this test sample and the right
igure is a sample of an airplane in the training dataset. The distance
ector says that this bird sample is close to the classes of airplane, frog,
nd bird.

(

𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 𝐶𝑎𝑡 𝑆ℎ𝑖𝑝 𝐴𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑒𝑟 𝑇 𝑡𝑟𝑢𝑐𝑘 𝐵𝑖𝑟𝑑 𝐷𝑜𝑔 𝐹𝑟𝑜𝑔 𝐻𝑜𝑟𝑠𝑒
𝑟𝑑 0.0740 0.0964 0.1078 0.2876 0.1667 0.5540 0.0896 0.1573 0.0839 0.5314

)

1×10.

(24)

We now consider the whole testing dataset and compare the tra-
itional LDA, ddLDA with different values of quantile radius. First of
ll, we find that ddLDA significantly improves the classification results
hen compared with LDA which has an accuracy of 47.4%. In Table 2,
e show the classification results obtained with ddLDA with three
ifferent values of the training and testing QR vary from 85% to 95%,
nd the accuracies range from 84.6% to 93.9%. When the dimensions of
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Fig. 1. The testing results using ddLDA. The number of subdomains is 3, and the corresponding dimensions of the reduced spaces are 𝑑1 = 𝑑2 = 𝑑3 = 2. The quantile radius is
95%. The top figure is for subdomain 1 with 3 classes {airplane, cat, ship}. The lower left figure is for subdomain 2 with 3 classes {automobile, deer, truck}. The lower right
figure is for subdomain 3 with 4 classes {bird, dog, frog, horse}. The green circle is a sample of the ship in the testing dataset. The horizontal axis corresponds to the largest
singular value, and the vertical axis corresponds to the second largest singular value.
Fig. 2. The left figure is a test sample of a bird that is wrongly classified in the class
of airplanes; the right figure is a sample of an airplane in the training dataset.

the reduced subspaces are all set to 2, the best result is 90.4% when the
training and testing quantile radii are both set to 90%. As we mentioned
before, we can choose different values of 𝑑𝑖 in the ddLDA algorithm. As
shown in the bottom right figure in Fig. 1, we find that the classes of
bird and dog overlap when 𝑑3 = 2. If we increase 𝑑3 = 3, then the
four classes in subdomain 3 are separately nicely, as shown in Fig. 3.
This suggests that classes that cannot be separated cleanly in a low
dimensional space (𝑑3 = 2), can be separated in a higher dimensional
space (𝑑3 = 3). However, for subdomains 1 and 2, if we increase 𝑑1
or 𝑑2 to 3, the results do not improve. We conclude that 𝑑𝑖 should be
larger in subdomains with a larger number of classes. In the right panel
of Table 2, we show the results when different subdomains use different
values of 𝑑𝑖, the results are indeed better for all values of training and
testing quantile radii. The best result is 93.9% when the quantile radii
are 90% for both.

We also compare the results of ddLDA with PCA and ddPCA. Based
on the traditional PCA, the testing accuracy on CIFAR-10 is 35.8%
with 2 eigenmodes. ddPCA [16] does a little better at 39.3% with 2
eigenmodes with a 2 × 2 partition.

In [15], the same dataset was used for the study of several deep con-
volutional neural network approaches, and a slightly better accuracy
7

Fig. 3. This figure corresponds to the lower-right figure of Fig. 4 where 𝑑3 = 2. For
this figure, we increase 𝑑3 to 3. The non-separable classes in two-dimensional space
are now separable in three-dimensional space. The horizontal axis corresponds to the
largest singular value, the vertical axis corresponds to the second largest singular value,
and the third axis corresponds to the third largest singular value.

was achieved at 94.76%. For practical applications, we feel that ddLDA
and DCNN offer similar accuracy, and ddLDA has the advantage that it
is a deterministic method and also has fewer parameters to adjust.

6.1.3. Experiments with the CIFAR-100 dataset
In this subsection, we test the proposed ddLDA method using the

CIFAR-100 dataset [30] including 60,000 images in 100 classes for bed,
bee, beetle, boy, girl, and oak tree, etc. The dataset is divided into a
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Table 1
The table includes testing results for the traditional LDA, the ddLDA with 𝑑1 = 𝑑2 =
𝑑3 = 2, and the ddLDA with 𝑑1 = 𝑑2 = 2, 𝑑3 = 3. The dataset is CIFAR-10. 𝑄𝑅𝑇𝑅 is the
training quantile radius and 𝑄𝑅𝑇𝐸 is the testing quantile radius.

LDA ddLDA (𝑑1 = 𝑑2 = 𝑑3 = 2) ddLDA (𝑑1 = 𝑑2 = 2, 𝑑3 = 3)

𝑄𝑅𝑇𝐸∖𝑄𝑅𝑇𝑅 85% 90% 95% 85% 90% 95%

47.4%
85% 84.6% 87.4% 86.3% 87.7% 91.6% 89.2%
90% 87.8% 90.4% 88.2% 90.6% 93.9% 91.1%
95% 85.5% 89.7% 87.7% 89.4% 91.4% 90.5%

Table 2
The table shows the testing accuracy for the ddLDA with
𝑑1 = ⋯ = 𝑑𝑝 = 2. The dataset is CIFAR-100 and the number of
partitions is 𝑝. 𝑄𝑅𝑇𝑅 is the training quantile radius and 𝑄𝑅𝑇𝐸
is the testing quantile radius.
𝑝 ddLDA (𝑑1 = ⋯ = 𝑑𝑝 = 2)

𝑄𝑅𝑇𝐸∖𝑄𝑅𝑇𝑅 85% 90% 95%

2
85% 31.3% 34.3% 32.1%
90% 32.5% 36.5% 33.2%
95% 32.1% 36.3% 31.8%

4
85% 37.5% 39.7% 36.4%
90% 38.5% 38.9% 36.2%
95% 36.6% 36.8% 35.8%

10
85% 58.4% 61.2% 61.1%
90% 62.5% 65.4% 63.2%
95% 62.8% 62.9% 61.3%

25
85% 67.6% 69.4% 69.1%
90% 69.2% 70.8% 69.8%
95% 68.8% 70.9% 69.4%

33
85% 72.1% 73.4% 71.9%
90% 74.2% 75.3% 72.8%
95% 72.4% 74.2% 73.3%

Table 3
The table shows the testing accuracy for the data-specific
ddLDA with 𝑑1 = ⋯ = 𝑑𝑝 = 2. The dataset is CIFAR-100 and the
number of partitions is 𝑝. 𝑄𝑅𝑇𝑅 is the training quantile radius
and 𝑄𝑅𝑇𝐸 is the testing quantile radius.
𝑝 data-specific ddLDA (𝑑1 = ⋯ = 𝑑𝑝 = 2)

𝑄𝑅𝑇𝐸∖𝑄𝑅𝑇𝑅 85% 90% 95%

2
85% 34.8% 36.3% 33.9%
90% 35.7% 38.4% 34.2%
95% 34.1% 35.2% 32.7%

4
85% 37.5% 39.7% 36.4%
90% 38.5% 38.9% 36.2%
95% 36.6% 36.8% 35.8%

10
85% 62.9% 63.8% 63.1%
90% 67.3% 70.8% 68.7%
95% 63.2% 64.1% 62.4%

25
85% 73.4% 75.2% 72.8%
90% 75.1% 76.9% 73.4%
95% 74.8% 75.9% 74.1%

33
85% 83.2% 84.5% 82.3%
90% 87.6% 90.1% 87.7%
95% 84.1% 85.3% 83.7%

training dataset with 50,000 samples and a testing dataset with 10,000
samples. In each class, there are 500 samples in the training dataset
and 100 samples in the testing dataset.

In this experiment, we consider several decompositions of the
dataset with 𝑐 = 100 classes into 𝑝 = 2, 4, 10, 25, 33 subdomains respec-
tively. The subdomains are picked randomly in the ddLDA method. To
evaluate the accuracy, we repeat the experiment 25 times and calculate
the average accuracy. The testing accuracy is 21.7% in the traditional
LDA. Table 2 shows the testing accuracy of ddLDA. Notably, the testing
accuracy increases as more partitions are used in the ddLDA from
31.3% to 75.3%.
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Fig. 4. The testing results using ddLDA. The purple circles are the test samples of
apples projected onto the class of apples in the training dataset.

Fig. 5. The testing results using ddLDA. The purple circles are the test samples of
babies projected onto the class of babies, the class of boys, and the class of houses in
the training dataset. There are some wrongly classified cases for babies and boys.

We observe that the testing accuracy varies among classes. For
instance, Fig. 4 shows the testing accuracy is 100% for the class of
apples with a 𝑝 = 33 partition. However, for some classes, the testing
accuracy is low. For instance, Fig. 5 shows the testing accuracy is only
72% for the class of babies.

We also observe that the classification error increases when images
in some of the classes look similar, for example, the classes of babies
and boys share common features that are difficult to distinguish in
the testing. To avoid this issue, we introduce the data-specific ddLDA
method. Instead of selecting the classes randomly in each subdomain,
we put the classes with common features in different subdomains in
the training phase of ddLDA. For example, if we separate the classes of
babies and boys into different subdomains {baby, bicycle, house} and
{boy, cloud, lizard}, the testing accuracy can be improved significantly;
see Figs. 6–7. Table 3 shows the testing accuracy of the data-specific
ddLDA method when the dimensions of the reduced subspaces are all
set to 2. The best result is 90.1% when the training and testing quantile
radii are both set to 90%.

In [15], the CIFAR-100 dataset was also used to study some deep
convolutional neural network methods, and the accuracy was achieved
at 74.5%. ddLDA offers similar accuracy to DCNN when using 𝑝 = 33
partitions. Moreover, when the specific-data ddLDA is applied, higher
accuracy is achieved.
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Fig. 6. The testing results using data-specific ddLDA. The purple circles are the test
samples of babies projected onto the class of babies in the training dataset.

Fig. 7. The testing results using data-specific ddLDA. The purple circles are the test
samples of boys projected onto the class of boys in the training dataset.

Finally, we show the compute time for the traditional LDA and the
ddLDA with different sizes of partitions, and each subdomain is com-
puted on a different processor. Table 4 shows the compute time spent
on the training phase of the algorithm using different partitions for the
CIFAR-100 dataset. Let 𝑡𝑝 be the compute time using 𝑝 processors. If
the algorithm and the implementation satisfy the relation:
𝑡𝑝
𝑡𝑞

≈
𝑞
𝑝
, for any 𝑝 and 𝑞,

where 𝑡𝑝 and 𝑡𝑞 are the compute times using 𝑝 and 𝑞 processors,
respectively, then we claim that the algorithm is linearly scalable.
Table 4 shows that ddLDA is close to be linearly scalable. We also
record the compute time for the CIFAR-10 dataset. LDA takes 342.41 s
using a single processor and ddLDA takes 163.93 s using 2 processors
and 93.3 s using 3 processors. Roughly speaking, the compute time
per processor decreases almost linearly as we increase the number of
subdomains.

6.2. Experiments with idLDA

In this subsection, we test the proposed idLDA method using the
gene dataset [31] consisting of the genetic data of 5,629 patients
and 11 classes of diseases including liver cancer, cell line cancer,
breast cancer, colon cancer, kidney cancer, uterus cancer, ovary cancer,
9

Fig. 8. Classification by the traditional LDA with 𝑑 = 2. Two separable classes are
determined (brain and heart). The horizontal axis corresponds to the largest singular
value, the vertical axis corresponds to the second largest singular value.

Table 4
The table shows the training time (in seconds) for the CIFAR-100 dataset using the
traditional LDA with 𝑝 = 1 processor and ddLDA with the different number of processors
(𝑝) with 𝑑1 = ⋯ = 𝑑𝑝 = 2.

LDA ddLDA

𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 10 𝑝 = 25 𝑝 = 33

369.38 167.03 132.23 84.59 41.08 33.36 29.12

pancreatic stellate cell line cancer (PSC), lung cancer, and heart disease.
Each sample is represented as a vector with 18,441 double precision
numbers. The dataset is randomly separated into a training dataset with
4,220 samples and a testing dataset with 1,409 samples.

We first present the classification results obtained using the tradi-
tional LDA algorithm when the dimension of the reduced space is 𝑑 = 2.
In Fig. 8 the horizontal axis corresponds to the largest singular value,
and the vertical axis corresponds to the second largest singular value.
One can tell that there are 3 clusters in the figure; one for the heart
disease at the top of the figure, one for the brain cancer at the bottom
right of the figure, and all the other classes are in the same cluster on
the bottom left of the figure. It is clear that the traditional LDA is not
able to separate all the classes in this experiment.

Based on 𝑉 (0) and 𝑌 (0) from the LDA step, we can also form a
distance matrix as given in Box I (see Box I). The diagonal entries 𝑀 (0)

2,2
and 𝑀 (0)

11,11 are strictly smaller than the corresponding values in the
2nd row (column) and 11th row (column). Following the definition of
separable classes, these two classes are separable from other classes.
For all the other rows (columns), the diagonal entry is not the smallest,
therefore they are not separable.

Note that for this experiment, the quantile radius for the training
phase is 75% and 90% for the testing phase. Different values of the
quantile radius will be studied later in Table 1.

Based on the result from the traditional LDA, two classes are well-
separated, corresponding to 𝑗 = 2, 11; i.e., brain and heart. We delete
these two classes from the dataset 𝐷(0) to form 𝐷(1), then we apply a
second iteration of LDA using the same values of 𝑑 and quantile radius.
The corresponding distance matrix is shown in Box II (see Box II).
By the class-separation criteria, in this step, only one class is well-
separated, corresponding to 𝑗 = 1; i.e., liver as shown in the top left
figure of Fig. 9. We then delete this class from the dataset 𝐷(1) to form
𝐷(2) for which we perform another round of LDA.

After the third iteration of LDA, we compute the distance matrix as
given in Box III (see Box III). By checking the matrix values, two classes
are well-separated, corresponding to 𝑗 = 2, 4; i.e., breast and kidney as
shown in the top right figure of Fig. 9. We delete these two classes from
the dataset 𝐷(2) to form 𝐷(3). Then we go through the fourth iteration
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Fig. 9. The classification results using the idLDA with 4 iterations (after one step of the traditional LDA). The top left figure shows one separable class (liver) at 𝑘 = 1; the top
right figure shows two separable classes (breast and kidney) at 𝑘 = 2; the bottom left figure shows two separable classes (colon and lung) at 𝑘 = 3; the bottom right figure shows
two separable classes (uterus and ovary) at 𝑘 = 4. The circles are centered at the center of the separable classes and the radius is the 95% quantile radius.
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which shows that two classes are well-separated, corresponding to
= 2, 5; i.e., colon and lung as shown in the bottom left figure of Fig. 9.
e delete these two classes from the dataset 𝐷(3) to form 𝐷(4), and

roceed to the fifth iteration of LDA and form the distance matrix
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𝑈𝑡𝑒𝑟𝑢𝑠 22.37 2.65 9.31 22.45
𝑂𝑣𝑎𝑟𝑦 22.14 9.31 2.22 22.22
𝑃𝑆𝐶 0.09 22.45 22.22 0.77
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In this case, two classes are well-separated, corresponding to 𝑗 = 2, 3;
.e., ovary and uterus as shown in the bottom right figure of Fig. 9. We
elete these two classes from the dataset 𝐷(4) to form 𝐷(5) and perform
he sixth iteration of LDA. No separable class is found at this step, as a
esult, the process stops.

In each of the five iterations, a projection matrix is obtained from
he singular vectors, 𝑉 (0),… , 𝑉 (4). Next, we show how the proposed
ethod works for one sample (let us denote it as 𝑧, and is shown in

ig. 10 as a red solid triangle). We show step by step how to identify
he class that 𝑧 belongs to using the projections produced at the training
tage of Algorithm 4.

We first compute the projection of 𝑧 to the reduced space by the first
rojection matrix 𝑉 (0), i.e., 𝑧0 = 𝑉 (0)𝑇 𝑧, then we compute the distance
f 𝑧0 to the centers of all classes 𝑟(0)𝑗 = ‖𝑧0 − 𝜈𝑗0‖, 𝑗 = 1,… , 11, as shown

below

(

𝐿𝑖𝑣𝑒𝑟 𝐵𝑟𝑎𝑖𝑛 𝐶𝑒𝑙𝑙 𝐵𝑟𝑒𝑎𝑠𝑡 𝐶𝑜𝑙𝑜𝑛 𝐾𝑖𝑑𝑛𝑒𝑦 𝑈𝑡𝑒𝑟𝑢𝑠 𝑂𝑣𝑎𝑟𝑦 𝑃𝑆𝐶 𝐿𝑢𝑛𝑔 𝐻𝑒𝑎𝑟𝑡
102.27 122.28 123.82 104.55 102.79 103.72 102.43 102.44 103.63 108.13 1.37

)

1×11, (25)

hich says that the distance to the heart class is the smallest. Using
he second projection matrix 𝑉 (1), we calculate the distance between
he test sample and the classes as a vector

(

𝐿𝑖𝑣𝑒𝑟 𝐶𝑒𝑙𝑙 𝐵𝑟𝑒𝑎𝑠𝑡 𝐶𝑜𝑙𝑜𝑛 𝐾𝑖𝑑𝑛𝑒𝑦 𝑈𝑡𝑒𝑟𝑢𝑠 𝑂𝑣𝑎𝑟𝑦 𝑃𝑆𝐶 𝐿𝑢𝑛𝑔
23.35 16.44 6.23 4.07 7.26 5.41 5.32 17.64 4.87

)

1×9. (26)

he smallest value is 4.07 which shows that the sample belongs,
ossibly, to the colon class according to the projection at this iteration.
ollowing this approach, we go through all projections and then com-
are the smallest values from each iteration, and then the smallest of
ll the smallest values determines the class it belongs to; i.e. the value
(𝑘) that solves the problem

in
𝑘

‖𝑉 (𝑘)𝑇 𝑧 − 𝜈𝑐(𝑘)𝑘 ‖.

or this particular test sample the calculations show that it belongs to
11

he heart class.
Table 5
The classification accuracies of ddLDA, idLDA, ms-LDA, and ms-LDA-tr
on the CIFAR-10/100 and the gene cancer datasets.

CIFAR-10 CIFAR-100 Gene Cancer

ddLDA 93.9% 90.1% 90.3%
idLDA 91.5% 83.9% 89.5%
ms-LDA 84.7% 83.1% 81.3%
ms-LDA-tr 92.8% 90.3% 90.1%

We report the test results using LDA and idLDA for different values
of quantile radius. The dataset has 5,629 samples, and we pick 75%
of the samples for training (4,220 cases) and 25% for testing (1,409
cases). Without loss of generality, we randomly separate the samples
into training and testing sets.

We repeat the test 15 times, and in Table 2, we show the best,
the worst, and the average testing accuracy obtained with different
values of quantile radius (QR) from the idLDA algorithm, as well as the
results obtained with LDA. We find that idLDA significantly improves
the classification results when compared with LDA. The classification
results obtained with idLDA with different values of the training and
testing QR vary from 81.32% to 89.51%. This suggests that a careful
selection of the quantile radii is important and the optimal values are
problem dependent.

Note that in this experiment, we find that cell line cancer and PSC
are not separable because PSC is also a kind of cell line cancer. There-
fore, mathematically speaking, the best classification rate is 91.6%,
which is very close to the 89.5% average accuracy obtained by idLDA
with a 75% training QR and 95% testing QR.

Next, we compare ddLDA and idLDA for the same datasets. In the
gene expression dataset of cancer patients, ddLDA works well achieving
a 90.3% average accuracy with an 80% training QR and an 85%
testing QR. Compared to the 89.5% in idLDA, we see that ddLDA and
idLDA offer similar accuracy but ddLDA is cheaper in terms of the
computational time.

As mentioned earlier, idLDA sometimes does not work well for
some datasets, and reducing the problem size is often needed. In the
experiments of the CIFAR-10/100 datasets, we first decompose the
dataset. After that, idLDA works well. In the CIFAR-10 dataset with 2
partitions, the average classification accuracy is 81.6%. For 3 partitions,
the average classification accuracy is 91.5%. For the CIFAR-100 dataset
with 10 partitions, the average classification accuracy is 79.2%. For 25
partitions, the average classification accuracy is 83.9%, which is better
than the ddLDA algorithm.

We also compare ms-LDA and ms-LDA-tr proposed in Huang et al. [28
with the ddLDA algorithm for the gene cancer dataset and the CIFAR-
10/100 datasets. Table 5 shows the classification accuracies of ddLDA,
idLDA, ms-LDA, and ms-LDA-tr algorithms. The accuracy of ms-LDA is
81.3%, 84.7%, and 83.1% respectively, and the accuracy of ms-LDA-tr
is 90.1%, 92.8%, and 90.3% respectively, that are similar to our results.
The advantages of ddLDA are a high level of parallelism and reduced

complexity. For problems with a large number of classes, idLDA is able
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Fig. 10. We project a testing sample 𝑧 (marked as a red triangle) onto the reduced space with 𝑑 = 2 using different projections. The figure in the first row shows the projection
using 𝑉 (0), the figures in the second row show the projection using 𝑉 (1) and 𝑉 (2), respectively; the figures in the third row show the projection using 𝑉 (3) and 𝑉 (4), respectively.
The circles are centered at the center of the separable classes with a radius that is equal to the 95% quantile radius.
to remove some of the classes and reduce the overall complexity of
the problem. Although not discussed, both ms-LDA and ms-LDA-tr can
be accelerated by parallelization with a similar idea as multi-subspace
methods that are closely related to domain decomposition used in this
paper.

7. Conclusions

The traditional LDA works well for classification problems when
the number of classes is small, and the accuracy decreases when the
number of classes increases. In this work we introduce two techniques
for problems with a relatively large number of classes. In contrast
to the traditional LDA, we use LDA only for subsets of the problem
that have a smaller number of classes. The first technique is called
domain decomposition LDA borrowed the idea from parallel methods
for solving partial differential equations, and the second technique is
called iterative deflation LDA borrowed from the idea in linear algebra
for eigenvalue calculations.

In the domain decomposition method, the training set is decom-
posed into several sub-classes called subdomains. In each subdomain,
we select a dimension of the reduced space and then apply the tradi-
tional LDA in this subspace. The testing is carried out for all subdomains
and the classification is determined by a distance vector whose pieces
are defined in the subdomains. Using different dimensions for different
subdomains, for the CIFAR-10 dataset, we improved the accuracy of
12
the traditional LDA from 47.3% to 93.7%. In comparison, in a separate
work by the co-author [15], the same dataset is studied with several
DCNN methods, and the best result is 94.8%. In other words, ddLDA
is almost as accurate as DCNN, and it is a deterministic method with
far fewer parameters to adjust. For the CIFAR-100 dataset, we improve
the accuracy of the traditional LDA from 21.7% to 75.3%. Moreover, we
introduce a data-specific partition to further improve ddLDA. With the
data-specific ddLDA, the testing accuracy increases up to 90.1% for the
CIFAR-100 dataset. Another advantage of ddLDA is that the subdomain
training problems are all independent of each other and can be carried
out in parallel which is important for solving large scale problems on
large scale parallel computers.

The iterative deflation method is identical to LDA in the first it-
eration, but after each iteration, we deflate the classes that are well-
separated until we exhaust all separable classes. In the traditional LDA,
only one projection matrix is produced, while in the new approach,
several projection matrices are generated. Therefore, to determine if a
sample belongs to a certain class or classes, we need to solve another
optimization problem which is often small and not time-consuming.
As an example, the classification of cancer patients was studied based
on their DNA data. The accuracy of the traditional LDA is 71.37%,
and the new approach offers a much better accuracy at 89.51%. We
mention that because PSC is also a kind of cell line cancer, therefore,
mathematically speaking, the best classification result is 91.6%. In
other words, our result is almost the best possible result.
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